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ON HOLOMORPHIC FUNCTIONS OF POLYNOMIAL
GROWTH IN A BOUNDED DOMAIN

by RAGHAVAN NARASIMHAN(*)

Let Q be a bounded open set in (In. For z E S~, let

denote the distance of the point z from the boundary aD of S~.

A holomorphic in Q is said to be of polynomial
growth if there exist constants M, e &#x3E; 0 such that, for z E Q zoe have

M and o may on f.
The object of this note is to prove a theorem which is preliminary to

certain questions on the existence of sections of coherent analytic sheaves on
Stein spaces satisfying conditions of growth similar to the one occurring
in the definition above. The result is the following.

THEOREM. Let g be holomorphic in Q (i. e. in a neighborhood of Q and
let j9 be a function of polynomial growth in Q. If ( g does not vanish identi-
cally on any non-empty open set in Q and) flu is holomorphic in Q, then fig
has polynomial growtjc.

PROOF. Let h It is sufficient to prove that for any a E ôQ there

is a neighborhood ~I and constants M, ~O ? 0 with

for

We may suppose that a = 0. Further, it is sufficient to prove our ine-

quality after a linear change of coordinates in Thus, by the Weierstrass
preparation theorem, we may make a linear change of coordinates such that
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g assumes the form

here co and P are holomorphic on the closure U of a neighborhood ~7 of 0
in en and m has no zeros on tT. Further, we may suppose that ~l = U’ x U",
U~ C I7m c C and that, if z’ E U’, z’ = (zi ~ ... I and t) = 0,
t E C, then t E U". [The notation P (z’ ; t), z’ E U’, is self-explanatory].

Vre have only to obtain an estimate of the form

for

Let V be a neighborhood of Q in which g is holomorphic ; and let

A = (z E (z) = 0). We may clearly suppose that 0 E A and that U c V.
For z = (z’~ zn) E U’ we define

where v = 1, ... , p are the zeros of the polynomial P (z’ ; t) in t.

LEMMA 1. For z E U, we have

PROOF OF LEMMA 1. Given z’E U’, let Â1,...,Àp be the zeros of P(z’ ; t). Then

since, by definition, we have - Âj I 6A ~z) for each j.
Let 0  8 ~ 1/2 and let

Clearly d2 is a neighborhood of A n u n S~.
Since f has polynomial growth, there are constants &#x3E; 0 with
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Hence, for z E we have

by Lemma 1 and the definition of 
To deal with d2, we proceed as follows. For given

let denote the complex line

Clearly Li, n A contains at most _p points for any l’ E U’.

LEMMA 2. f1 Lc, is relatively compact in S2 n lc, (considered as open
sets in the plane Lc,).

PROOF OF LEMMA 2. Suppose that 1, 2, ...) is a sequence of

points of 4z fl Li, converging to a point E aD. Since 6A (z°I ) = lim 6A 

 lim ~(~))==0, If then W is a small neighborhood of not

containing any other point of n A, we see that for z E W n we have

since E In particular, if 1~ is large enough,

by definition of d2, which is absurd. Hence no sequence of points of 42n Li,
can converge to a point of a~, which proves Lemma 2.

LEMMA 3. If ~’ E U’, then, for any lying in the same

connected component of d2 n Ln, , we have

PROOF OF LEMMA 3. Let ..., m  p, be the points in L~,
and let

have

If we

so that
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On the other hand

so that

Hence, if x, y are points of we have

Since, by Lemma 2, c U ... U if D is any connected

component of and Xi , x2 E D, there exist indices ..., jr, 1":::;: 111  p,

and points with y, E n( jv) n such that

If now xi 1 X2 E D, we may suppose that xi E and x2 E D(js), 7 s C 1’.

Then, by what we have seen above, if s ~ 2,

so that d (x,) 8-2P d (x2), and this is true also if s = 1. In the same "ray,
d (X2) C s-2P d (x,), and this proves Lemma 3.

We now proceed to the proof of our theorem.
If 4 is any open subset of Li, for ~’ E U’, we denote by all its boun-

dary in L5, . We claim that if 8 is sufficiently small, then for all ~’ near
0 E U’, a (d2 fl L~~) c d1. Because of Lemma 2, it is sufficient to show that

a (d2 fl L5,) does not meet x a U". Now, if C’ is restricted to a relatively
compact subset Ul’ of U’, then has a distance from Lc, n A
which is bounded below. Hence 3A (z) is bounded below on X a U") n S~ ;
since d (z) is bounded above, if 8 is small enough, no point of ~’ X aU",
~’ E can have points of A2 n Lc, arbitrarily close to it. Hence, for

~’ E if s is small, a (J 2n Lc,) c 4~ .
If z E d 2 n X U"), let ~’ = (z~ , ... , zn-i) and let D be the connected

component of J2 n LC containing z. Since is holomorphic in D, we ob-p

tain, by the maximum principle,
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Since OD L5,) c d1, Lemma 1 gives, for x E aD,

(since x E Lf1)

(by Lemma 3).

Hence, for

Since for z E we have

we have

for

As already remarked, this proves the theorem.

REMARK 1. It is easily seen that Theorem 1 when f =1 (case when
g has no zeros in S~ but may have zeros in S~) is equivalent to the following
statement:

Let g be holomorphic in an open set U C C" - Let A = (z E (z) = 0)
and d (z, A) be the distance of from A. Then, for any compact set
K c U, there exist constants &#x3E; 0 with

for

This is a very special case of a famous inequality of Lojasiewicz which
asserts the validity of a similar inequality for all real analytic (and even
setni-analytic) functions in open sets in see e. g. S. Lojasiewicz : En-
se1nbles semi-analytiques ; Inst. Hautes Etudes Sc. Paris (1965).

REMARK 2. The assumption that g be holomorphic in ti is essential.

For example, if g (z) _.-- egp (- llz) in 0= Re z &#x3E; 0, z [ 1 ~, we

have I g (z) I  1, g (z) ~ 0 in Q, but llg (z) tends to infinity like exp (lId (z))
when z -~ 0 along the real axis. 

’
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If and

again (z) ]  1 in Q. This time llg (z) -+ oo like exp (exp (eld (z))) for a

suitable c &#x3E; 0 when z 2013~ 0 along the real axis.
It is possible to give examples where the growth is even faster.

REMARK 3. We have actually shown that there are constants C, a &#x3E; 0

depending only on g such that if and f/u is holomorphic

in 01 then 1 (z)  MCe+l d Somewhat better inequalities can be
Y 

obtained, but this requires more complicated reasoning.
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