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EQUATION LIXEAIRE DU PREMIER ORDRE. /i

ANALISE TRANSCENDANTE.

Nouvelle méthode pour U'intégration de l'équation lincaire
du premier ordre & deux variables ;

Par M. L. C. Bouvier , ex-officier du génie , ancien éleve
de I'école polytechnique,

et e W s W W e WS

ON se tromperait étrangement si I'on croyait avoir tout fait dans
Ianalise , lorsqu’on a trouvé une méthode propre & résoudre cha-
cune des questions qui dépendent de ses procédés. Outre qu'en
effet les divers chemins qui conduisent au méme but peuvent fort
bien n’étre pas tous également aisés & parcourir; il arrive souvent
que, tandis que certaines méthodes sont exclusivement propres a
Vobjet particulier pour Iequel elles ont été imaginées , d’autres,
au contraire , semblent ouvrir devant elles une voie nouvelle, et étre
de nature 3 s’étendre 4 un grand nombre de recherches analogues.

Ces réflexions nous serviront d’excuse, si nous revenons icl un
moment sur un sujet qui semble épuisé depuis long—temps , en
indiquant, pour parvenir i lintégration de l'équation linéaire du
premier ordre entre deux variables, un procédé tout-a-fait nouveau,
et qui nous parait susceptible d’étre étendu au-dela de cette appli~

cation particuliére.
Soit I'équation

Tom. XV, n° 11, 1.°% gods 1824, 6
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dy
& =P+, (1)

— dans laquelle P, et Q, sont supposés des fonctions quelconques
de «# sans y. En la différentiant , on trouve

dey dy _ ap, o,
W hptE T

dy
ou , en mettant pour —— sa valeur donnée par la proposée ,

Y = (por o )r+ (Pt 2 )

de sorte qu’en posant

dP( dt
pr4 S =p, PQA T =0 5

on aura
dzy
T =Pz}’+Qz I

ot P, et Q, seront encore, comme dans (1), des fonctions de

& sans y.
Il est clair, d’aprés cela, que, si I'on pose,
ar, a0,
2-l--——--—::P,, P,Q, = =
on aura

d3 .
dx}; =P y+Q3 ’

ot P, et Q, seront tou]ours des fonctions de 2 sans ¥ ; de maniére
qu’en contmuant ainsi , on aura, en général,
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dan
T =Py+0Q, , @)

ol P, et Q, seront encore des fonctions de z sans y, et » un
nombre entier positif quelconque.
Si , dans cette derniére équation , on suppose #=o0, elle deviendra

de
% ou y=Py+0Qs
d’ott
— % .
y— I"—Po b (3)

d’ott 'on voit que l'intégration de la proposée se réduit finalement &
déterminer les deux fonctions P, et Q.. Or, cest 14 une chose
trés—facile , ainsi qu’on va le voir.

En différentiant I'équation (2), on a

drt-ry dy &P,, dQ,
proer il Y s B b s o el

d ‘ .
ou, en mettant dans le second membre pour '&% sa valeur donnéde

par l'équation (1),

dqn+1y _ ( dp, dQn 4
oy = \JiPt '5';'>.V+(Q1Pn+—a' ) :
Faisant, dans cette derﬁiére, n=o0, elle deviendra

A (P.P+ %2"—) r+(aPt & )

Celle-ci devant étre identique avec I’équation (1), on aura
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dQ,
dx = . ©

.IZ'IPC,--**-‘:%;22 =P, (4) pro+

La premicre de ces équations donne

dp,
~ =P,dx’ ’
I—P.
d’oli en intégrant
=P
Log. e > =—yfPdx ,

C éant la constante ; c’est-a-dire ,

I—Po;_:Ce_jPldx . 6)

On tire ensuite de l'autre

40, =Q.(1—Pg)dz=CQ,dz.e IT%,

d’olt, en intégrant ,

0o=¢e %04z,

substituant enfin les valeurs de @, et de 1—P, dans la formule
(3) , on aura

Je Q.dz _, JPuds =Pl

i Qudr ,

y= (P, dx
e

c’est la formule connue dans laquelle , comme 'on voit , il ne faut
point ajouter de constante & lintégrale /P,dz , mais seulement 2

Pintégrale [e."f Pdx Q.dz.



