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THE SPECTRUM OF OPERATORS ON Lp (En) (1)

MARTIN SCHECHTER

1. Introduction.

Let P(D) be a partial differential operator on En with complex constant
coefficients. If Co denotes the set of infinitely differentiable complex valued
functions with compact supports on .En, then P (D) on C~° is a closable

operator in for Let P~ = Pop denote its closure 
.

in EP. It is the purpose of this note to describe the spectrum of Po under
certain assumption on P (D).

In describing our results, we shall need to define the polynomial P (~)
associated with P (D). If we set

we can consider P (D) as a  polynomial » in Dl, ... , D,,,. If we replace

D1, ... , Dn by real variables ~t’’’.’ $n, we obtain a polynomial P (~) called
the polynomial associated with P (D).

Our first result is 
°

THEOREM 1.1. Let P (D) be an operator of order m such that the asso-

aaated polynomial satisfies

where b &#x3E; 0 and I; 12= ~~+... +~2. Let p satisfy 1  p  oo and
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Then

where ~ = (~1 , ... , ~n). Thus (1.4) holds for all p satisfying 1  p  oo when

COROLLARY 1.2. If P (D) 2s s2cch that

then there is &#x3E; 0 such that (1.4) holds when

In describing our next result we let a == (/~ ... , fln) denote a multi-
index of non-negative integers and put

where _ ,u1-f - ". -f - ,un .

THEOREM 1.3. Assume that 1  p ~ oo and that P (~) satisfies (1.2) and

for real a C 1 and

where l is the smallest integer greater than n I llp - 1/2 I. Then (1.4) holds.

Balslev [6] proved (1.4) for elliptic operators. Iha and Schubert [4, 5]
proved that for  oo and any operator satisfying (1.6) either o(Po) is
the whole complex plane or (1.4) holds. They also proved a theorem slightly
weaker than Theorem 1.1. They give an example of a fourth order operator
for which (1.4) does not hold when

Our Theorem 1.3 applied to this operator shows that (1.4) does hold for
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It would be of interest to know the exact point of demarcation. I would
like to thank F.T. Iha and C.F. Schubert for informing me about their work.

2. A. Multiplier Theorem.

Let ~S denote the set of all complex valued functions v E C°° (En) such
that

is bounded on En for each integer k ~ 0 and multi.index p, where

If F denotes the Fourier transform, then both F and F-I map S into
itself. A function m (~) on En is called a multiplier in LP if there exists a

constant C such that

where $ is the argument of the Fourier transform and the norm is that

of EP.

The following is a special case of a theorem due to Littman [1].

THEOREM 2.1. Let be non-negative integers and suppose 9, p sa-

tisfy 0 ~ 0 ~ 1, 1poo and

Suppose w (~) is a function in Om satisfying

for all ft, v such that C m1 and I’J’ I -:::.--- m., where m = max (mi , m2).
Then w is a multiplier in Lp .

We shall use this theorem to prove

THEOREM 2.2. Suppose 1  p  oo, and let l be the smallest integer
greater than n I llp - 1/2 I. Assume that w (~) is a function in 0 such that
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for real a ---- 1 and

Then w is a multiplier in LP .

PROOF. First assume that b ¿ (1 - ac) l. In this case we take 
= m2 = l and 9 = 0. Inequality (2.4) implies

Since I for p ) (  l, and consequently 1+ b &#x3E; ~,u ( .
Thus (2.6) implies (2.3). Since all of the hypotheses are satisfied, we obtain
the desired conclusion from Theorem 2.1.

Next assume b  (1- a) l. In this case we must have a  1. By (2.5)
and the definition of 1 we have

and consequently there is a 9 satisfying 0  8  1 such that

In particular we have

We now take mi = 1, m2 = l - 1 and 0 satisfying (2.7). Note that (2.6)
implies

by (2.7). This is equivalent to

for such p and v. Thus (2.8) implies (2.3) and all of the hypotheses of
Theorem 2.1 are satisfied. This completes the proof.
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The connection between multipliers and the spectrum of a partial dif-

ferential operator is given by

THEOREM 2.3. For 1 c ~ C oo , a (Pop) if and only if
2013 A] is a multiplier in LP .

PROOF. We may take A = 0. If 0 E e (Pop), then there is a constant C

such that

In particular we have

Now (2.10) implies that

To see this, let ~ be any vector in ~7" and let 1jJ be any function in Co
such = 1. · Set

Then (Pk E Co for each k and 11 99k =1. Furthermore by Leibnitz’s formula

where 1¡J" (x) = (x) = pn ! . Since

We see that

But by (2.10)

This gives (2.11). Let f be any function in S, and set
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By (2.11) we know that u E S. Furthermore P (D) u = f. Thus (2.10)
implies

This shows that 11P (~) is a multiplier in LP.
Conversely, suppose is a multiplier. Thus (2.14) holds. Since all

multipliers are bounded, (2.11) holds for some constant C. Thus for each

f E S there is a u E S such that P (D) u = f and

by (2.14). Since S is dense in this shows that (Po). This completes
the proof.

3. Proofs of the Theorems.

We first give the

PROOF oF THEOREM 1.3. It is well known that

(see it suffices to show that each Â satisfying P ($) for

~ E is in e (PO). We may take A = 0. By Theorem 2.3 it suffices to show
that 11P (~) is a multiplier in LP. Since a ~ 1, we must have b &#x3E; 0 and

consequently (1.6) holds. This means that there is a constant C such that

(2.11) is satisfied. Now for each p the derivative Dg (1/P) consists of a sum
of terms of the form

where + ... -f - _ p (this is easily verified by a simple induction

argument). Thus

We may apply Theorem 2.2 to conclude that 11P (~) is an ~Lp multiplier.
This completes the proof.

Next we give the
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PROOF OF THEOREM 1.1. Since P ($) is of degree m, P(&#x3E;)($) is of

degree at most m - Hence

For 1 we have - b ~ (m - b - 1) 1 IA I. Hence (3.4) gives

This shows that (1.8) holds with a = b + I - m. If we now apply Theorem
1.3 we see that (1.4) holds provided (1.3) is satisfied. If (1.5) holds, then
the right hand side of (1.3) is &#x3E; 1/2. This allows p to take on all values

between 1 and oo.

PROOF OF COROLLARY 1.2. We merely note that (1.6) implies (1.2)
for some constant b &#x3E; 0. Thus by Theorem 1.1 we may take n = b/n (m - b).
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