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374 CARRE

GEOMETRIE ELEMENTAIRE.

Démonstration du théoréme de M. Hamett, mentionné
& la page 334 du présent volume ;

Par M. B. D. C.

T A A e " T

Sorr ABC um triangle rectangle en C. Soient élevées & CA et
CB aux points A et B et du coté opposé &4 AB des perpendi-
culaires AP et BQ respectivement égales 4 AC et BC. Soient
menées AQ et BP et soit de plus abaissée du point C sur AB
la perpendiculaire CC/. 1l s'agit de démontrer que ces trois der-
niéres droites se coupent en un méme point.

Pour cela , soient élevées & AB, par ses deux extrémités A et

B, et du coté opposé & C des perpendxculalres AD et BE, de
méme longueur qu’elle ; et soient mendes CD et CE. Soient mendes
respectivement 3 ces deux droites , par les points A et B, des
paralléles concourant en F et soient joints DE et CF. Les deux
triangles DCE et AFB ayant, par construction, un cété égal ad-
jacent & deux angles égaux , chacun & chacun , auront aussi leurs
deux autres cotés égaux , chacun i chacun., Les figures DF et EF
seront donc des parallélogrammes dont AC et BC seront des dia-
gonales respectives. Nous aurons de plus, & cause des paralléles,

Ang.C/CD=Ang.CDA ,



DE L’'HYPOTENUSE. 3,5
Ang.ACF = Ang.CAD ,
d’ott nous conclurons
Ang.C’CD~4Ang. ACF = Ang.CDA+Ang.CAD .

Ajoutant donc, de part et d'antre I'angle DCA , nous aurons ,
d’une part, la somme des trois angles du triangle ACD, et de
Pautre la somme des trois angles C/CD , DCA et ACF , laquelle
conséquemment vaudra , comme elle , devx angles droits ; d’ott
nous pouvons conclure que CF n’est autre chose que le prolon-
gement de CC~.

Cela posé, il est connu que les triangles’ CAD et CBE sont
respectivement égaux aux triangles PAB et QBA ; et comme deux
c6tés de chacun des premiers sont respectivement perpendiculaires
3 leurs homologues dans les derniers, il s’ensuit que les cités CD
et CE des premiers doivent aussi étre perpendiculaires aux cétés
PB et QA des derniers; donc leurs paralléles AF et BF seront
aussi respectivement perpendiculaires & PB et QA.

Les trois droites AQ , FC/, BP ne sont donc ainsi que les
perpendiculaires abaissées des trois sommets du triangle AFB sur
les directions des codtés respectivement opposés , et doivent con—
séquemment , par les théories connues , se couper au méme

point.




