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A PRIORI ESTIMATES FOR HYPOELLIPTIC
DIFFERENTIAL EQUATIONS IN A HALF-SPACE

by LEIF ARKERYD

0. Introduction.

Our aim is to show that every distribution solution u of a formally
hypoelliptic partial differential equation

satisfying Dirichlet’s boundary conditions

does belong to C°°, if f does. In analogy with the elliptic case (cf. Arkeryd
~ 1 ~), it is natural to try to obtain A priori estimates

with suitable N2 , N3 , with in particular « weaker » than N, .
’1‘hese estimates are proved in two steps :

1°. The inequality (0.1) is established for operators with constant coef-
ficients.

2°. For operators 
-

where A and Qj have constant coefficients, Qj is weaker that A and aj E C° ,
the inequality (0.1) can be obtained from the constant coefficient case 10 if

Pervenuto dlla Redazione i1 26 Marzo 1968,
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In Peetre [8] (see also Schechter [9] and Matsuzawa [7])

is considered, but then (0.1) is not true for all formally hypoelliptic opera-
tors ; the second step does not always work. Here we use instead

if A = A+ A- is the « canonical &#x3E;&#x3E; decomposition of A, with inf taken over
all satisfying u = u in In the same way we take

Then step 1 ° is immediate (cf. [8j, [11]) and the main difficulty is to prove
2°. This can be done by use of a commutator lemma analogous to Friedrich’s
lemma, which follows from the basic estimate

Let us mention that H6rmander [4] has proved a regularity theorem for
operators with constant coefficients and general boundary conditions. He
does not, however, use a, priori estimates, but explicit formulas for the cor-
responding Green and Poisson kernels.

The plan of the paper is as follows. Section 1 contains some prelimi-
naries concerning the distribution spaces involved. Section 2 contains the

proof of the basic estimate of the Friedrich’s type mentioned above. In Sec-
. 

tion 3 and Section 4 the applications to differential equations are given.
Since they are rather routine, we have cut down the exposition to a minimum.

The Fourier transform of an element f in one of the Schwartz classes
S or ~’ (see [10]) is denoted by,Ff, the inverse transform by F.1, 
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We take formally

and use the notation

where P is a function on Rn. The following functions will often be used ;

By

we denote a hypoelliptic differential operator with constant coefficients and
write

with a = al ... 1. Here m+ is’ the number of roots gf with positive and m-
the number of roots pj* with negative imaginary part. We require, that A
satisfies the root condition, i. e. that in+ and 1U- are independent of ~’ for

’ ~’ ~ ~ M. It is no restriction to take a = 1. We set

where the value of l1f1 ¿.1[ will be defined in Section 2. The following
norms are used ;

where inf is taken over all ;; E S’. whose restrictions to
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are equal to u, and such that

The notation u is used below in this sense. Particular norms of this type are

The corresponding spaces are denoted by

The space corresponding )!p is denoted by Hp. Paley.Wiener’s
theorem gives

The local spaces (cf. 2.5 in [4])

correspond to the above spaces. About we need the following fact"
which goes back to Hörmander and Lions [6].

for all v E y and with the constant K, independent of v.
Next we state some lemmas in 

1 +
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LEMMA 1.2. C’o is dense in *

1+

PROOF : We prove in Section 2, that (2.4)

for ail $, q E Rn. Here and below constants are written C and K, sometimes
with index. As the same inequality holds for B+, it follows that

and consequently

But from this inequality follows that Coo0 is dense in HAgs . See [5j J
1+

Remark p. 36 and Theorem 2.2.1).
we now use Lemma 1.2 to approximate elements of with sup-

1 +

port in a half-space.

LEMMA 1.3. Let supp u c R+ . Then u’is the limit in H ASB
1 + 1 +

of a sequence of functions

PROOF. Denote by Th translation by h along the x I ’axis. Then

which can be made arbitrarily small by a suitable choice of E and h. As

the statement of the lemma is already established implicitly for rh u by
Lemma 1.2, this ends the proof.

REMARK. In Lemma 1.3, B+ can be replaced by B:1 and ~ by
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By definition, that a function u E has the boundary valuesB+, s

means, that there is a with

Finally we need

LEMMA 1.4. A function it satisfying (1.5) is in R if atlll only if it
is in Ht+,,-, ancl

is bounded in ~,,~-1 independently of h’ = (h2 , ... , lan)

The proof is immediate if we notice that with

there is a characterization of B +;; ill 
i 
by the same kind of difference

quotients.

2. A version of Friedrich’s lemma.

The derivation of the a priori inequality mentioned in Section 0, is

for m- &#x3E; 0 based on a commutator lemma analogous to Friedrich’s lemma

(see e. g. [2]), which is established in this section. The proof depends on

a number of lemmas, for which we need the following estimates of hypoel-
liptic polynomials;



415

for some c &#x3E; 0 and with Aa (~) = Da A (E) (see H6rmander [5]).

LEMMA 2.1. If ~ belongs to the cylinder I ~’ I ¿ M, then for all v

Here C is independent and c 2 &#x3E; b &#x3E; 0.

PROOF. As the coefficients of’ A - (E) are analytic in| E 1 M (see [3]
p. 28!1-290), the derivatives 2013-~ exist. Cauchy’s formula gives

aE

Take q and p such that

Then by (2.1 ) and with e= G" I ~’ Ie we obtain

The next lemma with A-(~-}-?y) for small real ’1J. For technical

reitsoiis, we only make that comparison in a cylinder

with M~ so large that

This is the constant mentioned in formula (1.2).
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LEMMA 2.2. Take ~ with I - I ~’ lb. Then

wich I~’ and C independent of ~ and q.

PROOF. We write

The integrand can be estimated by Lemma 2.1. The restrictions on ii and

M1 then give

and so

The inequality (2.3) follows from

The estimate that corresponds to (2.3) for u I &#x3E; I ~’ 111, is oluch more easily
obtained. ,
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where d is independent of ~ and ti.

PROOF. Under the given restrictions on ~ and ii, for some a ~ 0 the

following inequalities hold ;

Hence

which gives the desired estimate, when inserted into

Recalling from (1.2) that

and using Lemmas 2.2 and 2.3, the main step in the proof of our com-

mutator lemma easily follows.

LEMMA 2.4. There are constants k and C independent of $, q E 
such that

PROOF. The points ~ and ~ -~- r~ can be situated inside or outside the

cylinder ~,~’ ~ = 1’~I1. This gives four cases, wliich are treated separately.
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1°. By Lemmas 2.2 and 2.3, the inequality (2.4) is fulfilled for

I ~’ I ;~&#x3E; If, and ~~’-+-r~’~~Mi.
2°. For and IE’ + ti,’ C M, , write the left-hand side of

(2.4) as in the proof of Lemma 2.3.

Each factor can be estimated by

for some k’ and C’, which obviously implies (2.4).
3°. The case I ~’ C M. ~’ + 7’ is treated analogously.
4°. If I ~’ and IE’ + ~ ! C M, the inequality is well-known.

’*A’heii Q is weaker than A, zve have

Because A is hypoelliptic, we have

(see [5] p. 102). Then the first term on the right side can be estimated by
Lemma 2.4 as follows ;
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This estimate, together with the inequality

of Elirling-Nirenberg type, gives

THEOREM 2.1. Let

with O£ independent o~’ u E H J +, If. 
’

:3. A priori inequalities for hypoelliptic operators.

THEOREM 3.1. Let 
°

’lv1tere A (D) is hypoelliptic ((,nd (1)) , ... , Qm (1») are weaker thcr.7t A (D). If.

lL1 (;x’~ ~ ·.. ~ a~n (x) E G~ u~ ( R-~ ) 

swrrie sufficiently s1nall E &#x3E; 0, then

.(or all, the (1.5).

PROOF. WTe prove the theorem for 1U- &#x3E; 0. The modifications in the

shnpler case ~n_ = 0 are obvious. As Lemma 1.3 shows, it is sufficient to

prove the theorem for u E C~° (.R’+). According to a theorem by Peetre ([8~
Lemma 4)
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if ~‘ ‘ ~ M and if u ~ C~° (R+). The proof is based on the Paley. Wiener
theorem. We multiply (3.2) by A’ and integrate in ~’ (cf. (1.3), (1.4)) getting

It follows that

(3.3)

But

The last term can be estimated by use of Theorem 2.1, and in view of

Lemma 1.1, we can estimate the first term in the following way;

Here Cj is independent of u and We have now proved that

which together with (3.3) gives the desired estimate (3.1), if we assume for

instance, that

4. Regularity.

In this section

is formally hypoelliptic. Before the main regularity theorem we formulate

a result on regularity in the x’-directions.



421

THEOREM 4.1. Z6 some r and let 1l satisfy (1.5). 
3.1 Then

PROOF. It is always possible to choose r, so that r = s - v for some

integer v. If r c 8 - 1 then the quotient

is bounded in by Theorem 3.1. Then by Lemma 1.4,
iteration, this proves the theorem.

THEOREM 4. ~..Let and satisfy (1.5) Then

PROOF. The theorem means that V It is no

restriction to take all Qj hypoelliptic and V) with « small » support. For

each such function V, we take another ø of the same type with 0 = 1
in a neighbourhood of supp y. We first show that Q u E r for some r,
when supp 0 is small enough for ~ to fulfil the conditions of Theorem

3.1 in some open set supp 0. From the fact that

tor some it follows

if

As the Qj’8 are hypoelliptic, there is a d &#x3E; 0 such that for large E’

Take
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with 00 = 1 in a neighbourhood of supp (P and supp 00 c cu. As u we

have

tor some integer a and real r. C tit+ we construct a sequence of

Co (1~1+) - functions

with 1 in a neighbourhood of supp tPj. Let nz1 = 1n+ be the

order of the derivative D, in ~ and ’In’ the total order. As

and

Leibniz’ formula shows that

Then by partial regularity (see e. g. [51), for some r’

aud so, by iteration, y for some r’

For some r this will give

(4.1)

so that witb q = c/v

is an integer. Let be a sequence analogous to ((15j)’, and with
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The terms in

can be estimated as in the proof of Theorem 2.1 and Theorem 3.1. With

our choice of d this gives

and so

Then by Theorem 4.1

Repeating this v times gives

aud so

PROOF. This follows by partial regularity from Theorem 4.2.
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