JOSEPH GLOVER

Markov processes and their last exit distributions

Annales scientifiques de l’Université de Clermont-Ferrand 2, tome 71, série Mathématiques, n° 20 (1982), p. 107

<http://www.numdam.org/item?id=ASCFM_1982__71_20_107_0>
In a forthcoming paper [1], we prove the following result.

Theorem. Let \((X(t), P^X) \) and \((Y(t), Q^X) \) be two (canonically defined) transient Hunt processes on \(E \). Assume for each compact set \(K \) contained in \(E \) that \(P^X(f(X_{L(K)}) ; L(K)>0) = Q^X(f(Y_{L(K)}) ; L(K)>0) \) for all bounded functions \(f \) on \(E \), where \(L(K) \) is the last time the process is in \(K \). Then \(Y \) is equivalent to a time change of \(X \) by the inverse of a strictly increasing continuous additive functional.

Let \(\{q_k\} \) be a collection of points dense in \(E \), and let \(B_r(q_k) \) be the open ball of radius \(r \) about \(q_k \). If we let \(L(r,k) \) be the last time the process is in \(B_r(q_k) \), and if we set \(A(t) = \sum 2^{-j} \int_0^1 1_{\{0<L(r,k)<t\}} dr \), then \(A(t) \) is a raw additive functional of \(X \) and \(Y \) and the hypothesis of the theorem implies that \(P^X \int f(X_{L(-}) \ dA(t) = Q^X \int f(Y_{L(-}) \ dA(t) \). Let \(B(t) \) (resp. \(C(t) \)) denote the dual predictable projection of \(A(t) \) for the process \((X(t), P^X) \) (resp. \((Y(t), Q^X) \). It is not difficult to show that \(B(t) \) (resp. \(C(t) \)) is a strictly increasing continuous additive functional of \(X \) (resp. \(Y \)), which implies that \(P^X \int f(X(t)) dB(t) = Q^X \int f(Y(t)) dC(t) \). Thus if we let \(T(t) \) (resp. \(S(t) \)) denote the right continuous inverse of \(B(t) \) (resp. \(C(t) \)), then \(P^X \int f(X(T(t))) dt = Q^X \int f(Y(S(t))) dt \). Therefore, the resolvents of the processes \((X(T(t)), P^X) \) and \((Y(S(t)), Q^X) \) agree, so the processes have the same joint distributions.

The main result follows.

This result can also be interpreted (with natural auxiliary hypotheses) as a statement in potential theory involving equilibrium measures.