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GÉOMÉTRIE ÉLÉMENTAIRE.

Démonstration du théorème de M. Hamett, mentionné
à la page 334 du présent volume ;

Par M. B. D. C.

CARRÉ

SOIT ABC un triangle rectangle en C. S’oient élevées à CA et

CB aux points A et B et du côté opposé à AB des perpendi-
culaires AP et BQ respectivement égales à AC et BC. Soient

menées AQ et BP et soit de plus abaissée du point C sur AB
la perpendiculaire CC’. Il s’agit de démontrer que ces trois der-..:
nières droites se coupent en un même point.
Pour cela, soient élevées à AB , par ses deux extrémités A. et

B et du côté opposé à C des perpendiculaires AD et BE, de 
même longueur qu’elle ; et soient menées CD et CE. Soient menées
respectivement à ces deux droites , par les points A et B , des

parallèles concourant en F et soient joints DE et CF. Les deux

triangles DCE et AFB ayant, par construction , un côté égal ad-
jacent à deux angles égaux , chacun à chacun , auront aussi leurs
deux autres côtés égaux , chacun à chacun. Les figures DF et EF 
seront donc des parallélogrammes dont AC et BC seront des dia-

gonales respectives. Nous aurons de plus , à cause des parallèles ,
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d’où nous conclurons

Ajoutant donc , de part et d’autre l’angle DCA, nous aurons ,
d’une part, la somme des trois angles du triangle ACD, et de

l’autre la somme des trois angles C/CD, DCA et ACF , laquelle
conséquemment vaudra , comme elle , deux angles droits ; d’où
nous pouvons conclure que CF n’est autre chose que le prolon-
gement de CC’.

Cela posé , il est connu que les triangles’ CAD et CBE sont

respectivement égaux aux triangles PAB et QBA ; et comme deux
côtés de chacun des premiers sont respectivement perpendiculaires
à leurs homologues dans les derniers, il s’ensuit que les côtés CD

et CE des premiers doivent aussi être perpendiculaires aux côtés
PB et QA des derniers ; donc leurs parallèles AF et BF seront

aussi respectivement perpendiculaires à PB et QA.
Les trois droites AQ , FC’ , BP ne sont donc ainsi que les

perpendiculaires abaissées des trois sommets du triangle AFB sur
les directions des côtés respectivement opposés , et doivent con-

séquemment , par les théories connues , se couper au même

point.


