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LINEAR GOURSAT PROBLEMS FOR ENTIRE
FUNCTIONS WHEN THE COEFFICIENTS

ARE VARIABLE

JAN PERSSON

1. Introduction.

The Cauchy-Kovalevsky theorem for analytic functions, [41, is a central

theorem in the theory of partial differential equations. It has a local form.

As a local theorem it has been extended to theorems for different function

classes when data are given on intersecting hyperplanes. See Lednev [5],
0

H6rmander [3], p. 116, Friedmann [1], Garding [2], and Persson [6], [8],
and [10].

One main feature is new techniques of majorization and approximation.
In this respect all authors above have given their contribution. See also
Rosenbloom [14]. Another feature is the substitution of analyticity by «con-

tinuity » in some time variables. See [5~, [8], [11], and also Talenti [15]. In
[1] and [8] analyticity in the space variables is substituted by Gevrey dif-
ferentiability. Systems are treated in [5], [2], and [8] under the hypothesis
introduced in [5].

The necessity of the hypothesis in the Cauchy-Kovalevsky theorem is

the subject in [7]. See also the second part of theorem 1 in [9].
It may also be noted that the exponential majorization introduced in

[8] has been used to give simple proofs and generalizations of classical
theorems for the equation

See [10], [12], and [13].

pervenuto alla Redazione l’ 11 Marzo 1968.
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The subject of the present paper is global Goursat problems. A global
version of the Cauchy-Kovalevsky theorem for linear operators with constant
coefficients in the class of entire functions is proved in Treves [16]. The
majorization used in [16] is that of [141, and [3]. Various refinements are

also given in [16]. Global Goursat problems is the subject in [9], and [10].
In [9] the functions are considered as formal power series in the time va-

riables. The theorems in [9] are stated for Gevrey differentiability in all
variables with the restriction that the functions are entire analytic functions
in the time variables. Theorem 1 in [10] may be seen as a global version
of theorem 3 in [8] with  continuity &#x3E;&#x3E; in some time variable, analyticity in
the others and Gevrey differentiability in the space variables. The common
feature of the theorems in [9], and [10] mentioned above is that the problems
are linear with constant coefficients in the operators.

The question of non-linearity and global Goursat problems is answered

by the following simple example. Let D = d j dx. The solution u of

is u = - log (1- x). So there is no hope for a global existence theorem
in the non linear case. The following example given below for linear ope-
rators with variable coefficients shows that even in this case some restric-

tions must be imposed. The analytic solution u of

is u = (1 - + in a neighbourhood of the origin. It is obvious that
u is not an entire function, i. e. analytic in all C2. If may also be pointed

Xl -X
out that u = ee - e solves

Thus there is at least one entire non-zero solution of that equation.
The solution of

is u = so there is some hope if the variable coefficients do not ap-

pear in the principal part.
These facts together with the experience from [6], [81, [9], have been

used in the framing of the theorem in section 4. This theorem is the subject
of the present paper. Partly by necessity and partly from expediency it

only treats entire functions without any conditions of growth. See the

example above.
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The proof of the theorem is based on a presumably new characterization
of the entire functions in This and some notation are given in section 2.
Section 3 contains lemma 1, essentially due to Friedmann [1], but used in
the present form in [8], and (11]. In section 3 are also lemma 2 and lem-

ma 3. Lemma 2 is the cornerstone of the proof of the theorem. It is appli-
cable to the proof when a special kind of entire functions is treated

Lemma 3 says that this special kind is all entire functions, so lemma 2 is

universially applicable.
The proof of the theorem in section 4 is rather short with the use of

the results in section 3. The estimates for the coefficients of the solution

of the problems are obtained by induction. This is much easier than the

method used in [9].
In [9], p. 47, there is an incorrect remark concerning variable

coefficients.

It should be mentioned here that the theorem specialized to a non-cha-
racteristic linear Cauchy problem says that the analytic solution is entire

if the coefficient in the principal part are constants and if other functions

involved are entire.

2. Preliminaries.

Let (Xt,..., x") E Cn . By a = (al ... , an) we denote a multi-index with

non-negative integers as components. If D - (alaxi then we write

Da - ... VVe also write I at I = at -~- ... + txn, a ! = 

=x!((a-~)!~!) 1, &#x3E; and

If b = (b1, ... , bn) E Rn, then we define ba -.-- bi ai + ... bn an .
We also define 1=1 and $ ! =1 for ~ = 0.
If u (x) is a function analytic in all Cn then it is well known that to

every t ~ 0 there exists a constant C &#x3E; 0 such that

Conversely, an analytic function defined in some neighbourhood of the origin,
which satisfies the condition above can be extended to a function analytic
in all on. Such functions will be called entire functions in the following.

The characterization of entire functions given above has been used in
a somewhat generalized sense in [5], p. 146, [9], and [11]. It is, however,
not suited for our present needs. An equivalent condition is the following.
The real-valued function p (t) ~ 0, is defined for t ~ 0, and p (t) - + cxJ, 1



90

When t- + oo . The condition given before is then equivalent to the

existence of a function p as above, and a constant C &#x3E; 0 such that

We shall use the condition expressed in (2.2) later on.
Let u be an entire function and let # be a multi-index. We define

3. Three lematas.

LEMMA 1. There exists a constant c &#x3E; 0, independent of ~ such that

all ~ .

For a proof of lemma 1 see the proof of lemma 1 in [8].

LEMMA 2. The non-negative function p (t) is deftned and differentiable for
t &#x3E; 0. It satisfies the following four conditions,

(3.4) p (t) tends monotonically to -~ oo, when t --~ -~- 00,

(3.5) p’ (t) tendes monotocally to zero, when t - -+- 00.

Let C ~:- exp (2 + ( p ( p (0))-1 ). The function gn (t) is defined by

Then it follows that

It also foLlozas from (3.6), and (3.7) that for a fixed c &#x3E; 0 there exists

a 0 &#x3E; 0 such that
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PROOF OF LEMMA. 2. The function (t) is defined by

The goal is to determine the maximum point of 0 ~ t  ~z -1. We
differentiate fn and get

All reasoning in the following is based on the assumption that n is suffi-

ciently great. We note that for t &#x3E; 2-1 n, using (3.3), (3.4) and (3.5),

We choose C such that log C &#x3E; 1 + [p ( p (0))]-1 then it follows from (3.2)
that

We also note that

It is obvious that, for a fixed 0, jl (0) &#x3E; 0 for it great. So the maximum

point of in will be found in ,

From now on we denote the maximum point by t. We define

It follows from f ~, (t) = 0 and (3.9) that
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The mean value theorem says that for some 9, 0  0  1,

Here b is defined as

A look at (3.3), (3.4), and (3.5) shows that

From (3.9), (3.11) and (3.12) it follows that

It follows from the properties of ~a and from t  2-1 n that

So we now have

Since p is increasing and log x is increasing we see that

It follows from (3.2) that

The maximum point is inserted in gn , Since

and since

we obtain from (3.10) that
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But from the definitions and from (3.2)-(3.4) and (3.13) it follows that

Since t  log (n + 4), (3.11), it is now obvious that, for sufficiently great
n, can be estimated by

If we can prove that p (t) -+ + oo when n - + oo, then the lemma is

proved. We know from (3.11) and (3.12) that

So for a fixed C we have proved that p (t) - + 00, when n -+ + oo. By
that we have proved that (3.7) is true. Then (3.8) is obvious. The proof of
the lemma is finished.

LEMMA 3. Let (aj)f=o be a gequeitee of numbers with 0, j = 0, 1, 2, ...

i=o
such that

when

Then it follous that there exists a function p satisjying the hypothesis of lenl-
2 such that

PROOF OF LEMMA 3. It is geometrically evident that we can construct
a piece-wise linear strictly increasing continuous function q (t) such that
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with corners only in integer points. It is also obvious that we may choose

q such that

if both q’ (tl) and q’ (t2) are defined.
We choose

Let

Perhaps the set is empty and ti does not exist. Then we choose q, = q,
see below. If ti exists then we define

Here

By this construction we surpass at least one corner to the right of t1,
We see that for 0  t 7 q1 is strictly increassing, differentiable except
in a finite number of points

where q’ exists. The process is continued. Let

Here

It follows from above that q1 can be defined by induction for all t so

that

and so that (3.2)-(3.5) are true. The only exception is in those points
where q’ is not defined. Except the integer points there can be at most two

exceptional points between two integers, since log (t + 4) is a concave

function.
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Since q, is concave a suitable regularization pi of q, exists, such that
p = y and

The function p satisfies all conditions in lemma 1. The definition p = 2-1 -Pi I
is made so that p does not violate (3.3) since (t + 4)-1 is a convex function.
A regularization might make p1 &#x3E; (t + 4)-1 in certain points. The proof of
lemma 3 is finished.

4. A Goursat problem for entire functions.

THEOREM.  k N, be tinulti-indices. They are restricted by

There exists a vector

such that

Z’he functions f and ak, 1  k C N, are entire f unctions. The functions ak,
1 c k S N, are restricted by

is a constant.

It follows that there exists a unique entire function u such that

PROOF OF THE THEOREM. It follows from (2.2) and lemma 3 that there

exists a function p that satisfies the hypothesis of lemma 2 with the addi-
tional property that for some C’ ) 0,

and

It is known from [6] or theorem 1 in [8], that the analytic solution u
and (4.4) exist and is unique in some neighbourhood of the origin. This
also follws from the proof below.
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It is easily seen that in the new coordinate system

the new coefficients are of the form

It follows from (4.2) that we may choose r so great that

We may also choose r so great that C’ =1 can be used in (4.5) and (4.6),
since

See also [6]. With C’ =1 and deleting the primes from the variables we
now assert that

is true for all ~. The constant C will be defined later. Of course 0 1-1 = 1
here.

The number D7J u (0) is zero if some  (Jj , since u = 0 (xfl). If q ~ (~~
+ fl, where ~ is a multi index with non-negativ components.

The vector b has positive components. For a given n there is only a finite
number of multi-indices ~ such that b ~ ~ ~. The possible values of b ~
can be arranged in a strictly increasing sequence that tends to infinity.
We form the set

multi-index).

It follows from (4.2) that for an arbitrary  ~a for some j. Thus

since = 0 (xg).
Therefore (4.4) and (4.5) give
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So (4.8) is true for ) 1 I = 0 = 00. Assume that it is true for all $,
b~  Ck . We shall prove that it is true for $, b$ = Ck , too. Take such a $.

If for some j then

If then, because of (4.2), we obtain

and

So all derivatives in the right member of (4.10) satisfies (4.8) in the origin,
or is zero there. Therefore we can estimate (0), v # I by

where  === ~ ~ , when v = 0 and . When icx k I ~ ~ ~ ~ , then
t = ~ - v ~ I - 1. This we can do since we have now chosen C so great
that ( p (t))~ is increasing when t increases.

It follows from (4,1.0) and (4.7) and that

Rewriting this inequality we get

It now follows from lemma 2 and lemma 1 that for a sufficiently great
C, independent of ~, the number inside the parantheses is less than 1.

Thus (4.8) is true for every ~. Since

when

we have now proved that is an entire function. Since u = 0 (xg), u
itself is also an entire function. The proof is finished.
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