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RESOLUES, 3

Démonstration du dernier des deux théorémes

4 ’ . 2 N (9] 7
de géométrie énoncé a la page 283 du présent
volume ;

Par MM. LeEnTHERIC, professeur au Collége royal de
Montpellier ,

VaLrEs, éleve & IEcole royale des ponts et chaussées.

Et BopiLLIER , professeur & I'Ecole royale des arts et
métiers de Chélons-sur-Marne,

-

LA démonstration de ce théoré¢me est évidemment contenue dans
la solution du probléeme saivant:

PROBLEME. Quel est le licu des intersections des ordonnées
d'une elitpse avec les perpendiculaires menées de son centre sur les
tangentes aux extrémiiés de ces ordonnées.

Solution L’équation d'une ellipse, rapportée & ses diamétres prin-
cipaux élant

Vrday'=aldr, (1)

I'équation de la tangente au point ( 2/, %’) de son périmétre sera



(2]
~1
[0}

QUESTIONXNS
ba'x-fa’yy=ad* , (2)
avee la condition

bzi/:+a:}‘/2:azéa . (3)
L’¢équation de la perpendiculaire abaissée du centre sur la direction
de cette tangente sera donc

Valy—dy'v=0 ; €3]
mais I'équation de lordonunée du point de contact est
x—x'=0 ; (%)

on obtiendra donc I'équation du lien de l'intersection de cette per—
pendiculaire et de cette ordonnée en éliminaut les deux paramétres
2/, y’/ entre les équations (3), (4), (5).

Les deux derniéres donnent

1X]
x'=x , yi= pol

valeurs qui, substituées dans la premiére , donnent

ax’+ oy =at , 6

a? : 2 2 2 a? )z 2
—_ x a fr— -_— a
< ) ) + Yy ( 3 5
équation d’une nouvelle ellipse qui a le diamétre principal 22 com-

. . ar .
mun avec la premiére , et dont l'autre diametre 2 —- estune troi-

ou bien

sitme proportionnelle aux diamétres 25 et 2¢ de la premiére. On
a donc ce théoréme, qui est précisément celui qu’il s’agissait de
démontrer :

THEOREME. Si deux ellipses ont un diamétre principal com-=
mun , moyen proporitonnel entre leurs diamétres principauz non
communs , toute sécante cominune . perpendrculaire au diaméire com-
mun , sera coupée par la perpendiculaire conduite , par le centre com~
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mun , & la tangente en un dos points oi cetle sécante coupe [l'une
guelconque des deux ellipses , en un point qui appartiendra a [autre,

M. VYallés observe qu'on pourrait démontrer ce théoréme d'une
manicre purement géométrique , en considérant Uellipse comme la
projection orthogonule dun cercle, ainsi que M. Ferriot en a usé
en divers endioits du présent recueil,

Nous observerons & notre tour que si, dans les équations (1) et
(6) on change & en &/ =, elles deviendront

Uo'—a’y'=a’b’ ar'—=by'=at ;
ce qui prouve que la méme propriéié existe pour deux hyper-
boles qui ont un axe transverse commun , moyen proportionnel en-
tre leurs axes fictifs.

Il est aisé de voir que la méme propriété aura également licu
soit pour deux sphéroides de révolution soit pour deux hyperbo-
loides de révolation & une nappe, qui auront méme équateur, dont
le rayon sera moyen proportiounel cutre les longueurs de leurs dia-
métres principaux perpendiculaires au plan de cet équateur. Clest-
d-dire que si, pour un méme point quclconque de I'une des sur-
faces , on mcne un plan tangent et une perpendiculaire au plan de
I'égnateur , cette perpendiculaire sera coupée par la perpendiculaire
abaissée du centre sur le plan tangent, en un point de l'autre sur-
face.

M. Vallés a pris occasion de la pour chercher le lien géométri-
que des pieds des perpendiculaires abaissées du centre d’une ellipse
sur ses tangentes. L'équation de ce lieu est évidemment le résultat de
I'élimination des deux paramétres z/, y/ entre les trois équations
(2)> (3), (4). Dela premicre et de la dernicre on tire

— ax ) , b2y
= x4..r)-z 4 :r— x2+J»z

d’olt, en substituant dans la scconde,

@ty )y=aa’+by
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En changeant 4 en 4/ =7, on aura résolu le méme probléme pour

I'hyperbole.

On peut de méme se proposer d’assigner le lieu des pieds des per-
pendiculaires abaissées du centre d’une ellipsoide sur ses plans tan-
gens. En supposant P'équation de lellipsoide en coordonnées rec-

(1

+a*bz=a'b’c* ,

tangulaires
blclxﬂ-*-c!alyz
I'équation de son plan tangent en ( 2/, y/, z') sera
biz'z-c’a’y'yta’bz/z=a'b e, (2)

avec la condition
bzt clary* bz =a bt . 3

La perpendiculaire abaissée du centre sur ce plan tangent sera don-

née par la double équation
x y z
2 L =py L =
o= =c o, “)
qui combinde avec (2) donnera
2 2, 2
/:L 9;-/_—-: b r z/: iid ;
a3y 2gezd ’ X Ty T zd ’ 21y 2 Tmzs

d’'olt en substituant dans (3)

(@ Fy 2 =ar* by 2

On obtiendrait des résultats analogues pour les hyperboloides,
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