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A COEROIVENESS INEQUALITY

WILLIAM F. DONOGHUE, Jr.

Let 0 be an open bounded set in Rn with smooth boundary ; by $i (S~)
we denote the Hilbert space which is the completion of the smooth fine-
tions in D under the norm II u 11, where

Here II it 110 is the usual norm over S~ and d, (u) is the Dirichlet integral
given by

r

It is well known that the elements of g~ (S~) are equivalence classes
of functions and that the study of these functions requires some elementary
potential theory. We recall that the capacity associated with the space

is the set function cap (A) = inf 11 It 112 the infimum being taken over
all smooth ai (x~) which are &#x3E; 1 on A and that this function is an outer

measure. The elements of .g1 (S~) are then determined as functions up to a
set of capacity zero. If Un (x) is a minimizing sequence for the capacity of
A, the un converge to a well defined element v~ of (Q) called the capa-
citary potential of A, and which may be taken equal to 1 on A. By a simple
variational argument one finds that there corresponds to v~ a positive mea-
sure ft A supported by the closure of A called the capacitary distribution

of the smooth functions vanishing on a set A then this subspace is proper
if and only if cap (A) &#x3E; 0.

G. Stampacchia has conjectured that the following coerciveness assertion
holds : when cap (A) is positive, the quadratic norms ])
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equivalent norms on 0tlA. It is our purpose here to establish this conjec-
ture. Since it is obvious that d1 (u) what must be shown is the

existence of a constant C (depending on A) such that for u in C)MA

Since we have supposed the boundary of S~ smooth, the Rellich theorem
holds, i. e, the quadratic form II u is completely continuous relative to

We may therefore write 11 U 112 = where H is a positive ope-
rator which is completely continuous and of bound at most 1. It is easy
to see that .g has no null space, while H does have the eigenvalue 1 as-

sociated with the eigenfunction 2c (x) = constant. That eigenvalue is simple,
since Hv = v implies 11 = 11 v 1 and therefore d1 (v) = 0, from which we
infer that v = constant, since its derivatives vanish almost everywhere.

Let P be the projection on the subspace then the operator PHP
is positive, completely continuous and has bound A = II PHP II at most 1.

Since PHPU = u implies Hu = u and therefore u = constant, and since the
only constant function in C)MA vanishes identically, we see that ~ ( 1. It

follows that for u in 07’LA

and we obtain the desired inequality with C = 1 Â. Â.’ *
It is possible to obtain an estimate for C in terms of the Lebesgue

measure of Q, the capacity of A and the number w = smallest non-zero

eigenvalue of the free membrane problem in S~. For this purpose we write

the eigenvalues of g in monotone decreasing order:

and take en (x) as the corresponding normalized eigenfunctions. Thus

e1 (x) = 1 I Vm "rhere 1n is the Lebesgue measure of S2. For the second

eigenfuction we = 22 11 e2 112, I whence m = d1 1 (e2) where

a) = - I, and this, by a classical argument, implies - 11 e2 (.r) = we2 (x)
with the normal derivative of e2 (x) vanishing on the boundary. Thus e2 (x)
is the eigenfuction of the free membrane problem for Q and co si the cor-

responding eigenvalue.
If v~ and fl A are the capacitary potential and distribution associated

with A we have
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Our object is to estimate ~ and hence C. We have
n 1 1

supremum being taken over all non-trivial u in C)Ma.
Let 95 be the subspace consisting of all u in Hi orthogonal to vg,

Since the capacity is positive, v A is not 0 and 95 is proper ; moreover 9X

contains 9KA since, for u in we have (i

the supremum being taken over all non zero u in

99. We then have À* &#x3E; I, and since contains no constant function

other than 0, A*  1. If Q is the projection on 1* is the largest eigen-
value of the positive, completely continuous operator QHQ. We estimate A~

by the standard Aronszajn-Weinstein method. Let jR~==(J3~2013~)"~ be the
resolvent of H ; A* is then the (unique) zero of the function in

the interval A2  ~  1. For the sake of completeness, we give an elemen-
tary proof for this special case. If = ~w, then H1V = + CV A where
the coefficient c may be 0. If c = 0, w is an eigenvector of .8~ orthogonal
to and therefore not el. The number ~ is then one of  1, hence
~  A2’ If c is not 0 we have = cvd whence = c-1 w, and

therefore, since w in crtl is orthogonal to 0 and $ is a

zero of the function (R~ Thus the spectrum of QHQ is a subset of
the zeros and poles of this function. Conversely, if = 0 for so-

me ~, we write w which is crJL and obtain (~ - ~I ) w = v A or
= ~w + y whence = ~w and therefore is an eigenvalue of

QHQ. We seek the largest eigenvalue of that operator, and note that the
function is monotone increasing and assumes all real values in

the interval A.  ~  1, and is negative to the right of 1; hence A* is the

(unique) zero of the function in that interval.

We therefore write out the function explicitly:

and note that the root Â.* is surely to the left of the root of

The root is easily computed, and we find
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and therefore

The foregoing estimate for the constant in Stampacchia’s inequality
has the disadvantage that it involves the capacity of A relative to the

space and that this function is not known. However, as we shall

presently show, this function is equivalent to the usual capacity for the
corresponding Bessel potentials, a set function usually written r2 (A). There
exists a constant if depending only on Q such that

for all subsets A of S~, and therefore the constant occuring in inequality (1)
involves a numerator which depends only on the domain S and a denomi-

nator y2 (A) ; it therefore is independent of any other property of A, for
example, the distance of that set from the boundary.

The equivalence of the set functions 72 (A) and cap (A) is a consequence
of the smoothness hypothesis made concerning the boundary of Q ; there
exists a continuous linear transformation u mapping Hi into P1 (Rn),
the space of Bessel potentials on Rn such that u (x) = u (x) for all x in S~.
The transformation is bounded; thus there exists a positive M such that

A 
is the capacitary potential for A in the space P1 (Rn)

where v* is the restriction of to Q considered as an element of g1 (Q).
Conversely, if v Å in Hi (S~) is the capacitary potential of A, 7

It is natural to enquire to what extent inequality (1) is valid for the

spaces H" (Q) where the norm is defined by
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and da (u) = ,¿d1 (Dk u) when a is an integer, the summation being taken
over all derivatives of order a, and finally when a &#x3E; 1 is not an integer,

= (Dk u) where the summation is taken over all derivatives of

order k, k being the largest integer  a and P defined by a = k -~- ~.
All of the arguments we have given carry over to the case a  1 ;

Stampacchia’s inequality is valid with a constant which depends only on
the domain S~ and the reciprocal of the capacity y2a (A), this being the ca-
pacity for the corresponding space of Bessel potentials 

The situation is essentially more complex 1 ; if we repeat
our analysis we find that the operator H which represents the L2 norm in
the space Ha (S~) is positive, completely continuous and with bound 1, ho-

wever, the eigenvalue 1 is no longer simple. The eigenspace corresponding
to that eigenvalue consists of all polynomials of sufficiently low degree, and
such a polynomial may vanish on a set of positive capacity. Thus the ine-
quality does not hold, unless a further hypothesis is made, viz. that the set
A is not contained in the set of zeros of a polynomial of degree  m = the
largest integer strictly smaller than a. In this case inequality (1) is valid,
but the constant depends in an essential way on the other data than simply
the capacity Y2a (A).

Let us remark that the surface on the unit sphere in B" is a set of
positive capacity, y but is contained in the null set of the polynomail 1 - 

Throughout our discussion we have made use of the hypothesis that
the boundary of S~ is smooth in order that the Rellich theorem guaranteeing
the complete continuity should hold. We have also used that hy-
pothesis to have the extension theorem embedding Hi (D) into Pi (Rn). The
careful study of these questions given in [1] shows that the regularity hy-
potheses needed are very mild.

1. R. ADAMS, N. ARONSZAJN and K. T. SMITH, « Theory of Bessel Potential8 II » Annales
Institut Fourier, to appear.
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