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AN EXISTENCE THEOREM
FOR SEMI-PRIMAL ALGEBRAS

by H. G. MOORE and ADIL YAQUB(*)

The theory of a primal algebra subsumes and substantially generlizes
the classical Boolean theory as well as that of p-rings and Post algebras.
Here a primal algebra is essentially a finite algebra in which each map is

expressible in terms of the primitive operations of the algebra. Recently,
Foster and Pixley showed that the primal algebras themselves, in turn, are
subsumed by the class of semi-primal algebras, and a general structure

theory for these semi-primal algebras was then established.
The horizon of new applications of this general structure theory greatly

depends, of course, on the discovery of classes of semi-primal algebras (other
than the primal ones). In this paper, we show that a large class of binary
algebras, called z-algebras, endowed with a suitably chosen (but nevertheles
quite general) permutation, yields semi-primal algebras (of species (2,1)).
(See Theorem 2.2). We then lean heavily on this result to prove that any
finite ring R with identity, and of characteristic different from two, can al-
ways be endowed with a permutation - such that (R, X, -) is semi-primal.
(See Theorem 3.2). We also show (by means of counter examples) that this

result need not be true for rings of characteristic two.

1. FundaUlental concepts and lemmas.

We recall the basic concepts of [1] and [2]. Let U1 _ (A, S~) be a uni-

versal algebra of species ~5, S = n., ...) where the ’It, are non-negative
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integers and let 01, 02 , ... denote the primitive operations in S~ where Oi

is an ni-ary operation on A. By an we mean a pri-
mitive composition of free symbols - l ... - via the primitive operations
0~ . When two algebras ’U1 and M’ are of the same species, we identify the
two sets of operations Q and Q’, and use the same operation symbols. A (set-
theoretic) function f (1, ... $k) from A X ... X A into A is said to be expres-
sible if there exists an IS-expression ø such that f’ _  on A ; i. e., ø yelds
f when members of A are substituted for the free symbols in 0. An A-func-
tion f (~1’ 1 ~2 , ...) is called conservative if for every subalgebra Mi = Q)
of tl, f (a, fl, ...) E Ai whenever a~ fl, ... E Ai. A finite algebra ’~ different

from the one-element algebras i is called if every A-function is expres-

sible, while TH is called semi-primal if every conservative A-function is expres-
sible. If M is semi-primal and possesses exactly one subalgebra C (~ *l),
then U is called a subprimal algebra, and is called the core of ’U. 
has more than one element, M is a regular otherwise, it is a

singutar subprimal.
The principal results of the theory of semi-primals are sumarized for

convenience in the following theorem (see [2]).

LEMMA 1.1. Let semi-primal algebra. Then

(i) Each minimal 8ubalgebra is either primal or the one element subal-

gebra j.
(ii) 3B is simple. Also, any subalgebra of :13 (=t= I) is again semiprimal

and therefore simple.
(iii) J3 Possesses no non-identical automorphism.

In a universal algebra M = (A, S~) of species 8, an element a is said

to be expressible if there exists an S-expression ea (~) such that (!a (~) a
for E U. For a subprimal algebra, the set of all expressible elements

coincides with its core [2; Theorem 8.4]. We say that U1 possesses a 

if there exist two distinguished elements 0, 1 E A (0 ~ 1) and operations
&#x3E;C (binary), - (unary), and - (unary) such that

(1) 0 and 1 are expressible ;
(2) $ ~-, and ~- are all expressible ;
(3) ~- and ~- are permutations of A with ~- the inverse of ~- ; and
(4) and 0" == 1.

We shall also make use of the characterization of regular subprimal al-
gebras given by the following theorem of Foster and Pixley [2; Theorem
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9. 1]. Note that B (t denotes the set of all elements of 111 which are

not in C.

LEMMA 1.2. For an algebra U = (A, Q) of species S to be a regular sub-
primal, it is necessary and sufficient that

(i) be a ,finite algebra of at least three elements.

(ii) ’tlt possess precisely one subalgebra (=1= tlt) - the core of .
(iii) a frame.
(iv) For each a E ’U1 the characteristic function 6. (~) (de,fined below) is

exp1’e8sible.
(v) There exists a non-core element A E t11 which 

i. e., fo~~ a suitable S expression (~) we have e). (~) for all ~ E tt1 B (t.
The characteristic function 6,, (;), where oc E ~, is defined by

It now seems convenient to introduce the following

NOTATION 1.1. For any positive integer q, we define

q interations; -q is defined similarly. Moreover, we define

Observe that

2. Main Theorems.

In preparation for the proofs of our main theorems, we first recall the
following

DEFINITION 2.1 A binary algebra is an algebra (B, X ) of species (2)
possessing elements 0, 1 (0 ~ 1) such that
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We now have the following

THEOREM 2, ~ Suppose (B, x) is a finite binary algebra which has exac-
tly n elements, r~ -~_&#x3E; 3, and suppose (B*, ~C) is a subalgebra of (B, X), where

B. = (0, 1). Suppose - is a permutation of B such that 0- =1 and 1- = 0.
If for some b E BBB‘ the characteristic function 6b () is (x, -, 
then (see Notation 1.1)

(i) b is ex-expressible, i. e., for E B B, B*,

with any association of the 
(ii) For every ~ E B and any association of 

and hence a~ (~) is (X, -, 

and hence both 0 and 1 are (X -., 

PROOF. Let B = to, 1, hi, b27 ..., b,,-21, and let the permutation - be

given by

Now, for any r = bi E B B B~‘, i =1, ... , n = 2, there is exactly one integer
j, i~~~~20132, such that 6~=&#x26;. Therefore ~(&#x26;~)=1, while for all

other positive integers t, 8b (b;t) = 0 (1  t  n - 2). Thus (2.1) becomes

since (see Notation 1.1) a X~ 0 = 0 = a. This proves (i).
To prove (ii), let f (I) denote the right member of (2.2). Now f (1) =

= ] 2 (0-) =1 since bb (1 x) = 0 for all k =1, 2, ... , n = 2. (See (2.3)). Moreover,
f (0) = 0. Also, f = b2 (1)" = 0, since for exactly one integer j, 0  ,j S
s n - 2, = b (= (0,1 j)) and bb (b) =1. Thus f (~) = ð1 (~)
as desired.

Finally, (iii) follows readily from the definition of aa (~)o
The following corollary is extremely useful for our purposes.
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COROLLARY 2.1. Suppose (B, x) is a finite binary algebra which has

exactly it elements, n¿3, and suppose (B*, X) is a subalgebra of (B, X) where
B* = 10, 11. Suppose - is a permutation of B (with inverse "") as given in
(2.3). If for some b E B B B‘ the characteristic function bb () is (X, -, ‘)-
expressible, then (B, X, -) is a regular subprimal algebra with (B*, X, -) as

its core.

PROOF. All the conditions (i)-(v) of Lemma 1.2 are readily verified, upon
using Theorem 2.1 and Definition 2.1. Indeed, since 8b (~) is expressible in
terms of X, -, -, the same is true for bb (~~), bb (~~2), .... Similarly, since

61 (E) is expressible (see (2.2) and (2.3)), therefore 61 (E-) (--- 80 (~)) is also

expressible (in terms of X, , ‘). Hence 8a () is (x, -, -)-expressible for all
a E B. Finally, since B is finite,, we can express E- in terms of ~’, and thus
drop ~- as a primitive operation. This proves the corollary.

We now introduce the following

DEFINITION 2.2. A z-algebra is a finite binary algebra (B, X) which is
associative and such that

(1) for some z E B, z =t= 1, z-1 is also in B,
(2) for some ’1 E 13, fJ =F 0, fJ is nilpotent.

We further agree that z, once chosen, is assumed to be fixed.

It is easily seen that the only four-element z-algebra is B given by

Moreover, since n2 = 17 implies ’1 = 0, we must have n2 = 0. Similarly, since
z2 = x implies z =1, we must have z 2 = 1. Hence

Now, define " by

It is readily verified that

Hence, by Lemma 1.2, (B, ’.(, -) is a regular enbprimal algebra with
as core, where 10,1, ?It.
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Since a z-algebra 13 is finite, it readily follows that zi = Zo, for some

integers 1,,u, A &#x3E; ~. Since, moreover, B iq associative, therefore = 1,
A 2013 /~ &#x3E; 0. In view of this, we may (and shall) adopt the following

NOTATION 2.1. The integer m will always denote the least positive in-

teger such that

REMARK 2.1. Since we have already shown that the (one and only) four-
element z-algebra (B, X), endowed with the permutation ~ given in (2.6),
yields a semi-primal algebra (B, X, -), we shall assume from now on that

B has at least five elements.

Let (B, x) be a z-algebra. A proper element of B is any element u of

B such that u 0, ’It =f= 1, For any positive integer k, a proper-k-
product (pr.-k-pdt.) is any product consisting of k - th powers of proper ele-
ments of B. The length of a proper-k-product is the number of distinct pro-
per elements appearing as factors. B is said to have rank r if r is the grea-
test integer such that B has a proper-m-product of legth r,

where m is as in Notation 2.1, and where a-) is not nilpotent.
In other words,

B has rank r if there exists a pr.-m-pdt. P (a~ , .~. , am) of length r

such that P (am, ... , is not nilpotent, while every pr.-m-pdt. of

(2.9) length greater than r is nilpotent-Here ... , am) denotes the

product of am, ... , order (which need not be the ordering
... , am), where ar are distinct and proper.

We also agree that

(2 10) 
B has rank zero if am is nilpotent for every proper element a of B

(2.10) ~ 
(and hence am = 0 ; see Notation 2.1).

Clearly, in any x-algebra B consisting of n elements, every pr.-m-pdt.
of length n - 3 must contain a zero factor, since B has at least one nilpo-
tent proper element. Hence

Next, suppose the z-algebra B has rank r, and suppose (see (2.9)) ~
is not nilpotent (all a;’s proper and distinct). We clain that
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For suppose fl were a proper element, and suppose P ai (i = 1,..., r). Now
consider

The left-side of (2.13) is of length r -~-1 and hence must be nilpotent (see
(2.9)). Therefore (and hence ~) is nilpotent. Thus P (ai ~ .., , a~) is nil-

potent, a contradiction. This proves (2.12).
We are now in a position to state the following

THEOREM 2.2 (Principal Theorem). Suppose (B, X) is a z-algebra. Then

there exists a permutation - of B such that- (B, X, -) is a regular subprimal
algebra (of species (2,1)).

PROOF. First, if B has rank zero, then (see (2.10)), am = 0 for every

proper element a of B. Now define by,

It is readily verified that (see Notation 2.1 and Remark 2.1)

Hence, by Corollary 2.1, (B, X,") is a regular subprimal algebra.
Next, consider the case where r &#x3E; 1 (r = rank of B). In view of (2.9),

we know that one of the following eventualities must occur:

Ca.se 1 : There exists some pr.-m-pdt. of length r, say P (a~ , ..., I a-),
which is not nilpotent and such that

Case 2 : For every pr. m pdt. of length r which is not

nilpotent, fl = a; for some i --- 1,..., r, where
. 

’I ...I . , - 
-

From now on we be a nonze’ro nilpotent element of B (see Defini-
tion 2.1). Observe that q is distinct from each ai in (2.16), since f is not

nilpotent.
First, let us consider Case 1. In Case 1, we know that by (2.12), p is

not proper and or fl = z (observe that fl ± 0 by (2.16)). For
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either value of fl, we define - by

It is easily checked that

In verifying (2.17), observe that (2.17) reduces to = 1,
since x’~ =1. Moreover, if ~ is proper, the expression in square brackets

in the right-side of (2.17) is either a pr.-m pdt. of length r .~-1 (and hence
is nilpotent), or this expression contains r¡1n (= 0) as a factor. In either case,
(2.17) follows readily. Finally, (2.17) is trivially verified or ~ =1.
Now, a combination of (2.17) and Corollary 2.1 shows that (B, X, ~) is a

regular subprimal algebra in thi s case.

Next, consider Case 2. We distinguish two subcases.

Case 2A : rank of B = r &#x3E; 1. In this case, let P (am, am) be a

pr.~m-pdt, of length r. By hypothesis,

Now, define a permutation - of B by

In other words, the effect of - on the aj’s is that we interchange the posi-
tions of a2 and ai, but leave all the other in their natural ordering.
For example, if i =1 then above effect becomes (z, a2 , at , ...) while if i =2,
above effect becomes (z, a, , a,2 , ...) (i. e., the are now in their natural

ordering). It is readily verified that

In verifying (2.20), observe that
_ 

~ ~ 
- 

, 
-

The verification of (2.20) for all other values of is
similar to the verification of (2.17). Hence, by (2.20) and Corollary 2.1,
(B, X, -) is a regular subprimal algebra (in Case 2A).

CaBe 2B : rank of B = r = 1. First, if B has at least two distinct non
zero nilpotent elements q, ’fJ’, say, we define - by
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Here al is determined as follows : Since the rank of B is equal to 1, there
therefore exists a proper element a, , say, such that

Now, it is readily verified that

Hence, by (2.22) and Corollary 2.1, (B, X, ’) is a regular subprimal algebra
in this last case also. There remains only the following case :

Now, since 12 is nilpotent, we must have q2 = 0 (otherwise, 12 = q and

hence q = 0, contradiction). Let

Moreover since we are still in Case 2, we know that every pr,-m~pdt. of

length 1 (r =1) satisfies : and hence a,4’ -a for each

k =1, ... , n - 4. We claim that

We prove (2.25) by contradiction. Thus suppose am + ai for some i. Clearly,
am is not nilpotent (see (2.23), (2.24)). Moreover, then ai = (am)’
z- = 1, a contradiction. Hence aln ~ z. Similarly a’t =F 1. Therefore

am = aj for some j. If j ~ i, then atn’+m = is nilpotent since r = 1,
and this forces a,i i to be nilpotent, I a contradiction. Hence, ak = ak for every
k = 1, ... , n - 4. Finally, if t ~ k, then at x ak is nillpotent (since =

and r = 1). This proves (2.25).

Now, if = z then zn = ak ’YJ2 = 0, and hence n = 0 = 0, a

contradiction. Therefore, akq z for any k =1, ... , n - 4. Similarly q ak 
for any A*. Moreover, if a2 = Z, then a2m =zm =1 and hence 1,
a contradiction. Therefore a2 k = z, k =1, ... , n - 4. We have thus shown that

Now, define by



568

Clearly, z is ex-expressible by gz (~) = ~. Moreover,

Hence, 6, (~-), 61 (~-2) .., are all expressible (in terms of -1 ~), and thus
6. (~) is expressible for every a E B. Moreover,

Hence, by Lemma 1.2, (B, X, -, ---) is a regular subprimal algebra. Since B

is finite, we can always express ~--- in terms of ~- and hence we may
delete ~- as a primitive operation. Thus (B, x, -) is a regular subprimal
algebra (with (B*, X, -) as its core). This completes the proof.

3. Applications.

In this section we apply Theorem 2.2 to certain classes of rings. Con-
sider for a moment a finite ring R with identity 1, where R is not commu-
tative. A well-known result of Herstein [3] asserts that such a ring R does
indeed possess a nonzero nilpotent element q. But then z =1-~- ~ certainly
has an inverse in R, since if qk = 0, then (1-f- r~) (1 - ~~ -~- ... ~- 
=1 = 1 ; and, of course, z # 1. Thus (R, X) is a z-algebra. Applying
Theorem 2.2, we now obtain

THEOREM 3.1. Let (R, +, ~ ) be any finite ring tvhich is not commuta-

tive (or R has a nonzero nilpotent element) and which has an identity. Then

there exists a permutation - of R such that (R, X, -) iv a regular 
algebra. In particular, the complete matrix ring JIlt (F) a field F (n&#x3E;l)
always possesses a permutation - such that (11In.( F), X, -) is a regular sub.

primal algebra.
An immediate consequence of this theorem is the following

COROLLA.RY 3.1. Let (R, +, x) be any finite )-ing ’with identity. I f
(R, , -) is never semi-primal for any pertitutation - of R, then R is comniu-
tative.

Now, suppose that R is any finite ring with identity 1. If’ R happens
to have a nonzero nilpotent element q, then as we have just seen, (R, ~) is
a z-algebra (with and Theorem 2.2 now guarantees the existence

of’ a permutation - of R such that (R, , , , -) is a regular subprimal algebra.
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Hence we may (and shall) assume that R has no nonzero nilpotent elements,
and therefore R is commutative, by Herstein’s Theorem [3]. Thus R is a

finite commutative ring with identity and with zero radical, and hence [4]

i. e., R is isomorphic to the complete direct sum of fields G F (n,),
n~ 

i (p, prime), i = 1, ..., t. From now on we assume that R is of charac-
teristic different from 2 and with at least th)-ee elements. Let

We proceed to define a permutation - of R. This we do in several stages
depending on the values of t and ni in (3.1 ).

Ca8e 2: If t &#x3E; 2. Via the direct sum representation (3.1) of R, we now
let 1, -1, Lxl ... , be the set of all elements of R whose t - th compo-
nents (in (3.1)) are different from zero, and choose the notation such that

Observe that, since one of the therefore

e all the remaining, ...

element of R ( 0). Now, define - by

and where the only condition we impose on the is

Case 3 : If t = 2 and n2 (= In this case, ni &#x3E; 2 (since the
characteristic of R is not 2). Let 11, - 1, ... , be as in case 2 above

but choose the notation now such that

Define - now as in (3.5) and (3.7) (but no restriction on



570

Case 4 : If t = 2 and n1  n2 (= nt). In this case, define - as in (3.5)
(but no restriction on fli fJ2, ,

Arguments parallel to those given in [6 ; Theorems 4,5] show that the
following formulas hold in the designated cases. We omit the details.

Hence by Corollary 2.1, (R, ,, ) is a regular subprima! algebra (with
({ 0, 1), X, -) as core). A combination of this and Theorem 3.1 yelds the

following

THEOREM 3.2. Let (R, +, x) be any finite (not necessarily commutative)
ring ’with identity bzct of characteristic different J’rorn tzco. Then there exists a

permutation - of R such that (R, x, -) i.s a regular subprimal algebra.
In conclusion, we remark that a ring R of characteristic two need not

possess a permutation ’~ for which (R, X, -) is a regular subprimal algebra.
For example (GF(22), +, x) cannot be converted to a regular subprimal
algebra (GF(22), X, -). This follows from Lemma 1.1 (ii), (iii). Similar re-

mark can be made in regard to G F (2) E9 ... ~ GF (2). We omit the details.
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