Annali della Scuola Normale Superiore di Pisa *Classe di Scienze*

WILLIAM F., JR. DONOGHUE

A coerciveness inequality

Annali della Scuola Normale Superiore di Pisa, Classe di Scienze 3^e série, tome 20, nº 3 (1966), p. 589-593

<http://www.numdam.org/item?id=ASNSP_1966_3_20_3_589_0>

© Scuola Normale Superiore, Pisa, 1966, tous droits réservés.

L'accès aux archives de la revue « Annali della Scuola Normale Superiore di Pisa, Classe di Scienze » (http://www.sns.it/it/edizioni/riviste/annaliscienze/) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

\mathcal{N} umdam

Article numérisé dans le cadre du programme Numérisation de documents anciens mathématiques http://www.numdam.org/

A COERCIVENESS INEQUALITY

WILLIAM F. DONOGHUE, Jr.

Let Ω be an open bounded set in \mathbb{R}^n with smooth boundary; by $H^1(\Omega)$ we denote the Hilbert space which is the completion of the smooth functions in Ω under the norm $|| u ||_1$ where

$$|| u ||_1^2 = || u ||_0^2 + d_1(u).$$

Here $|| u ||_0$ is the usual L^2 norm over Ω and $d_1(u)$ is the Dirichlet integral given by

$$d_{i}(u) = \int_{\dot{\Omega}} |\operatorname{grad} u|^{2} dx$$

It is well known that the elements of $H^1(\Omega)$ are equivalence classes of functions and that the study of these functions requires some elementary potential theory. We recall that the capacity associated with the space $H^1(\Omega)$ is the set function $\operatorname{cap}(A) = \inf || u ||_1^2$ the infimum being taken over all smooth u(x) which are ≥ 1 on A and that this function is an outer measure. The elements of $H^1(\Omega)$ are then determined as functions up to a set of capacity zero. If $u_n(x)$ is a minimizing sequence for the capacity of A, the u_n converge to a well defined element v_A of $H^1(\Omega)$ called the capacitary potential of A, and which may be taken equal to 1 on A. By a simple variational argument one finds that there corresponds to v_A a positive measure μ_A supported by the closure of A called the capacitary distribution such that $(u, v_A)_1 = \int u(x) d\mu_A$ for all u in $H^1(\Omega)$. Clearly $|| v_A ||_1^2 = \operatorname{cap}(A) =$ $= (v_A, v_A)_1 = \int v_A(x) d\mu_A(x) = \int 1 d\mu_A = |\mu_A|$. If \mathcal{M}_A is the closure in $H^1(\Omega)$ of the smooth functions vanishing on a set A then this subspace is proper if and only if $\operatorname{cap}(A) > 0$.

G. Stampacchia has conjectured that the following coerciveness assertion holds: when cap(A) is positive, the quadratic norms $||u||_1$ and $\sqrt{d_1(u)}$ are

Pervenuto alla Redazione il 21 Febbraio 1966.

equivalent norms on \mathcal{M}_A . It is our purpose here to establish this conjecture. Since it is obvious that $d_1(u) \leq ||u||_1^2$, what must be shown is the existence of a constant C (depending on A) such that for u in \mathcal{M}_A

$$|| u ||_0^2 \leq Cd_1(u).$$

Since we have supposed the boundary of Ω smooth, the Rellich theorem holds, i. e. the quadratic form $||u||_0^2$ is completely continuous relative to $||u||_1^2$. We may therefore write $||u||_0^2 = (Hu, u)_1$ where H is a positive operator which is completely continuous and of bound at most 1. It is easy to see that H has no null space, while H does have the eigenvalue 1 associated with the eigenfunction u(x) = constant. That eigenvalue is simple, since Hv = v implies $||v||_0 = ||v||_1$ and therefore $d_1(v) = 0$, from which we infer that v = constant, since its derivatives vanish almost everywhere.

Let P be the projection on the subspace \mathcal{M}_A ; then the operator PHP is positive, completely continuous and has bound $\lambda = ||PHP||$ at most 1. Since PHPu = u implies Hu = u and therefore u = constant, and since the only constant function in \mathcal{M}_A vanishes identically, we see that $\lambda < 1$. It follows that for u in \mathcal{M}_A

$$\| u \|_0^2 \leq \lambda \| u \|_1^2 = \lambda \| u \|_0^2 + \lambda d_1(u)$$

and we obtain the desired inequality with $C = \frac{\lambda}{1-\lambda}$.

It is possible to obtain an estimate for C in terms of the Lebesgue measure of Ω , the capacity of A and the number $\omega =$ smallest non-zero eigenvalue of the free membrane problem in Ω . For this purpose we write the eigenvalues of H in monotone decreasing order:

$$1 = \lambda_1 > \lambda_2 \ge \lambda_3 \ge \dots$$

and take $e_n(x)$ as the corresponding normalized eigenfunctions. Thus $e_1(x) = 1 / \sqrt{m}$ where *m* is the Lebesgue measure of Ω . For the second eigenfuction we have $||e_2||_0^2 = \lambda_2 ||e_2||_1^2$, whence $\omega ||e_2||_0^2 = d_1(e_2)$ where $\omega = \lambda_2^{-1} - 1$, and this, by a classical argument, implies $-\Delta e_2(x) = \omega e_2(x)$ with the normal derivative of $e_2(x)$ vanishing on the boundary. Thus $e_2(x)$ is the eigenfuction of the free membrane problem for Ω and ω si the corresponding eigenvalue.

If v_A and μ_A are the capacitary potential and distribution associated with A we have

$$(e_1, v_A)_1 = \int e_1(x) d\mu_A = \frac{|\mu_A|}{\sqrt{m}} = \frac{\operatorname{cap}(A)}{\sqrt{m}}.$$

590

inequality

Our object is to estimate λ and hence C. We have $\lambda = \sup \frac{\|u\|_0^2}{\|u\|_1^2}$ the supremum being taken over all non-trivial u in \mathcal{M}_A .

Let \mathcal{M} be the subspace consisting of all u in H^1 orthogonal to v_A . Since the capacity is positive, v_A is not 0 and \mathcal{M} is proper; moreover \mathcal{M} contains \mathcal{M}_A since, for u in \mathcal{M}_A we have $(u, v_A)_1 = \int u(x) d\mu_A(x) = 0$.

Let $\lambda^* = \sup \frac{\|u\|_0^2}{\|u\|_1^2}$ the supremum being taken over all non zero u in

 \mathcal{M} . We then have $\lambda^* \geq \lambda$, and since \mathcal{M} contains no constant function other than $0, \lambda^* < 1$. If Q is the projection on \mathcal{M}, λ^* is the largest eigenvalue of the positive, completely continuous operator QHQ. We estimate λ^* by the standard Aronszajn-Weinstein method. Let $R_{\zeta} = (H - \zeta I)^{-1}$ be the resolvent of H; λ^* is then the (unique) zero of the function $(R_{\lambda} v_{\lambda}, v_{\lambda})_{1}$ in the interval $\lambda_2 < \zeta < 1$. For the sake of completeness, we give an elementary proof for this special case. If $QHQw = \xi w$, then $Hw = \xi w + cv_A$ where the coefficient c may be 0. If c = 0, w is an eigenvector of H orthogonal to v_{A} , and therefore not e_{1} . The number ξ is then one of the $\lambda_{n} < 1$, hence $\xi \leq \lambda_2$. If c is not 0 we have $(H - \xi I) w = cv_A$ whence $R_{\xi} v_A = c^{-1} w$, and therefore, since w in \mathcal{M} is orthogonal to v_A , $(R_{\xi} v_A, v_A)_1 = 0$ and ξ is a zero of the function $(R_{\xi} v_A, v_A)_1$. Thus the spectrum of QHQ is a subset of the zeros and poles of this function. Conversely, if $(R_{\varepsilon} v_A, v_A)_1 = 0$ for some ξ , we write $w = R_{\xi} v_A$ which is \mathcal{M} and obtain $(H - \xi I) w = v_A$ or $Hw = \xi w + v_A$, whence $QHQw = \xi w$ and therefore ξ is an eigenvalue of QHQ. We seek the largest eigenvalue of that operator, and note that the function $(R_{r} v_{A}, v_{A})_{1}$ is monotone increasing and assumes all real values in the interval $\lambda_2 < \zeta < 1$, and is negative to the right of 1; hence λ^* is the (unique) zero of the function in that interval.

We therefore write out the function explicitly:

$$(R_{\zeta} v_A, v_A)_1 = \sum_{n=1}^{\infty} \frac{\mid (v_A, e_n)_1 \mid^2}{\lambda_n - \zeta}$$

and note that the root λ^* is surely to the left of the root of

$$\frac{\|v_{\scriptscriptstyle A}\|_{\scriptscriptstyle 1}^2-|\left(v_{\scriptscriptstyle A}\,,\,e_{\scriptscriptstyle 1}\right)_{\scriptscriptstyle 1}|^2}{\lambda_2-\zeta}+\frac{|\left(v_{\scriptscriptstyle A}\,,\,e_{\scriptscriptstyle 1}\right)_{\scriptscriptstyle 1}|^2}{1-\zeta}\,\cdot$$

The root is easily computed, and we find

$$\boldsymbol{\lambda} \leq \boldsymbol{\lambda^{*}} \leq 1 - (1 - \lambda_2) \frac{|(\boldsymbol{v}_A \ , \ \boldsymbol{e}_1)_1|^2}{|| \ \boldsymbol{v}_A \ ||_1^2}$$

591

and therefore

$$C \leq (1 - \lambda_2)^{-1} \frac{\|v_A\|_1^2}{|(v_A, e_1)_1|^2} - 1 < (1 + 1/\omega) \frac{\operatorname{meas}(\Omega)}{\operatorname{cap}(A)}.$$

The foregoing estimate for the constant in Stampacchia's inequality has the disadvantage that it involves the capacity of A relative to the space $H^1(\Omega)$ and that this function is not known. However, as we shall presently show, this function is equivalent to the usual capacity for the corresponding Bessel potentials, a set function usually written $\gamma_2(A)$. There exists a constant M depending only on Ω such that

$$M\gamma_{2}(A) \leq \operatorname{cap}(A) \leq \gamma_{2}(A)$$

for all subsets A of Ω , and therefore the constant occuring in inequality (1) involves a numerator which depends only on the domain Ω and a denominator $\gamma_2(A)$; it therefore is independent of any other property of A, for example, the distance of that set from the boundary.

The equivalence of the set functions $\gamma_2(A)$ and cap (A) is a consequence of the smoothness hypothesis made concerning the boundary of Ω ; there exists a continuous linear transformation $u \to \widetilde{u}$ mapping $H^1(\Omega)$ into $P^1(\mathbb{R}^n)$, the space of Bessel potentials on \mathbb{R}^n such that $u(x) = \widetilde{u}(x)$ for all x in Ω . The transformation is bounded; thus there exists a positive M such that $\| u \|_1^2 \ge M \| \widetilde{u} \|_1^2$. If v_A is the capacitary potential for A in the space $P^1(\mathbb{R}^n)$ we have

$$\gamma_{2}(A) = ||v_{A}||_{1}^{2} \ge ||v^{*}||_{1}^{2} \ge \operatorname{cap}(A)$$

where v^* is the restriction of v_A to Ω considered as an element of $H^1(\Omega)$. Conversely, if v_A in $H^1(\Omega)$ is the capacitary potential of A,

$$\operatorname{cap}(A) = \| v_A \|_1^2 \ge M \| \widetilde{v_A} \|_1^2 \ge M \gamma_2(A).$$

It is natural to enquire to what extent inequality (1) is valid for the spaces $H^{\alpha}(\Omega)$ where the norm is defined by

with
$$d_{\alpha}(u) = \iint_{\Omega} \iint_{\Omega} \frac{|u(x) - u(y)|^2}{|x - y|^{n + 2\alpha}} dx dy$$
 when $0 < \alpha < 1$

 $\mathbf{592}$

inequality

and $d_{\alpha}(u) = \sum d_1(D_k u)$ when α is an integer, the summation being taken over all derivatives of order α , and finally when $\alpha > 1$ is not an integer, $d_{\alpha}(u) = \sum d_{\beta}(D_k u)$ where the summation is taken over all derivatives of order k, k being the largest integer $< \alpha$ and β defined by $\alpha = k + \beta$.

All of the arguments we have given carry over to the case $\alpha < 1$; Stampacchia's inequality is valid with a constant which depends only on the domain Ω and the reciprocal of the capacity $\gamma_{2\alpha}(A)$, this being the capacity for the corresponding space of Bessel potentials $P^{\alpha}(\mathbb{R}^n)$.

The situation is essentially more complex when $\alpha > 1$; if we repeat our analysis we find that the operator H which represents the L^2 norm in the space $H^{\alpha}(\Omega)$ is positive, completely continuous and with bound 1, however, the eigenvalue 1 is no longer simple. The eigenspace corresponding to that eigenvalue consists of all polynomials of sufficiently low degree, and such a polynomial may vanish on a set of positive capacity. Thus the inequality does not hold, unless a further hypothesis is made, viz. that the set A is not contained in the set of zeros of a polynomial of degree $\leq m =$ the largest integer strictly smaller than α . In this case inequality (1) is valid, but the constant depends in an essential way on the other data than simply the capacity $\gamma_{2\alpha}(A)$.

Let us remark that the surface on the unit sphere in \mathbb{R}^n is a set of positive capacity, but is contained in the null set of the polynomial $1 - |x|^2$.

Throughout our discussion we have made use of the hypothesis that the boundary of Ω is smooth in order that the Rellich theorem guaranteeing the complete continuity of $|| u ||_0^2$ should hold. We have also used that hypothesis to have the extension theorem embedding $H^1(\Omega)$ into $P^1(\mathbb{R}^n)$. The careful study of these questions given in [1] shows that the regularity hypotheses needed are very mild.

1. R. ADAMS, N. ARONSZAJN and K. T. SMITH, « Theory of Bessel Potentials II » Annales Institut Fourier, to appear.

> Michigan State University East Lansing, Mich.