Multivalued functions in generalized axially symmetric potential theory
Annali della Scuola Normale Superiore di Pisa - Classe di Scienze, Série 3, Tome 10 (1956) no. 3-4, p. 135-145
@article{ASNSP_1956_3_10_3-4_135_0,
     author = {Payne, L. E.},
     title = {Multivalued functions in generalized axially symmetric potential theory},
     journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze},
     publisher = {Scuola normale superiore},
     volume = {Ser. 3, 10},
     number = {3-4},
     year = {1956},
     pages = {135-145},
     mrnumber = {1556833},
     zbl = {0079.31704},
     language = {en},
     url = {http://http://www.numdam.org/item/ASNSP_1956_3_10_3-4_135_0}
}
Payne, L. E. Multivalued functions in generalized axially symmetric potential theory. Annali della Scuola Normale Superiore di Pisa - Classe di Scienze, Série 3, Tome 10 (1956) no. 3-4, pp. 135-145. http://www.numdam.org/item/ASNSP_1956_3_10_3-4_135_0/

[1] Weinstein, A. Discontinuous integrals and generalized potential theory, Trans. Amer. Math. Soc., Vol. 63 (1948) pp. 342-354. | MR 25023 | Zbl 0038.26204

[2] Weinstein, A. Generalized axially symmetric potential theory, Bull. Amer. Math. Soc., Vol. 59 (1953) pp. 20-38. | MR 53289 | Zbl 0053.25303

[3] Van Tuyl, A. On the axially symmetric flow around a new family of halfbodies, Quart. Appl. Math., Vol. 7. (1950) pp. 399-409. | MR 33682 | Zbl 0035.11902

[4] Sadowsky, M.A. and Sternberg, E. Elliptic integral representation of axially symmetric flows, Quart. Appl. Math, Vol 8 (1950) pp. 113-126. | MR 37425 | Zbl 0037.27507

5] Weinstein, A. The method of singularities in the physical and in the hodograph plane, Proc. Fourth Symp., Appl. Math. (1953) pp. 167-178. | MR 56772 | Zbl 0053.14504

[6] Hobson, E. Spherical and ellipsoidal harmonics, Cambridge Uuiv. Press (1931). | JFM 57.0405.06 | Zbl 0004.21001

[7] Churchill, R.V. Fourier series and boundary value problems, McGraw Hill (1941). | MR 3251 | Zbl 0025.05403

[8] Van Nostrand, R.G. The orthogonality of hyperboloid functions, J. Math. Phys., Vol. 33 (1954) pp. 276-282. | MR 63489 | Zbl 0057.05305

[9] Mehler, F.G. Über eine mit den Kugel - und Cylinder - functionen verwandte Function und ihre Anwendung in der Theorie der Elektricitätsvertheilung, Math. Ann. vol. 18 (1881) pp. 161-194. | JFM 13.0779.02 | MR 1510098