Rigidity of Furstenberg entropy for semisimple Lie group actions
Annales scientifiques de l'École Normale Supérieure, Serie 4, Volume 33 (2000) no. 3, p. 321-343
@article{ASENS_2000_4_33_3_321_0,
     author = {Nevo, Amos and Zimmer, Robert J.},
     title = {Rigidity of Furstenberg entropy for semisimple Lie group actions},
     journal = {Annales scientifiques de l'\'Ecole Normale Sup\'erieure},
     publisher = {Elsevier},
     volume = {Ser. 4, 33},
     number = {3},
     year = {2000},
     pages = {321-343},
     doi = {10.1016/s0012-9593(00)00113-0},
     zbl = {0956.22005},
     mrnumber = {2001k:22009},
     language = {en},
     url = {http://www.numdam.org/item/ASENS_2000_4_33_3_321_0}
}
Nevo, Amos; Zimmer, Robert J. Rigidity of Furstenberg entropy for semisimple Lie group actions. Annales scientifiques de l'École Normale Supérieure, Serie 4, Volume 33 (2000) no. 3, pp. 321-343. doi : 10.1016/s0012-9593(00)00113-0. http://www.numdam.org/item/ASENS_2000_4_33_3_321_0/

[1] Bougerol P., Lacroix J., Products of Random Matrices with Applications to Random Schrödinger Operators, Birkhäuser, Boston, 1985. | Zbl 0572.60001

[2] Furstenberg H., A Poisson formula for semi-simple Lie groups, Annals of Math. 77 (2) (1963) 335-386. | MR 26 #3820 | Zbl 0192.12704

[3] Furstenberg H., Non commuting random products, Trans. Amer. Math. Soc. 108 (1963) 377-428. | MR 29 #648 | Zbl 0203.19102

[4] Furstenberg H., Random walks and discrete subgroups of Lie groups, in : Advances in Probability, Vol. 1, Dekker, New York, 1970, pp. 3-63. | Zbl 0221.22008

[5] Furstenberg H., Boundary theory and stochastic processes on homogeneous spaces, Proc. Symp. Pure Math. 26 (1974) 193-226. | MR 50 #4815 | Zbl 0289.22011

[6] Furstenberg H., Random walks on Lie groups, in : Wolf J.A., de Wilde M. (Eds.), Harmonic Analysis and Representations of Semi-Simple Lie Groups, D. Reidel, Dordrecht, 1980, pp. 467-489. | Zbl 0466.60008

[7] Feres R., Labourie F., Topological superrigidity and applications to Anosov actions, Ann. Sci. Éc. Norm. Sup. 31 (1998) 599-629. | Numdam | MR 99k:58112 | Zbl 0915.58072

[8] Guivarc'H Y., Raugi A., Propriétés de contraction d'un semi-groupe de matrices inversible. Coefficients de Liapunoff d'un produit de matrices aléatoires indépendantes, Israel J. Math. 65 (1989) 165-197. | MR 91b:22006 | Zbl 0677.60007

[9] Kaimanovich V.A., Vershik A., Random walks on discrete groups : Boundary and entropy, Ann. Probab. 11 (3) (1983) 457-490. | MR 85d:60024 | Zbl 0641.60009

[10] Lubotzky A., Free quotients and the first Betti number of some hyperbolic manifolds, Transform. Groups 1 (1996) 71-82. | MR 97d:57016 | Zbl 0876.22015

[11] Lubotzky A., Zimmer R.J., Arithmetic structure of fundamental groups and actions of semi-simple groups, Topology, to appear. | Zbl 0985.22005

[12] Margulis G.A., Discrete Subgroups of Semisimple Lie Groups, A Series of Modern Surveys in Mathematics, Vol. 17, Springer, 1991. | MR 92h:22021 | Zbl 0732.22008

[13] Nevo A., Group actions with positive Furstenberg entropy, Preprint.

[14] Nevo A., Zimmer R.J., Homogeneous projective factors for actions of semisimple Lie groups, Invent. Math. 138 (1999) 229-252. | MR 2000h:22006 | Zbl 0936.22007

[15] Nevo A., Zimmer R.J., A generalization of the intermediate factor theorem, Preprint.

[16] Nevo A., Zimmer R.J., Random invariants, algebraic hulls, and projective quotients for semisimple Lie group actions, Preprint.

[17] Zimmer R.J., Ergodic theory, semi-simple Lie groups, and foliations by manifolds of negative curvature, Publ. Math. IHES 55 (1982) 37-62. | Numdam | MR 84h:22022 | Zbl 0525.57022

[18] Zimmer R.J., Induced and amenable actions of Lie groups, Ann. Sci. Éc. Norm. Sup. 11 (1978) 407-428. | Numdam | MR 81b:22013 | Zbl 0401.22009

[19] Zimmer R.J., On the cohomology of ergodic group actions, Israel J. Math. 35 (4) (1980) 289-300. | MR 81m:22011 | Zbl 0442.28026

[20] Zimmer R.J., Ergodic Theory and Semisimple Groups, Birkhäuser, Boston, 1984. | MR 86j:22014 | Zbl 0571.58015

[21] Zimmer R.J., Representations of fundamental groups of manifolds with a semisimple transformation group, J. Amer. Math. Soc. 2 (1989) 201-213. | MR 90i:22021 | Zbl 0676.57017