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THE Lp APPROACH TO THE DIRICHLET PROBLEM(*)

PART I

REGULARITY THEOREMS

by SHMUEL AGMON

1. Introduction.

In this paper we present a .Lp approach to the Dirichlet problem and 
’

to related regularity problems for higher order elliptic equations. Although
this approach is not as simple as the well known Hilbert space approach

o

developed by Vishik [32] Garding (14]~ Browder [6 ; 7], Friedrichs [12], Mor-

rey [22], Nirenberg [23], Lions [18] and others, it has the advantage of a
greater generality. Thus, for example, we shall be able to treat the non-ho-
mogeneous Dirichlet problem in a much more general situation not restricted
to solutions having a finite Dirichlet integral (in this connection see Ma-
genes-Stampacchia [19, § 9] and the recent paper of Miranda [20]). The me-
thod is also applicable to elliptic operators which are not necessarily strongly
elliptic. We remark further that the same method could be used to solve

a general class of boundary value problems. This will be done in a subse-

quent paper where we shall also derive Lp integral inequalities for a system
of differential operators acting on functions satisfying general boundary
conditions, simular to the « coercive &#x3E;&#x3E; L2 inequalities derived by Aronszajn
[4] Agmon [2] and Schechter [25].

Recently Schechter [26 ; 27] presented a Hilbert space approach to ge-
neral boundary value problems including the Dirichlet problem for non-stron-
gly elliptic equations. His method is based on the L2 estimates of Agmon-

(*) Presented in part (for p = 2) at the international conference on partial differen-
tial equations organized by the C. I. M. E. in Pisa, September 1-10, 1958. Sponsored in
part by the Office of Scientific Research of the A. R. D. C., U. S. Air Force, through its
European Office, under Contract No. AF 61 (052)-187.
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Douglis-Nirenberg [3] (see also [2; 25]) and on known .L2 regularity theorems.
Our ~Lp method which utilizes new regularity theorems is quite different
and the results we obtain are stronger in various respects (I). Other existence
results utilizing the continuity method were given by Agmon-Douglis-Ni-
renberg [3].

The .L~ approach to the Dirichlet problem is based on a Lp regularity
theory for very weak solutions of the Dirichlet problem. To obtain such a

regularity theory we use some of the ideas of a method originally devised
by Nirenberg.[23] with the following essential modification : instead of using

.

Garding’s inequality we use the explicit solution of the Dirichlet problem
for elliptic operators with constant coefficients in a half-space, and the Lp
estimates for such solutions derived in [3]. 

’

The paper is divided into two parts. In Part I we give the basic re-

gularity theory, y both in the interior and at the boundary. This part has
an independent interest and entails most of the work. We remark that when
we consider the simpler problem of interior regularity we consider also weak
solutions of overdetermined elliptic systems and derive .Lp estimates for

such solutions. In Part II we shall combine the regularity theory with some
general results on Banach spaces (using in particular a result of Fichera
[10]) to develop the Lp existence theory for the Dirichlet problem.

2. Notations and definitions.

Throughout the paper w e denote by G a bounded domain in n dimen-
sional space with boundary 8G and closure G. We denote by ’ 

1 
.

the generic point in the space and put === (X2 -f - ... + xn) 2 . We say that
G is of class Ci if with every point xO = (XO E G one can associate
a sphere S having its center in XO such that a G n admits a represen-
tation of the form :

for a suitable k ; g being a function defined in some neighborhood U of

(XO 7X0 xO) possessing there continuous derivatives up to the
order i 

(1) For instance, Schechter’x method is applicable only to such problems for which
the solution of the adjoint problem is unique, whereas we get the alternative in the ge- 

B

neral case without any uniqueness assumption. 
’
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Similarly, G is said to be of classe if around each of its points
the boundary a G admits a local representation of the form (2.1) with a fun-
ction g satisfying a Lipschitz Condition in the neighborhood U .

Finally, G is said to possess the cone property if every point in G is

a vertex of a closed right spherical cone of fixed opening and height which
belongs to G. It is readily seen that if G is of classe then it also has

the cone property.
We shall denote by Ck (G) (resp. ek ( G)) the class of complex valued

functions possessing continuous derivatives up to ther order k (0  k C oo)
in G (resp. G). The class of infinitely differntiable functions with compact
support in G will be denoted by Co ( G).

Let, now, j be a non-negative integer and p a real number h 1. For ’
a function u (x) belonging to Cj (G) define the norm: -

where here and in the following a stands for the multi-index ((Xt , ... , (Xn) ,
I a I = ... + (X11,’ and ~a is the partial derivative : ,

We also put:

The linear space is clearly not complete under the norm (2.2).
Completing it we obtain a Banach space which we denote by (G). We
retain the notation 11 for the norm in (G). The space HO,LP (G)
is simply the space .Lp (G) and we shall usually write 11 IlLp(G) for the norm
in this space. 

’~

The classes of functions ( G) were investigated by many authors

(Sobolev [30], Morrey [21], Friedrichs [11], Stampacchia [311, Deny and

Lions [9], Gagliardo [13] and others). Some of the properties of these clas-
ses will be described in the next section. Here we limit ourselves to some
remarks.

By the identification mapping we can consider (G) as a linear sub-
set of Lp (G). A function u E will possess generalized derivatives

up to the order j which we term strong L~ derivatives. To define these let
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be a sequence of functions in, Ci (G) such that

Then, there exist functions such that

The functions no, are by definition the strong .Lp derivatives Dau of u in G.
They are uniquely defined.

We shall say that a function u belong locally to in G - writing

U E H;/2§ ( G) - if for every x E G there exists a sphere S C G with center

at x such that u E (S). It is readily seen (using a partition of unity)
that if u E H)?§ (G) then u E lIj,Lp for every domain G1 such that ~ C G .

In connection with the Dirichlet problem we shall have to consider

the subclass of functions in Hj,Lp which together with some of their deri-

vatives, vanish at the boundary in a generalized sense. To make this more
precise suppose that G is of class 0°,1. Let u E Hl,Lp (G). Then, as it is well
known, one can define for such u its trace y (u) on the boundary. For in-

stance, one can use the following procedure. For y (u) is simply
the restriction of u on a G. In this case it is easily established that

with a constant which is independent of u. (u) is a bounded
linear transformation from Oi (0) (considered as a subset in H1,Lp (G)) into

Since Ci ( G) is dense in one can extend the transformation
in a unique manner by continuity to the whole of H1,Lp (G). This defines
the trace on the boundary of a function u E H1,Lp ( G) as an element 

Let, now, m ,,j be positive integers such that m ,j. We denote by
the class of functions (G) which satisfy the

boundary conditions

where (2.4) is taken in the sense that
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We observe that (G; a closed subspace (G),
and that a function u belonging to ( G ~ satisfies

the boundary conditions (2.4) pointwise in the ordinary sense.

3. Calculus and properties of the classes 

We have remarked already that a function belonging to Hj,Lp (G) possets-
ses strong .L~ derivates up to the order j in G. Considering such a function
u as a distribution in G (Schwartz [28]), it is readily seen that the strong
Lp derivatives are also the distribution derivatives of u which are thus

functions belonging to L. (G). It is very convenient that under general con-
ditions on the domain G one can reverse this statement. We have:

THEOREM 3.1. that G is of class 
assume that the distribution derivatives of u of order j are functions belon-
ging to Lp (G). I. e., assume that there exist f unctions ua (x) E .Lp (G), 0 
(weak derivatives in the terminology of Friedrichs) such that

for all 9’ E 0’ (G). Then, u E Hj,Lp (G) and its distribution derivatives ua coincide
with its strong .L~ derivatives DáU (I ex  j).

The weaker conclusion that (G) is well known and was esta-
blished by various authors (Friedrichs [11], Sobolev [30], Deny-Lions [9]). The
theorem as stated is due to Gagliardo (2) [13]. For more regular domains it

was established by Babich [5].
The following remarks are obvious. If u E Hj,L p (G) and a E then

v = au belongs to Hj,L p (G) and the strong derivatives of v are obtained by
the standard Leibniz rule. If, moreover, G is of class then the boundary
values y (Dav) ( ex  j -1 ) are obtained by the same rules. The classes

Hj,Lp are preserved by homeomorphism of class Ci. That is, let x~ -~ x (x*)
be a one to one mapping of G* onto G such that the mapping and its

inverse possess continuous derivatives up to the order j in the corresponding
closed domains. Then the mapping u - u*, u* (x*) = u (a; (x*)), is a homeo-

(2) It should be pointed out that Gaglia-rdo is not using the notion of a weak deri-

vative but a different notion which is, however, equivalent to it. Also, the proof of the
main approximation theorem [13; p. 112] could be repeated word by word for functions

possessing weak derivatives in the sense of (3.1).
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morphism between (G) and (G*). Also, to compute the strong
derivatives of u* one applies the usual chain rule. The same remark applies
to the trace at the boundary of derivatives of order  j -1 when G is of
class 

Most of the following, lemmas are the .L~ modified versions of the ca-

lculus Lz lemmas given in Nirenberg [23]. Unless otherwise stated we shall
assume in these lemmas that G is of class 

LEMMA 3.1. Let u E .Lp (G), p ~ 1. Suppose that u is a weak limit in Lp
of a sequence of functions (Uk) which belong to Hj,Lp (G) and possess , uniformly
bounded norms 11 Uk · Then, u E Hj,Lp (G) and its derivatives of order
 j are the weak Lp limits of the corresponding derivatives of the functions uk.

Proo f : From the weak compactess of the unit sphere in it

follows that there there exists a subsequence Uk’ such that DqUk’ converges
weakly in L~ to a function Hence, for every function

Thus, ua is the distribution (weak) derivative Dau. But then, 
it follows from Theorem 3.1 that (G) and that ua coincides with

the strong .Lp derivative Da u. Moreover, from the uniqueness of the deri-
vatives it follows that the whole sequence Da uk converges weakly to Da u
and not only a subsequence.

Using Theorem 3.1 one also obtains readily the following
LEMMA 3.2. Suppose that u belongs to (G) and that its j’ th order

derivatives belong to (G) , then (G).
NOTATION : Let h = (ht , ..., be a real non-vanishing vector. We shall

use the symbol bh to denote the’ difference quotient operator :

LEMMA 3.3..Let u E (G) ( j &#x3E; 0 , p ~&#x3E; 1). Supposc that there exist

a constant C such that for every subdomain G1 C G :
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for all sufficently small vectors h. Then 1t E (G) and

Proof : Consider first the case j --- 0 . From (3.3) and the weak com-

pactness of the unit sphere in .L~ it follows that there exists a sequence of

vectors (h~’~~~=1 in the direction of the x2 axis, 0 , such that the se-

quence 6hm u (m sufficiently large) tends weakly in Lp (Gl) to a function ui;
and this in every fixed subdomain G, C G.  C for all

such subdomains, it follows further that ui E .Lp (G).
Now, from the definition of weak convergence we find that for all fun-

ctions cp E Co ( G) :

This shows that ui is the distribution derivative Di u in G. Since Di u E Lp (G)
(i = 1 ~ ... , n) we conclude from Theorem 3.1 that,u E H1,Lp (G). Clearly, we
also have 

-

Next, assume that j ¿ 1. Let again (hm) be a sequence of vectors in

the direction of Xi tending to zero. It is easily seen that ~h~n u converges to
in Lp (G,). Assuming without loss of generality that °1 is of class 0°,1

and applying Lemma 3.1 to the sequence it follows that Dzu E Hj,Lp (G,)
and that

From this and from Lemma 3.2 we conclude that u E (G,) for any
subdomain Gi of class 0°,1 (and consequently for any subdomain G, , Gi C G).
Since all the distribution derivatives of u of order  j -~-1 are functions
belonging to it follows from Theorem 3.1 that u E (G). That

(3.4) holds is obvious.

By the same argument used to prove Lemma 3.3 for j = 0 one obtains
LEMMA 3.3’. Denote by ZR the he1nisphere I x ~ I  R, Xn &#x3E; O. Let u

be a function belonging to Lp (Z.R) , p &#x3E; 1. Suppose that there exists a con-

stant C such that for every R’  1~ : .
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for all sufficiently small vectors h of the form h = (h , ... , hn-1, 0). Then the
distribution derivatives Di u for i = 1 , 7 n -1 are functions belonging to

The following known lemma will be useful.
LEMMA 3.4. Suppose that G has the cone property. Then, for all functions

u E (G) (j &#x3E; 1) and every 8 &#x3E; 0 the following inequality holds :

where C is a constant depending only on s , j , p and G.
Lemma 3.4 for somewhat more regular domains was established by

Nirenberg [24J (3). The inequality for domains which have the cone property
was proved by Gagliardo [13]. ,

Finally, we conclude this section with the well known integral inequa-
lities of Sobolev [30]. 

° 

,

THEOREM 3.2. Suppose that G has the cone property. Then the functions’ I

u belonging to (G) ( p &#x3E; 1) satisfy the following relations.

with a constant depending only on n , j ~ p and G.

null set) such that

with the same constant dependence as above.
REMARK : If the boundary of the domain is somewhat more regular, e.

g. if G is of class one can assert in case (iii) of the theorem that u
satisfies a Holder condition in G.

4. Some lemmas related to elliptic operators with constant coefficients.

Let A (x , D) be a linear differential operator with complex coefficients

operating on functions u (x) defined in a domain of En. Denote by A’ the

(3) The analogous one dimensional case is due to Halperin and Pitt.
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leading part of A, i. e. the part of highest order terms. A is said to be

elliptic in the domain if for every point x in the domain the characteristic
form A’ (x , ~) # 0 for all real vectors ~ = ($1 , ... , $n) # 0. It is well known

that if n &#x3E; 3 and A is elliptic then its order is even. This is not neces-

sarily true for n = 2.
In this section we shall consider an elliptic operator A of even order

2m with constant coefficients and with no lower order terms:

A being elliptic there exists a constant À &#x3E; I such that

for all real vectors ~. We term A the ellipticity constant of A.
We denote by x’= (x, , ..., the generic point in and whenever

convenient write x in the form (x’, We also put Dz, = (D1 , ... , 
and D = (Dx~ ~ Dn) .

Write the operator (4.1) in the form A (Dx’ , For a fixed real vec-

tor ~’ = (~1, ... , $n-1) =)= 0 consider the roots (in ~n) of the polynomial
A (~’ , $n) . If n &#x3E; 3 the ellipticity of A implies the exactly half the roots
possess a positive imaginary part (see [3]). This is not necessarily true for
rc = 2 if the coefficients are not real. In general we shall say that A sati-
sfies the « roots condition » if for every fixed real vector $’ 0 the poly-
nomial A (’ , n) has exactly m roots with a positive imaginary part.

The following two lemmas are basic for the proof of regularity in Lp
of weak solutions of elliptic equations. The first rather known lemma will

be used to establish interior regularity (and .L~ estimates) of weak solutions
of elliptic equations and overdetermined elliptic systems. The second lemma
will be used to establish regularity at the boundary of weak solutions of

the Dirichlet problem. In both lemmas A will stand for the elliptic operator
(4.1) and p will denote a number &#x3E; 1. In Lemma 4.2 we shall assume in

addition, if rc = 2, y that A satisfies the « roots condition » introduced above.

We shall denote by S-R the sphere x ~  R and by ~R the half sphere

LEMMA 4.1. there 

such that
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and

where 0 is some constant depending only on n, m, p , Rand A (but not on
f or v). 

-

LEMMA 4.2. Given a functiorc f E there exists a function v E 

such that

and

where 0 is some constant depindig only on n, m , p , R and À.

To establish Lemma 4.1 we simply define

where F (x - y) is a suitable chosen fundamental solution of A with pole
at x = y. It is well known (e. g. F. John [16]) that there exists a funda-
mental solution having the form :

where P (x) is a polynomial of degree 2m - ~ if n is even, 2m &#x3E; n, and
P (x) is zero otherwise ; y (y) is an analytic function defined ion y === 1.
From (4.5) it follows that

for (i) &#x3E; 0, in case rc is odd or n is even and greater than 2m ; (ii)
I a I &#x3E; 2m - n if n is even and not greater than 2m. If n is even and

then

Inspection of the explicit formulas for the fundamental solution (in [16])
shows that the constants in (4.6) and (4.6)’ depend only on m , n , I and
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I (X 1. Furthermore, it is easily established that Da F (x) for I = 2m is a
homogeneous function of degree - n with a zero mean on the sphere

I x 1= 1. 
’

Choosing a proper normalization of F, the function v defined by (4.4)
is infinitely differentiable and satisfies (4.2). Furthermore, from the proper-
ties of the fundamental solution mentioned above and from the well known

theorem of Calderon and Zygmund [8] on convolution transforms with sin-

gular kernels, it follows readily that

where C is a constant dependig only n , m, .p , Rand À. Hence, the function
v defined by (4.4) answers all the requirements of Lemma 4.1.

The proof Lemma 4.2 is more involved and depends on the solution
of the Dirichlet problem for A in a half space and related Lp estimates.

We shall denote by Et the half space 0. In its simplest form
the Dirichlet problem for A in Ej is the following

PROBLEM : Given functions (p, (x’) , (x’), infinite ly difleTentiable and
of compact support in En-, , find an infinitely differentiable function u (x’, xn)
in Et such that

This problem (a special case among a whole class of boundary value

problems) was solved in [3] (4), where it was shown that there exist kernels

(j = 1, ... , m), defined and infinitely differentiable in Ef except
for the origin, I such that a solution of (4.7) is given by the formula :

We mention the following properties of the kernels g~ also established
[3]. Let q be a non-negative integer having the same parity as n - 1. The
kernel Kj admits a representation of the form

(4) For n = 2 and A real the solution was given in [1].
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n-1
where 4z, is the Laplacean I Dfl, and are certain kernels which are infinitely

_ 

i=1

differentiable in Dn except for the origin which, moreover, satisfy the fol-

lowing inequalities in 

for + q, where the constants in (4.10) and (4.10)’ depend only on
n, m, q, I a I and the ellipticity constant £ .

Let, now, w (x’, be an infinitely differentiable function with compact
support in By the preceding a solution ’ u E 000 of the Dirichlet

problem

is given by the formula

Moreover, we have
LEMMA 4.3. The solution u satisfies the following inequality in Lp,p &#x3E; 1:

where co is a constant depending only on m, n, p and A. If, in addition, the

support of w is contained in the then

where Co ’is a constant depending only on n, m, p, 2 and R.
Lemma 4.3. was proved (essentially) in [3] (compare also Koselev [17]

for the .Lp estimates involved). For the sake of completeness we shall pre-
sent a somewhat simplified version of the proof later on. It is with the aid

of this lemma that we shall now give the
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Proof of Lemma 4.2. Extend the function Co (~R)) as zero ou-
tside ~R . Denote by (R some fixed infinitely differentiable function such

that CR =1 for I x  R ~ ~R = 0 for &#x3E; 2R. Define :

where F is the fundamental solution of A introduced before. Clearly y w is
infinitely differentiable, w « 0 for 2R, and

where Cl is a constant depending only and R. Let, now, u
be the solution of the Dirichlet problem (4.11) given by (4.11)’ with w defi-

ned by (4.13). Put:

Then~ v has all the properties required by Lemma 4.2. Indeed, v E C°° (E,,
By (4.14) and (4.11):

Finally, using the estimate (4.12)’ of Lemma 4.3 and (4.14), we get

where Co , C are constants depending only and R. This esta-

blishes the lemma.

We shall conclude the section with a proof of Lemma 4.3 based on the

properties of the kernels g3 mentioned before. We shall need first the

following
SUBLEMMA : Let G (x) = G (x’, xn) be a kernel, defined and measurable

in the half space Et such that
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for some constant 0. For v E Lp (E;t"), p &#x3E; 1 ~ consider the transform

Then, and

where y is a constant depending only on n and, p.
Proof : Set 

’

Extend as zero for 0 . Then, for xn &#x3E; 0 :

Now, M(x) is an odd homogeneous kernel of degree - n bounded on I x I = 1.
Hence, we are in a position to apply the Calderon-Zygmund theorem [8] to
the last integral (4.17), from which it follows readily that 

y depending only on n and ~. This proves the sublemma.
To prove Lemma 4.3 we shall first transform formula (4.11)’. To this

end note that (integrating by parts with respect to 
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where here and in the following all differential operators under the integral
sign act on the y variable unless otherwise indicated by a subscript. Sum-

ming (4.18) over j = 1 , ... , m we obtain for the solution u of (4.11) the
0 

representation :

where

Using (4.19) and (4.9) we observe that if q is a non-negative integer having
the same parity then

where Kj,, are kernels given by

From (4.20)’ it is readily seen that the inequalities (4.10)-(4,10)’, satisfied

by the kernels Kj,q, are also satisfied by the kernels 
Put :

m

so that by (4.19) To establish the lemma it will suffice to show
. o

that the inequalities (4.12) and (4.12)’ hold for We shall prove this for

j odd. The proof for j even is similar.
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Choose q = 2m + n + 1. From (4.22) and (4.21) we obtain after ob-
vious integration by parts with respect to y’ :

Differentiating (4.23) we thus obtain :

Suppose, first, that = 2m. Using the estimates (4.10)-(4.10)’ which,
as was pointed out before, are also satisfied by the kernels 
we find that

with a constant c depending only on n, m and A. Thus, applying the Su-
blemma to a typical integral of (4.23)’ it follows readily that

where y1 depends only on nand p. This yields (4.12).
Suppose, now, that 0 ~ ~ a ~  2m - 1. From (4.10)-(4.10)’ one finds

readily that in this case
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with a constsnt depending only on n , m and A. If, furthermore, the support
of w is contained in ZR it follows easily from (4.23) and (4.25) that for

~ )  2~ :

where Cl I is a constant depending only on n, n1 , £ , p and R . Since by the
preceding (4.26) (with a suitable constant) holds also for = 2m we con-
clude that the functions uj (and consequently u) satisfy (4.12)’. This com-

pletes the proof of Lemma 4.3.

5. Preliminary regularity lemmas.

In this section we begin with the discussion of the regularity problems
of weak solutions of elliptic equations in the framework of the Lp theory.
We shall discuss both the problem of interior regularity (also for weak
solutions of overdetermined elliptic systems), and the problem of regularity
at the boundary for weak solutions of the Dirichlet problem,

We consider a linear elliptic differential operator A of order 2m (varia-
ble complex coefficients) defined in G :

We denote by A’ the leading part of A and by X some constant ~ 1 (el-
lipticity constant) such that

for all ,real vectors $ and x E G . We introduce the following
DEFINITION 5.1. The coe.1ficients of A will be said to satisfy Condition

ij ; K) (in G) , j being a positive integer and K &#x3E; 0 , if

whereas the remaining coefficients are measurable bounded functions in G.
(ii) The following inequalities hold in G :

and

3. AnnaZi della Scuola Norm. Sup. - Pi8a.
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We also introduce the scalar product notation Cf, g)G to be used from
now on throughout the paper : , 

I

Here f and g are two functions defined in G such that the integral (5.2)
makes sense.

In this and in the following section the domains of definition G will

be either the sphere SR  R) or the hemisphere (I x  0), y
We shall denote,by the part of the boundary situated on the

hyperplane x. = 0 , and by a2 XR the part of a situated on I x 
We also recall that by bh we denote the difference

quotient operator :

h = (h , 9 ... hn) being a real vector # 0 .
We shall now state two basic regularity lemmas.
LEMMA 5.1. Let A be an elliptic differential operator of order 2m defi-

ned in with coefficients Ratiqfying Condition 1 ; ;K) . Let, further, u be
a function belonging to Lp (SR), p &#x3E; 1 ~ such that for all functions (p E C,- (SR)
the following inequality holds : M

where ’ is the exponent conjugate to : 1 + -.!, = 1, and C is a constant.ee  p 9 2013 -}- 2013 
== 1  C is a constant.

Then, there exists a positive number ro  R and a constant Co such that

for all sufficiently small vectors h. Both ro and co depend only on n, m , p ,
R, K and the ellipticity constant ~, .

LEMMA 5.2..Let A (x, D) be an elliptic differential operator of order 21n
defined in ZB, with coefficients satisfying Condition ( 1 ; K) . If n == 2 as-

sume also that A’ (0, D) satisfies the « roots condition » introduced in § 4.

Let, further, u be a function belonging to Lp (..ER), p &#x3E; 1, such that
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,for all functions 99 E Coo satisfying the boundary conditions :

Then, there exist a positive nomber ro  R and a constant having the
same dependence as in Lemma 5.1, such that

I

for all sufficiently small vectors h parallel to the hyperplane Xn = 0 .
Proof of Lemma 5.1 and Lemma 5.2: We shall prove both lemmas at

the same time. In the sequel Y, will denote the sphere Sr in the case of

Lemma 5.1, and the hemisphre Zr in the case of Lemma 5.2.
By our assumption the coefficients of A are measurable functions boun-

ded by K in Moreover, the highest order coefficients possess first order

derivatives also bounded by K. Without loss of generality we may assume
in the following that A contains no lower order terms. Indeed in the gene-
ral case let A = A’ -E- A" where A’ is the leading part and A" contains
only terms of order ~ 2m - 1. By Holders inequality

Consequently the operator A could be replaced by A’ which satisfies the

conditions of the lemmas with C replaced by

Let r be a positive number ~ R~6 to be fixed later on, and let ~r be

a real 0- function such that r =1 for /3y 0 for x  2 r. Set :3

and extend ur as zero outside Let, further, v be and arbitrary function
belonging to C°° (or) which in the case of Lemma 5.2 (ar = ~r) also satisfies
the boundary conditions 

’

We have :
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where B is a linear differential operator of order 2m - 1 with coefficients

which are linear combinations in (r . Hence, making use of Hölder’s

inequality, y we obtain

where here and in the following c2 , C3 ... , denote constants depending only

Consider now the function extended as zero outside Or

g E (SR) in the case of Lemma 5.1, while g~ E C°° and satisfies the

boundary conditions (5.6) in the case of Lemma 5.2. Hence, applying the

inequality (5.3) in the first case, and the inequality (5.5) in the second, we
conclude that

Combining (5.11) with (5.10)’ we thus get:

for all functions v E C°° (Qr) which in the case of Lemma 5.2 also satisfy the
boundary conditions (5.9).

Next, let h be an arbitrary vector such that 0  h ~  r/6. In the
case of Lemma 5.2 h is restricted, in addition, to be of the form ... , 1

0). Define the function

Then,

and the support of fh is contained in - Let~ further, f ~ be a (7°° function
with support in °R/3 such that
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We ’now make use of the lammas established in § 4. Thus, in the case
of Lemma 5.1 apply Lemma 4.1 to the elliptic operator AO = A (0 , D),
function f =7h and exponent p’. There exists by the lemma a function
vh E C°° (SR) such that

and

where 7 is a constant depending only on n, m, p, Rand ¡.
Similarly, in the case of Lemma 5.2, applying Lemma 4.2 it follows

that there exists a function vh E COO such that

and

where y is a constant having the same dependence as above.

Using (5.13)’ and (5.14) we observe that in both cases

Consider the function 6-h It is a well defined infinitely differentiable
function in Or. . Moreover, in the case of Lemma 5.2 it also satisfies the

boundary conditions (5.9). Hence, applying (5.12) to v = 6-h vh we have:

Also, one checks easily that

where N is a constant depending only on n (one can actually take N= n).
Combining (5.18), (5.19) and (5.17) we thus get
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Put:

I

Using the relation = 6-h (f 9) - (x - h), and noting that the

support is contained in 02~/3 while h I  y we readily obtain :

Since the coefficients of Ah are bounded by n K we have (using 5.17) :

Thus, combining (5.20), (5.21) and (5.22), we get

Write

Using (5.15) (resp. (5.16)) we have:

By (5.13):

Also, from Holder’s inequality and (5.14) we get
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Thus, combining (5.25), (5.25)’ and (5.25)" we obtain

Now, it follows from our assumption that the coefficients of A - A° are
bounded by n K r in Or. From this and from (5.17) we get, using once
more Holder’s inequality:

We shall fix now r choosing

With this choice of r we obtain from (5.27) and (5.26):

Finally, from (5.23) and (5.29) we get

or,

If we now choose and note that for

, we obtain from (5.30):

for all h sufficiently small (k parallel to Xn = 0 in the case of Lemma 5.2).
rhis establishes the lemmas.
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Lemma 5.1 and Lemma 5.2 yield (respectively) the following corollaries.
. COROLLARY 5.1. Suppose that the conditions of Lemma 5.1 hold. Then,
u E (SR) . Moreover, for every R’  R the following inequality holds :0

where C1 is a constant depending only on m, n, p, 7 A 2 K R and R’.
COROLLARY 5.2. Suppose that the conditions of .Lemma 5.2. hold. Then,

for every R’  R the distribution derivatives Di n , for i = 1 , ..., n - 1 , are

functions belonging to Lp (-Y-R,) such that

where el is a constant having the same dependence as above.
To prove Corollary 5.1 let d --- R - R’ and denote by Sxo,r the sphere

I x - XO  r. Apply Lemma 5.1 to u in SXO,d (after obvious translation of

variable), xO EgR,. From the lemma, combined with Lemma. 3.3, it ’follows

that there exist positive constants ro  d and 1 both ro and co depend
only on n, m ~ p, A) K , Rand d, such that u E H1,Lp and .

Covering SR, by a finite number of spheres SxO,ro (x° E using (5.33), we
conclude (SR,) and that, furthermore, the inequality (5.31)
holds.

Corollary 5.2 follows similarly from Lemma 5.2, Lemma 3.3’ and Co-
rollary 5.1. (6).

6. The basic regularity theorems. 

We pass to the main regularity results in the framework of the Lp
theory. The first theorem dealing with interior regularity is the following

THEOREM 6.1..Let A be an elliptic operator of order 2 m (7) defined in
with coefficients satisfying K) , j being an integer such that

(6) It should be observed here that in the exceptional case n = 2 the operator
~~ D) satisfies the c roots condition » for every x° follows by a simple con-
tinuity argument from our assumption that this is true for x° = 0 .

(7) The theorem also holds for the elliptic operators in two variables of odd order.
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1 ~ j  2 m. Let, further, u be a function such that u E (SR) for sonte
q &#x3E; 1 and such that for all functions 99 E Co (SR) the following inequality holds :

where p’ is some , fixed 1 and C is a constant. 
’

Denote by p the exponent conjugate to p’ : - + ; = 1. Then,
p p

u E (SR) . Moreover, if 0  R’  Rand J == (R + R’)/2, then

where Ci is a constant depending only on R’.

Proof : Assume first that j =1 and that q ~ p , so that we also have
u E (SR). In this case the theorem follows from Corollary 5.1 applied to
u in 

’ 

_

Next, let j =1 but 1 [ q ~ ~ . To prove the theorem in this case it

will suffice to show that actually u E L~ ~’ (SR), thus reducing the proof to

the case just established.

Now, let q’ be the exponent conjugate to q. Since q’ &#x3E;p’ it follows

from (6.1) that we also have

for all functions 99 E Co (SR). Hence, by the result just established (p re-

placed by q) we conclude that u E H1°Lq (BR). Invoking Sobolev’s inequalities
(Theorem 3.2) it follows that u E (SR) if either or q  n but

On the other hand if Sobolev’s

inequalities give only that u E (SR) . In this case (noting that q1 &#x3E; q)
we repeat the same argument with q replaced either arriving at the
desired result u E (BR), or at least proving that u E (SR) with q2 &#x3E; q~ .
Carrying on in this manner we obtain after a finite number of steps that

_ 

u E (SR) . This yields the theorem for j =1.
To prove the theorem for j ~ 2 we use induction - supposing the

theorem is true for j -1 ( 1  j -1  2 m) we shall prove it for j .
We first observe that without loss of generality we may assume that

A contains no terms of order c 2 m -,j :
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(In the general case one can omit from A all terms of order ~2~2013~
the resulting operator will still satisfy an inequality of the form (6.1) in

SRl with C replaced byr C -+- [[ u Put = Di aa and define

From the induction assumption it follows that 1 ;SR) , and in

particular that Set . we have:

Now, from (6.1) we get

Also, since

where DP DY = Da with 8 = j -1, ! I y 1:! 2m - ( j - 1) , we find readily that

where a is a constant depending only on n and m .
Combining (6.3), (6.4) and (6.5) we obtain the inequality

which holds for all functions 99 E =1, ... , n , y and where

The inequality (6.6) shows that the derivatives satisfy the condi-

tions of the theorem in SRo with j replaced by j ~~-1. Hence, using the

induction assumption, we conclude that Di u E (SRo) (and consequently
(S~U)) . Also, denoting by ck constants which depend only on

n , m , ~ , ~, , R and R’, we have :



431

Thus (fusing, Lemma 3.2) we infer that and

Finally, noting that by the induction assumption we also have :

we derive from (6.8) and (6.8)’ the desired inequality (6.2). This establishes
the theorem.

We now pass to the more refined result yielding regularity at the

boundary. We shall first deal with functions defined in the hemisphere ~R ~
and with the regularity of such functions near the flat part of the boundary.

THEOREM 6.2. Let A (x , D) be an elliptic operator of order 2m defined
in i R It with coefficients satisfying Condition ij ; K) , j being an integer such

that 1 C j  2m. If rc = 2 assume in addition that A’ (XO D) satisfies the
« roots conditions» for every fixed xO E ZR -

Let, further, u be a functions belonging to Lq (ZB) for some q &#x3E; 1 such that

for all functiong 9? E C°° satisfying the boundary conditions :

where p’ is some fixed number &#x3E; 1 and 6 I is a constant.

Denote by p the exponent p’. Then, u E for every
R’  JR . Moreover, setting Ri = (R + R’)/2, we have : 

where el is a corcstant depending only on n, m, p, A 7 g , R and R’.
The proof of the theorem depends on Corollary 5.2 and the following

lemma.

LEMMA 6.1..Let u E Lp (~ER) , p &#x3E; 1.. Suppose that the distribution deri-

vatives Di u for i = 1 , ..., n - 1 are functions belonging to Lp (~R) . Suppose,
moreover, that there exist an integer 1 &#x3E; 0 and a constarct C, such that
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for all functions Then, tlze (distribution) deri-

vative Dn u is also a function belonging to for every - and

where c is a constants depending onl y on n, l , p , R and R’.
The lemma in the special case p = 2 is due to Lions (see [ 19]). For

general p (and also its analogue for Holder classes of functions) the lemma
is given (essentially) in Agmon-Douglis-Nirenberg [3] where, however, instead
of (6.11) it is assumed that

where j-a are certain functions belonging to .Lp and (6.13) is understood
in’the weak (distribution) sense. Clearly, (6.13) implies an inequality of the
form (6.11). The converse implication is also true (see [191). For the sake
of completeness we shall furnish in the sequel a variant proof of Lemma
6.1 which is not using the representation formula (6.13).

We shall now gi ve the
Proof of Theorem 6.2. By the interior regularity result of Theorem 6.1

we know already that u E (~R) . In the following we shall assume that
the operator A- contains no terms of order  2m - j. This (as in the proof
of Theorem 6.1) entails no loss of generality. Given 0  R’  R, we set
R1= (R’ -’- R)~2 and .Ro = (R’ + Rl)/2. We also denote by Ck constants

which depended only on n, m 7 -P 7 A g, R and R’.
To prove the theorem suppose first that j == 1 and that q ~&#x3E; _p so that,

in particular, u E Zp (~R) . Since in this case u satisfies the conditions of

Lemma 5.2 in SRl , applying Corollary 5.2, we conclude that

and that

To complete the proof in this case we need only to show that
and that 

’



433

To this end write A in the form :

where aa,i is either a coefficient in A or zero. Let We have :

Combining (6.16), (6.14) and (6.9) we infer

for all functions

Applying now Lemma 6.1 to the function a u in we conclude that

and that

Combining (6.18) and (6.14) (using ~-1  I a ~  ~, ~ I Di a  g) we conclude
that E ( ~R~) and that (6,14)’ holds. This yields the theorem in the

case considered.

Next, suppose that = 1 but that 1  q  p. We shall reduce this

,ease to the preceding one by showing that actually u E Lp (¿R’) for every
R’  R. We proceed as in the proof of Theorem 6.1. By the above argu-
ment (p replaced by q) we have it E Hence, using Sobolev’s

inequalities we conclude that it E Lp (¿R’) if q ~ ~ ? or if q  n but

n/(n - q) ~ p . On the other hand, if q  n and q  q,  p we con-
clude that u E Lql ( ~’R) . Repeating in the last case the same argument with
q replaced by q1 etc., we conclude after a finite number of steps that
it E Lp (ZRI) for every ]?’  R. This completes the proof of the theorem for

j=1.
Finally, for j ~ ~ we use induction - assuming the theorem is true

for j -1 (1  j -1  2 m) we establish it for j . From the induction as-

sumption we note that it E (ZRI) so that in particular E .L~ (¿R’)
for every .~’  R .
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Consider a derivative with i =f= n. Let 99 be a function belonging
to C°° (ZR) with support in y such that

We now proceed to estimate A cp)2Ro in exactly the same manner as
in the proof of Theorem 6.1. Using the fact that Di q~ , i ~ ~ , satisfies

(6.9)’, wc need only to rewrite relations (6.3) to (6.6), replacing everywhere
the sphere by the hemisphere 2Ro. Rewriting the final inequality (6.6)
we thus conclude that

for i =, ... , n -1 and all functions g E C°° (ZR) with support in sati-

fying the boundary conditions (6.19). Here 01 is the constant (6.6)’.
Hence the derivatives Di u (i ~ n) satisfy the conditions of Theorem 6.2

in ~Ro with j replaced by j -1. Applying the induction, setting R" =

= (R’ + Ro)/2, y we infer that

From (6.21) and from the validity of the theorem for j -1 it follows that
all derivatives Da u such that 0  ~ a  ,j , (0 , ... , 0, j) belong to Lp 
and satisfy

To complete the proof of the theorem we need only to show that

D~ u E Lp (IR,) and satisfies (6.22). This we do again with the aid of Lemma
6.1. Write A in the form :

Let Using integration by parts, we have :
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Consider a typical term in the first sum on the right of (6.24). Wri-

ting Da = Dfl with I p = j -1 and y = 2m - j, y we find readily that

Similarly, for a typical term in the last sum on the right of (6.24) we
find (integrating - (2m 2013~) times by parts) :

Combining (6.24), (6.24)’~ (6.24)" and (6.21) we thus get for all functions

Applying now, Lemma 6.1 to the function (au) in -YR" with I =

= -~- 1 ~ we conclude that D/ (au) E Lp (ZR,) and that

Finally, from (6.26) and (6.22) it follows that E Lp and that 

satisfies an inequality of the form (6.22). This completes the proof of the
theorem. &#x3E;

We shall conclude this section presenting a

Proof of Lemma 6.1. We first note that by an obvious approximation
argument the inequality

holds not only for cp E Co (~R), but also for all functions y E with

compact support Moreover, we claim that (6.27) holds for all func-

tions cp E Ol satisying the boundary conditions :
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Indeed, y if 99 is such a function and s ) 0 , define :

If 8 is sufficiently small then ~E will be a Ol function with compact support
in ER - Hence, by the previous remark, (6.27) holds for cpa. Letting s - 0
we establish the same for 99.

Now, define u as zero in xn &#x3E; 0, I x ~ R. Then, extend u into the
half-space xn C 0, putting

where the constants Aj are chosen so that

Clearly and

where here and in the following Y, I "’ I Y5, denote constants depending only
on l. Also, the distribution derivatives Di u, for i # n are functions belon-

ging to .L~ (SR) such that

Let, be an arbitrary function of Co (SR) , extended as zero out-
side BR. Write

Using (6.28) to transform the last integral in (6.30), we find that
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where

It is readily seen from (6.31) and (6.28)’ that z* is a C°° function with

support in SR such that

Putting g = Dn x~, we write (6.30’) in the form :

Since, now, (p E C°° (IR) and satisfies the boundary conditions (6.27)’ it fol-

lows from the preceding that it satisfies (6.27). In terms of x (using (6.31),
(6.32)) we have

Next, for i =1= n, y we have :

from which, using (6.29)’, we obtain that

Let Combining (6.33) and (6.33)’ we conclude that

for all functions

Since A is elliptic, the inequality (6.34) allows us to apply Theorem
6.1 (Corollary 5.1) to u in SR. We conclude that u E (SR) and that for1,Lv
every R’  R (using (6.29))

where c is a constant depending only on n , 17 P , Rand R’. This establishes
the lemma.

4. Annali della Scuola Norm. Sup. - Pisa
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7. The interior regularity in L~ of weak solutions of elliptic equations
and overdetermined systems.

Let Ai (x , D) ~ N 1 be a system of N linear differential operators of re-

spective order mi:

defined in a closed bounded domain G. We shall say that the system 
is elliptic in G if there exists no real vector $ * 0 and a point x E G . 

I

such that

If the leading coefficients of Ai are continuous in G, ellipticity implies that
there exists a constant A &#x3E; 1 such that

for all real unit-vectors ~ and x E G. We term such a constant an ellipticity
constant of the system.

For an overdetermined system of operators having the same order the
above definition of ellipticity coincides with given by Schwartz [29] (see
also Hormander [15]). We point out, however, that we are not imposing
the restriction that the operators Ai be of the same order.

In the following will denote either an elliptic operator 
or an elliptic overdetermined system (N &#x3E; 2) defined in G and given by
(7.1 ). The formally adjoint Air of Ai is the operator

It is a differential operator in the ordinary sense if Clearly
the system [All) will also be elliptic.

We shall consider a weak solution u of the adjoint system

in the sense that
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for all functions 99 E Co (G). Note that (7.5) has a sense when the coefficients
of Ai are merely measurable bounded functions.

The main interior .Lp regularity result for such weak solutions is the

following 
,

THEOREM 7.1. Let u be a functions belonging to (G) for some q &#x3E; 1.

Suppose that u satisfies (7.5) where Ji (i = 1 , N) are given functions belon-
ging to (G), p &#x3E; 1 ~ I and where ( N &#x3E; 1) is the elliptic system in-

troduced above. Assume also that the coefficients of Ai satisfy Condition ( l ; K)
in G, 1 being some positive integer (8), and put j = min (l ~ MN). Then,
u E (G) . Moreover, if Go, G, are any two sub domains Go, Gt, such that
- 

J, Lp 
- ,

where c is a constant depending only on n, max 1Ui, p , N, K, the ellipticity
constant A and the domains.

Proof : Put mo = min ma , m = max and let d be the distance bet-

ween a G° and a G1. Denote by Ai the differential operator with coefficients
complex conjugate to those of 4i . Given a point x° E Go , define :

where J is the Laplacean. Axo is a linear differential operator of order 2m
with coefficients satisfying Condition in G, co being some constant

depending only on n , m , y and N. Also, is elliptic at x° and consequently,
by continuity, is elliptic in some neighborhood of x°. More precisely, since

the coefficients of the leading part A§o possess first derivatives bounded by
Co g ~ it is readily seen that there exists a positive number ~O  d, o depen-
ding only on and d, such that

I  O and all real vectors $. Thus, denoting by S~,r the sphere
I  r, A~o is elliptic in Sxo,~ and 212 can serve as its ellipticity

constant.

(8) Condition for the coefficients of ~i is defined as in § 5 (Def. 5.1) except
that 2 fit should be replaced by the order mi of Ai *
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Now~ let , By (7.5) we have :

which after summation yields :

It follows from (7.7) that

where C is a constant depending only on n, m , N, and K.
The conclusion of the theorem follows now immediately from (7.8) and

Theorem 6.1 applied to u in SxO,g (elliptic operator AxO), using a finite co-

vering of Go by spheres (Xi E Go) .
The following is an easy consequence, and at the same time a genera-

lization, of Theorem 7.1. ,

THEOREM 7.1’. Suppose that the conditions of Theorem 7.1 hold and that

in addition fi E (G) , ki &#x3E; 0. Set k = min (l , ..., kN + 
Then u E (G), and for any two subdomains Go , Gt such that Go c Gt C
c the following inequality holds :

where c is a constant depending only on n, max (mi -~- N ~ p ~ K, A and
the domains.

Proof : The special case k1 =... = kN = 0 is Theorem 7.1. In the ge-
neral case put :

for I « I = ki, i = 1 , ... , N. Integrating by parts we deduce from (7.5) that

for

The conclusion of the theorem follows now from (7.10) and Theorem
7.1 applied to the function u, elliptic system and the corresponding

. 
system of functions 



441

Suppose now that the conditions of Theorem 7.1’ hold with lcz = mi

and l = m. It follows from the theorem that u E g 1°L (G). Using integration., LP

by parts it follows in a standard way from (7.5) that u is a strong solution
(in of the adjoint system (7.4). If, moreover, the conditions of Theo-

MILP
rem 7.1’ hold with k = m -- j , where j &#x3E; n/p , then it

follows from Sobolev’s inequalities that u E C’~ (G), fi E C (G) (after correction
on a null set) and that u satisfies (7.4) in the classical sense. Finally, if

the coefficients of the system and the fi are infinitely differentiable one ob-
tains the well known result that u is also infinitely differentiable (for over-
determined elliptic systems see, for instance, Schwartz [29]).

With the aid of Theorem 7.1 we establish now the following a priori
estimates for a system of differential operators.

THEOREM 7.2. Let be an elliptic system of differential operators
of respective order mi defined in G. Set mo = min mi, and suppose that the

coefficients of Ai satisfy Condition g~ in G. Let Go be a sub domain such
that Go C G. Then, for all functions u E Co (Go) :

where c is a constant independent of u. ,

Proof : Put Then, for every function

where (At) is the formally adjoint system. The inequality (7.11) follows

now from (7.12) and from Theorem 7.1 applied to u in G, system (At) I and
l=j=mo.

The estimate (7.11) for a single elliptic operator was established by
various authors (see, for instance, Nirenberg [24]). For p = 2 

o 

= ... estimate follows from the more general Garding’s inequality
[14]. For general p the estimate (7.11) was (essentially) established in Agmon-
Douglis-Nirenberg [3 ; Th. 15.1"] by a different method.

In the special case of an elliptic system of operators having the same
order the smoothness assumptions imposed on the coefficients of Ai in Theo-
rem 7.2 could be relaxed considerably, namely, we have

THEOREM 7.2~. Let (Ai (x, an elliptic system of operators irc G,
having the same order m. Suppose that the coefficients of highest order terms
in Ai are continuous, whereas the remaining coefficients are measurable and
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bounded in G. Then, for all functions u E Co (G) we have :

where constant independent of u.
We sketch the proof. Using Lemma 3.4 we may assume without loss

of generality that A2 (x, D) contains no terms of order  m. Let x° be an

arbitrary point of G and put A9 = Ai (xo , D). By Theorem 7.2 the inequality
(7.13) holds for the elliptic system with constant coefficients {Ai0}. Hence,
there exists a constant 0 such that for all u E Or; ( G) we can write

Using the continuity of the coefficients of Ai it is readily seen that there

exists a number e ] 0 (independent of x°) such that if the support of u is
contained in the sphere ; e, then the last term on the right of

(7.14) is less than 1 u From this and (7.14) it follows that there( ) ,2 f , r( ) ( )

exists a number ð &#x3E; 0 such that (7.13) holds for all functions u E Co (G)
which in addition possess support of diameter  6 . Finally, one drops the
restriction on the support of u, in a standard way by using a suitable par-
tition of unity and using once more Lemma 3.4.

8. Regularity at the boundary.

We pass to the problem of regularity at the boundary in .Lp of weak
solutions of the Dirichlet problem. We consider an elliptic operator A of
order 2m defined in G :

If n = 2 we assume in addition that A satisfies the roots condition in G

(i. e. for every xO E G the principal part A’ (xo D) satisfies the condition on
the roots introduced in § 4). We denote by ol (-G; (m  l) the
subclass of function v E satisfying the boundary conditions:
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We also recall that HZ,Lp (G; denotes the subclass of functions

v E 41,L p (G) satisying (8.2) in the generalized (trace) sense (see § 2).
We now state the basic

THEOREM 8.1. Let u be ac function belonging to Lq (G) for some q &#x3E; 1.

Suppose that for all functions ro E 02m (G ; the following inequality
holds :

1vhere A is the elliptic operato~r (8.1), j is a positive integer  2m, p’ &#x3E; 1
and C a constant. Suppose also that the coefficients o f A satisf y condition

in G and that G is of class 02m. Then, and

where el is a constant depending only on n, m , p , K, A (the ellipticity con-
stant), and the domain.

Proof: By an obvious covering argument it suffices to show that for

every x° E G there exists a neighborhood S2" in the relative topology of G
such that (S20), and such that II u is majorized by the right
side of (8.4) with a constant c1 depending in addition on Q° . For a point
x° in the interior this follows from Theorem 7.1, taking for QO a sufficiently
small sphere with center at x°. Suppose that x° E a G . In this case there
exists a sufficiently small neighborhood Q of x° in G, and a measure pre-
serving homeomorphism (9) of class C2- : x - x which takes S~ onto the he-

misphere 1: I  1, xn &#x3E; 0 . Let A be the transformed elliptic operator 
‘

- - - - - -

under the mapping and put u (s) - u (x (.r)) (A and u defined in ). Let,
further, ’; be an arbitrary function belonging to 02m t~i ; and

vanishing in some neighborhood of (the curved part of &#x26;Z~). Put
and extend v as zero in G - S . It is readily seen that

. Using (8.3) we have:

(9) One can take a mapping of the form :
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where co depends only on the mapping. Applying now Theorem 6.2 to the
function n in 11 i we conclude ( zr) for every r  1 and con-

sequently that u E lIj,Lp (S~o) , QO being the image of under the mapping.
We also obtain by the same theorem the desired estimate. rhis establishes
Theorem 8.1.

From Theorem 8.1 one deduces easily the regularity up to the boundary
of weak solutions of the Dirichlet problem :

THEOREM 8.2. Let u be a function belonging to Lq (G) for some q &#x3E; 1.
Suppose that u is a weak solution of (8.6) in the sense that

for all functions v E 02m (-G ; where A is the elliptic operator (8.1)
and f is a function belonging to Lp ( G) , p &#x3E; 1. Suppose, moreover, that the

coefficients of A verify condition j; K ) , 1  j  2m , and that G is of class
02M . Then, u E Hj, L p ( G) and

where c is a constant depending only on n, and the domain.

Proof : From (8.7) we obtain the inequality

for all functions and the result follows by Theo-
rem 8.1. 

,

A case of special interest is

THEOREM 8.2’. If the conditions of Theorem 8.2 hold with j = (i. e.
if ( G) for I C( ) 0, ac(o, ... , o) being bounded) then UEH2m,Lp (0; 
and (8.6) in the strong Lp sense.

Proof : We know already that ( G) and consequently that

A~u = f in the strong Zp sense. To complete the proof we need only show
that the trace of Dau on the boundary (considered as an element 
is zero for 0  ~  m 2013 1. For functions u which are sufficiently smooth
this follows in a well known manner from (8.7). With some precautions
the proof for functions of class H2m,Lp (G) is similar. For the sake of com-

pleteness we present a formal proof.
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It suffices to show that given x° E a G there exists a neighborhood n of
x° on 8G such that the traces ( I a ~  m -1) are zero when restri-
cted to ~c. Since the last property remains invariant under a domain ho-

meomorphism of class C2m we may assume without loss of generality that
n is the n - 1 dimensional sphere xn = 0,  r (a/ === (x1, ... , xn-1))· We
may also assume that the cylinder : x’ 7 

0  x.  ð, for some 8 &#x3E; 0 ,
belongs to G . Furthermore, noting that the trace y (Dj u) E H2m-l-j.Lp on a
(this follows from the estimate (2.3)), and that

for all derivatives D;, of order  2 m - 1 - j not involving xn, we

conclude that it will suffice to show that y (Dj u) is a null-function on a

Let 0  j ‘ m 2013 1 and assume that y u) is a nullfunction on 1"(, for

every k  j -1 (there is no assumption We shall show that 

is also a nullfunction on n and the result will follow by induction. Let

9? (x’) E and let C(xn) be a C°° function on xn &#x3E; 0 such that C = 0 for
Put ~ ..

Since u E H2m,Lp (G) we can integrate (u, by parts to obtain the usual
Green’s formula with boundary values taken in the generalized trace sense.
A simple calculation shows that

where a is the coefficient of in A. Since ,

we conclude from (8.11) that

for all 99 E Co (~c). This implies that y (D’ (a u)) and consequently y (D~ u)
are null functions on n 0), and completes the proof.

Suppose that the function f in Theorem 8.2’ belongs to Then,
by the theorem, u E H2.,Lp (G) for every p so that, using Sobolev’s inequa- 

’
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lities, u E 02m-l (G ; If, moreover, f E 01 (G) and aa E 0111+1 (G)
then, by Theorem 7.1’, u also belongs to C2- (G) (11). Thus, in this case u.

is an ordinary solution of (8.6).
As a side application of Theorem 8.2’ we mention 

-

THEOREM 8.3. Let u be a function belonging to C2- (G) n om-l (C), such
that : 

’

where A is the elliptic operator (8.1). If G is of class 02m and the’ coefficients
a,a E (G), then u E (G) for every p.

To prove Theorem 8.3 it suffices to show that

for all functions the result will then follow from

Theorem 8.2’. This, however, follows from (8.12) by Green’s formula applied
to u and v in G (using a suitable approximation procedure).

Theorem 8.3 is useful in connection with uniqueness theorems for the
Dirichlet problem (for strongly elliptic equations) where it is necessary to

assume in general that The theorem shows that this extra

condition is really superfluous (12).
The main applications of the regularity theorems will be given in Part

II. In conclusion we add only the following , 
""

REMARK : Combining Theorem 8.2 with the a priori .Lp estimates up
to the boundary given in Agmon-Douglis-Nirenberg [3] one can show (with
suitable regularity assuptions on the domain and the coefficients of A) that
if in Theorem 8.2 f E Hk,Lp (G), then u E H2m+klLp (G). Similarly, using the
Schauder estimates in integral form of [3] one can show that if f belongs
to the Holder class Ck+ft (G) (k a non-negative integer and o  1), then
u E ( G).

(1°) More precisely, u belongs to the Holder class C21n-l+ft (G) for every p  1 .

(11) We note that the same conclusion holds with the following weaker assumptions :
f and a(O, ... , 0) 

are continuous functions satisfying locally a Holder condition a ex E clal (G) for
&#x3E; 0. For a proof see Agmon-Douglis-Nirenberg [3 ; Appendix 5].

(12) In this connection see also Miranda [20] Lemmas 11.1. ,
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