Annali della Scuola Normale Superiore di Pisa Classe di Scienze

E. Bombieri

H. DAVENPORT

Some inequalities involving trigonometrical polynomials

Annali della Scuola Normale Superiore di Pisa, Classe di Scienze 3^e série, tome 23, nº 2 (1969), p. 223-241

http://www.numdam.org/item?id=ASNSP_1969_3_23_2_223_0

© Scuola Normale Superiore, Pisa, 1969, tous droits réservés.

L'accès aux archives de la revue « Annali della Scuola Normale Superiore di Pisa, Classe di Scienze » (http://www.sns.it/it/edizioni/riviste/annaliscienze/) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

Numdam

SOME INEQUALITIES INVOLVING TRIGONOMETRICAL POLYNOMIALS

E. Bombieri and H. Davenport

1. Introduction.

Let N be a positive integer and let a_{M+1}, \dots, a_{M+N} be any real or complex numbers. Define

(1)
$$S(x) = \sum_{n=M+1}^{M+N} a_n e^{2\pi i nx}.$$

Let x_1, \ldots, x_R be any real numbers which satisfy

$$||x_r - x_s|| \ge \delta \text{ when } r \ne s,$$

where $\|\theta\|$ denotes the difference between θ and the nearest integer, taken positively, and $0 < \delta \le \frac{1}{2}$.

In a recent paper 1) we proved that

(3)
$$\sum_{r=1}^{R} |S(x_r)|^2 \leq (N^{1/2} + \delta^{-1/2})^2 \sum_{n=M+1}^{M+N} |a_n|^2,$$

and that

$$\sum_{r=1}^{R} \mid S\left(x_{r}\right) \mid^{2} \leq 2 \max\left(N, \delta^{-1}\right) \sum_{n=M+1}^{M+N} \mid a_{n} \mid^{2};$$

the latter represents an improvement on the former if N and δ^{-1} are of about the same size.

Pervenuto alla Redazione il 26 Gingno 1968.

^{(4) «} On the large sieve method », Abhandlungen aus Zahlentheorie und Analysis zur Erinnerung an Edmund Landau, Deutscher Verlag der Wissenschaften, Berlin 1968.

^{1.} Angali della Scuola Norm. Sup . Pisa.

In the present paper we investigate more deeply the two cases in which $N\delta$ is either large or small. The factor on the right of (3) is a little greater than N in the first case, and a little greater than δ^{-1} in the second case. Our object is to determine the order of magnitude of the term that must be added to N or δ^{-1} , as the case may be, to ensure the validity of the inequality.

For the case $N\delta$ large, we prove:

Theorem 1. If $N\delta \ge 1$ then

(4)
$$\sum_{r=1}^{R} |S(x_r)|^2 < N(1+5(N\delta)^{-1}) \sum_{n=M+1}^{M+N} |a_n|^2.$$

On the other hand, if c is a constant less than 1 there exist sums S(x) with δ arbitrarily small and $N\delta$ arbitrarily large for which

(5)
$$\sum_{r=1}^{R} |S(x_r)|^2 > N (1 + c (N \delta)^{-1}) \sum_{n=M+1}^{M+N} |a_n|^2.$$

There are two new features in the proof of (4), as compared with the proof of (3) in our previous paper. The first of these is a maximization argument (Lemma 1), which has the effect of allowing us to limit ourselves to sums S(x) in which the numbers $|a_n|$ have a measure of approximate equality. The second feature is the use of the function $\Phi_1(t)$, defined in (13), in place of the simpler function $\Phi(t)$ of our previous paper.

For the case $N\delta$ small, we prove:

THEOREM 2. If $N \delta \leq \frac{1}{4}$, then

(6)
$$\sum_{r=1}^{R} |S(x_r)|^2 < \delta^{-1} (1 + 270 N^3 \delta^3) \sum_{n=M+1}^{M+N} |a_n|^2.$$

On the other hand there exist sums S(x) with $N\delta$ arbitrarily small for which

(7)
$$\sum_{r=1}^{R} |S(x_r)|^2 > \delta^{-1} \left(1 + \frac{1}{12} N^3 \delta^3 \right) \sum_{n=M+1}^{M+N} |a_n|^2.$$

This case represents a problem which is entirely different from that of the first case; it has much in common with the problem of approximating to a Riemann integral by a finite sum. The arguments used in the proof of (6) are quite delicate.

The present paper is self-contained, except for the general inequality (27), due to Davenport and Halberstam, which is needed for the proof of (4).

2. The maximization argument.

Let δ and x_1, \ldots, x_R be fixed. For each positive integer N, we define G(N) by

(8)
$$N + G(N) = \max_{r=1}^{R} |S(x_r)|^2,$$

where

$$S(x) = \sum_{n=1}^{N} a_n e^{2\pi i n x}$$

and the maximum is taken over all complex numbers a_1, \ldots, a_N satisfying

(10)
$$\sum_{n=1}^{N} |a_n|^2 = 1.$$

The maximum is obviously attained, and we call a set of coefficients a_n for which it is attained a maximal set.

LEMMA 1. Suppose N is such that G(N) > 0 and

(11)
$$G(N') \leq G(N) \quad for \quad N' \leq N.$$

Then, for a maximal set of coefficients, we have

(12)
$$\sum_{M+1}^{M+H} |a_n|^2 = \frac{H + \theta G}{N + G} \sum_{1}^{N} |a_n|^2,$$

where $|\theta| \leq 1$ and G = G(N); and this holds for all M, H satisfying

$$0 \le M < M + H \le N$$
.

Proof. Write $e(\theta) = e^{2\pi i \theta}$, and

$$a_n = A_n e(\alpha_n),$$

where $A_n \ge 0$ and α_n is real. For a maximal set of coefficients we have a stationary value of $\Sigma |S(x_r)|^2$ subject to $\Sigma A_n^2 = 1$. Hence we must have

$$\frac{\partial}{\partial A_m} \sum_{r=1}^R |S(x_r)|^2 - 2\lambda A_m = 0 \qquad (m = 1, ..., N)$$

for some λ . Writing $|S|^2 = S\overline{S}$, and noting that

$$\frac{\partial S(x)}{\partial A_m} = e(mx + \alpha_m),$$

we see that the conditions are

$$\sum_{r=1}^{R} e \left(mx_r + \alpha_m \right) \overline{S(x_r)} + \sum_{r=1}^{R} e \left(-mx_r - \alpha_m \right) S(x_r) = 2\lambda A_m.$$

If this is multiplied by A_m and summed for m = 1, ..., N, it gives

$$2\sum_{r=1}^{R} |S(x_r)|^2 = 2\lambda \sum_{m=1}^{N} A_m^2 = 2\lambda,$$

whence

$$\lambda = N + G.$$

If however the sum is restricted to m = M + 1, ..., M + H, we get

$$\sum_{r=1}^{R} S_{H}(x_{r}) \overline{S(x_{r})} + \sum_{r=1}^{H} \overline{S_{H}(x_{r})} S(x_{r}) = 2\lambda \sum_{m=M+1}^{M+H} A_{m}^{2},$$

where

$$S_{H}(x) = \sum_{m=M+1}^{M+H} a_{m} e(mx).$$

Hence

$$\lambda \sum_{m=M+1}^{M+H} \left| a_m \right|^2 \leq \sum_{r=1}^{R} \left| S_H(x_r) \right| \left| S(x_r) \right| \leq \left(\sum_{r=1}^{R} \left| S_H(x_r) \right|^2 \right)^{1/2} \left(\sum_{r=1}^{R} \left| S(x_r) \right|^2 \right)^{1/2}.$$

Now

$$\sum_{r=1}^{R} |S(x_r)|^2 = \lambda = N + G.$$

Also, by the definition of G(H) and the hypothesis (11), we have

$$\mathop{\Sigma}\limits_{r=1}^{R} \mid S_{H}\left(x_{r}\right) \mid^{2} \leq \left(H + G\left(H\right)\right) \mathop{\Sigma}\limits_{m=M+1}^{M+H} \mid a_{m} \mid^{2} \leq \left(H + G\right) \mathop{\Sigma}\limits_{m=M+1}^{M+H} \mid a_{m} \mid^{2}.$$

Hence

$$(N+G)^{1/2} \sum_{m=M+1}^{M+H} |a_m|^2 \le \left((H+G) \sum_{m=M+1}^{M+H} |a_m|^2 \right)^{1/2},$$

that is.

$$\sum_{m=M+1}^{M+H} |a_m|^2 \leq \frac{H+G}{N+G}.$$

This is on the hypothesis that $\sum_{1}^{N} |a_n|^2 = 1$. Plainly that hypothesis can be omitted if we modify the inequality so that it reads

$$\sum_{m=M+1}^{M+H} |a_m|^2 \le \frac{H+G}{N+G} \sum_{n=1}^{N} |a_n|^2.$$

We can obtain a complementary inequality by applying this to the sums over

$$0 < m \le M$$
 and $M + H < m \le N$,

and subtracting from the complete sum. We obtain

$$\sum_{m=M+1}^{M+H} |a_m|^2 \ge \left(1 - \frac{M+G}{N+G} - \frac{N-M-H+G}{N+G}\right) \sum_{n=1}^{N} |a_n|^2 = \frac{H-G}{N+G} \sum_{n=1}^{N} |a_n|^2.$$

The two inequalities together prove (12).

3. A particular Fourier series.

LEMMA 2. Let

(13)
$$\Phi_1(t) = \frac{\sin \pi \lambda t}{t} \cdot \frac{\sin \pi t}{\pi t} \quad \text{for } 0 < t < 1.$$

Suppose that $\lambda > |\alpha| + 1$. Then

(14)
$$\int_{0}^{1} \{ \Phi_{1}(t) \}^{2} dt < \frac{1}{2} \pi^{2} \lambda,$$

(15)
$$\int_{0}^{1} \Phi_{1}(t) \cos \pi \alpha t \, dt > \frac{\pi}{2} - \frac{1}{2\pi^{2}} \left(\frac{1}{(\lambda + \alpha)^{2} - 1} + \frac{1}{(\lambda - \alpha)^{2} - 1} \right).$$

Proof. (14) is almost immediate, for since $\sin \pi t < \pi t$ we have

$$\int_{0}^{1} \{\boldsymbol{\Phi}_{1}(t)\}^{2} dt < \int_{0}^{\infty} \left(\frac{\sin \pi \lambda t}{t}\right)^{2} dt = \frac{1}{2} \pi^{2} \lambda.$$

To prove (15) we start from the relations

$$\int_{0}^{1} \Phi_{1}(t) \cos \pi \alpha t \, dt = \frac{1}{2} \int_{0}^{1} \frac{\sin \pi (\lambda + \alpha) t + \sin \pi (\lambda - \alpha) t}{t} \cdot \frac{\sin \pi t}{\pi t} \, dt$$

$$= \frac{1}{4} \int_{0}^{1} \frac{\cos \pi (\lambda + \alpha - 1) t - \cos \pi (\lambda + \alpha + 1) t}{\pi t^{2}} \, dt$$

$$+ \frac{1}{4} \int_{0}^{1} \frac{\cos \pi (\lambda - \alpha - 1) t - \cos \pi (\lambda - \alpha + 1) t}{\pi t^{2}} \, dt.$$

For B > A > 0 we have

$$\int_{0}^{\infty} \frac{\cos At - \cos Bt}{\pi t^{2}} dt = \int_{0}^{\infty} \frac{2 \sin^{2} \frac{1}{2} Bt - 2 \sin^{2} \frac{1}{2} At}{\pi t^{2}} dt$$

$$= \frac{B - A}{\pi} \int_{0}^{\infty} \left(\frac{\sin t}{t}\right)^{2} dt = \frac{1}{2} (B - A) = \pi$$

if $A = \pi (\lambda + \alpha - 1)$ and $B = \pi (\lambda + \alpha + 1)$. Hence

(16)
$$\int_{0}^{1} \Phi_{1}(t) \cos \pi \alpha t dt = \frac{\pi}{2} - \frac{1}{4\pi} \mathcal{R}(J(\alpha) + J(-\alpha)),$$

where

$$J(\alpha) = \int\limits_{1}^{\infty} (e^{i\pi(\lambda+\alpha-1)t} - e^{i\pi(\lambda+\alpha+1)t}) t^{-2} dt.$$

To estimate $J(\alpha)$ we rotate the line of integration through an angle $\frac{\pi}{2}$ in the complex plane, so that it becomes the line 1 + iu, u > 0. The contribution of the quadrant at infinity vanishes.

We get

$$J(\alpha) = \int_{0}^{\infty} (e^{i\pi \cdot \lambda + \alpha - 1 \cdot (1 + iu)} - e^{i\pi(\lambda + \alpha + 1) \cdot (1 + iu)}) (1 + iu)^{-2} i \, du$$

$$= -ie^{i\pi(\lambda + \alpha)} \int_{0}^{\infty} (e^{-\pi(\lambda + \alpha - 1)u} - e^{-\pi(\lambda + \alpha + 1)u}) (1 + iu)^{-2} \, du.$$

Hence

$$|J(\alpha)| \leq \int_{0}^{\infty} (e^{-\pi(\lambda + \alpha - 1)u} - e^{-\pi(\lambda + \alpha + 1)u}) du$$

$$= \frac{1}{\pi} \left(\frac{1}{\lambda + \alpha - 1} - \frac{1}{\lambda + \alpha + 1} \right) = \frac{2}{\pi ((\lambda + \alpha)^{2} - 1)}.$$

Putting this, for α and $-\alpha$, in (16), we obtain (15).

LEMMA 3. Suppose that K satisfies $K \delta \geq 2$. Let N_0 be any positive integer. There exists a Fourier series

(17)
$$\psi(x) = \sum_{-\infty}^{\infty} b_n e(nx),$$

with real coefficients b_n satisfying $b_{-n} = b_n$, such that

(18)
$$\psi(x) = 0 \quad \text{if} \quad ||x|| > \frac{1}{2} \delta,$$

(19)
$$\sum_{-\infty}^{\infty} b_n^2 < \frac{1}{2} \pi^2 (N_0 + K) \delta^2,$$

and, for $|n| \leq N_0$

$$(20) b_{\parallel}^{-2} < \frac{4}{\pi^2 \delta^2} \left(1 + \frac{1}{7 \left\{ (N_0 + K - |n|)^2 \delta^2 - 1 \right\}} \right).$$

Proof. We define $\lambda = (N_0 + K) \delta$, and we define $\psi(x)$ for $|x| \leq \frac{1}{2}$ by

$$\psi\left(x\right) = \begin{cases} \Phi_{1}\left(2\delta^{-1} \mid x\mid\right) & \text{if} \quad \mid x\mid < \frac{1}{2}\delta, \\ 0 & \text{if} \quad \frac{1}{2}\delta \leq \mid x\mid \leq \frac{1}{2}. \end{cases}$$

We define $\psi(x)$ for other real x by periodicity with period 1. Then $\psi(x)$ is an even function of x and satisfies (18). The Fourier coefficients b_n of $\psi(x)$ are given by

$$b_n = \int_{-\delta/2}^{\delta/2} \psi(x) e(-nx) dx = \delta \int_{0}^{1} \Phi_{t}(t) \cos \pi \alpha t dt,$$

where $\alpha = n\delta$.

By Parseval's formula,

$$\sum_{-\infty}^{\infty} b_n^2 = \int_{-\delta/2}^{\delta/2} \psi^2(x) dx = \delta \int_0^1 \{\Phi_1(t)\}^2 dt.$$

Hence, by (14) of Lemma 2,

$$\sum_{-\infty}^{\infty} \, b_n^2 < \frac{1}{2} \, \pi^2 \, \lambda \delta = \frac{1}{2} \, \pi^2 \, (N_0 + K) \, \delta^2.$$

It remains only to prove (20). For $|n| \leq N_0$, we have

$$|\lambda - |\alpha| = (N_0 + K - |n|) \delta \ge K \delta \ge 2.$$

By (15) of Lemma 2,

$$b_n > \frac{1}{2} \pi \delta \left(1 - \frac{2}{\pi^3 \left(\left(\lambda - \mid \alpha \mid \right)^2 - 1 \right)} \right).$$

Now

$$\frac{2}{\pi^3 \{(\lambda - |\alpha|)^2 - 1\}} < \frac{2}{3\pi^3} < \frac{1}{46},$$

and for $0 < \gamma < \frac{1}{46}$ we have

$$(1-\gamma)^{-2} < 1 + 2 \cdot 1 \gamma$$
.

Hence

$$b_n^{-2} < \frac{4}{\pi^2 \, \delta^2} \Big(1 + \frac{4 \cdot 2}{\pi^3 \, \{ (\lambda - |\alpha|)^2 - 1 \}} \Big).$$

Since $4 \cdot 2 \pi^{-3} < \frac{1}{7}$ this gives (20), on recalling that

$$\lambda - |\alpha| = (N_0 + K - |n|) \delta.$$

4. Proof of the first part of Theorem 1.

We observe first that there is no loss of generality in taking M=0 in the definition of S(x) in (1), for we can reduce the general case to this by putting n=M+n'. Thus we can take S(x) to be defined by (9).

For fixed δ and fixed x_1, \ldots, x_R , let N be the least positive integer for which G(N), defined in § 2, satisfies

(21)
$$G(N) > 5 \delta^{-1}$$
;

if there is no such integer the desired conclusion holds. For this N, the hypothesis (11) of Lemma 1 is satisfied. For a maximal set of coefficients, (12) holds; and of course we also have

(22)
$$\sum_{r=1}^{R} |S(x_r)|^2 = (N+G) \sum_{1}^{N} |a_n|^2.$$

Suppose first that N is odd, say $N=2N_0+1$. We define

(23)
$$a'_n = a_{n+N_0+1} \quad \text{for} \quad -N_0 \le n \le N_0$$

and have

$$|S(x)| = |S_0(x)|,$$

where

(25)
$$S_0(x) = \sum_{n=-N_0}^{N_0} a'_n e(nx).$$

By (12),

(26)
$$\sum_{-m}^{m} |a_n'|^2 = \sum_{-m+N_0+1}^{m+N_0+1} |a_n|^2 \ge \frac{2m+1-G}{N+G} \sum_{1}^{N} |a_n|^2$$

if $0 \leq m \leq N_0$.

Suppose next that N is even, say $N=2N_0$.

We define a'_n as above in (23) for $-N_0 \le n < N_0$, and put $a'_{N_0} = 0$. Then (24) is still valid, with the same definition (25). Also (26) is still valid, provided $0 \le m < N_0$.

Let $\psi(x)$ be any even function of period 1 satisfying the condition (18) of Lemma 3. It was proved by Davenport and Halberstam (2) that

(27)
$$\sum_{r=1}^{R} |S(x_r)|^2 \leq \left(\sum_{-\infty}^{\infty} b_n^2\right) \left(\sum_{-N_0}^{N_0} b_n^{-2} |a_n|^2\right).$$

^{(2) «} The values of a trigonometrical polynomial at well spaced points », Mathematika 13 (1966), 91-96, and 14 (1967), 229-232.

With the particular function $\psi(x)$ of Lemma 3, this gives

$$\sum_{r=1}^{R} |S(x_r)|^2 \leq 2 (N_0 + K) \left(\sum_{-N_0}^{N_0} |a_n'|^2 \left(1 + \frac{1}{7} c_n \right) \right),$$

where

$$c_n = \frac{1}{(N_0 + K - |n|)^2 \delta^2 - 1}$$
.

In view of (22) we can write the result as

(28)
$$(N+G) \sum_{1}^{N} |a_n|^2 \le 2 (N_0 + K) \left(\sum_{1}^{N} |a_n|^2 + \frac{1}{7} S \right),$$
 where

 $S = \sum_{n=0}^{N_0} c_n |a'_n|^2.$

Applying partial summation, and using the fact that $c_{-n} = c_n$, we obtain

$$\sum_{-N_0}^{N_0} c_n \mid a_n' \mid^2 = c_{N_0} \sum_{-N_0}^{N_0} \mid a_n' \mid^2 - \sum_{m=0}^{N_0-1} (c_{m+1} - c_m) \sum_{n=-m}^{m} \mid a_n' \mid^2.$$

Since $c_{m+1}-c_m>0$ for $m\geq 0$, we can apply the inequality (26) in the inner sum on the right. This gives

$$\begin{split} S & \leq \left\{ c_{N_0} - \sum_{m=0}^{N_0-1} \left(c_{m+1} - c_m \right) \frac{2m+1-G}{N+G} \right\} \sum_{1}^{N} |a_n|^2 \\ & = \frac{1}{N+G} \left\{ \sum_{-N_0}^{N_0} c_m + \left(2c_{N_0} - c_0 \right) G + \left(N - 2N_0 - 1 \right) c_{N_0} \right\} \sum_{1}^{N} |a_n|^2. \end{split}$$

Since $2N_0 + 1 \ge N$, the last term in the bracket can be omitted. Substitution in (28) gives

$$(N + G)^2 \le 2(N_0 + K)(N + G + \frac{1}{7}\Delta),$$

where

(29)
$$A = \sum_{-N_0}^{N_0} c_m + (2c_{N_0} - c_0) G.$$

By the inequality of the arithmetic and geometric means, we have

$$N + G \le N_0 + K + \frac{1}{2} N + \frac{1}{2} G + \frac{1}{14} \Delta$$

and since $N_0 \leq \frac{1}{2} N$ this implies that

$$(30) G \leq 2 \cdot K + \frac{1}{7} \Lambda.$$

Since the function c_n , for a continuous variable n, has a positive second derivative, we have

$$\sum_{-N_0}^{N_0} c_n < \int_{-N_0 - \frac{1}{2}}^{N_0 + \frac{1}{2}} c_x \, dx = 2 \int_{0}^{N_0 + \frac{1}{2}} \frac{dx}{(N_0 + K - x)^2 \, \delta^2 - 1}$$

$$<2\delta^{-1}\int_{-\kappa^{-1}/2}^{\infty}\frac{du}{u^{2}-1}=\delta^{-1}\log\frac{\left(K-\frac{1}{2}\right)\delta+1}{\left(K-\frac{1}{2}\right)\delta-1}.$$

We now take $K=2\delta^{-1}$, and have

$$\sum_{-N_0}^{N_0} c_n < \delta^{-1} \log \frac{3 - \frac{1}{2} \delta}{1 - \frac{1}{2} \delta} < \delta^{-1} \log \frac{11}{3} < 1 \cdot 3 \delta^{-1}.$$

Also

$$2c_{N_0} - c_0 < 2c_{N_0} = \frac{2}{K^2 \delta^2 - 1} = \frac{2}{3}$$

Hence

$$\Delta < 1 \cdot 3 \delta^{-1} + \frac{2}{3} G.$$

From (30) we now obtain

$$G < 4\delta^{-1} + \frac{1}{7} \left(1 \cdot 3 \, \delta^{-1} + \frac{2}{3} \, G \right) < 4 \cdot 2 \, \delta^{-1} + \frac{1}{10} \, G,$$

which gives a contradiction to (21). This contradiction proves the first part of Theorem 1.

We have not used the hypothesis that $N\delta \ge 1$, but the result (4) becomes of little value if $N\delta < 1$.

5. Proof of the second part of Theorem 1.

We give a simple example, with δ arbitrarily small and $N\delta$ arbitrarily large, for which

(31)
$$\sum_{r=1}^{R} |S(x_r)|^2 = (N + \delta^{-1} - 1) \Sigma |a_n|^2.$$

This suffices for (5), since $\delta^{-1} - 1 > c\delta^{-1}$ if δ is sufficiently small. Let h and L be arbitrarily large positive integers, and take

$$S(x) = \sum_{r=-L}^{L} e^{2\pi i (2h+1)rx}.$$

For this sum, regarded as a case of (1), we have

$$N = 2(2h+1)L+1, \qquad \Sigma |a_n|^2 = 2L+1.$$

Take $\delta = 1/(2h+1)$, and take the points x_r to be

$$0, \pm \frac{1}{2h+1}, \pm \frac{2}{2h+1}, \dots, \pm \frac{h}{2h+1}.$$

At each of these points we have S(x) = 2L + 1, and therefore

$$\sum_{r} |S(x_r)|^2 = (2h + 1)(2L + 1)^2.$$

Also

$$(N + \delta^{-1} - 1) \sum |a_n|^2 = (2(2h + 1)L + 1 + 2h + 1 - 1)(2L + 1)$$
$$= (2h + 1)(2L + 1)^2.$$

This proves (31).

6. Lemmas for Theorem 2.

As observed at the beginning of § 4, we can take M=0 in (1), so that S(x) is defined by (9). We suppose that

$$N\delta \leq \frac{1}{4} .$$

Define $\Phi(z)$ by

(33)
$$\Phi(z) = \sum_{m=1}^{N} \sum_{n=1}^{N} a_m \overline{a_n} \left(1 - \frac{\pi \delta(m-n)}{\sin \pi \delta(m-n)} \right) e((m-n)z).$$

We note that in every term $|\delta(m-n)| \le \delta N \le \frac{1}{4}$.

LEMMA 4. We have

(34)
$$\delta |S(x)|^2 = \int_{x-\delta/2}^{x+\delta/2} (|S(z)|^2 - \Phi(z)) dz.$$

Proof. Since

$$|S(z)|^2 = \sum_{m=1}^{N} \sum_{n=1}^{N} a_m a_n e((m-n)z),$$

we have

$$|S(z)|^2 - \Phi(z) = \sum_{m=1}^{N} \sum_{n=1}^{N} a_m \frac{\pi \delta(m-n)}{\sin \pi \delta(m-n)} e((m-n)z).$$

The result now follows from

$$\int_{-\delta/2}^{\delta/2} e((m-n)z) dz = \frac{\sin \pi \delta(m-n)}{\pi(m-n)}.$$

LEMMA 5. Let $F(z) = |S(z)|^2$. Then

(35)
$$\Phi(z) = \sum_{k=1}^{\infty} (-1)^{k-1} c_k \, \delta^{2k} \, F^{(2k)}(z),$$

where the c_k are positive constants, and $c_1 = \frac{1}{24}$, and, for $0 < \theta < 2\pi$,

(36)
$$\sum_{1}^{\infty} c_k \, \theta^{2k} = \frac{\frac{1}{2} \, \theta}{\sin \frac{1}{2} \, \theta} - 1.$$

Proof. For any θ with $|\theta| < 2\pi$, we have

$$\frac{\frac{1}{2}\theta}{\sin\frac{1}{2}\theta} = \prod_{n=1}^{\infty} \left\{ 1 - \left(\frac{\theta}{2n\pi} \right)^2 \right\}^{-1} = 1 + \sum_{k=1}^{\infty} c_k \, \theta^{2k},$$

where the c_k are positive constants. Also $c_1 = \frac{1}{24}$ from $\sum_{1}^{\infty} n^{-2} = \frac{\pi^2}{6}$. Putting $\theta = 2\pi \delta(m-n)$ and substituting in (33), we obtain

$$\Phi(z) = -\sum_{m=1}^{N} \sum_{n=1}^{N} a_m a_n \sum_{k=1}^{\infty} c_k (2\pi \delta(m-n))^{2k} e((m-n)z).$$

Now

$$F^{(2k)}(z) = (2\pi i)^{2k} \sum_{m=1}^{N} \sum_{n=1}^{N} a_m a_n (m-n)^{2k} e((m-n)z).$$

These two equations yield (35).

LEMMA 6. For any positive integer k,

(37)
$$\int_{0}^{1} |F^{(k)}(z)| dz \leq (4\pi N)^{k} \sum_{n=1}^{N} |a_{n}|^{2}.$$

Proof. Let $T(z) = \overline{S(z)}$, so that F(z) = S(z) T(z). By Leibniz's formula,

$$F^{(k)}(z) = \sum_{l=0}^{k} {k \choose l} S^{(l)}(z) T^{(k-l)}(z).$$

By Cauchy's inequality,

$$\int_{0}^{1} |S^{(l)}(z)| T^{(k-l)}(z) | dz \leq \left\{ \int_{0}^{1} |S^{(l)}(z)|^{2} dz \right\}^{1/2} \left\{ \int_{0}^{1} |T^{(k-l)}(z)|^{2} dz \right\}^{1/2}.$$

Now

$$S^{(l)}(z) = (2\pi i)^{l} \sum_{n=1}^{N} a_{n} n^{l} e(nz),$$

whence

$$\int_{-1}^{1} |S^{(l)}(z)|^{2} dx = (2\pi)^{2l} \sum_{n=1}^{N} |a_{n}|^{2} n^{2l}.$$

There is a similar result for the integral containing T. Finally

$$\int_{0}^{1} |F^{(k)}(z)| dz \leq \sum_{l=0}^{k} {k \choose l} \left\{ (2\pi)^{2k} N^{2k} \left(\sum_{n=1}^{N} |a_{n}|^{2} \right)^{2} \right\}^{1/2} = (4\pi N)^{k} \sum_{n=1}^{N} |a_{n}|^{2}.$$

LEMMA 7. Let E denote the set of real numbers, considered modulo 1, for which

$$\Phi(z) - F(z) > 0.$$

Then

(39)
$$\delta \Sigma |S(x_r)|^2 \leq \sum_{1}^{N} |a_n|^2 + \int_{\mathbb{R}} (\Phi(z) - F(z)) dz.$$

Proof. By Lemma 4 the left hand side is

$$\sum_{\substack{r\\r}}\int_{z-\delta/2}^{x+\delta/2}\left\{\mid S\left(z\right)\mid^{2}-\Phi\left(z\right)\right\}dz,$$

and by (2) the intervals of integration are disjoint. We have

$$\int_{0}^{1} |S(z)|^{2} dz = \sum_{1}^{N} |a_{n}|^{2}, \qquad \int_{0}^{1} \Phi(z) dz = 0,$$

the latter being a consequence of the definition of $\Phi(z)$ in (33), since the terms with m = n in the double sum have coefficients 0. It follows that

$$\delta \sum_{r} |S(x_{r})|^{2} = \sum_{1}^{N} |a_{n}|^{2} + \int_{\mathbb{R}^{r}} {\{\Phi(z) - F(z)\} dz},$$

where $F(z) = |S(z)|^2$ as before, and where E' denotes the complement of the set of intervals $(x_r - \delta/2, x_r + \delta/2)$. The integral in the last expression can only be increased if we replace E' by E, since E comprises all z for which the integrand is positive.

7. Proof of the first part of Theorem 2.

If we represent numbers z by points on the circumference of a circle of perimeter 1, the set E of Lemma 7 consists of a finite number of open intervals. Each interval has length less than δ , for by Lemma 4 it is impossible for (38) to hold throughout any interval of length δ .

We divide the intervals of E into two types. The first type are those for which F'(z) does not vanish in the interval, and we denote the union of these by E_1 . The second type are those for which F'(z) vanishes at some point of the (open) interval, and we denote the union of these by E_2 .

Let I be one of the intervals of E_{1} . Since $\Phi\left(z\right)-F\left(z\right)=0$ at the end points of I, we have

$$\int_{\Gamma} \left\{ \Phi \left(z \right) - F \left(z \right) \right\} \, dz = - \int_{\Gamma} \left(z - \gamma \right) \left\{ \Phi' \left(z \right) - F' \left(z \right) \right\} \, dz$$

for any real number γ . Since F'(z) is of constant sign, we can choose γ in I so that

$$\int\limits_{\Gamma}\left(z-\gamma\right)F'\left(z\right)dz=0.$$

We now have

$$\left| \int \left\{ \Phi \left(z \right) - F' \left(z \right) \right\} dz \right| = \left| \int \left(z - \gamma \right) \Phi' \left(z \right) dz \right| \leq \delta \int \left| \Phi' \left(z \right) \right| dz.$$

Hence

$$\int_{E_{z}} \left\{ \Phi\left(z\right) - F\left(z\right) \right\} dz \leq \delta \int_{0}^{1} \left| \Phi'\left(z\right) \right| dz.$$

By lemmas 5 and 6, the right hand side is

$$\leq \delta \sum_{k=1}^{\infty} c_k \, \delta^{2k} \int_{0}^{1} \left| F^{(2k+1)}(z) \right| dz$$

$$\leq \left\{ \sum_{k=1}^{\infty} c_k \, (4\pi \, N\delta)^{2k+1} \right\} \left\{ \sum_{1}^{N} |a_n|^2 \right\}.$$

We now turn to the set E_2 . Since $F(z) \ge 0$ always, we have

$$\int_{\Gamma} \left\{ \Phi \left(z \right) \right. - \left. F \left(z \right) \right\} dz \leq \int_{\Gamma} \Phi \left(z \right) dz.$$

By Lemmas 5 and 6, this is

$$\leq \frac{\delta^{2}}{24} \int_{E_{3}} F''(z) dz + \sum_{k=2}^{\infty} c_{k} \delta^{2k} \int_{E_{3}} |F^{(2k)}(z)| dz$$

$$\leq \frac{\delta^2}{24} \int_{E_*} F''(z) dz + \left\{ \sum_{k=2}^{\infty} c_k (4\pi N\delta)^{2k} \right\} \int_{1}^{N} |a_n|^2.$$

It remains to estimate the integral over E_2 of F''(z). Suppose first that E_2 consists of only one or two intervals; as noted earlier, each has length less than δ . Thus in this case

$$\int_{E_{\alpha}} F^{\prime\prime}(z) \ dz \le 2\delta \max |F^{\prime\prime}(z)|.$$

Now

$$F''(z) = -(2\pi)^2 \sum_{m=1}^{N} \sum_{n=1}^{N} a_m u_n (m-n)^2 e((m-n) z),$$

and therefore

$$|F''(z)| \le (2\pi)^2 N^2 \left(\sum_{n=1}^N |a_n|\right)^2 \le (2\pi)^2 N^3 \sum_{n=1}^N |a_n|^2.$$

Hence, in the present case,

(42)
$$\int_{E} F''(z) dz \leq 8 \pi^2 N^3 \delta \sum_{1}^{N} |a_n|^2.$$

Now suppose that E_2 consists of at least 3 intervals, say $(\alpha_1, \beta_1), ...$..., (α_s, β_s) .

By the definition of E_2 , each interval (α_j, β_j) contains some ξ_j for which

$$F'(\xi_i) = 0.$$

By Rolle's theorem, there exists some η_j between ξ_j and ξ_{j+1} for which

$$F^{\prime\prime}\left(\eta_{i}\right)=0.$$

We make the obvious convention that $\xi_{s+1} = \xi_1$, and so on. We have

$$\int_{a_j}^{\beta_j} F^{\prime\prime}(z) dz = \int_{a_j}^{\beta_j} \left\{ \int_{\eta_{j-1}}^z F^{\prime\prime\prime}(y) dy \right\} dz.$$

Both η_{j-1} and z are contained in the interval (ξ_{j-1}, ξ_{j+1}) . Hence, since $\beta_j - \alpha_j < \delta$,

$$\int_{a_{j}}^{\beta_{j}} F^{\prime\prime}(z) dz \leq \delta \int_{\xi_{j-1}}^{\xi_{j+1}} |F^{\prime\prime\prime}(y)| dy.$$

2. Annali della Scuola Norm. Sup. - Pisa.

The intervals (ξ_{j-1}, ξ_{j+1}) cover the whole interval of length 1 twice. Hence

(43)
$$\int_{E_{a}} F''(z) dz \leq 2\delta \int_{0}^{1} |F'''(y)| dy \leq 2\delta (4\pi N)^{3} \sum_{1}^{N} |a_{n}|^{2}$$

by Lemma 6. Comparing this with (42), we see that (43) is valid in both the two cases.

It follows from (41) that

$$\int\limits_{E_{\bullet}} \left\{ \Phi\left(z\right) - F\left(z\right) \right\} dz \leq \left\{ \frac{(4\pi N\delta)^3}{12} + \sum_{k=2}^{\infty} c_k \left(4\pi N\delta\right)^{2k} \right\} \sum_{1}^{N} |a_n|^2.$$

Adding to this the estimate in (40) for the integral over E_4 , and substituting in (39), we obtain

$$\sum_{r} |S(x_r)|^2 \leq \delta^{-1} (1 + U) \sum_{1}^{N} |a_n|,$$

where

$$U = \sum_{k=1}^{\infty} c_k (4\pi N\delta)^{2k+1} + \frac{(4\pi N\delta)^3}{12} + \sum_{k=2}^{\infty} c_k (4\pi N\delta)^{2k}.$$

Since $c_1 = \frac{1}{24}$, this implies

$$U \leq \frac{1}{8} (4\pi N\delta)^3 + 2 \sum_{k=2}^{\infty} c_k (4\pi N\delta)^{2k}.$$

By (36) with $\theta = \pi$, we have

$$\sum_{k=2}^{\infty} c_k \, \pi^{2k} = \frac{\pi}{2} - 1 - \frac{1}{24} \, \pi^2 < 0.16.$$

Hence, for $N\delta \leq \frac{1}{4}$,

$$U \leq \frac{1}{8} (4\pi N\delta)^3 + 2 (4N\delta)^4 (0.16) < 270 (N\delta)^3.$$

This proves (6).

8. Proof of the second part of Theorem 2.

We take N=2, and

$$S(x) = 1 + e^{2\pi i x},$$

so that $|S(x)|^2 = 4 \cos^2 \pi x$. We have

$$\sum_{n=1}^{N} |a_n|^2 = 2.$$

We take the points x_r at

$$0, \pm \delta, \pm 2\delta, \dots, \pm m\delta$$

where

$$(2m+1+\zeta)\,\delta=1,$$

and $0 < \zeta < 1$. Note that the gap (mod 1) between $m \, \delta$ and $-m \delta$ is $1-2 \, m \, \delta > \delta$.

We have

$$\sum_{r} |S(x_{r})|^{2} = 4 \sum_{r=-m}^{m} \cos^{2} \pi \, r \, \delta = 2 \sum_{r=-m}^{m} (1 + \cos 2 \pi \, r \, \delta)$$
$$= 2 \left(2m + 1 + \frac{\sin (2m + 1) \pi \delta}{\sin \pi \delta} \right).$$

Now $(2m+1) \delta = 1 - \zeta \delta$, so $\sin (2m+1) \pi \delta = \sin \pi \zeta \delta$. Hence

$$\sum_{r} |S(x_r)|^2 = 2\left(2m+1+\zeta+\left(\frac{\sin \pi \zeta \delta}{\sin \pi \delta}-\zeta\right)\right) = 2\delta^{-1}(1+V),$$

where

$$V = \delta \left(\frac{\sin \pi \, \zeta \, \delta}{\sin \pi \, \delta} - \zeta \right).$$

For fixed ζ , as $\delta \rightarrow 0$, we have

$$V \sim \frac{1}{6} \pi^2 \zeta (1 - \zeta^2) \delta^3$$
,

and on taking $\zeta = 1/\sqrt{3}$ we get

$$V \sim \frac{\pi^2}{9\sqrt{3}} \, \delta^3 = \frac{\pi^2}{72\sqrt{3}} \, N^3 \, \delta^3$$
.

Since $\frac{\pi^2}{72\sqrt{3}} > \frac{1}{12}$, this example satisfies (7).