@article{ASNSP_1969_3_23_1_143_0, author = {Orsatti, Adalberto}, title = {A class of rings which are the endomorphism rings of some torsion-free abelian groups}, journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze}, publisher = {Scuola normale superiore}, volume = {Ser. 3, 23}, number = {1}, year = {1969}, pages = {143-153}, zbl = {0188.08903}, mrnumber = {242948}, language = {en}, url = {http://www.numdam.org/item/ASNSP_1969_3_23_1_143_0} }
Orsatti, Adalberto. A class of rings which are the endomorphism rings of some torsion-free abelian groups. Annali della Scuola Normale Superiore di Pisa - Classe di Scienze, Série 3, Tome 23 (1969) no. 1, pp. 143-153. http://www.numdam.org/item/ASNSP_1969_3_23_1_143_0/
[1] Topologie générale, Ch. I, Paris, 1961.
,[2] Every countable reduced torsion-free ring is an endomorphism ring. Proc. London Math. Soc. (3) 13 (1963) 687-710. | MR 153743 | Zbl 0116.02403
,[3] Endomorphism rings of torsion-free abelian groups. Proc. Internat. Conf. Theory of Groups, Austral. Nat. Univ. Canberra, August 1965, pp. 59-69, 1967, | Zbl 0178.02303
,[4] Abelian groups, Budapest 1958. | MR 106942 | Zbl 0091.02704
,[5] Un lemma di immersione per i gruppi abeliani senza elementi di altezza infinita. Rend. Sem. Mat. Univ. Padova XXXVIII (1967) 1-13. | Numdam | MR 220829 | Zbl 0203.03001
,