Kiyosi Ito

Construction of diffusions

Annales scientifiques de l'Université de Clermont-Ferrand 2, tome 8, série Mathématiques, n° 2 (1962), p. 23-32

<http://www.numdam.org/item?id=ASCFM_1962__8_2_23_0>
1 - INTRODUCTION -

The generator \mathcal{G} of one-dimensional classical diffusions is given by a second order differential operator:

$$\mathcal{G}u(\xi) = \frac{a(\xi)}{2} \frac{d^2 u}{d\xi^2} + b(\xi) \frac{du}{d\xi},$$

as one finds in the systematic discussions by A.N. Kolmogorov [1]. W. Feller [2] extended the concept of classical diffusions, introducing a topologically invariant definition of general diffusions and determined their generator \mathcal{G} in the form:

$$\mathcal{G}u(\xi) = D_x D_t u(\xi).$$

In order to construct Kolmogorov's diffusions, we can use the method of stochastic differential equations [3]. In fact, solving the stochastic differential equation:

$$dx_t = a(x_t) d\beta_t + b(x_t) dt,$$

where β_t is the standard Brownian motion, we can construct the paths of the diffusions with the generator (1).

However, this method does not apply to Feller's diffusions. To construct the paths of Feller's diffusions the stochastic time substitution is a powerful tool. This was discussed by K. Ito and H.P. McKean, Jr. [4] using Lévy-Trotter's local time of Brownian motions [5]. The time substitution is available to general diffusions, as V.A. Volkonski [6], H.P. McKean, Jr. and H. Tanaka [7] and R.K. Blumenthal, R.K. Getoor and H.P. McKean, Jr. [8] discussed.

A third method is to construct Feller's diffusion as a projective limit of processes of simpler type. F. Knight [10] constructed the Brownian motion as a projective limit of random walks whose time and space scales get smaller in a certain way. Using the same idea we shall construct Feller's diffusions as a projective limit of semi-Markov processes with polygonal paths. This construction is the aim of our paper and will be discussed in Section 4. We shall show the background of our method in Section 2 and prepare in Section 3 some properties of the solutions of $\mathcal{G}u - D_x D_t u = 0$ which will be useful in Section 4.

2 - THE POLYGONAL SEMI-MARKOV PROCESSES DERIVED FROM FELLER'S DIFFUSION -

Consider a strong Markov process \mathcal{M} with the state space $[0,1]$ and with continuous paths. We shall use the following notations:

- w: continuous path
- $x_t(w)$: the value of w at t
- W: the space of all continuous paths
- \mathcal{B}: the Borel algebra generated by all cylindrical subsets of W
- P_a: the probability law of the path of \mathcal{M} starting at a
- σ_a: the first passage time for a.
We shall assume:

\[P_x(\sigma_0 < \omega) > 0, \quad P_x(\sigma_1 < \omega) > 0 \quad a \in (0,1) \quad (1) \]

and:

\[E_x(\tau_{01}) < \omega \quad \tau_{01} = \min(\sigma_0, \sigma_1) \quad (2) \]

and:

\[P_x(x_t = 0) = 1, \quad P_x(x_t = 1) = 1, \quad (3) \]

and call \(\mathcal{M} \) Feller's diffusion in this paper, though Feller discussed other types of diffusions.

Introducing the scales and speed measure \(dm \) as

\[s(a) = P_x(\sigma_1 < \sigma_a) \quad (4) \]

\[dm(a) = -d D_x E_x(\tau_{01}) \quad (5) \]

we can express the generator \(\mathcal{G} \) of \(\mathcal{M} \) as

\[\mathcal{G}u(a) = D_a D_x u(a) \quad a \in (0,1) \quad (6) \]

\[\mathcal{G}u(0) = \mathcal{G}u(1) = 0. \quad (7) \]

Given Feller's diffusion \(\mathcal{M} \) mentioned above and given a set of division points of \([0,1]\)

\[\delta : 0 = a_0 < a_1 < \ldots < a_N = 1, \quad (8) \]

we shall define a semi-Markov process with polygonal paths. Take any path \(w \) of \(\mathcal{M} \) starting at a point in \(\delta \), and introduce

\[T_i(w) = \min(\sigma_{a_{i-1}}, \sigma_{a_{i+1}}) \quad \text{if} \quad x_i(w) = a_i, \quad 0 < k < N \quad (9) \]

\[= \infty \quad \text{if} \quad x_i(w) = a_0 \quad \text{or} \quad a_N \]

\[T_i(w) = T_{i-1}(w^{*}_i) \quad \text{if} \quad T_{i-1}(w) < \infty \quad (10) \]

\[T_i(w) = T_{i-1}(w^{*}_{i1}, w^{*}_{i2}) \quad \text{if} \quad T_{i-1}(w) + T_i(w) < \infty \quad (11) \]

and so on, where \(w^{*}_i \) is the shifted path defined as

\[x_i(w^{*}_i) = x_{i+1}(w). \]

Connecting \((0, x_s(w)), (T_1(w), x_{T_1}(w)), (T_1 + T_2, x_{T_1+T_2}(w)), \ldots, \) we shall get a polygonal path which will be denoted with \(\pi_s(w) \). Here we shall define

\[x_i(\pi_s(w)) = x_i(w) \quad \text{if} \quad T = T_1 + T_2 + \ldots + T_n < t < \infty = T_{n+1} \quad (12) \]

\(\mathcal{M}_s = \{x_i(\pi_s(w)), w \in W(P_1), a \in \delta\} \) gives a semi-Markov polygonal process. It is semi-Markov in the sense that it starts afresh not at every Markov time but at every Markov time of the form \(T_1, T_1 + T_2, T_1 + T_2 + T_3, \ldots \)

It is clear by the definition that

\[|x_i(\pi_s(w)) - x_i(w)| < ||\delta|| = \max_i |S(a_i) - S(a_{i+1})| \quad (13) \]

and that the probability law governing \(\mathcal{M}_s \) is determined completely by:

\[u_{ka} = E_x(e^{-a_{T_1}}, x(T_1) = a_{k+1}) \quad (14) \]

\[v_{ka} = E_x(e^{-a_{T_1}}, x(T_1) = a_{k-1}) \quad (k = 1, 2, \ldots, N-1) \quad (15) \]

But \(u_{ka} \) is the value at \(a_k \) of the solution of

\[\alpha u - D_n D_x u = 0, \quad u(a_{k-1}) = 0, \quad u(a_{k+1}) = 1, \quad (16) \]
while \(v(a) \) is the value at \(a \) of the solution of

\[
\alpha v - D_x D_x v = 0, \quad v(a_{k-1}) = 1, \quad v(a_{k+1}) = 0. \tag{17}
\]

Such observation is the background of our construction which will be carried out in Section 4.

3 - THE EQUATION \(\alpha u - D_x D_x u = 0 \)

Consider the equation:

\[
\alpha u(\xi) - D_x D_x u(\xi) = 0 \quad b < \xi < c, \quad \alpha \geq 0,
\]

and its solutions \(u_a = u_a(\xi) \) and \(v_a = v_a(\xi) \) with the following boundary conditions

\[
u_a(b) = 0, \quad u_a(c) = 1
\]

\[
v_a(b) = 1, \quad v_a(c) = 0.
\]

\(u_a \) is an increasing solution of (1), while \(v_a \) is a decreasing solution of (1), and \(u_a \) and \(v_a \) constitute a fundamental system of solutions of (1).

Define the Green function \(G_a^\circ(\xi, \eta) \) as

\[
G_a^\circ(\xi, \eta) = G_a^\circ(\eta, \xi) = \frac{u_a(\xi)v_a(\eta)}{[u_a, v_a]} \quad b \leq \xi \leq \eta \leq c,
\]

where \([u_a, v_a]\) is the Wronskian (constant)

\[
[u_a, v_a] = v_a D_x u_a - u_a D_x v_a,
\]

and the Green operator \(G_a^\circ \) as

\[
(G_a^\circ f)(\xi) = \int_b^c G_a^\circ(\xi, \eta) f(\eta) \, d\eta.
\]

As McKean proved, we have

\[
\frac{\partial^n u_a}{\partial \alpha^n} = (-)^n n! \left(G_a^\circ\right)^n u_a \quad (\alpha \geq 0)
\]

and so \(u_a \) can be expressed as

\[
u_a(\xi) = \int_0^\infty e^{-\alpha t} \mu_\xi(dt),
\]

where \(\mu_\xi(dt) \) is a bounded measure on \([0, \infty)\). Similarly we have

\[
\frac{\partial^n v_a}{\partial \alpha^n} = (-)^n n! \left(G_a^\circ\right)^n v_a
\]

\[
v_a(\xi) = \int_0^\infty e^{-\alpha t} v_\xi(dt)
\]

Setting

\[
\lambda_a(\xi) = u_a(\xi) + v_a(\xi)
\]

\[
\delta_\xi(dt) = \mu_\xi(dt) + v_\xi(dt),
\]

we have

\[
\alpha \lambda_a - D_x D_x \lambda_a = 0 \quad \text{in} \ (b, c)
\]

\[
\lambda_a(b) = \lambda_a(c) = 1
\]

\[
\lambda_a(\xi) = \int_0^\infty e^{-\alpha t} \delta_\xi(dt).
\]
Since \(\lambda_0(\xi) = 1 \), \(\theta_\xi \) is a probability measure on \([0, \infty)\).

Let \(G(\xi, \eta) \) denote \(G_\xi(\xi, \eta) \). Then

\[
G(\xi, \eta) = G(\eta, \xi) \equiv (s(c) - s(\eta))(s(\xi) - s(b))/(s(c) - s(b)) \quad \left(b \leq \xi \leq \eta \leq c \right)
\]

(16)

Introducing the integral operator

\[
G(t, \xi, \eta) = \int_0^t g(\xi, \eta) \, dt
\]

we have

\[
\int_0^\infty t^n \theta_\xi (dt) = (-)^n \partial^n \lambda_0 / \partial \alpha^n \bigg|_{\alpha = 0} = n! \, (G^n (1)) (\xi)
\]

(18)

so that we have

\[
\int_0^\infty t^n \theta_\xi (dt) \leq n! \, \gamma^{n-1} (G1) (\xi), \quad \gamma = (s(c) - s(b)) m(b, c)
\]

(19)

It follows from this inequality that

\[
\int_0^\infty e^{\alpha t} \, dt = 1 + \alpha (G1) (\xi) + \alpha^2 (G^2 1) (\xi) + \ldots \leq 1 + \alpha (G1) (\xi) \left(1 + \alpha \gamma + (\alpha \gamma)^2 + \ldots \right)
\]

(20)

and

\[
\int_0^\infty e^{-t} \theta_\xi (dt) = 1 - (G1) (\xi) - (G^2 1) (\xi) - \ldots \geq 1 - (G1) (\xi) \left(1 + \gamma + \gamma^2 + \ldots \right)
\]

(21)

so that

\[
\int_0^\infty e^{\alpha t} \theta_\xi (dt) - 1 \leq 3 \alpha (1 - \int_0^\infty e^{-t} \theta_\xi (dt)) \quad \text{if} \quad \alpha \gamma < 1/3.
\]

Using this estimate and noticing

\[
(e^{\alpha t} - 1) \int_0^\infty \theta_\xi (dt) \leq \int_0^\infty e^{\alpha t} \theta_\xi (dt) - 1
\]

(23)

and

\[
\lim_{\alpha \to \infty} \alpha/(e^{\alpha t} - 1) = 0,
\]

we can immediately prove the following

LEMA 1 - For any \(\varepsilon, \eta > 0 \), we can determine \(\zeta \) depending only on \(\varepsilon \) and \(\eta \) and independent of \(b, c \), and \(\xi \) such that

\[
s(c) - s(b), m(b, c) < \zeta
\]

(25)

implies

\[
\int_\xi^\infty \theta_\xi (dt) < \eta (1 - \int_0^\infty e^{-t} \theta_\xi (dt)).
\]

(26)

4 - CONSTRUCTION OF DIFFUSIONS -

(i) Construction of \(\mathfrak{H}_\xi \) and its properties.

Consider a set \(\delta \) of division points of \([0,1]\)

\[
\delta = (0 = a_0 < a_1 < \ldots < a_s = 1),
\]

(1)

the equation:
\[\alpha u(\xi) - \Delta u(\xi) = 0 \quad \xi \in (a_{k-1}, a_k), \]

its solutions \(u^+(\xi) \) and \(u^-(\xi) \) and the measures \(\mu_k^+, \nu_k^+ \) and \(\delta_k^+ \) introduced in Section 3. Let \(\mu_k, \nu_k \) and \(\delta_k \) denote respectively \(\mu_k^+, \nu_k^+ \) and \(\delta_k^+ \) evaluated at \(a_k \).

Starting at \(a_k, k = 1, 2, \ldots, N-1 \), we shall construct a polygonal path \(w_k \) by connecting \((0, a_k), (T_1, Y_1), (T_1 + T_2, Y_2), \ldots \), where \((T_1, Y_1, T_2, Y_2, \ldots) \) is governed by the following probability law:

\[P^k_{w_k}(T_1 \in dt, Y_1 = a_{k+1}) = \mu_k(dt) \quad \text{or} \quad \nu_k(dt) \]

\[P^k_{w_k}(T_{n+1} \in dt, Y_{n+1} = a_{i_{n+1}} / T_1 = t_1, \ldots, T_n = t_n, Y_k = a_{i_k}, \ldots, Y_n = a_{i_n}) = \mu_{i_n}(dt) \quad \text{or} \quad \nu_{i_n}(dt) \]

If \(Y_n = 0 \) or 1, then we define \(T_{n+1} = \infty \) and \(Y_{n+1} = Y_n \) by convention. Such a measure \(P^k_{w_k} \) on the space \(W_k \) of all such paths \(W_k \) can be easily constructed by means of Kolmogorov's extension theorem. We shall use \(x_i(w_i) \) or \(x(t, w_i) \) to indicate the value of \(w_i \) t, and the process thus obtained is denoted by \(\mathcal{X}_i = (W_i, P_i^k, a \in \delta) \). \(\mathcal{X}_i \) is semi-Markov in the sense explained in Section 2, as is clear by the definition.

Lemma 2

\[P^k_{w_k}(x(T_1 + \ldots + T_n) = 0 \quad \text{or} \quad 1 \quad \text{for some} \quad n) = 1. \]

Proof. It is clear by the construction that the above probability \(p_k \) satisfies

\[p_k = u_k^+(a_k) p_{k+1} + v_k^+(a_k) p_{k-1} \quad k = 1, 2, \ldots, N-1. \]

Since \(u_k^+(a_k), v_k^+(a_k) > 0 \) and their sum is 1, (6) implies that \(p_k \) is increasing or decreasing. Therefore

\[P_0 \geq P_k \geq P_1 \]

so that \(p_k = 1 \).

Now we shall introduce

\[m = m(\varepsilon, w_i) = \min(n : T_n > \varepsilon). \]

Then we get

Lemma 3 - Let \(\zeta \) denote the \(\zeta \) determined in Lemma 1. If

\[\| \delta \| = \max_k |s(a_k) - s(a_{k-1})| < \zeta / 2m(0,1), \]

then:

\[E^k_{w_k}(e^{-(t_1 + \ldots + t_n-1)}) < \eta. \]

Proof. Using Lemma 1, (8) implies

\[P^k_{w_k}(T_1 > \varepsilon) \leq \eta (1 - E^k_{w_k}(e^{-t_1})). \]

Noticing the semi-Markov property of \(\mathcal{X}_i \), we have

\[E^k_{w_k}(e^{-(t_1 + \ldots + t_n-1)}) \]

\[= P^k_{w_k}(T_1 > \varepsilon) + E^k_{w_k}(e^{-t_1}, T_1 \leq \varepsilon, T_2 > \varepsilon) + E^k_{w_k}(e^{-t_1 + t_2}, T_1, T_2 \leq \varepsilon, T_3 > \varepsilon) + \ldots \]

\[\leq P^k_{w_k}(T_1 > \varepsilon) + E^k_{w_k}(e^{-t_1}, P_{s(t_1)}(T_1 > \varepsilon)) + E^k_{w_k}(e^{-t_1 + t_2}, P_{s(t_1 + t_2)}(T_2 > \varepsilon)) + \ldots \]

\[\leq \eta [(1 - E^k_{w_k}(e^{-t_1})) + E^k_{w_k}(e^{-t_1}(1 - E^k_{w_k}(e^{-t_1}))) + E^k_{w_k}(e^{-(t_1 + t_2)}(1 - E^k_{w_k}(e^{-t_1 + t_2}))) \ldots] \]

\[= \eta [(1 - E^k_{w_k}(e^{-t_1}))) + (E^k_{w_k}(e^{-t_1}) - E^k_{w_k}(e^{-t_2 - t_3}))) + (E^k_{w_k}(e^{-t_1 - t_2})) - E^k_{w_k}(e^{-t_2 - t_3})) + \ldots] = \eta. \]

We shall introduce a random variable \(T(t) \) as

\[T(t) = T_1 + T_2 + \ldots + T_n \quad \text{if} \quad T_1 + \ldots + T_n \leq t < T_1 + \ldots + T_n+1 \]

and prove
LEMMA 4 - If (8) is satisfied, then

\[P_{\alpha}^t (T(t) - t > \varepsilon) \leq \eta e^t \]

Proof. It is clear by the definition and Lemma 3 that

\[P_{\alpha}^t (T(t) - t > \varepsilon) \leq P_{\alpha}^t (T_1 + T_2 + \ldots + T_n \leq t) \leq E_{\alpha}^t (e^{-T_1 - T_2 - \ldots - T_n}) e^t \leq \eta e^t \]

Let us take three points \(b, a, c \in \delta \) such that \(b \leq a \leq c \). Let \(\tau \) be the smaller of \(\sigma_a \) and \(\sigma_c \). \(\tau \) is the minimum of \(T_1 + T_2 + \ldots + T_n \) such that \(x(T_1 + \ldots + T_n) = b \) or \(c \). It follows from Lemma 2 that:

\[P_{\alpha}^t (T_1 + \ldots + T_n < \omega) = 1, \]

and we have

LEMMA 5 -

\[E_{\alpha}^t (e^{-\tau}, x(\tau) = b) = u_a(a), \]

\[E_{\alpha}^t (e^{-\tau}, x(\tau) = c) = v_a(a), \]

\[E_{\alpha}^t (e^{-\tau}) = \lambda_a(a), \]

where \(u_a, v_a, \) and \(\lambda_a \) are defined in Section 3.

Proof. Suppose that \(b = a_{q}, a = a_{k}, \) and \(c = a_{r}, q \leq k \leq r. \)

Then we see by the definition that \(\tilde{u}_k = E_{\alpha}^t (e^{\lambda \tau}, x(\tau) = b) \) satisfies

\[\tilde{u}_k = u'(a_k) \tilde{u}_{k+1} + v'(a_k) \tilde{u}_{k-1}, \quad \tilde{u}_0 = 0, \quad \tilde{u}_r = 1 \]

and it follows from the property of the solutions of linear homogeneous second order differential equations that \(\tilde{u}_k = u_a(a_k) \) satisfies the same difference equation and the same boundary conditions. The uniqueness of the solution of such difference equation with fixed boundary conditions implies \(\tilde{u}_k = \tilde{u}_k \) which shows (14. a). Similarly for (14. b) and (14. c).

Setting \(a = 0 \) in (14. a) we have

LEMMA 6 - \(P_{\alpha}^t (\sigma_a < \sigma_c) = (s(a) - s(b))/(s(c) - s(b)). \)

Differentiating both sides of (14. c) in \(a \) and setting \(a = 0 \), we have

LEMMA 7 -

\[E_{\alpha}^t (\tau_{s_0}) = \int_{s_0}^{\xi} G_{s_1} (a, \eta) dm(\eta), \quad \tau_{s_0} = \min(\tau_b, \tau_c) \]

where

\[G_{s_1}(\xi, \eta) = G_{s_1}(\eta, \xi) = (s(c) - s(\eta)) (s(\xi) - s(b))/(s(c) - s(b)) \quad (b \leq \xi \leq \eta \leq c) \]

Noticing the semi-Markov property of \(\mathcal{K}_s \) we have

LEMMA 8 - If \(g^{\hat{s}}(a) = E_{\alpha}^t \left(\int_0^\tau e^{-at} f(x_t) dt \right) \), then

\[g^{\hat{s}}(a) = E_{\alpha}^t \left(\int_0^\tau e^{-at} f(x_t) dt \right) + u_a(a)g(c) + v_a(a)g(b) \]

where \(b < a < c, b, a, c \in \delta \) and \(u_a(a) \) and \(v_a(a) \) were defined in Section 3.
(ii) Projection π_Δ from \mathcal{R}_Δ onto \mathcal{R}_Δ in case $\Delta \subset \delta$.

Let δ and Δ be two sets of division points of $[0,1]$ such that $\Delta \subset \delta$ and $\mathcal{R}_\delta = (W, P^\delta, a \in \delta)$ and $\mathcal{R}_\Delta = (W_\Delta, P^\Delta_\delta, b \in \Delta)$ be the corresponding semi-Markov processes defined above.

Define a projection π^δ_Δ which carries $w_\Delta(\in W_\Delta)$ starting at $a \in \delta$ to $\pi^\delta_\Delta w_\delta(\in W_\delta)$ starting at a just as we defined π^δ_δ in Section 2.

We shall now prove.

LEMMA 9 - $P^\delta_\Delta = P^\Delta_\delta \pi^\Delta_\delta$. a $\in \delta$

Proof. It is enough to prove that $\tilde{\mathcal{R}}_\delta = (W, P^\Delta_\delta \pi^\Delta_\delta, a \in \delta)$ is the same as \mathcal{R}_δ. Since $\tilde{\mathcal{R}}_\delta$ is a semi-Markov process by the definition, it is enough to show that

$$E^\delta_a(e^{-a\tau_k}, x(\tau_k) = \sigma_k, x(\tau_k + \Delta) = a_{k+1}) = E^\delta_a(e^{-a\tau_k}, x(\tau_k) = a_{k+1})$$

$$E^\delta_a(e^{-a\tau_k}, x(\tau_k) = a_k, x(\tau_k + \Delta) = a_{k+1}) = E^\delta_a(e^{-a\tau_k}, x(\tau_k) = a_k)$$

(16.a) (16.b)

for $\tau_k = \min(\sigma_k, \sigma_{k+1})$. But (16.a) is clear, because both sides are the solution evaluated at a_k of the equation:

$$\Delta u - D_x D_\delta u = 0 \quad \text{in} \quad (a_{k-1}, a_{k+1})$$

$$u(a_{k-1}) = 0, \quad u(a_{k+1}) = 1$$

by Lemma 5. Similarly for (16.b).

(iii) The projective limit of \mathcal{R}_δ for $\| \delta \| \to 0$.

We shall define Feller's diffusion $\mathcal{R} = (W, P, a \in [0,1])$ as the projective limit of \mathcal{R}_δ for $\| \delta \| \to 0$. For each $a \in [0,1]$, we shall define P_a as follows.

Consider the class C_δ of all sets of division points containing a and P_a^δ (defined in (i)) for $\delta \in C_\delta$. As we proved in (i), we have

$$P_a^\delta = P_a^\Delta \pi^\Delta_\delta, \quad \delta, \Delta \in C_\delta, \quad \delta \subset \Delta.$$

(17)

Applying Bochner's theorem [11], a generalized version of Kolmogorov's extension theorem, we can construct a probability measure space $\Omega(P)$ on which a system of stochastic processes $y^\delta_t(\omega)$, $t \geq 0$ depending on $\delta \in C_\delta$, is defined such that each $y^\delta_t(\omega)$ is the version of $x_t(w_\delta)$, $w_\delta \in W P^\delta_\delta$, and that, if $a \in \delta \subset \Delta$, then

$$\pi^\delta_\Delta y^\Delta(\omega) = y^\delta_t(\omega),$$

(18)

so that

$$|s(y^\delta_t(\omega)) - s(y^\delta_t(\omega))| < 2 \varepsilon \quad \text{if} \quad \| \delta \|, \| \Delta \| < \varepsilon.$$

(19)

Since $s(\xi)$ is continuous in $\xi \in [0,1]$ and one to one, $y^\delta_t(\omega)$ converges uniformly in (t, ω), as $\| \delta \| \to 0$. Let $y^\delta_t(\omega)$ denote the limit. Since $y^\delta_t(\omega)$ is continuous in t, its uniform limit $y_t(\omega)$ is also continuous in t.

It is easily seen that

$$\pi^\delta_\delta y^\delta_t(\omega) = y^\delta_t(\omega),$$

(20)

where π^δ is the mapping defined in Section 2.

Let P_a be the probability law the stochastic process $y^\delta_t(\omega)$, $t \geq 0$, $\omega \in \Omega(P)$, yields on the space W of continuous paths. It is clear that

$$P_a^\delta = P_a^\delta \pi^\delta_\delta, \quad a \in \delta.$$

(21)

Now it remains to prove that $\mathcal{R} = (W, P_a, a \in [0,1])$ is Feller's process we wished to construct.

For the proof we shall start with
LEMMA 10 -

\[g(a) = E_s \left(\int_0^\infty e^{-\alpha t} f(x_t) dt \right) \]

(22)

is continuous if \(f \) is continuous.

Proof. It follows from Lemma 7 and Lemma 8,

\[|g_\delta(a) - u_\delta(a)g_\delta(c) - v_\delta(a)g_\delta(b)| \leq E_s \left(\int_0^\infty e^{-\alpha t} f(x_t) dt \right) \]

\[\leq \|f\| \sup G_{\|s\|} \right) (a, c) \|c\| \smile \|f\| \right) \]

But as far as \(\delta \supset \xi \),

\[g_\delta(\xi) = E_\xi \left(\int_0^\infty e^{-\alpha t} f(x_t) dt \right) \]

\[= E_\xi \left(\int_0^\infty e^{-\alpha t} f(x_t(\pi_\delta w)) dt \right) \]

\[\rightarrow E_\xi \left(\int_0^\infty e^{-\alpha t} f(x_t(w)) dt \right) = g(a) \quad \text{as} \quad \|\delta\| \rightarrow 0. \]

Letting \(\|\delta\| \rightarrow 0 \) in (23) under the condition that \(\delta \supset \xi \), we have

\[|g(a) - u_\delta(a)g(c) - v_\delta(a)g(b)| \leq \|f\| \sup G_{\|s\|} \right) (a, c) \|c\| \smile \|f\| \right) \]

\[\leq \|f\| (s(c) - s(b)) m(b, c) \leq \|f\| m(0, 1) (s(c) - s(b)), \]

from which we can see the continuity of \(g \), using the fact that \(u_\delta(\xi) \) and \(v_\delta(\xi) \) are continuous in \(\xi \in [b, c] \) and that \(s(\xi) \) is continuous in \(\xi \in [0, 1] \).

Now we shall prove the Markov property of \(\mathcal{A}_t \).

Let \(f(\xi) \) and \(F(\xi_1, \xi_2, \ldots, \xi_n) \) be continuous. We shall prove that

\[E_s(f(x_{t_1}, x_{t_2}, \ldots, x_{t_n})) = E_s[E_{t_1}(f(x_{t_1})) F(x_{t_1}, x_{t_2}, \ldots, x_{t_n})] \quad (0 \leq t_1 < t_2 < \ldots < t_n + s) \]

(24)

Since both sides are continuous in \(s \), it is enough to prove that

\[\int_0^s e^{-\alpha s} E_s(f(x_{t_1}, x_{t_2}, \ldots, x_{t_n})) ds = E_s(g(x_{t_n}) F(x_{t_1}, x_{t_2}, \ldots, x_{t_n})), \]

(25)

where \(g \) is a continuous function introduced in Lemma 10.

Let \(T_s(t) \) be the minimum of \(u \) such that \(x(u) \in \delta \) and that \(u \geq t \). Then it is clear that:

\[T_s(t, w) = T_s(t, \pi_\delta w). \]

Using Lemma 4, we have:

\[\lim_{\|\delta\| \to 0} \sup \left(0 \leq t \leq s \right) P_s\left(T_s(t) - t > \varepsilon \right) = 0 \quad (\varepsilon > 0) \]

and so

\[\lim_{\|\delta\| \to 0} P_s\left(T_s(t, \pi_\delta w) - t > \varepsilon \right) = 0. \]
Using (26), we get
\[\lim_{t \to \varepsilon} P_s(T_s(t, w) - t > \varepsilon) = 0. \]

Therefore we can take a sequence \(\delta_n(\exists a) \), \(m = 1, 2, \ldots \), such that
\[P_s(\lim_{\|s\| \to \infty} T_s(t, w) = t) = 1, \]
for each \(t \), so that
\[P_s(\lim_{\|s\| \to \infty} T_s(t, w) = t_{ij}, \ i = 1, 2, \ldots, n) = 1. \]

Write \(T_s, P_s^s \) and \(\pi_s \) respectively for \(T_{s^n}, P_{s^n} \) and \(\pi_{s^n} \) and notice that
\[|s(x_i(\pi_s w)) - s(x_i(w))| < 2 \| \delta \|. \] (27)

Since \(f(\xi) \) and \(g(\xi) \) are uniformly continuous in \(\xi \) and so in \(s(\xi) \) and \(F(\xi_1, \xi_2, \ldots, \xi_n) \) is uniformly continuous in \((\xi_1, \ldots, \xi_n) \) and so in \((s(\xi_1), \ldots, s(\xi_n)) \), we get:

\[\int_0^\infty e^{-as} E_s (t(x_{t_n+1}, s) F(x_{t_1}, \ldots, x_{t_n})) ds \]

\[= \lim_{n \to \infty} \int_0^\infty e^{-as} E_s [f(x_{t_n(t_n+1)}) F(x_{t_n(t_1)}, \ldots, x_{t_n(t_n)})] ds \]

\[= \lim_{n \to \infty} \int_0^\infty e^{-as} E_s^s [f(x_{t_n(t_n+1)}) F(x_{t_n(t_1)}, \ldots, x_{t_n(t_n)}) \pi_s w \ldots, x_{t_n(t_n+1)}) \pi_s w)] ds \]

\[= \lim_{n \to \infty} \int_0^\infty e^{-as} E_s^s [E_{t_n(t_n+1)} (f(x_s)) F(x_{t_n(t_1)}, \ldots, x_{t_n(t_n)})] ds \]

\[= \lim_{n \to \infty} \int_0^\infty e^{-as} E_s [E_{t_n(t_n+1)} (f(x_s)) F(x_{t_n(t_1)}, \ldots, x_{t_n(t_n)})] ds \]

\[= E_s (g(x_{t_n}) F(x_{t_1}, \ldots, x_{t_n})). \]

We used the semi-Markov property of \(\mathcal{M}_s \), (26), (27) and the continuity of \(g \) and \(F \) in the last four steps.

Thus we have proved that \(\mathcal{M} \) is Markov, and therefore \(\mathcal{M} \) is also strong Markov by virtue of Lemma 10.

To identify our process with Feller’s diffusion, it is enough to observe:

\[P_s (\sigma_1 < \sigma_0) = P_s (c_1 (\pi_s w) < c_0 (\pi_s w)) \]

\[= P_s^s (c_1 < c_0) \]

\[E_s (\tau_{s_1}) = E_s (\tau_{s_2}) = E_{s_1} (\tau_{s_1}) = \min (\sigma_0, \sigma_1), \]

so that

\[P_s (\sigma_1 < \sigma_0) = s(a) \]

\[E_s (\tau_{s_1}) = \int_0^1 G_{s_2} (a, \xi) dm(\xi) \]

and so \(-dD_s E_s (\tau_{s_1}) = dm(a) \).

Thus we have proved
THEOREM - \(\mathcal{M} \), defined above, is Feller's diffusion with the generator \(D_x D_t \) and with sticking boundaries.

LITERATURES

DISCUSSION

M. NEVEU - Que sait-on sur la représentation explicite du générateur infinitésimal d'un processus de diffusion pluri-dimensionnel ?

M. ITO - mentionne la formule générale de représentation de Dynkin et cite les travaux concernant les processus de diffusion ayant les mêmes probabilités d'absorption que le mouvement brownien.