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ANNALES
DE MATHEMATIQUES

PURES ET APPLIQUEES.

ANALISE TRANSCENDANTE.

Essai sur la recherche des maxima et minima , dans
les formules intégrales indeterminees ;

Par M. GERGONNE.

« L’une des raisons principales qui éloignent
» ceux qui enlrent dans les connaissances dua
n véritable chemin qu’ils doivent suivre, est
» limagination qu'on prend d’abord que les
» bonnes choses sont inaccessibles, en leur
» donnant le nom de grandes , hautes, élevdes ,
» sublimes. Cela perd tout. Je les voudrais
» nommer basses , communes , familieres ».

Pascar.

JUSQU’;\ I'époque ou Arbogast et Lagrange présentérent , tour 2
tour, sous un point de vue tout-a-fait nouveau les principes du
Calcul différentiel , cette branche d’analise n’avait gucre été , aux
yeux de la plupart des géométres, qu'un mystérieux mécanisme,
Tom. XIII, n.° 1, 1.5% juillet 1822, 1



- INTEGRALES

justifié- seulement par la constante et rigoureuse exactitude des ré-
sultats qu’on en avait obtenus.

Pecut-étre n’est-ce point une exagération d’avancer qu’aujourd’hui
méme nous en sommes encore a peu prés au méme point & I'égard
du Calcul des variations. Du moins , n’est-il pas rare de rencontrer
des gdométres d'assez bonne foi ponr convenir , sans détour, qu’ils
emploient mécaniquement les procédés de ce calcul , sans étre jamais
parvenus & en bien saisir I'esprit ; ce qui doit probablement tenir
4 ce que, pour nous servic des expressions de d'Alembert, les
auteurs qui en ont éerit « dédaignant de revenir sur leurs pas,
» pour faciliter aux autres le chemin qu'ils avaient eu tant de peine &
» se frayer eux-mémes , ont préféré la gloire d’augmenter V'édifice
» au soin d’en éclairer V'entrée ».

On dit communément que l'objet du calenl des variations est de
différentier sous un point de vue des quantitds qui ont déjh été
différentiées sous un autre ; mais on ne fait pas attention que , d'une
part, dans les applications de ce calcul, on différentie trés-souvent
sous le nouveau point de vue des équations de condition qui n’ont
encore subi aucune autre sorte de différentiation ; et que, d'une
autre part , dans le calcul différentiel partiel , on diftérentie sans
cesse sous un point de vue des fonctions déja différentides sous un ou
plusieurs autres, et quon en fait de méme encore lorsque , dans
un probléme , on a recours & la différentiation des parametres,
sans que pour cela on puisse dire que I'on emploie le calcul des
variations , et sans que l'on songe méme aucunement & noter ces
divers modes de différentiation par des caractéristiques différentes.

On présente ausst le calecul des variations comme le plus haut
degré d’abstraction que la science du calcul puisse atteindre ; mais
c’est peut-étre la , an contraire , ce qu’on devrait soigneusement
éviter ; attendn qunme telle pensée ne peul que préoccuper l’esprit
d’une maniére ficheuse et tout-a-fait piopre a lui faire manquer
le but, en lui faisant chercher trop haut ce qui est tout-3-fait A
son niveau; nous espérons faire voir, en effet , dans Péerit que
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I'on va lire , quil n'est aucune des questions de maaima et de
minima auxquelles il est d’'usage d’appliquer. le caleul des variations ,
et pour la solution desquelles ce calcul a été principalement inventé,
qu’on ne puisse traiter d'une maniére trés-lumineuse et trés-brigve,
par la simple application des procédés les plus vulgaires du calcul
différentiel ordinaire, et en ne s’appuyant uniquement que sur la
théorie des maxima et des minima, dans les fonctions déterminées
d’'une seule variable ; théorie sur laquelle il ne reste plus aujourd’hui
le plus léger nuage dans lesprit de tous ceux qui ont pris la peine
de Pétudier dans les bonnes sources (*).

Bien que les notations dont nous allons nous servir ne soient pas
dépourvues d’une certaine élégance, il se pourra fort bien que ceux
3 qui les procédés du calcul des variations sont familiers les trouvent
moins simples et moins commodes que celles dont ce calcul fait
usage ; mais il s’agit bien moins ici de notations que de principes ;

(*) On ne congoit pas par quelle fatalité I'illustre auteur du Calcul des fonctions
si éminemment clair partout ailleurs , débute lui-méme, dans Pexposition des
principes du calcul des variations , par un véritable non-sens. « Soit , dit-il ,
» @(x, %) une fonction de x et de 7 qui devienne @(x), lorsque i==0 ». Il est
sans doute bien vrai quune fonction de x et de 7 se réduit 3 une simple
fonction de «x, lorsque Z devient nul ; mais cette derniére fonction peut-elle
étre notée par la méme caractéristique que la premiere , et peut-on se permellre ,
dans une méme question , d’employer la méme caractéristique a désigner une
fonction qui contient deux quantités distinctes et une autre qui n'en contlient
qu'ane seule ? non sans doute. Que répendrions-uous , en effet , a quelqu’un

N . . , 1-}a?
qui , par exemple , apres avoir pose

- ==¢(a), nous demanderait de constraire
i—a

sur ce modéle @ra,b) ! Fort heurcusement ccite_légére inadverlance n’a pas
une influence nécessaire sur les développemens qui vienvenl a sa suite ; mais
enfin , que veut-on que fasse celui qui; voulant étudier pour la premitre fois
le calcul des variations, et ayant pris la résolution de. ne rien laisser passcr

. . . . \ 13 )
sans le bien saisir , vient , dés le début , se heurter contre un obslacle de
celle pature ?
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et il est toutsimple que , voulant tout déduire du calcul différentiel
ordinaire , il nous faille nous renfermer dans les seules notations que
ce calcul puisse nous fournir, Nous ne doutons pas, au surplus,
que ceux qui auront bien saisi ce qu’on va lire ne se servent ensuite
sans aucun embarras des notations du calcul des variations propre-
prement dit, dans lesquelles ils ne verront plus dés-lors que de
simples abréviations.

Nous pourrions , dés I'abord , présenter la théorie dans toute sa
géndralité ; mais il nons parait convenir beaucoup mieux & notre
but de nous élever gradnellement des cas les plus simples & ceux
qui le sont moins. L’obligation ol se trouvera ainsi le lecteur
de revenir & plusicurs reprises sur les mémes idées, sur les mémes
considérations, ne pourra que les lui rendre beaucoup plus familiéres,

Bien que la théorie que nous allons développer puisse étre con-
sidérée comme purement analitique , nous ne ferons pas difficulté
néanmoins de parler quelquefois le langage de la géométrie et méme
de la mdcanique, tant parce que cela fait image que parce qu’il
en résulte plus de clarté et de concision dans le discours.

§ L

1. Soit ¥ une expression de forme connue quelconque, com-
posée de la variable indépendante x , d'une fonction y de cette
variable et des coecfliciens différentiels de cette fonciion , jusqu’a
celui de tel ordre qu'on voudra; et considérons l'intégrale

JSVidz .

Si la composition de y en z était connue, rien ne serait plus aisé

que de ramener cette intégrale & la forme fXdz, ou X serait une

fonction connue de x seulement; et alors on pourrait , soit exac-
p ’

tement soit par les séries , exécuter l'intégration _enire telles limites

qu'on voudrait,
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Mais on suppose que I'expression de ¥ en 2 n’est pas donnée ;
on suppose qu’elle est linconnue du probléme; cton propose de
la déterminer par cette condition qu’aprés la substitution de sa valeur
et de celles de ses cocfliciens différentiels dans 77, intégrale /P dz,
qui alors aura la forme fXdx , prise entre deux limites données
quelconques, et sous des conditions données , compatibles toutefois
avec la nature du probléme, soit plus grande ou plus petite que
toutes celles qui pourraient résulter , entre les mémes limites et sous
les mémes conditions , de toute autre valeur, fonction de #, prise
pour y.
2. Comme nous n’avons ici qu'une seule variable indépendante
# , il nous sera commode d’employer la notation introduite par
Lagrange pour les fonctions dérivées; en conséquence,

¥y, ¥, Y e e an

seront constamment les symboles respectifs de

dy d2y C dy
'a_; ’ dx= b da3 PR L I

et, si ¥ est une autre fonction de z,

Y, XYV, XYM,

seront parcillement les symboles ‘respectifs de

ay @Yy By o

"Iv_ » '&‘x—; 'Y a_'xz" Jeeec s e o

Nous ne recourrens ainsi aux notations ordinaires du calcul diffé-
rentiel que pour représenter les coefliciens différentiels partiels,

dont la notation est trop embarrassée dans le systéme de Lagrange.
Ainsi
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(), (), (%) (&)

seront les coefficiecns différentiels qu’on obtient pour la fonction
V', en n’y considérant successivement que

Yy, ¥y, .'}'-”7 [ AETRTE

¢omme variables. En conséquence ,

(5) &) (&) (5)

seront la méme chose que

< ) < > (5 ()

dx ’ C dx

| AR AR

Pareillement

M N 77
( ) dr’) (dy”] \dy’”> T

seront la méme chose que

@ (%) cw) () +(5n)
dia ’

. de2 dez 2 dez e

et ainsi de suite.

3. Pour en revenir présentement 3 notre probléme ; quelle que
soit la valeur de 4 eii # qui doit le résoudre, on peut toujours
la considérer eommnie l'ordonnée d'une eertaine courbe dont x serait
JYabseisse ; et le probléme se réduit ainst & trouver cette courbe,
tout-3-fait déterminée , mais encore inconnue.



INDETERMINEES, 7
Suivant donc lesprit de la méthode ordinaire de maoaimis et
minimis , il faut, pour parvenir a I’équation de cette courbe , ex-
primer qu'elle est telle que, pour si peu qu'on la déforme, en
tout ou en partie, d’'une maniérc arbitraire , et méme discontinue
si Yon veut , Pintégrale fPdx , toujours prise entre les mémes
limites et sous les mémes conditions , deviendra plus petite dans le
cas du mazimum , et plus grande dans le cas du minimum.
4. Conservons y pour le symbole de l'ordonnée de la courbe
cherchée ; 'ordonnée correspondante, dans toutes les autres courbes

doot il vient d'étre question , pourra étre représentée par la formule
générale

y+it,

dans laquelle X représente une fonclion de 2 tout-h-fait arbitraire,
continue ou discontinue , , et ol Z est un nombre abstrait, positif
ou négatif, si petit qu'on le voudra, sans pourtant étre absolument
nul. Il est évident , en effet, que , méme en se donnant 7 3 volonté,
on pourra encore proficer de l'indétermination de la fonction ¥
de maniére que cette formule devienne P'ordonnée de telle courbe
donnée qu’on voudra, et qu’ensuite on pourra diminuer graduelle-
ment le nombre 7 , de telle sorte que cette courbe devienne si
peu différente de la courbe cherchée qu'on voudra. D'ott l'on
voit que , si Pon tragait 3 la main une courbe aussi veisine
de la courbe cherchée qu'on le voudrait , on pourrait toujours
considérer y-4-/Y comme exprimant Pordonnée de cette courbe;
en sorte (u’en supposant Y arbitraire et £ d’une petitesse illimitée,
la formule y=-7/Y exprime l'ordonnée de la totalité des courbes que
nous devons comparer a la courbe cherchée.

5. Remarquons pourtant, avant d’aller plus loin , qu’il se pourrait,
en vertu de certaines conditions de la question , que la fonction
Y une dut point étre tout-a-fait arbitraire , ou du moins ne dit
Iétre que sous certaines restrictions : c’est , par exemple, ce qui
arriverait si la courbe cherchée devait passer par deux points donnés;



8 INTEGRALES

car alors on n'aurait & lui comparer que les autres courbesqui passe-
raient par ces deux mémes points; muis nous allons voir bientét
qu'on est toujours & temps d’avoir égard & ces restrictions i la fin
du calcul , et que jusques-la on peut regarder la fonction arbitraire
Y comme absolument indéterminée,

6. Par le changement de y en y+4:/Y,
y (y +TY ,
y > deviendront respectivement ¢ gy i ¥/

y / S

» L o o o o oo

#

En conséquence, on trouvera , par I'application de la série de Taylor
au développement des fonctions des polynomes , que 7 doit devenir

() (o 2 e G e

en conséquence , fFdx deviendra .

GEEICDRICOLIE HIIC DMt

Afin donc que fFdzx soit maximum ou minimum , il faudra ,
suivant les principes connus, que le multiplicatenr de 7 soit nul;
et alors /¥dx sera maximum ou minimum , suivant que le mul-
tiplicateur de 7* sera constamment négatif ou constamment positif.
La condition commune au maeximum et minimum sera donc ex-
primée par l'équation

v

-
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S (5 )+ (G () o fasso,

lIaquelle revient simplement 2

o= (Y ()7 ()1 (22 ot

7. Cela posé , par la formule (o) =ut/-tu' , d’ol wt/= (tu) i/,
on trouve facilement

(5)r = (5)7
()7 =[x 1= ()

() =[(5)7]- [( u,f/) ]+(d,,, yr,
L THEP G-

. .

Au moyen de quoi I'équation (I) devient

dV dV ¥ \// ar N\
vy - (Y
dy'" dy'
il ar \/ ar \v
) (-,_ sy —
‘]_7" dy’”

[( d_y" u3 ot )+ ]Y/’*"[\ j:; '---]Y”—I—-.. "'§/=O; (1I)

or, tout ce qui suit la premicre Iigne du premier membre de cette
Tom. XII1. ’ 2
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équation étant une dérivée exacte, quelle que soit ¥ ; tandis que
cette premiére ligne, considérée comme telle , aurait une fonction
primitive qui changerait avec ¥ , il s'ensuit que cette équation ne
saurait subsister qu’autant que la premi¢re ligne de son premier
membre scra nulle d’elle-méme ; ce qui donne , en divisant par

Parbitraire ¥,

°"( ~)- ( )+( o7 ) = ( " e (TID)

"
dy

équatnon en z et y seulement, qui est conséquemment I’équation
différenticlle de la courbe cherchée. Son intégration donnera la
valeur de y en fonction de # et d'un certain nombre de cons-
tantes arbitraires , et nous allons voir tout A ’heure comment ces
constantes doivent &tre déterminées.

8. En supprimant donc la premiére ligne du” premier membre

de V'équation (ll), et passant ensuite aux fonctions primitives ,
il viendra

Const.-[( dw) < dy”> ( dJ"">” ]r
[ dy”> (dy,,,>+....]1’ +[< - ,,,> oo | E e (1V)

En mettant dans cette équation pour y sa valeur en & eten cons-
tantes, déduite de I'équation (11I), les coefliciens de ¥, ¥/, Y7/, ....
n’y seront plus que des fonctions de z et de ces mémes constantes.

9. Soient @, et a4, les limites de Dintégrale; c’est-a-dire , sup-
posons qu’il soit question de rendre mazimum ouw minimum Vin-
tégrale fVdx , prise depuis x=a, jusqua z=a, ; marquons
respectivement des indices o, 1, les valeurs des diverses quantités

qui entrent dans I'équation (IV), lorsqu’on y met pour & les valeurs
respectives @,, &,, Nous aurons ainsi
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Sonst. _K ) --( 3;) +( o >” ]Y +[< R ) —( ;y’;) +. ]Y/0+[_< j’;/ )o_...]r‘/,,-}...,
Donst.= dy’ ) ( j; ) +< o7 )N ] [( ::,:) (d_y’/l ]Y’ +[( 5 ,/,> ]Y/’.'i‘ e}

d’od en retranchant ,

S [( 7 ) dJ”) +(df”’ ” -1 ( d)”) (dﬂ/) + ]Y"JrKd D b
1[<®' @~) (®W)” ] [(djw dy,,,)-l-]w--[(dm W%]p,m

équations que nous appellerons a l'avenir édquation aux limites, et

qui , comme l'on voit, ne renferme plus, outre les valeurs encore
- indéterminées de ¥, ¥/, ¥/, ... aux deux extrémités de I'intégrale,
que les deux limites @, , @, et les constantes introduites par I'in-
tégration de D’équation (III).
10. Cela posé, si aucune condition particuliére n’a été prescrite
relativement aux limites , les fonctions

Y,, Y, Yy viuonn ¥oy Y., YV uiiniiies

devront conserver I'indépendance la plus absolue. L’équation (V) ne
P

pourra done alors subsister qu’autant que les coefliciens de ces

diverses fonctions seront séparément nuls ; cette équatien (V) se

partagera donc dans les suivantes:
ar “ Y
‘— dy/l ) ( I//) —etsie I

(BN (Y s o= ()
SESES () (Y
( (-

—etit 2

-

(VD)

dy

=D0.to’ o=0.0'0’ ‘{
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lesquelles seront généralement en méme nombre que les constantes
introduites , et serviront 4 en assigner les valeurs,

11. Mais si, au contraire , on exige qu’a l'unc ou A Vautre
limites , ou a toutes les deux , il existe , cutre y et ses divers
coefliciens différentiels, une ou plusieurs relations dounées ; ¥,
toujours indéterrﬁinée, ne sera plos dés-lors tout-a-fait arbitraire.
Représentons , cn effet, une de ces ¢quaticns par

f(y:y/,y//,........):::L_":o 5 (Vll)
on devra avoir, pour les diverses courbes que 'on considére,

f(y4+iY , /i1, y/'4=iY" , .,....)=0

.
’

ou , en développant ,
dL dL dr ;
—— - 7 72 L —_
L+ (- )r+ (5 )Y+(d oy [ o,

d’ot en retranchant I'équation (VII) et exprimant que l'équation
résultante a lieu quel que soit 7,

( o) +( ) /+(d_y//)Y//+ =0 (VIII)

1l faudra d’abord substituer dans (VII, VIII) pour y sa valcur
en z et en constantes, déduite de I'équation (III); puis, en sup-
posant, par exemple , qu’il s’agit dec la premitre limite , mettre

‘pour z sa valeur @,, ce qui changera ces équations en celles-ci:

Zo=o, (X) () ¥et(55) Yot () ¥robmo. ®)

d yl/

On pourra avoir plusieur‘s cogples de semblables équations, tant
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pour l'ure e pour lavtre livnites; et on se servira de (X)cr de
ses analogues pour éliminer de (V) le plus grand nombre possible
des fouctions Yo, ¥y, Yoy wuw ¥y, ¥y X7 ey aprés quoi
on égalira séparément a zéro les coefliciens de celles qui n’aurcnt
pas disparu. A la vérité ,le nombre des équations qui devsieut servie
a ddéterminer les constantes se trouvera ainsi réduit; mais toutes les
équations qu’on aura de moins se trouveront exacternent remplacées
par I'équation (IX) et ses analogues; de sorte que ces constantes
se trouveront loujours détermindes , et le seront seulement par
d'autres conditions,

12. Au surplus , au lieu d'éliminer de I'édquation (V) le plus
grand nombre possible des fonctions ¥, , ¥'y, ¥/, , .. ¥, , ¥y,
Y/, , .. au moyen des équations de condition telles que (X), il
reviendra au méme, et il sera peut-étre plus élégant de prendre la
somme tant de I'égquation (V) que des produits de ces équations de
condition par des multiplicateurs indéterminds ; d’égaler ensuite sé-
parément & zéro , dans l'équation somme , les coefficiens de toutes
les fonctions Yoy Yoy Y7oy e Yoy Yy Y iseen, et déli.
miner enfin les multiplicateurs indéterminés entre les équations
résultantes.

13. Hitons-nous , avant d’aller plus avant , d’éclaircir ces principes
par un exemple.

PROBLEME 1. Quelle est la plus courte ligne plane , enire
deux paralléles données ?

Solution. Soient pris I'axe des # perpendiculaire et celui des y
paralléle aux deux droites donnces , dont nous supposerons les
équations '

x=aq, , a=a, ;

la question se trouvera ainsi rédnite 3 assigner la valeur de y en
2 qui rend lintégrale fday/14yn minimum , entre les limites -
a, et a,. . . ‘
_ Nous auronis.done ici V=y/ igym, dot  ~ -~ °
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4 dV dV y’ dr
( =0 3 = ( =0 G ee0
dy dy' )T Vidyr T N &y
dV N/ ¥ ( av
— = - 3 -_— =0 50000
( d)/-/ ) (l+jlz) d )
VN
<"d_"‘} =0 yrees
en conséquence , I'équation (IH) deviendra
" yr ¥
—r =0, ou (OH ==
(1+y72)3 Ty e

le rayon de courbure de la ligne cherchée est donc inﬁni; cette
ligne est donc une droite ; et 'on peut prendre pour son équation

y=Mz+46G , ‘ d’ou y'=M , y’=o0;

M et G étant des constantes arbitraires.
L’équation aux limites sera ici

M
V it IE x+Mz =Yo)=

oy

d’ott T'on voit d’abord que la constante G, qui n’entre pas -dans
cette équation”, demeurera tout-d-fait arbitraire ; ce qui revient a

dire que les parties de paralléles interceptées entre d’autres paralléles
sont de méme longueur.

Les coefliciens de ¥, et ¥, étant les mémes, au signe prés,
on ne saurait établir des conditions distinctes pour l'une et pour
Tautre limites ; ce qui revient & dire qu’une droite qui coupe des
paralléles fait avéc elles des angles égaux.

Si aucune condition n’est prescrite pour l'une et l'autre limites
Y, et ¥, devront demeurer tout-a-fait indépendans ; on ne pourra
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donc poser ¥Y,—Y,=o0 , l'équation aux limites ne pourra donc
subsister qu'autant qu'on aura M=o ; de sorte que I'équation de
notre droite se reduira simplement a y=6G , o0 G demeurera in-
déterminé. Cela revient 2 dire que toutes les perpendiculaires entre
deux paialleles sont égales et en mesurent la plus courte distance.

Supposons qu'on exige qu'aux deux limites de l'intégrale on ait
respectivement

y=b, , y=b.,

ce qui revient & faire passer la ligne cherchée par les deux points
(@0 5 b0), (a1, b,); les équations analogues & (IX) seront

Ma,+G—b,=o0 , Ma4G—b,=o0 ;
et les équations analogues 3 (X)
Y,=o0, Y,=o ;

ce qui vérifie l’e’quation aux limites ; les deux autres équations
donnent M et G qui, substituées dans I’équation generale de la
ligne cherchée, la font devenir

5 —bo __ x=—a,

b =b, a—a,

ce qui revient d dire que e plus court chemin entre deux points
donnés est la droite qui joint ces deuz points.

Mais , si on demandait le plus court chemin d'un point & une
courbe ou d’une courbe a une autre , nos méthodes actuelles ne
seraient pas suflisantes pour résoudre ces sortes de problémes; attenda
que les limites @o et @, que nous avons essentiellement supposées
constantes , devraient réellement varier dans ce cas, pour tloutes
l:s courbes que nous sommes obligés de considérer concurremment
avec la ligne cherchée. Nous verrons plus loin comment on peut
parer a cet inconvénient.
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14. 1 est des probl¢mes qui, bien que beaucoup pius compli.
qués cu appatence que celui qui vient de nous occuper , s’y ra=-
mcnent pourtant avee la plus grande facilité, Soient U, P,Q, B, u.
des quantites composées d'une maniére connue queiconque en =z,
¥, ¥, ¥”, .. On peutse demander d’assigner, parmi les diverses
valeurs de y en x qui, entre des limites détermincdes , donnent

SPdz=a , fQlz=b, JfBAz=c ... (XI)

o @, &, ¢ sont des constantes données , quelle est celle qui,
entre les mémes limites , rend fUdsr maximum ou minimum.

15. Pour résoudre cette question, on considirera que puisque,
entre les limites dont il s’agit, /Pde, f/Qdx, fRdxz,.... doivent
étre constantes , il doit en étre de méme de A/Pdr, Bf(/dzx ,
C/Rdx, ... ot A, B, C,.... sont de nouvelles constantes; il en
sera donc aussi de méme de la somme

AfPda+B/Qda~+CfRdx4-....... ;

d'ott il suit que la méme relation de y a2 # qui, entre les limites
assignées , rendra maximam ou minimum Vintégrale fUdx devra
aussi rendre telle , entre les mémes limites, la somme

fde—I-Ade.&‘-}-Bdex—FC/Bdx+. sevse e
c’est-a-dire ,
S(U+AP+BQ+CR+-...... . )dz ;

en posant donc

V=U+AdP+BQ+4CR4...... ...

la question se trouvera réduite au cas ou il s’agit simplement de
rendre fVdx maximum cw minimum, euntre des limites donndes ;

avee
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avec cette seule différence que I'équation cherchée en 2 et y, outre
les constantes introduites par lintégration , renfermera aussi les
constantes 4, B, C,....; mais en aura , pour en assigner les
valeurs , les équations de condition (XI) qui sont précisément en
méme nombre. Donnons un exemple des questions de ce genre.

16. PROBLEME 11. Entre toutes les courbes qui reiranchent
une méme portion déterminée de Ilespace indéfini compris entre
deux paralléles et une perpendiculaire gui leur est commune,
guelle est celle dont larc intercepté entre ces paralltles a la
moindre longueur ?

Solution. Soit prise pour axe des # la perpendiculaire commune
aux deux paralléles, dont nous supposerons , comme ci-dessus , que
les équations sont

r=a, , x=a, .

Soit ¢* laire qui doit étre comprise entre la courbe cherchée ;
les deux paralléles et l'axe des # ; og devra avoir ainsi , entre
a, et a,,

Sydaz=c* ;
de plus , entre les mémes limites , fdzy/13,7 devra toujours ;

comme ci-dessus, étre un minimum. I} ne s’agira donc (15) que
de rendre telle, entre g, et «,, l'intégrale

Sy T Ay)is |
sauf ensutte & déterminer convenablement la constante A.

Nous aurons donc iei V'=1y/ 1dy24-Ay , d’ou

ar ) _ .
E}- =4 ( dy’ - \/x+_y/a _7” =0 Heens
¥ )
(dy’> Tyt dy" SO e

av \7_ o
EF} -0 PR TR

Tom. XIII, 3
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en conséquence , I'équation différentielle de la courbe cherchée sera

/" s
Y ou (I+ylz); I N

-3 =0, Ury) =
([+y/2); J’”

-

bN|

son rayon de courbure doit donc étre constant ; cette courbe est
donc un arc de cercle.

En conséquence , mnous pourrons prendre pour intégrale de
I'équation ci-dessus

(2= Cy+(y—Hy =F ;

o des trois constantes G, H, R, deux sont censées introduites
par l'intégration, tandis que la troisiéme remplace la constante A,

et doit étre déterminée par la condition fyda=c*. On tire d'ailleurs
de cette équation

y=H+/ ToGomtr, /=T e, y/=T B
- ) t/ﬁ“—-(x—-G)”

[Rz—(x—G) z]%

Quant 4 1’équation aux limites , on trouvera qu’'elle est , dans
le cas actuel

a—G a;—G
i =g

Y ,=o :

Si donc aucune condition particuliére n’a été imposée pour les
limites, ¥, et ¥, devant demeurer absolument indépendans, cette
€quation ne pourra étre satisfaite qu’autant qu’on aura, & la fois,

ao-—-G_ . a;—G
R 9 R

=0;

dquations qui ne pourront subsister ensemble qu'autant qu'on aura
R infini; ce qui réduit la ligne cherchée a une ligne droite, comme



INDETERMINEES, ry
dans le précédent probleéme , avec cette diflérence pourtant qu’en
prenant comme alors y=G pour I'équation de cette droite , la
constante G sera délerminée , puisque, entre les linites g, et 4,
on devra avoir

Sydz ou JfGdz ou Gat-C=c,

ce qui donne

c2

G = ol G=
(a,—-ao) e, dO g, —a, H

de maniére que l'équation sera

C’(

y= -

Qy=0,

Supposons , en second lieu, qu'on exige qu’aux limites de I'in=
tégrale la courbe coupe les deux paralleles a I'axe des y sous
des angles dont les cotangentes tabulaires soient 7, et m, ; on
devra avoir ainsi

me=yy ;s m:=_y/t ’
c’est-a-dire,

— 0y=—=G — ao—G
M= —, m. == pr————— el
0= ‘/ﬁz—(ao_G)z ? = ‘/]iz_(al_(;)z ?

équations d’otr on tirera les valeurs des constantes G et B; celle
de H se déterminera ensuite par la condition fydz=c2.

Si enfin les deux limites étaient fixes , de telle sorte qu’aux
valeurs @, et @, de z dussent répondre respectivement les valeurs
b, et b, de y ; on aurait, pour déterminer deux des trois cons-
tantes G, H, R en fongtion de la troisiéme , les deux équations
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(0e—GY+-(bom Hy' =R" ,
(a‘-—-G)’+(5,~—-H/’=B' 3

et cette troisi¢me constante se déterminerait toujours par la con-
dition fydx=c=.

17. On voit donc qu’entre toutes les lignes qui, se terminant 3
dcux points donnds, comprennent un méme espace entre elles, les
ordonnées de ces deux points et 'axe des abscisses, la plus courte
est un certain arc de cercle passant par ces deux points; or, les-
pace compris entre la corde de eet arc, les ordonndes de ses deux
extrémités et I'axe des x, est aussi donné; donc l'espace compris
entre l'arc et sa corde l'est également; d’ott 1l suit que de tous
les arcs de courbes qui ont la méme corde et comprennent le méme
espace entre eux et cette corde, larc de cercle est celui qui ala
moindre longueur; d'onr il est est facile de conclure , i linverse,
que de ltous les arcs de courbes de méme longueur qui ontla méme

corde , U'arc de cercle est celui qui renferme le plus grand espace
enire lut et celle corde.

18. Et, comme ces propriétés sont indépendantes de la longueur de
la corde, elles doivent également avoir lieu lorsque cette longueur est
nulle , auquel cas V'arc devient une circonférence entiére ; ainsi
le cercle jouit de la double propriété détre la figure de moindre
périméire , entre toutes celles de méme surface , et de plus grande
surface , enire toutes celles de méme périmétre.

19. Dans les questions qui viennent de nous occuper, il ne se
trouvait , sous le signe d’intégration, qu’une seule fonction de la
variable indépendante , avec ses diverses dérivées. Examinons présen-
tement ee qu’il y aura a faire lorsqu’il s’y en trouvera plusieurs,
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20. Soit V7 une expression de forme connue quclconque , com-
posée de la variable indépendante z , de deux fonctions z ct yde
cette variable et des coefficiens différentiels de ces fonctions , jusqu'a
ceux de tels ordres on voudra; et considérons lintégrale

SVdz .

Si la composition de z ety en z était connue , rien ne serait
plus aisé que de ramener cette intégrale a la forme fZz , ot Z
serait une fonction de z seulement ; et alors on pourrait, soit
exactement, soit par les séries, exécuter l'intégration entre telles
limites on voudrait.

Mais on suppose que les expressions de z et y en z ne sont pas don-
nées ; on suppose qu’elles sontles inconnues du probléme ; et on propose
de les déterminer par cette condition qu’apres la substitution de leurs
valeurs et de celles de leurs coeficiens différentiels dans 7, Pintégrale
J¥dz 'qui alors aura la forme fZdz , prise entre deux limites données
quelconques, et sous des conditions données , compatibles toutefois
avec la nature du probléme, soit plus grande ou plus petite que
toutes celles qui pourraient résulter, entre les mémes limites et
sous les mémes conditions , de toutes autres valeurs, fonctions de
z , prises pour & et y.

21. Comme nous n’avons encore ici qu'une seule variable indé-
pendante z , il nous sera commede d’emp]oyer la notation de
Lagrange pour les fonctions dérivées; en conséquence,

x/” x//’ x///”‘;.,." y/’ y//, y/// ,.;";::;:

seront constamment les symboles respectifs de
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dv  dw de dy day “ay
dz H dzz H :]—;.3- goecee g E‘; 2 -&;; ? '@ ,!..l;

et, si X et ¥ sont d'autres fonctions de z,
X/, X//’ X///,"..'...‘ Y/’ Y// , Y,,/ ’.:.....':

seront pareillement les symboles respectifs de

dX d2X axX B daY d:Y Y

Nous ne recourrons ainsi aux notations du calcul différentiel ordi-
naire que lorsqu’il s’agira de représenter des coefliciens différentiels
partiels. Ainsi ‘ N

(%) dx') (dx”>"""< ) (dy’) (dy”

seront les coefficiens différentiels partiels que I'on obtient pour la
fonction 7, en n’y considérant successivement que

z; &, 3 5eiiiee ¥, ¥, ¥

eomme variables, En conséquence , les expressions

) ( / dx") ( l dy,) (dy,,>,..,.

seront la méme chose que

( ) (;*Z) (M) ( 2} (d,,,) (dy,,)

PR

s

Pareillement , les expressions
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? /7 ar )// dr \/ ar” 12BN
(&) (&) (&) (5 ) (57) (5 ) e

seront la méme chose que

o) *Gr) )| (%) o(5) i)

.’.Il
dz3 i dz2 ? dz2

PRI

et ainsi de suite.

22. Pour en revenir présentement a notre probléme , quelles que
soient les valeurs de # et ¥ en z qui doivent le résoudre , on
peut toujours les considérer comme deux des coordonnées d’une
certaine courbe a double courbure dont la troisiéme coordonnée est z;
et le probléme se réduit ainsi & trouver cette ceurbe , tout-a-fait
déterminée , mais encore inconnue.

Suivant donc lesprit de la méthode ordinaire de maaximis et
minimis , il faut, pour parvenir aux équations de cette courbe ,
exprimer qu’elle est telle que, pour si peu qu'on la déforme , en
tout ou en partie, d’'une mani¢re arbitraire, et méme discontinue
si 'on veut, l'intégrale /¥dz, toujours prise entre les mémes limites
et sous les mémes conditions , deviendra plus petite dans le cas
du maxzimum , et plus grande dans le cas du minimum.

23. Conservons x et y pour symboles des deux coordonnées
fonctions de z qui, conjointement avec cette troisiéme coordonnée z,
appartiennent & la courbe cherchée ; les deux coordonnées corres-
pondant & z, dans toutes les autres courbes dont il vient d’étre
question , pourront étre respectivement représentées par les formules
générales

z+iX , y+iY ,
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dans lesquelles X et ¥ représentent des fonctions de z tout-3-fait
arbitraires, continues ou discontinues, et ol 7 est toujours, comme
ci-dessus , un nombre abstrait , positif ou négatif, si petit qu'on
le voudra, sans pourtant étre absolument nul. Il est évident, en
effet, que, méme en se donnant 7 a volonté, on pourra encore
“profiter de lindétermination des fonctions X et ¥, de maniére que
ces formules deviennent , conjeintement avec z , les coordonnées
de telle courbe donnée & double courbure qu’on voudra , et qu’ensuite
on pourra diminuer graduellement le nombre ; de telle sorte que
cette courbe devienne si pen différente de la courbe cherchée qu'on
voudra. D’ot I'on veit que, si Von tragait i volonté dans l'espace
une courbe aussi voisine de la courbe cherchée qu’on le voudraits
on pourrait toujours considérer #~4-iX , y-7Y¥ comme étant, con-
curremment avec z, les trois coordonnées de cette courbe ; de sorte
qu’en supposant X et ¥ arbitraires et 7 d’une petitesse illimitée ,
Tes trois formules z , x-4+X , y~+/Y expriment les coordonndes
de toutes les courbes que nous devons comparer 4 la courbe
cherchée.

24. Remarquons pourtant , avant d'aller plus Ioin , quil se
pourrait,, dans des cas particuliers , en vertn de certaines con-
ditions de la question , que les fonctions X et ¥ ne dussent
point étre tout-a-fait arbitraires , ou du moins ne dussent I'étre
que sous cerlaines restrictions : c’est, par exemple , ce qui arri-
verait si la courbe cherchée devait passer par deux points donnés;
car alors on n’aurait 3 lui comparer que les autres courbes qui
passeraient par ces deux mémes points ; mais nous avons déja
va (§. L) quon était 2 temps 3 Ia fin du calcul d’avoir égard
A ces sortes de limitations ; et nous allons voir bientét qu'il en
est exactement de méme ici.

25. Par le changement respectif de # et y en 24iX ;

y+il, .
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“ ) [ 2 4iXx ;
” ! X
a’ 3//+Z'X” ,

» & deviendront respectivement ¢ Ce e e,
7 y +iY ,
¥/ oy i
¥/ e

On trouvera conséquemment , par I'application de la série de Taylor
au développement des fonctions des polynomes, que, parle méme
changement , 7~ doit devenir

+z(‘§_§)x+( )X/+(d . >X//+..+( ) +( dyl) ’+<d,,>1’ 2o §;+ ..... ;

en conséquence, fFdz deviendra

vzt __/ a +( . )X/+(d - ]X//+ +( )Y-}-( 5 > /+< 8 )y//.x. §dz+

Afin donc que J¥dz soit mazimum ou minimum , il faudra,
suivant les principes connus, que le multiplicateur de 7 soit nul ;
et alors SV dz sera maximum ou minimum , suivant que le mul-
tiplicateur de 7* sera constamment régalif ou constamment positif.
La condition commune au maximum et au minimum. sera done
exprimée par 1’équation

Tom. XIII. 4
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j’ dr’)X-]—( dV\X’+( X/ ... +( )Y+( g )Y/+( 37 )y//_l._“ } z=0,

laquelle revient simplement &

LI OLNC LI SENC OITC SRS

26. Cela posé , par la formule (tu)=1u/~ut/ , ot ut! =(tu)'—i’ ,
on uouve facilement

(£ = ().
(2 [(2)- (),
(T T (5
@ EHEPHE T

-
-l -y
()= HGE T+ ()

(L LI 16

(XII}
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ay moyen de quoi l'équation (XII) deviendra

TG )3 (5 ) ]
EE (4T
N (DN C L m—

+[( 5 (oo )+ e+ ( dx///)~~ T d

.;.{[( dy/) (dy”)+<dym e | ¥
+[( &y )"'( dy’”)+ ]Y+[( dr”’>-' ]Y//+"

or, les quatre derniéres ngnes du premier membre de cetie équation
sont des derivées exactes , quels que soient X, X/, X/, ..V,
Y’, Y",... tandis que, si 'on voulait considérer comme telles
les deux premicres lignes, leurs fonctions primitives changeraient
avec la forme de ces mémes quantités X , X/, X/, .. ¥, Y,
Y/, ... Afin donc que cette équation signifie quelque chose,
il faut d’abord que ces deux premictres lignes soient tout-a-fait

nulles ; ce qui donne

[( i ) ( da! ) + ( da’! )” dx/// )///+ e ] X
+[( ) ( d_y’ )+(dyu )” d_y/// w+""'] Y=o . (X1V)

’

=0 (XIIT

26. Si la courbe n’est assujettie a d’autres conditions que de
rendre f¥dz maximum ou minimum, enire les limites assignées,
les fonctions X et ¥, qui pourront fort bien d’ailleurs étre liées

LS ]
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entre elles et méme détermindes &4 ces limites , devront étre ;
dans tout le reste de I'intégrale , tout - A - fait indépendantes ;

I'équation (XIV) se partagera donc alors dans les deux suivantes:

dr \// //r
< dx’ dx“) ( dx’”)
/" ///
—< (5 )+ <aw>

lesquelles, ne contenant plus dés-lors que z, z, 2/, 2”,......

¥y ¥ ¥’ s.eienes, seront les deux equations dxﬁ'erenhelles de la
courbe cherchée.

(XV)

27. Mais au lieu de chercher quelle est, entre toutes les courbes,
celle qui rend f/¥dz mazximum ou minimum , on pourrait demander
quelle est celle qui jouit de cette propriété, parmi celles qui sa-
tisfont & une équation de relation donnée entre 2, y et z, ou,
ce qui revient au méme , parmi celles qui sont sur la surface
eourbe exprimée par cette équation ; il est clair qu'alors la courbe
cherchée , dans ses diverses déformations , ne devrait pas quitter
cette surface ; d’ou il suit que les fonctions X et Y, tonjours

arbitraires d’ailleurs , ne seraient plus dés - lors indépendantes.
Soit, en effet,

¥F@,y,z)=M=o0 ; (XVI)
I'équation de cette surface ; on devra avoir, pour la courbe déformée ,

F(z4+iX, y+iY, z)=o0;

ou, en développant,

(2 (2 )]s

ou,
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ou, en retranchant (XVI) , divisant par ¢ et exprimant ensu.t:
que l'équation résultante doit avoir lieu quel que soit 7,

dM dM .
( n >X+(—d-y— )Y...o ; (XVII)

WA

équation de relation entre X et ¥, au moyen dc laquelle on pourra
faire disparaitre I'une ou lautre de ces deux fonctions de I'équa-
tion (XIV) qui, étant ensuite divisée par V'autre fonction devenue
alors facteur de tous ses termes, sera I'équation différentielle d'une
certaine surface qui coupera la surface (XVI) suivant la courbe
cherchée,

28. On pourra aussi , si l'on veut, ajouter a I%équation
(XIV) le produit de T'équation ( XVII) par un multiplicateur
indétermiué ; dgaler séparément & ziro , dans I’équation somme , les
coefliciens de X et ¥, et éliminer cnsoite le mﬁltiplicateur indé-
terminé entre les deux équations résultantes; ce qui conduira évi-
demment au méme but.

29. Tout cecisuppose, au surplus , que # et y doivent étre réelle~
ment des fonctions déterminées de z ; mais ils pourraient fort bien ne
I'étre que d’une maniére purement fictive ; c’est-a-dire, quil se
pourrait que , y étant fonction de z seulement, on ait voulu,
comme cela est permis, les considérer comme étant tous deux des
fonctions d’une troisiéme variable z, sans rien statuer d’aillcurs sur
la nature de cette troisi¢tme variable et sur ses relations avec cha-
eune des deux aostres. Alors I'intégrale /¥ dz pourrait ¢tre considérde
comme provenant d’une autre intégrale fUdx, dans laquelle U aurait
dy dzy
Az 7 dwr
aprés coup changé la variable indépendante, en y considérant z et
y comme des fonctions d’une troisiéme variable z ; on ne devrait
donc parvenir slors, comme dans le §. I, qu’a une équation dif-

¢té simplement fonction de z, ;1 +eee.etolon aurait

férenticlle unique eatre & et y; il faudrait donc que les équations
(XV, eussent un’ facteur commun sans z , cest-a-dire , ne ren-

Tom. XIII, 4 bis.
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- fermant simplement que z, 2/, & ,ceue ¥, ¥/, ¥/, i lequel ,
égalé a zéro, satisferait 3 l'équation (X1V), indépendamment de
toutes relations entrc les fonctions X , ¥ ; en supposant donc,
dans celte équation unique , =2, ce qui rendrait nuls 2//, 2/// , ...
on obtiendrait la diff¢rentielle de Iéquation cherchde en z et y.
30. Retournons présentement au cas général. En intégrant les
deux équaiions (XV), on en déduira les valeurs de x et y en z;
lesquelles contiendront l'une et Pautre un nombre plus ou moins
grand de constantes arbitraires. 1l s’agit maintenant de voir comment
on déterminera ces constantes. o
31. La premiére ligne du premier membre de I'équation (XIIT)
se trouvant annullée , comme nous l'avons dit , par 'équation (XIV),
cette équalion, en passant aux fonctions primitives, devient

[( da! d; x,,,>//—-... X \
'41“ﬁ)(w3+“]”+u§m)mhxq%,
/ % > 5 (XVI)

+[< dyr ) < dy"t (dy,,,> —— |\ Y
U] e

En y mettant pour # et ¥ leurs valeurs en z et en constantes,
déduites de lintégration des équations (XV) , les coefficiens de
X, X, X!, Y, Y, Y,... 0y seront plus que des fonc~
tions de z et de ces mémes constantes,

Const.= ¢

32. Soient ¢, et ¢, les deux limites de l'intégrale ; ¢’est-2-dire,
supposons qu'il soit questien de rendre mazimum ou minimum
Iintégrale /¥dz, prise depuis z=¢, jusqu'a z=¢,; marquons res-
pectivement des indices o et 1 les valeurs que prennent les diverses
quantités qui entrent dans I’équation (XVIII), lorsqu’on y met pour
& les valeurs respectives ¢, et ¢; , nous aurons ainsi
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d’oli, en retranchant,

dr

dx’/

(&

(=),
(5 )5 )G )~ Irl(s
(&)

( dV

\ da,”

(W) A

i(%; ) ( dw'’ > (d&/// Jo cen .]XQ
H(55) -G+ jxxﬁ—r( ) T
Const._.( g
dr dp
() YA ]
S Tl Yo
- L(%%) (de/) (dx,,, /:—‘]X ]
[(?) (dx) +- ]X’ +[( ) .
Const. =« - g
7 /" —
[ '5") ( y,, y,,, —ieeia. | Y,
+[< dy" ) ( df”’) ] ¥ +{:( dym j Y 4. )

a7
dy7

df’\

d)ll Jo

A O
).~ <dw> el ( d),,,) .

]Y/ ("”
djf”/a [\,(j

V]

.
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équation que nous appellerons a l'avenir éguation oux limiltes ;
et qui, comme 'on voit , ne renferme plus, outre les valeurs encore
indétermindes de X , X/, X/, ... ¥, ¥/, Y7, ... aux deux li-
mites de l'intégrale , que les devx limites ¢,, ¢, et les constantes
introduites par lintégration des équations (XV).

33. Cela posé, si aucune condition particuliére n’a été prescrxte
relativement aux limites, les fonctions

XO ,X/O 3 X/,° e es ey YO 3y 'Y/O 1) Y//O Jgeeevselsee
X, o X, XV, i Y, Y Y

devront conserver I'indépendance la plus enti¢re. L’¢quation (XIX) ne
pourra donc alors subsister qu’autant que les coefficiens de ces
diverses fonctions seront séparément nuls ; cette équation (XIX)
se partagera donc dans les suivantes :

dx”) (dx’//) —eey o"'(dx”) (Ez) 4., 0= ( x'//) —

(A s 0= (32).= (o Voot 0= (), =
~(&

// /
dt” ) (dx”/ b YYTIY o= (dx”) ( dxl’// , On- ’ o= (dx/”) —-4..-.,

d
—(C d_y”) (dy”') T O—Cdy”) (dy"’) e 0% EJI;:’

lesquelles seront, en général , en méme nombre que les constantes
introduites,, et serviront & en assigner les valeurs.

34. Mais si, au rontraire , on exige qu'a l'une ou a l'autre
limites , ou & toutes les deux , il cxiste , entre # et y et leurs
divers coefliciens diffiérentiels, une ou plusieurs relations données;
X ¢t Y, toujours indéterminés, ne seront plus dés-lors toat-a-

fait
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fait arbitraires, Représentons, en effet, une de ces équations par

fa, 2 27,0000, y,y’,y”,....L):L:o; (XX)

on devra avoir, pour les diverses courbes que I'on considere , con-
curremment avec la courbe cherchée

fa+iX, 24X, 24X e, y ¥, y/ Y,y Y, L) =0;

ou, cn développant,

I+ g( ) X+ () XA ()X

_1_( aL ) y+( )Y/+< o )Y”+...}—§ +on=0

d’olt , retranchant Déquation (XX) et exprimant que 1'équatiom
résultante a lieu quelque petite que soit 7,

o=( ) X+ (= )XH( 5 )X i

dL
+(5 )Y+( )Yf+( 7 Y (XXI)
Il faudra d’abord substituer dans (XX, XXI) pour z et y leurs
valeurs en z et en constantes déduites des équations (XV); puis,

en supposant , par exemple , qu’il soit question de la premiére
limite , mettre pour z sa valeur ¢, , ce qui changera ces équations

!( i )Xo +(dx') o ) Xokn
K ) °+<dV) °+( )u

Tom. XIII.

en celles-ci :

Ly=o, (XXII) o= (XXIITy
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qn pourra avoir plusieurs couples de semblables équatiens , tant
pour Pune que pour l'autre limites ; et on se servira de (XXII)

et de ses analogues pour éliminer de (XIX) le plus grand
nombre possible des fonctions X, , X/, X7g,eeve.e, Yoo, Yo,
Y/ ivevanny Xy Xy XVyyiinnnnn, Yoy ¥oh Y iiiiaias
aprés quoi on égalera séparément & zéro les coefficiens de celles
qui. n’auront pas disparu. A la vérité , le nombre des équations qui
devaient servir 3 déterminer les constantes se trouvera ainsi réduit;
mais toutes les dquations qu’on aura de moins se trouveront exac=
tement remplacées par I'équation (XXII) et ses analogues; de
sorte que ces constantes sc trouveront toujours déterminées, et le
seront seulement par d’autres conditions,

35. Au surplus, au lieu d’éliminer de I’équation (XIX) le plus
grand nombre possible des fonctions X,, X, , X/ ,... ¥, , Y/, ,
Yo yaeee Xy Xy XV e XYooy Y0, Y., au moyen des
équations de condition telles que (XXIII), il reviendra au méme ,
ct il sera peut-étre plus élégant de prendre la somme tant de
I'équation (XIX) que des produits de ces équations de condition
par des multiplicateurs indéterminés ; d’dgaler ensuite séparément i
zéro, dans l'équation somme, les coefliciens de toutes les fonc-
tions Xy, X, Xy e Yoo, Yy, Yo, Xy, X0y Xy s
Y,,Y,, Y .. et d’éliminer-enfin- les multiplicateurs indéter-
minés entre les équations résultantes.

36. Appliquons présentement ces divers procédés a un exemple.

PROBLEME 1I1. Quelle est la plus courte ligne entre deuz
pPlans paralictes donnés ?

Solution. Soient pris l'axe des z perpendiculaire et le plan des
zy paralleles: aux deux plans donnés , dont nous supposerons
les équations

Z=Cy Z2=Cy 5
les axes des z et des y étant supposés rectangulaires, mais dirigés
d’ailleurs comme on le voudra , la question se trouvera ainsi ré-
duite 4 assigner pour & et y des valeurs , fonctions de £ qui rendent
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Sdzy/ iangyi

minimum , entre les limites ¢, et ¢,:
Nous aurons donc ici

V=y/ T

d'od (21)‘
(¥ \_, (dV _ v )
(&)= (&) =vaem ' (@)= i
d dV) ¥
dy =0’ Ay = o 4 —0 u
(d" ) : ( y! V 1yaty’s (dy”) o
et de la

T eyt

ar \/ (,+y/2)xll—-x/.’»ylf
> ? dx” > o 9 ters
(

y AV )/ (1f-x/2yy!l =2y 2! ( ar
- (I+x/z+ylz)‘:‘ ? ~=0j e

( xl/)—o’hn
//
dy”) 0}"0

au moyen de quoi I'équation (XIV) deviendra
(1-y?2)ll =l 'yt + (o)l ety et .
(|+x/2+y’2);7 (I+x’2+y”)§i =0 .

Si la courbe n’est assujettie 3 aucune autre condition qu’a celle d'étre
minimum entre les deux plans donnés, X et ¥ devront demeurer
indépendans , et consequemment cette équatxon se partagera en ct$

deux-ci :
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(1dy/2) /ety Iyt (/2 )yltemxly x?
= T =0
e +x"+y'=);? o, (aatrefyla)T ?

qu'on pourra mettre ensuite sous cette forme

4 xll+ylz) 2! e (! 2! 1) x! (14 x!2+y/z )J’”"‘( xlxﬂ_‘_ylyll)yl
«a +x“+y’3)% - (1+xlz+ylz);'£

=0,

ou, en continuant d’employer les notations de Lagrange ,

G- xlz+y/z) Kl el 1 +x”+y”)'x' _ ( 1-4- xlz+yln)yll._( 1-}- x”-{-y"){y’ _
(l+x{:+yla)% =0, T l+x"+7”)% -

0,

N

ou encore

&1y T T o, 1" T T =
12yl 4 1 far2gy /2

ou enfin

( x! )/ ( y‘f )/
Vi) =0 Vi) =%
ce qui donne

x’ 5’ -

— =A N —_—t =
Vit Vit
En considérant , dans ces équations , 2/ et y/ comme deux in-

connues , on en tire , en transformant les constantes ,

A B

lm———= ;
z V 1—A>—B> M ;

d’olv enfin

a=Mz4G , y=Nz+H ,
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cest-a-dire que la ligne cherchée est une ligne droiie , comme on
pouvait bien s’y attendre.

L’équation aux limites (XIX) devient, dans le méme cas,

M N
W o e (Y=Y, )=0;
Ve o X+ (% )=o

de sorte que les constantes G et H demeurent tout-i-fait arbi-
traires ; ce qui revient a dire que les parties de paralléles inter-
ceptées entre des plans paralléles sont de méme longueur.

Les coefficiens des deux fonctions X, et X, , ainsi que ceux
des deux fonctions ¥, et Y, étant les mémes avux deux limites,
il s’ensuit qu'on ne saurait éiablir des conditions indépendantes pour
ces deux limites, ce qui revient 3 dirc qu’une droite qui perce
deux plans paralléles fait des angles égaux avec I'un et l'autre.

S’iln’y a aucune condition particuliére prescrite pour les limites,
Yindépendance absolue des fonctions X,, ¥,, X, , ¥, ne per-
mettant de poser ni X,—X,=o0 ni ¥Y,—¥,=o, I'équation aux
limites ne pourra étre satisfaite qu’en posant simultanément M=o,
N=o , au moyen de quoi les équations de notre droite se ré-
duiront simplement & =G , y=H ; ce qui revient a dire que,
de toutes les droites mendes entre les deux mémes plans paral-
leles, la perpendiculaire commune, indéterminée d’ailleurs de si-
tuation , est la plus courte.

Si les limites étaient des points fixes , tellement situés sur nos
deux plans qu'on elit, pour le premier, =a,, y=5,, et pour
le second, #=a, , y=0,; en exprimant que ces valeurs et celles
de z satisfont aux deux équations

z=Mz+4G , y=Nz+H ,
on aurait
ay=Mc,+G , b,=Nc,+H ;

a,=Mc,+G , by=N¢,+-H ;
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éliminant denc , enire ces six équations, les quatre constantes

M, N, G, H, on obtiendrait pour les équations de la droxte
cherchée

x —-a’o y —ba — z—-co

-— H
ay==a, bl—bo €1™=Co

ce qui revient  dire que Je plus court chemin entre deus points
de lespace est la ligne droite qui joint ces deux points.

Au lien de points fixes , on pourrait donner pour limites des
courbes planes tracées sur les deux plans paralleles, Conservons
lé point fixe (a,, bq,¢o) sur le premier plan, et donnons-nous
pour limite , sur le second , la courbe plane suivant laquelle il est
coupé par la surface cylindrique donmt I'équation est

iz, y)=L=o ;

nous deyrons avoir (34) l'équation de condition

(&) Xt r=o.

en ajoutant le produit de cette équation par un multiplicateur
indéterminé A 3 I’équation aux limites, aprés avoir fait dans cette

derni¢re X,=o0, Y,=o0, ainsi qu’on le doit, puisqu’ici la premiére
limite est fixe ; il viendra

v (F ) e 0 (5 =

Egalant présentement 3 zéro les multxphcaleurs de X, et 1’, , nous
aurons les deux équations

M ar,
‘/1+M’+N=+"( >‘°" V1+M=+N= ( ) =0

/
entre lesquelles éliminant », il viendra finalement
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(& )v=(5 )

mais, en différentiant I'équation L=o, il vient

(& )2+ (5 )ir=>;

qui, combinde avec la précédente , donne

dy M
— T o o— ;

dx N
mais les équations de notre droite étant , dans le cas actuel,
Z=a,=M(z—c,) , y—bo=N(zm=c,) ,

P'équation de sa projection sur le plan de la courbe sera

y-5°= 1%(”""70) s
d’ott I'on voit que cette projection , et par conséquent la droite
elle-méme sera normale a la courbe.

1l demeure donc établi par 13 que Je plus court chemin d'un
point de lespace & une courbe plane est la normale menée de ce
point & cete courbe ; et il est facile d’en conclure que Ze plus
court chemin entre deux courbes planes situées dans deuzx plans
paralléles , ou méme dans un méme plan , est la normale qui leur
est commune.

Nous voild donc parvenus ici & la solution d'un probléme que
précédemment (13) nous avions vainement tenté de résoudre ; et
Pon voit que cela tient a ce qu’alors y était, dés-1’abord, supposée
fonction de 2, tandis que #, ¥ sont supposés fonctions d’une troi-
siéme variable z; ce qui permet d'établir ensuite telle relation cn
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veut entre # et 4. Mais nous éprouverions ici une difficulté du
méme genre si nous nous proposions d’assigner le plus court chemin,
soit entre des courbes 2 double courbure, soit entre des surfaces
courbes ; puisqu’il est de I'essence de la question que mous traitoms -
actucllement que les limites ¢, et ¢, demeurent invariables. On
peut déji soupgonner, aa surplus, et nous verrons bientét dailleurs
ce quil y a i faire pour surmonter cette difficulté.

Pour dobner un exemple du cas mentionné ci- dessus (27),
reprenons P'équation

ey’ mctytyr? x (12 y /ity Tl
(‘+x/z+ylz){‘ ' (I+x/z+y/z)% =0

et supposons qu'au lieu de chercher quelle est absolument Ia
plus courte ligne entre nos deux plans , on cherche seulement
quelle est la plus courte entre toutes celles qui, se terminant &
ces deux plans, sont situées sur une sphere ayant pour équation

4y t—r*=M=o .

dM (d’M
()= (F)=>.

de sorte que l'équation d& condition (XVI‘I) sera

On aura ict

X4y Y=o0;

ajoutant le produit de cette équation par un multiplicateur indé-
terminé » a celle ci-dessus, il viendra

: (lq—y’ﬁ)x"—x{y{y//‘ (14’2 )y T =mctly 2" ' ' .
{ VTN §X+§ A L
égalant alors séparément 1 zéro les multiplicateurs des fonctions
X et ¥, il en résultera les deux équations. /
' (v+5"7)
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(I+.yfz) x”—x’ ,y-ll - ’ ’ (r_*'_téia)‘;,llé'-x{ylxll .
(u+xu+yu)" Tra=o, - (raliy)T “hay=o ’

qui, dapres l¢ precedent calcul , reviéqﬁem h

(\/ W) Tase, (v’ 1+x'=+y'=) =,

entre lesquelles dliminant A, il vient

() = i)
g ‘/W)‘V or=Dk

ou, en développant et transpOSant 5
(.;l‘»y//._.yx//)‘/ x+x/z+ylz-—(x»y/ x/){‘/W)/ —0
- A ; 1+x’2+y“ » N ‘ -
(zy/—ya)V/ TFTdgn—(ay/—y 2\ y/ Ty _
’ I+,x"2+ylx T -

‘ X - x’ /
ou enfin - -’—'—a—y—-ﬂ— =0, -
: V taiy”,

ou encore

xyl—yx! - :
Vidargy: )
telle est donc I'équation différentielle de la surface qui doit couper
la sphére dont I’équation est 2fyrtr=r, (8)
suivant la ligne cherchée. Or, soit un plan passant par le centre de cette
sphére et ayant peur équation Az+By=z ; ()

ce qui donne ,.en intégrant )

les équations (8, ) donneront par différentiation

za'+ yy'=—z , Az'+By'=—1 ;
y+Bz . xtAz .
Ay—Bx ’ r== Ay—Bx '
de 13, en ayant égard aux équations (8,7),

r2 [E—— r\/ 14 A2-4-B2
fad 22 el
Ay=—Bx ’ V rtaity Ady—Bx '

d’ou /=

xy/—y‘x/: —
xy'—yx! r
Vitaigys  Viddt B

dquation quf eqﬁwaut 4 I'équation («) ; doltil suit que le systtme
Tom. XUI. 6

et par suite
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des équations (8, y) dquivaut au systéme des équations («,-g); puis
donc que les premiéres appartiennent 3 un grand cercle de la sphére,
il doit en étre- de méme des derniéres; la ligne cherchée est donc
un arc du grand cercle donné par les deux équations

g tyrd=r, Ax4-By=z ;
dans lesquelles on peut profiter de I'indétermination des deux cons-
tantes A et B pour -assujettic la ..courbe a 'se terminer i des
points donnés sur. les intersections de la sphéée -avec les deux plans
paralleles entre lesquels cette courbe doit se trouver comprise. I
demeure donc établi, parce qui précéde, que /e plus court chemin ,
sur la sphére , entre deux-points de sa surface , est larc de
grand cercle qui joint ces deux points.

37. On peut, comme nous l'avons fait (14), ramener & la question
qui nous occupe , d’autres quesfidns qui semblent d’abord beaucoup
plus compliquées. Soient U, P, Q, R,..... des quantités composées
d’une maniére connue quelconqueenz, z,y,a’ , ¥, " , 5" e
On peut se demander d'assigner , parmi les diverses valeurs de x
et y en z qui, entre des limites déterminées, donnent

JPdz=a ," fQdz=b, . fRAz=C .. (XX1IV)
oua, b, c,... sont des conslantes données » quelles sont celles

qui, entre les limites y rendent fUdz maximum ou minimum ? Or,
en raisonnant comme nous Pavons fait & l'endroit citéd , on verra
qu'en posant ~
V=U4-4P+BQ+CR+...... ,

od A4, B, C sont de nouvelles constantes, la question se réduit
3 rendre f¥dz maximum ou minimum , entre les limites dont il
s'agit, et & déterminer énsuite les constantes 4, B, C, . B
Yaide des conditiohs (XX1V). Voici un exemple.

38 PROBLEME 1V. Entre toules les courbes qui, se terminant
@ deux plans paralléles , sont telles qué I'ensemble .des perpen-
diculaires entre ces plans , fermindes & l'un et'd lautre, qui passent
par les dipers poinis de -ces courbes , forme uhe purtion de surfgée

1
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eylindrigue dont Vaire est donnée , quelle est celle qui | entre ces
deux mémes plans, a la moindre longueur ?

Solution. Soient toujours, comme dans le précédent probléme,
I'axe des z perpendiculaire et le plan des xy paralléle aux deux
plans donnés , que nous supposerons encore avoir pour équations

z2=¢, , z2=¢cy .
Soit 4* I'aire donnée de la portion de surface cylindrique formée
par toutes les perpendiculaires entre les plans paralléles mendes par
les points de la courbe cherchée ; nous aurons , entre les limites ¢4 etc, ,

(er—c fday/ wrqyn=4h* ;
de plus, nous devrons avoir, entre les mémes limites,
Sizy TForgy
minimum ; d'ot Pon voit (37) que tout se réduira & rendre mi-
nimum , entre les limites dont il s’agit, I'intégrale

f{ ‘/ 1+x/z+ylz+,4<(;x~—(;°)‘/xlz_hy/z}dz :
sauf ensuite 4 déterminer convenablement la constante A.
En posant, pour abréger , A(c,—c,)==C, nous aurons donc ici

V=y/ Tt Cy T

Ll ) —o ) a! Ca! w ) o
dx %> dx/ ‘/I+x/2+y-lz ‘/6‘;/21_:}//z ( dx” — U, 0eee

— —— - ‘yl C
=0, dy’ ) I+x/a+y/3 == V xigyia ( d_y” )-—-0 3 se
AV N/ all(ay)—alyly!  Cyl(ylallmmgly!
> dxll > — o ’ oo

O @yt
av )/ y(1x!?)— x'y’x” Cx/(y’x”—x’y”
(I +x/;+y/z)“ - gx/z+y/z)§.‘ ( d)’”

=0, e

(-E.;;; -—0,'--;

ar N/ .
— 20, cese
( d.yll
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en conséquence , I'équation ( X1V ) deviendra
' L D C_y’(y’xi}—x{y") T
{ (I+xlz+ylz)‘7 (x/z_hy/z)% ; X
(Larzdy'2)s (x/24-y"2)" )
Si donc la courbe -cherchée ne doit étre assujettic A aucune
autre condition, les coefficiens de X et ¥ devront étre séparément

nuls , ce qui donnera, pour les deux équations différentielles de
la courbe dont il s’agit

x”( [.*_y!!)_x/y}:yl/ y/(ylx//-—x/y”)

(,+x/z+y/n)§ (&/24y /z). =0,
¥ (1422 y—aly 2! Cax/(y/x!l —xly!l)
( ,+x/z+yre)% - xn_'_),/z)% =03
ou bien '
Cx/ /
(\/ x+x'=+y'=) <\/ xf=+y'=) -

y Cy! o
=)+ () =

ce qui donne, par une premiére intégration,

x! + Cx/
Vv 1g-alafy/a V aligyia
y/ Cyl .
‘/1+x’2+y/3 + Vxlz_’_ylz _B ’
on tirera évidemment de 1A

=A y

a’=M , y/'=N ;
M et N étant deux nouvelles constantes, fonctions de 4, B, €
on aura donc, en intégrant de nouveau ,

=Mz+G , y=Nz+H ;

la ligne cherchée est donc une droite ; la surface cylindrique dont

Vaire doit étre égale a %* se réduit donc A un plan rectangulaire
‘ayant cette droite pour diagonale.
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39. Dans tout ce qui précede , nous avons constamment supposé
qu'il n’y avait dans 7 qu’une seule variable indépendante ; exa-
minons présentement ce qu’il y aura a faire lorsquiil y en aura
plusieurs, et que la quantité & rendre maximum ou minimum
sera une intégrale multiple. Soit /” une expression de forme connue
quelconque , composée de deux variables indépendantes z et y,
d’une fonction z de ces deux variables et des divers coefliciens
différentiels partiely de cette fonction, jusqua ceux de tel ordre

on voudra; et considérons l'intégrale double '
SV dady .

Si la composition de z en x et y était connue, rien ne serait plus
aisé que de ramener cette intégrale 3 la forme ffZdxdy, ou Z
serait une fonction de 2 et y seulement ; et alors on pourrait , soit
exactement , soit par les séries, exécuter l'intégration entre telles
limites constantes ou variables qu’on voudrait.

Mais on suppose que lexpression de z en z et y n’est pas
donnée , on suppose qu’elle est I'inconnue du probléme ; et on propose
de la déterminer par cette condition qu'aprés la substitution de sa
valeur et de celles de ses divers coefliciens différentiels partiels dans
J/Vdxdy , qui alors prendra la forme J/Zdxdy , cette intégrale,
prise entre des limites données quelconques , constantes ou variables,
et sous des conditions données, compatibles toutefois avec la nature
du probléme, soit plus grande ou plus petite que toutes celles qui
pourraient résulter, entre les mémes limites et sous les mémes con-
ditions , de toute autre valeur , fonction de z et ¥ , prise pour z.

4o. Ici, ot nous avons deux variables indépendantes , il mnous
serait incommode d’employer les notations de Lagrange; en con-
séquence , nous adopterons les abréviations que voici :

Tom. XIII, n.° 11, 1.5 goit 1822, 7

I
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dz

—_— _l daz _ d3z — B
dx — ) 5;;—’2 y (T;;;_-i‘- y ¢ s 8 s ey
dz —_— dzz - &3z ~
dy e dwdy 0 ? Qwrdy Pt
dzz a3z _ )
-a-;::p ’ - dxdyz-—s 3 * 6 o 0 o 0 -',
diz L
'33:3'——'- 9 ¢ o+ ¢ 8 s 0 s g

«

e (D

Quant aux différentielles partielles , nous poserons
(5 )=x (5=, (5)=n (5 )=¢
( )—M (dl’)_o (dV)_

(Z)=p, (E)=s

e
-
b

~
.
.
.
.
.
-

-
.
.
-
.
.
-

(*) Nous aurions hien désiré de pouvoir emplo ‘er les notations ordinaires j c’est-
) b
dz

o . dz .. . .
a-dire, de faire —— ==p, & ==¢ , et ainsi du reste; mais, dans le dessein

dx

ol nous clions de pouvsser les développemens un peu plus loin quon ne le fait
communelnent , cela devenai lmpossible, .
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et si nous avons quelques autres fonctions de x et y 4 considérer,
nous en représenterons les divers coefficiens différentiels sans aucune
abréviation.

41. Pour en revenir présentement & notre probléme ; quelle que
soit la valeur encore inconnue de z en z et ¥ qui deit le ré-
soudre , on peut toujours la considérer comme Pordonnée d’une
certaine surface courbe, dont les deux abscisses sont & et y ; et
le probléme se réduit ainsi & déterminer P'équation de cette surface.

Suivant donc D'esprit de la méthode ordinaire de maximis et
minimis , il faot, pour parvenir a celte équation, exprimer que
la surface cherchée est telle que , pour si peu qu'on la déforme ,
en tout ou en partie, d’une manitre arbitraire, et méme discon-
tinue si l'on veut , lintégrale ff/Vdady , toujqixrs prisc entre les
mémes limites et sous les mémes conditions, deviendra plus petite
dans le cas da maximum , et plus grande dansle cas du minimum.

42. Conservons z pour le symbole de I'ordonnée de la surface
qui doit résoudre le probléme ; I'ordonnée correspondante, dans
toutes les autres surfaces dont il vient d'étre question, pourra éire
représentée par la formule générale

z+iZ

dans laquelle Z est supposé représenter une fonction de z et y
tout-a-fait arbitraire , continue ou discontinue , et ol # est encore,
comme ci-dessus , un nombre abstrait , positif ou négatif, si petit
qu’on le voudra, sans pourtant ére absolument nul. Il est évident,
en effet, que, méme en se donnant 7 a volonté, on pourra encore
profiter de l'inddtermination de la fonction Z de manicre que
cette formule devienne l'ordonnée de telle surface qu'on voudra;
et qu’ensuite on pourra diminuer graduellement le nombre 7 de
telle sorte que cette surface devienne si peu différente quon
le voudra de la surface cherchée. D’ott I'on voit gne, si I'on cons-
truit arbitrairement une surface aussi voisine de la surface cherchée



%8 INTEGRALES

qu'on le voudra, on pourra toujours considérer z-+7Z comme cX—
primant ordonnée de cette surface. De sorte qu'en supposant Z
arbitraire et 7 d’une petitesse illimitée, la formule z-4iZ exprime
Iordonnée de la totalité des surfaces que nous devons comparer
3 la surface cherchée:

43. Remarquons pourlan\t » avant d’aller plus loin, qu’il se pourrait ;
dans des cas particuliers, en vertu de certaines conditions de la
question, que la fonction Z, toujours indéterminée,, ne dit point
&tre tout-a-fait -arbitraire , ou du moins ne dat I'étre que sous
certaines restrictions : c’est , par exemple , ce qui arriverait si la
surface cherchée devait passer par une courbe donnée, plane ou
a double courbure, ou encore par un polygone donné, rectiligne ,
mixtiligne ou curviligne , plan ou gauche ; car alors on n’aurait
d lui comparer que les autres surfaces qui passeraient par cette
courbe ou par ce polygone ; mais nous avons déjd va (§. Ietll),
et nous verrons bientdt de nouveau qu'on est toujours & temps,
a la fin da caleul, d’avoir égard a4 ces sortes de limitations,

44. Par le changement de z en z+4/Z , les quantités

Z l> n ., A B I N S N
m , o, T ) v oo v 0o o o,

p 2 S 3 e e e o0,y

2y e,

deviennent respectivement

-

. . dZ . d2Z , BZ
ez , l+sz- R n+z-a-c—z- g-+i

dxs’itiniuo,

. dZ . d2Z I A
m+l—(}:}- ’ o+l(‘ix—d):, r+ldx2dy,.......,
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, d2Z . d3Z
p+l—é}—; P S+Zw,....
., d3Z oL
irl'-l'-‘;;- Y

- 3
) e st e 8 0y

en conséquence , on frouvera , par l'application de la série de

Taylor au développement des fontions des polynomes, que ¥
doit devenir (40)

[ 3z . 7
o e

dZ d:Z
KZ+L o +N = +Q

az &z Bz
+Md—[ ~+0 Ty +R dMy+ .....

74 4P S s 22 L e

y2 dxdy>

3z
+T ot

L +-o-u|
d'olt il suit que ffFdady deviendra

i az &z 3z 1
KZ+L "5;- +N '(Tx':"+Qa 'a'x—s—'—l—nu
dz d:Z 3z
+M '—d;- +0 W‘*‘Bm‘*‘m.
f]ﬁ’dn’dy+'£'f/< +P f:.% 4 $Z L dady 4
dy2 dady
41 22

dy3

| o
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afin done que ffPdxdy soit maximum ou minimum , il faudra;
suivant les principes connus , que le multiplicateur de 7 soit nul;
et alors le mazimum ou le minimum aura lieu, suivant que le
multiplicateur de 72 sera constamment nrédgalif ou constamment positifs
La condition commune au maeximum et au minimum sera donc

exprimée par I'équatien

dz d=Z d3Z y
KZFL N 2 0 5 e
dz d>Z d3z
~+M e -+0 FP +de2 dy+""
N/A 4z &z > dedy=o0
P oo S et ;
43z
+ T —‘I‘;E—'—“oou
\ :-l-"" J
ou plus simplement, en différentiant ,
dz d=Z 3z 1
O:KZ-]-L 'E;+N —é.-x—;—*-Q E +_"_
. iz d:Z a3z
‘:+M-;l_y— +0 dady dxzdy+'°"
Y P XXV)
+P dy2 dxdy=+"" 0
d3Z
+I'll

45, Cela posé , en ayant successivement égard 3 la variabilité

de x et A celle de ¥, la

formule zdp= d{gp)—pdu donne
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K2=KZ ,
az drL d(L.2)
dw “'TZ+"'dT ’
az am MZ
el 9 d(MZ) ,
& dy dy ,
aN az
N¥E_ N d( g 27N a';)
dx? - dx? - dx ’
ao
0 &z ( ) d(—d—;z) dx(NZ)
dxdy dxdy dy dady ’

P d;Z‘:___*_ d=p Z"d(@z_P%)

d]‘z dyi d.y- 4
&Q , dQ 4z
a3z __ d Q +d dez 77 dx -—_+Q de
¢ das dx )
d°R dR 4z d*R
az &R d Sy 2T de (dx- )
dx2dy dxzdy dx dy
dR az
ds dx Z-R dx )
- ddy ’
ds dz
d3z — + ( Z) da dy — dx d_y
dedyz dmy dy
ds az
___d T £ W)
dedy | ’

T dT dZ d=Z
dz __ &7 Z+d< 75 it 57 )

& T 4 dy

. . . . . ’ . ° » . . . [ . . . . . .
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Ces .dé’velop.pemens » que l'on peut d’ailleurs vérifier en effectuant
les différentiations indiquées , étant substitués dans I'équation (XXV),

elle deviendra

4L, &N d3Q
K' ._.d_x_. -é-;; Sr— -:1;- asen
dM d:0 d3R
— % Ty~
ly xdy xdy“
o &P @S z
T Tt
aT
— —é?-
e
f . aN |, & "
dx dx2 dQ
N-“-"‘—'— [N
do d:R d= +
d. Gy dwdy " - iz
d. \Z dR —_—
+dx<< + —_— el da
&S dy
?‘ (1] .
ly + .
e a0 d:R
M2 =
dz da? as
P'— — +o.o.
. ap I=8 dx .
+ ;_ ) dy dxdy Z+ aT .i_z.. +§
" —— “e0 d
ET
y +....
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(0— = 4.

dz. ) s R"".u. VA S"‘".no az

Frm — (2t _w ) _ (hel xx
{ + )

46. L’équation étant mise sous cette forme , on voit qu'une
partie de son second membre est une dérivée exacte par rapport
& x, tout-a-fait déterminée quel que soit Z , tandis qu’au contraire ,
si l'on voulait considérer I'autre partie de ce second membre comme
une dérivée par rapport &4 z, cette dérivée changerait de forme
avec Z; dou il suit que cette équation ne peut subsister qu’autant
que la partie de son second membre qui est une dérivée exacte
par rapport a z et celle qui ne I'est pas seront séparément nulles,
Egalant donc d’abord eette derniére partie 3 zéro , il viendra

. dL, , &N &9
K— =t g — gt

dM d:0 d3R
— 7 Tay
4 xy xidy

LYY

— ep  as . |z
=9 t o ———
dy2 dadyz
asT
— gt

Tom. XIII. 8
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do d*R b - 9
M‘— 'a— + e FTYY
X% dxa as
‘ P— =
dP d=S . da T 1
T awy | dz ez 1L xxvn
S T S -%dyﬁ-; (XX
dzT dy ovea
pooder T -
Cette partie étant ainsi supprimée , dans Péquation (XXVI), elle
déyiehdk‘a , en passant aux fonctions primitives,
. aN . @ 5
L'— d-— N _g' bt WYY 4
x da? r dQ 3
i N—' :-—-+nto
d0 . &R : dx 0
“— et e —y g 40 A TYT) dzz
. dy dxdy L s 4R _d_%_ . —
Y= . >.Z+< --i— +....> dx da T
. 429 ' dy‘ —ente
+ "d_r —e
7 \ + .. N
r dR
0— 3 ‘ S
R* ) L —
d \ dz csee dz
el as Sl —_— . 141
-+ 3 “T"*‘ Z+§ %dx +3 s E” .. (XX’V )
y LT YTIR p—eee

47. Or, présentement, les mémes considérations qui nous ont
conduits 2 partager I'équation XXVI) dans les équations (XXVII)
et (XXVIH) conduisent également a décomposer chacune. de ces
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dernilres en deux autres ; de sorte que finalement I'équation (XX VI)
donne naissance aux quatre suivantes: '

0=K— =
amr
Ty
f do d*R
M= ot g — T'
dP d:S 1
X= ¢ dy dxdy ...> Z4¢
d:7
+ i.}',? ——aves L
+...
dN . aQ ;
L— .d—;;- + '(—}'xT’—u .
d0 d:R .
Y= y T Ey S 74
d=8
dyr

dL, &N a0

dar  da?
d=0 43R
-
dxdy  dwx2dy
dap d3s
+d dy: —dxdy2+""
BT
2
:_'+'uu
ds
P—‘a;- o
ar iz
dr evee dy
+nu
dQ b
N— "d'—x' +nu
L g
_d;'- 1 dx
S

,  (XXIX)

S Q... &z

55

— .4 5 (XXXD)
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an |
— d_{;‘- “tee
’ B—... dZ - J S'-,’-o. dZ B
C= —§+wﬂ"*5$* e 000
-

X étant une fonction arbitraire de z sans 'y, Y une fonction arbitraire de
¥ sans z et C une constante arbitraire. A la vérité , il semblerait,
au premier abord , qu’au lieu de € on dat avoir une autre fonction
arbitraire de #' sans y ; mais remarquons qu'en commencant les
intégrations par rapport a y au lieu de les commencer par rapport
3 2z, on serait conduith conclure qu'au lieu de € on doit avoir

une fonction arbitraire de y sans x; d'ot I'on voit que € ne doit
renfermer ni 2 ni y , et ne saurait élre conséquemment qu'une
simple constante arbitraire.

© 48. L’équation ( XXIX ) ne renfermant plus ainsi que les don-
nées primitives du probléme sera conséquemment 1'équation diffé-
rentielle partielle de la surface cherchée. En lintégrant , on en
déduira la valeur de z exprimée en # , y, fonctions et constantes
arbitraires:, de laquelle on conclura ensuite cellesde &4, 7, m,n,
0, P, exprimées également en x, y , fonctions et constantes
arbitraires. On substituera ces valeurs , ainsi que celle de z, dans
les trois équations (XXX, XXXI, XXXII), qui dés-lors ne ren-
fermeront plus que z, y , des fonctions arbitraires de ces deux
variables , des constantes arbitraires, Z et ses divers coefficiens diffé-
rentiels , les deux [onctions arbitraires X et ¥ et la constante C.
Ces équations, ainsi transformées, serviront a déterminer les cons-
tantes et fonctions arbitraires introduites par I'intégration de I'équation
(XXIX) , de maniére 4 satisfaire aux conditions relatives aux liumites,
Mais , comme des détails sur cesujet nous entraineraient trop loin 4
nous nous bornerons a donner un exemple de la-recherche de
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I'dquation différentielle partielle , en nous proposant le probleme
suivant :

PROBLEME V. Quelle est la moindre surface, entre ioutes
celles qui sont interceptées par une méme surface prismique ou
¢ylindrique indéfinie donnée ?

Solution. Soient pris le plan des 2y perpendiculaire et l'axe des
z paralléles aux arétes ou élémens rectilignes de la surface cylin-
drique ou prismique donnée ; les axes des z et des y , dirigés
dailleurs comme on le voudra dans leur plan , étant néanmoins
perpendiculaires I'un i Yautre. La question se réduira 3 rendre
minimum Vintégrale [fdzdyy/137°4ms , bornée a la surface du
prisme et du cylindre.

Nous aurons donc ici V=y/i§ilgm:, d'ou (40)

14
K=o , L="'/—I——'_F—2-2:—-—_l_—m;, N=o,

m

>3

H=m‘———ﬁf-,—n—:, O=0,.:...

done

dL (1}-m2)nw=Imo d:N )
Ao Glgmnr P G 2t

H
(31
e¥

ar _ a4lyp—im @0 _

& T Gplgmdt T dwdy Ottt
dzp

d_)”no""""p

';-o-‘.;;

En conséquence, 'dquation (XXIX) deviendra
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(1bm*)n—2lmo+ (141 \p=0 ;

et telle sera "équation différentielle partielle de la surface. cherchée.

Or, il est connu qu’en représentant par s. 'un des.deux rayons
de courbure principaux d’une surface quelconque , en Fun quelconque
de ses points, ces deux rayoms sont donnés par I'équation

(np—o" 4 [ (14 m Y —almok(1H1)p (bl hmF b1 om0 5

donc Véquatien ci-dessus est eelle. de. toutes. les surfaces qui, en
chacun de leurs points,; ont leurs deux courbures principales égales
et de signes contraires. Il n’y a done que des surfaces de ce genre
qui puissent résoudre le probléme que nous nous sommes proposé.
Leur espéce particujidre dépendra, dans chaque ecas , de la nature
des conditions prescrites pour les limites de l'intégrale (*).

Afin donc de pouvoir compléter la solution du probléme , il
faudrait ; avant tout, intégrer l’équation

(r-ym* n—2lmot-(1 41" )p=0 ;

malheureusement , eomme l'observe Lagrange , les intégrales qu’on
en a obtenues jusqu'ici ne sont pas sous une forme qui puisse se
préter aux applicatiens, ‘

50. Si lon ‘avait proposé de déterminer la surface de moindre
étendue , entre toutes celles qui se terminent & la méme courbe
plane ou i double.coyrbure donnée , la question serait rentrée dans
la précédente , puisqu'on peut toujours imaginer une telle courbe
comme tracée sur une surface ayant toutes ses arétes ou élémens

(*) Voyez, sur ce sujet , une dissertation insérée 3 la page !43\ du VIL®
volume du présent recueil : .
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rectilignes paralléles d 'axe des z, et il en serait encore de méme
si la limite donnée était un polygone plan ou gauche.

51. Mais si I'on demandait la surface de moindre étendue entre
toutes celles qui se terminent & d'autres surfaces données , nos mé-
thodes actuclles ne seraient plus applicables, attendu qu’elles sup-
posent essentiellement que # et y ont anx limites des valeurs ou

une relation indépendantes de la valeur de z. Nous dirons bientot
comment on pourrait éluder cette difficulté.

52, Soient P, @, R, ... des fonctions données de =, ¥, z,
l,m,n,w.,eta, b, c,.. des constantes données. Si 'on de-

mande, entre toutes les valeurs de z fonction de x ety qui, entre
des limites données , rendent

J/Pdzdy=a , [fQdzxdy=3 , ffRdzdy=c . (XXXIII)

quelle est celle qui , entre les mémes limites , rend moximum
ou minimum lintégrale

S/ Udzdy ,

L4
ot U est aussi une fonction donnée de z, ¥, 2,7, m,n,lui;
en raisonnant comme nous Vavons déja fait (14, 15 et 37), on verra
qu’en posant

V=U+AP4+BQ+4CR} ... . :;

tout se réduit i rendre JfVdxdy mazimum ou minimum , entre
les mémes limites , sauf ensuite a déterminer les constantes A4,
B, C,... a laide des conditions (XXXIII}. Voici un exemple
d’un probléme de ce genre.

53. PROBLEME VI. Enire toutes les surfaces qui retranchent
d'un prisme ou d'un cylindre droit & base quelconque et d’une
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hauteur md#lme une portion d'un volume donné ; quelle est celle

dont laire , terminée & la surface latérale de ce prisme ou dece
cylindre est la moindre possible ?

Solution. Soit pris le plan de la base du pr:sme ou du cylindre
pour celui des #y qhe nous supposerons rectangulaires , mais d’ail-
leurs de direction quelconque , et seil I'axe des z parallele aux
arétes ou élémens rectilignes de ce- méme prisme ou de ce méme
cylindre. Soit ¢’ le volume de la portion du cylindre interceptée
du c6té de sa base par la surface cherchée, nouvs devrons avoir,

dans les limites déterminées par la surface laterale du prisme ou
du cylindre

Sfzdady=c* ,
de plus, entre les mémes limites , /fdxdyy/137>Fm* devra, comme

ci-dessus , étre un minimum. En conséquence, tout se réduira i
rendre tel, toujours entre les mémes limites , I'intégrale

SN T FFm+4z)dady

L4
sauf 2 déterminer ensuite convenablement la constante A.

Nous aurons donerici V'=y/ 1q4lfmi4dz, dod

- ?

K=4, L:—-m, N=o0o,.000.;
m

M= T 0=0, oot

donc

dL
dx
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dL __(l-{—m’)n-—lmo d>N .
do  (eflgmny 7 das

_'o""'oo.

dm (1+I=)p—lmo 20

dy T Qim0 dwdy rrtr Tt
d:P
F-—-O,..c....,

. ; ‘ . ; L[4 .‘ ; ,
En conséqueme, I'équation (XXIX) deviendra
(1+m*)n—2/mo+(1 +l’\p—A(1+l‘+m’)

e

équation qu ‘on do’t encore moins espérer d’intégrer d’une manidre
commode pour les applications que celle que nous avons obtenue
ci-dessus. On s’assurcra facilement qu’elle comprend comme cas
particuliers la sphére ainsi que le cylindre et le céne de révolution.

54. Quelque étendus que puissent paraitre les développemens
que nous venons de donner, dans ce paragraphe et dans les deux
précédens , ces déveleppemens ne doivent néanmoins étre considérés.
que comme une introduction a la véritable méthode qui va pré-
sentement nous occuper , et que comme un moyen d’en bien faire
saisir I'esprit et de bien faire comprendre la nécessité des considé-
rations qui lui servent de base.

55. On a vu que le probléme de la plus courte distance entre
deux courbes planes tracées sur un méme plan, qui avait résisté
aux méthodes du §. I, a cédé sans efforts a celles du §. II;
cela parce qu’ici, au lieu de considérer # et y comme fonction
I'une de l'autre, nous les avions considérées. toutes deux comme
fonctions d’une troisiéme variable z; mais , dans ce méme §. 1II,
nous avons éprouvé un embarras pareil & celui que nous avons
rencontré dans le §. I, du-moment que nous ayons voulu traiter

Tom. XIII. 9
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le probléme de la plus courte distance entre deux surfaces courbes
données ; et cet embarras s'est reproduit de mouveau , dans le présent
paragraphe, pour la moindre surface entre des surfaces données.
En se laissant guider par l’amalogie, oa est comduit A penser que
cet obstacle ne ‘se serait rencontré dans aucun de ces deux endroits
si, au lieu de considérer # et y comme fonclions de z dans le premier
cas , et zcomme fonctions de xfet“‘y dans le second, nous les eussions
considérées toutes trois, comme fonctions d'une quatriéme variable,
dans le premier, et comme fonctions de deux nouvelles variables
dans le second, ce'qui, comme l'on sait, est toujours permis ; et
c'est ce que la suite montrera clairement.

56. Voila donc notre plan tout naturellement  tracé. Quel que
soit le nombre tant. des variables indépendantes. que des fonctions
de ces variables, et quel que soit en méme temps I'ordre de Vin-
tégrale & rendre maximum ou minimum , vous supposerons cons-
tamment toutes fes variables, tant indépendantes Que subordonnées ,
fonctions d'une ou de plusieurs variables nouvelles, en méme nombre
que les variables indépendantes pri‘mitives.'

57. Nous allons' appliquer successiverment ces considérations aux
divers -cas: que nous- avens déja traxtes, mais comme d'ailleurs les
raisomnémens théoriques-demeurent ‘exactement les mémes qu’alors,
nous nous d}speﬂserons‘ de les éinoncer , ce qui rendra notre
marehe beaucoup plus rapide.

5 IV.

58. La. waviable 'y ¢tant fonction de Ir seule variable indé--

pendante, z , et U/ étant une- quantne composée d’une maniére connue ’
quelcongue: em z, eni y-et en. coefficiens différentiels de cette:der-
ni¢re, variable, propesons-nous. d'assigner la- valeur'de y en 2 qui
rend lam{agmle S Uda:' MATIMUTP o mINImMmum ) entré’ des l‘in'ntes'
dennges ¥ . . . ,

- 5g. Popr resaud,f.e cette .questien:, nous- cqmméneerobs"par ipasser”

‘e

-
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par les moyens connus, de I'hypothése de y fonction de x % celle
de x et y fonctions d'une troisieme variable 2 , ce qui fera préndre
3 notre intégrale la forme /¥dz , ol ¥ sera fonction de x ¥
et des coefficiens différentiels ’ :

dx . d2x d3x dy dzy diy

EF ) -‘:t;—, 53— Jeevesteny "ET ’ Et—; 3 53- FX R R NNY ]

ES

que nous représenterons respectivement, comme nous en SOMMes
convenus plus haut, par

ﬁ’,x”,x/”,..-c.-o,y/,.)’”,_7’”,.......'
Supposant ensuite que z et y deviennent respectivement
a+iX , y+ir,

ou X et ¥ sont des fonctions arbitraires de 7, et £ un nombhre
abstrait d’une petitesse illimitde , /Pd? deviendra alors

(=) ““( o e 3 )X"+( 7) X .

1

I

En conséquence , la condition commune au mazimum et au mini=
mum sera-exprimée par l'équation . o

§ (e () mee (5 o]
RELE ORI Ea ]

6b. Qr, on 'a

(2) -

(9
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( 2 )x=( ).

()x=[(2) x]-( LY,
(dx” Jo=[()x J"[( IYxT+(5 )%
(&)= ) TG J (&) ](dx,,,

2 Y=<%§>*”‘

[ T
([T T
Er I EHET ™

......................

Ce qui donnera, en. substituant,

| [GE(EYEY -8y
{5 () :;z (&)1

(3) o=
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[( 35* (-1
EATES ]m[(dx,,,) ..... -
+( 3{7) (B )+( )= ¥

(5 )-( )+ [ M) Jeren

dquation qui se décompose en ces deux-ci :

[RIESTCAT <W )” <dxm>’” 19
+L( N (LY (L) ]

| [( i (dx> (d“,,,>"' ...... ]x
+[( dx// dr,,,)-l— ]Xl-]-[( dxm> ])w 1o

Const.= . (5)1

+[( = J ( dyu) <d7m ....... ]1’
& ( j]p; ( o ) +.. Y’+[( :;/)—.....]Y/’+ .....

61. Cela posé , les fonctions arbitraires X et ¥ de 7 devant
conserver lindépendance la plus entiére dans toute I’étendue de

Vintégrale , I'équation (4) donnera séparément
Tom. X111, 30
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(T F)HE) (& DEEN
(AT (Y e

lesquelles seraient deux équations distinctes en z, y et ¢, si &
et y étaient des fonctions déterminées de 7 ; de serte qu'il faudrait
éliminer # entre leurs intégrales pour parvenir & la relation cherchée
_entre # et y; mais, comme ce n’est réellement que par une sorte
de fiction que x et y sont considérés comme des fonctions de 7>
et que ces fonctions demeurent absolument indéterminées , il arri-
vera que les deux équations (6) devront admettre un facteur commun
qui, égalé A zéro, sera de méme forme qu’'une équation primitive
en z et y seulement qu'on aurait différentiée une ou plusieurs fois ,
en y considérant z et y comme des fonctions de #, et par con-

séquent en y faisant varier dz aussi bien que dy ; en posant donc,
dans cette équation , 1=z, d'ot 2/=1, a//=o

. (6)

, &=0 , .. OD
-aura , sous forme différentielle , la relation cherchée entre z et y.

62. Marquons présentement des indices o et 1 ce que doivent
devenir, aux deux limites de I'intégrale , toutes les diverses quantitds

dont se compose 'équation (5) ; cette équation devant avoir lieu
a ces deux limites, comme dans tout le reste de lintégrale, on
devra avoir, & la fois |,

[( dx,) (w) (dx,,, ]Y“
+[( dx”) (aw) +o X’o‘*‘r(d ,,, ]X" +...

Const.._< /
[(3;)0 dy,,)+< dy,,,)' ]Y
RICON GO S CH I T

2
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() ~(Z)+(Z )~ ]
H(@)-G=)+ JX«+[<W Jror.
(), (A fim e ]

SICINED I SR E e e

d’'olt, en retranchant , en conclura, pour 'égquation auz limites

'~

>
x

Const.={

63. Cela posé, si aucune condition n’a €1é preserite relativement
anx limites de I'intégrale; c’est-a-dire, siles valeurs de x, 2/, 27/, .....
¥ ¥’ 5 ¥ 5. peuvent étre quelconques a ces limites, les fonctions
X, ¥, ctpar suite les dérivées X/, ¥, X, ¥”,,... devront,
3 ees mémes limites, conserver toute leur indétermination et toute
leur indépendance ; I'équation (7) ne pourra donc subsister alors
qu’autant que les multiplicateurs de

Ko s Xlgy XVg yevenna; Yoo Yoy Yo iiiiinn,
X‘ ,‘X/‘ ’X”J FRCEERR ISR B ) -Y. ,‘Y/.,Y/” 9 PPV e e

() B o[- (Il 2)
NCOmES <W> ), <x,,,> Joe () o
LA ) BI A
) -2 +< A N € W€ T 2 € e

55 (D)
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ar
dx’

dV
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4

4

>°_< dx”) +( dx/// ’/ —ey 0—(dx”) (dx”/) +.--., o=
) (d‘””> (dx”’ // s O (dx”) (dx//l , "m » 0= (dx/n)
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seront séparément nuls; on devra donc avoir sépax‘émenf” _

!

dx’”) "“"uu 9 e

S eses py teine

yl/) (dy,,,)// ey 0= (dy” ) ( dy ) e, 0= (d_y’”) —eeey serer
14
T’ (Y A GG s 0=, (Y o 0= (),

équations qui, en général, seront en méme nombre que les cons~
tantes introduites par lintégration, et qui serviront & en assigner
les valeurs.

64, Si T'une des limites est fixe, la premitre par exemple ; c’est-
3-dire , si les valeurs de # et 4 A cette limite sont données , il est
clair quon devra avoir également X,=o0, ¥Y,=o, et 'on devrait
avoir aussi X/,= Y=o, X'y=0 , Y"”;=0; .uw. si 'on
exigéait qu'a la lxrmte dont il s’agit z/, y/, a’/, y/ , ... eussent
aussi des valeurs données, cela ferait disparaitre autant de termes
de l’equatlon (7); de sorte que, s'il devait en é&tre de méme A
laulre: '}mf,ute, cette équdnon se txouvera)t satisfaite d’elle-méme ;
mais alors 1es constantes introduites par l'intégration se detelmme-
raient en expnmant -.qu'a Lone et & lautre limites @, 2/, ' 3 enee

¥ ¥ s ¥ seewe ont les valeurs ass:gnees. A ,
65. Enfin, l'une ou l’autre ]xmne peut n’étre ni absolument
fixe , ni absolument arbitraire. On peut exiger, par exemple , qu'a
la premiére limite , on ait, entre x et ¥ et leurs coefficiens diffé-
rentiels , une eu plusicurs équations de relation, telles que

—Tess g et

 {
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F(Jv ) x/, ! 3 1esess y; y/' y// ,-n-n.)=L=Q ;

il en résultera I'équation
o= (% )OX0+( gf,‘ )OX/O-{—( %)X//a"i" -

( ) +( d / ) °+( dy/l) YU°+' rreers sy (9)

et on pourra en avoir d’analogues pour I'autre limite. On ajoutera
alors & T'équation (7) les produits de ces équations par des
multiplicateurs indéterminés ; égalant ensuite & zéro dans Iéqua-

tion somme , les coefliciens des diverses fonctions X, X/, X”,...%:.

Y, Y, ¥Y”,... et élimnant enfin les multiplicateurs indéterninés
entre les équations résultantes , il en résultera des équations qui,
conjointement avec

Ly=o " (10)

et ses analogues, serviront a4 déterminer les constantes.

hY

66. Appliquons ces procédés & un exemple.
PROBLEME VI Quelle est la plus courte dzstance a une
courbe plane d'un point situé sur le plan de ceite courbe ?
Solution. Soient (a, ) le point donné et L==o I’équation de la
courbe donnée en 2 et y; la longueur de la distance cherchée sera
JA2y/ 5gy7 ; de sorte que nous aurons =1/ a%zqy72, et par suite

s d

k ( (IJL" ) = ‘/xfz+y/3 ? (dx/’
y/(y’x”—x’y”) ( v /— ) .
(dx’) (x/2+y/2). v TS0, s 6 08 e o0y

= ‘.. ...’.
dx//)

3
.
.

-
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(F)=

av
%

.
e’
3
L]

A 4

ar o
‘/xlz_i_,rlz ’ d)'”) =°’. —

A x'cr’x"—x'y'o i
(T ) dy” )

@yt
Vs
(d!” ) Orer

En conséquence ’ les équations (6) deviendront

-
*
L3

A 4

2:1(.,-/‘7/1 .'x:”) :0 : X (ty!t—my ! 2!y =
(‘w’-/z,.,*_‘ylz)‘~ ik . :«(xlz-.*.ylz)? 4

- ‘ o
¢® seront conséquemment satisfaités l'une et I'autre én posant

x’y”—-y’x”

i =0,
- (&f3yl2)E :

* qui sera conséquemment Iéquation différenticlle de la lige.
cherchée, . :

Cette équation revient simp_lemen& a

4
gV ¥ 2.
gly/tey/alz0,  Ow T
ce qui donnme , par une premidre intégration '

=Mz’ d'od yl=Mz ,
et, par une nouvelle intégration,
y=Mz+6;

¢lest-2-dire que la plus courte ligne que l'on puisse mener 3 une
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courbe plane d’un point situé dans le plan de cette courbe est,
en général, une ligne droite. Voyons présentement quelle en doit
étre la direction.

D’aprés les précédentes déterminations, I'équation (7) devient

x!y 2! 7' Yo

—_— X, ————— X e D
‘/x/12+’»/‘z X, V &ordyod + ‘/xlla.‘,.yllz V &lorylo?

ou, en y mettant pour ¥/, et y/, leurs valeurs Mz’ , Ma/,,

V1+M=(X X‘)+V +M,( l_'Yo)::cf;

or, comme i la premiére limite on doit avoir z=a, y=4, il
s'ensuit qu’on doit avoir aussi (64) X,=o0, ¥,=o0; de sorte que
Péquation aux limites se réduit simplement 2

1 M )
V 14-M? ‘+‘/1+M'Y =05

mais , 3 la seconde limite, on doit avoir, entre z et y, I’équation
de relation L=o0, ce qui donnera (65)

(ax) ‘+(dL> ¥i=o:

Ajoutant le produit de cette équation par a 4 la précédente, il
viendra

(b (22 o] i o (22 Jrime

égalant alors A zéro les coefficicns de X; et Y, , on aura les
deux équations o
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X dL 3
e (F ) =

\/x-}—M=+ ( ) =03

entre lesquelles dliminant a , il viendra finalement

dL dL
)0 (),
X L d,}’ v

mais , d'un autre cété , en différentiant I'équation L.
comme équation en x et y, il vient.

(2), 24 () =,

qui , combinée avec la précédente, donne ’
. T, H - .
) d
E—l- y; =0,

Xy
d’'un autre edté, si dans I’équaliom

y=Ms4-G ,

o , considérée

on substitue les coordonnées du point (3 , 5), on aura, en

retranchant ,

y—b=M(z—a) ;

mettant donc dans cette derniére pour M la valeur donnde par
I'équation ci-dessus , il viendra , pour Véquaiion de la ligne

cherchée ,

(r—5)



INDETERMINEES, 23

ce qui nous apprend que /a plus courte distance & une courbe
plane d'un point situé sur le plan de cette courbe est la normale
abaissée de ce point sur cette courbe. 1l est facile d’en conclure que
le plus court chemin entre deux courbes planes , tracées sur un
méme plan , est la normale qui leur est commune (*).

67. On voit donc, ainsi que nous I'avions annoncé (55) , qu’en
considérant z et y comme fonction d’uue troisi¢me variable 7,
le cas des limites variables n’offre plus aucun embarras.

§ V.

68. Les variables # et y étant fonctions de la seule variable
indépendante z, et U étant une quantité composée d’'une maniére
connue quelconque en z, z et y et en coefliciens différentiels de
ces deux derniéres variables, proposons-nous d’assigner les valeurs
de z et y en z qui rendent l'intégrale fUdz mazimum ou minimum ,

entre des limites données?

69. Pour résoudre cette question , nous commencerons par passer ,
par les moyens connus , de I’hypothése de z et y fonctions ,i_(ge z
a celle de #, y, z fonctions d'une quatriéme variable #; ce qui
fera prendre & notre intégrale la forme /¥ dz, ot 7" sera une fonction
déterminée de z, y, z et des coefliciens différentiels

(* On doit remarquer toutefois que la condition du moximum étant la méme
ue celle du minimum , cette normale commune n’est proprement minimum
’ prop
quautant qu'elle se termine aux parties convexes des deux courbes.

Tom. XI1I. . 11
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dee d2a d3x

—_— = dy dy Ay

dt ) ‘dtz ) &?— ysserv ey —a;-, an Py dt3 ,o.uoou, -
dz d:z diz
:l-t- ’ Et—l- I} '(m— geas cen o

que nous représenterons respectivement par
N N A NN TN AR
Supposant ensuite que z, y, £ deviennent respectivement

z2+iX , y+ir, z4iZ

oh X, Y, Z sont des fonctions arbitraires de 7, et / un nombre
abstrait d'une petitesse illimitée, /7 ds deviendra alors

( ( >X+( )Xl+( xﬂ)X//-;-. .
Vit f +(% & )r—;-( V(7 ) Fre i (1)
(e (et

ce qui donnera , pour la condition commune au mazimum et au
minimum ,

( >X+( )X/+( o
o= +( 5 )r+(5 (- Vit 00 (12)

+( il >z+( = )Zf—i-(d - jZf S

’
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7o. En traitant cetle équation comme nous l'avons [ait (60)
de I'équation (2), elle deviendra

ERCHNCAECHEMET
09 o={H (G )-(5 )+ ) =5 )+
() )+ V(&) +-) )
(Y- (Z) (Y]
_,_!'(M) (dw)‘*‘ ]X’+[( P -—].xur
+( dy,) (2 )+ (o )=o) ® |
(5 )- () + ]w{( ;’;;,)-.....]m
H (2 )+ (o Y =] 2

{ +[( dz” ;:; ) e ]Z’ +[k — ) ] Z0..

71. De 12 on conclura d’abord 1'équation
dV / dr ar N\« dV N
[( T\ dat )+& dxl! > d.kl// ""] X
417 \/ ar ar N\
0,—\—}—[( ( V(S Y -(5) ey

dr dr v dr- "
+[( ) (dz')“"(dz") (dz”/ ':]"'

~
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Si aucune eondition particulidre n’a été imposée entre’ les limites
de l'intégrale , les fonctions X, ¥, Z devront, entre ces himites,
conserver toute leur indépendance ; ce qui décomposera cette équa-
tion en ces trois-ci:

SN NE o WEST
(5 )5 V+H(F) () o) 09
( ) <dz'> ( > )U dz,,,)”’+....,

desquelles on déduirait , par I'intégration , les valeurs générales de
Z,y,zen t, et constantes arbitraires , si &, y, z élaient réel-
lement des fonctions déterminédes de cetie dernieére variable ; mais,
comme ce n’est que par une sorte de fiction qu’elles sont consi-
dérées comme telles, il arnvera , si toutefois le probléme est pos-
sible, que chacune de ces trois équations se trouvera comportée
par les deux autres ; que par conséquent elles n’équivaudront réelle-
ment qu'a deux , lesquelles ne seront autres que celles qu’on obtiendrait
si, ayant deux ‘équalions de relation entre x, ¥, 2z, on les diffé-
rentiait une ou plusieurs fois, en y considérant ces trois variables
comme des fonctions de 7; de sorte qu'ecn posant dans ces équa-

tions ==z d'ott z/=1, 2/=0, 2//=0,.... on aura , sous forme

différenticlle, les relations cherchées de z et y a z.

72, Mais il pourrait se faire qu’au lieu de demander les valeurs
de & et ¥ en z qui rendent fUdz ou fVd¢ maximum on minimum
absolu, on demand4t de ne rendre cette intégrale telle que par
des valeurs satisfaisant 3 une équation de relation donnée ; dés-lors
X, Y, Z, tovjours arb:traires , ne seraient plus absolument in-

dépendans. En représentant, en effet, par S=a Iéquation de re-
lation donnée , on devrait avoir "
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()X () T+ () Z=0. (x6)

1

Ajoutant i I'dquation (14) le produit de celle-ci para , il viendrait

LEHEHE)HE () I
L HF)- >+( )”—(dy,,, J e o
(& e () HE) -5 ) -]

égalant alors séparément i zdro les multiplicateurs de X, ¥, Z ;
et éliminant A entre les trois équations résultantes , on obtiendra la
double équation

= )& (dxu) ~( )+
(%)

/ dr dV \// av N\t
(5 )+ e
Y

\ dy dy// ) dy”’

; (18
ES (18)

-]
1]

dy J

_(E (IS )
(%)

laquelle , dans T'hypothese actuelle , ne devra compter que pous
une seule , dont il faudra combiner lintégrale avec S=o , pour
obtenir les valeurs cherchées de & et y en fonction de z.
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73. Quant i I'équation aux limites , elle sera évidemment ici

I (YA Y= Qo (), ~ (LY b P () =Tt
) (e[ ), m Je [, =T
- () (5 )+ = Jr (o)~ (Y (55),— e
{2~ (B () =)~ Y e[ ) = o
()Y (= T () - T ) D
).-(= )+ )T (), d) +. )z {(Z ) = Jpe

les indices o et 1 ayant ici la méme Signification que ei-dessus; et
voici Vusage que Dlon fera de cette équation.

74. St aucune condition n’a é1é preserite relativement aux limites de
I'intégrale; c’est-a-dire ,si a ces limites , les valeurs de & , 2/, 2//,....

[
-

124
dx!
e

"< ar
—_— \T=

¥y ¥ sy ez, 2y 2", ... pecuvent étre quelconques, les fonctions ~
X, Y, Z,etpar suite leurs dénivées X!, Y7, Z/ X/, Y/, Z/7, ...,
devront , &4 ees mémes limites, conserver toute leur indétermination

et toute leur indépendance ; I'équation (19) ne pourra donc subsister
alors qu’autant que les multiplicateurs de

Xo ) Xloy Xy Yoo, Yoo, Yo,uu, Zy, 24, Z7, e
X, Xy X",r 5 seeey Yx y Yy Y/,x oy &y ’ VAP ALY y secre

seront séparément nuls; on deyra donc avoir séparément




I

0

o
{1

a7\
=(%).

o=(h,)
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équations qui, en général, seront en méme nombre que les cons-
tantes introdaites par lintégration, et qui serviront 3 en assigner
les valeurs.

75. St I'une des limites est fixe , la premiére par exemple ; c’est-
a-dire, si les valeurs de x, ¥, z sont données i cette limite , il est
clair que l'on aura X,=o0, ¥Y,=o0, Z,=o0, et 'on devrait avoir
également X/;=0, Y/y=o0, Z/y=0, X/4=0, ¥"/,=0 , Z" ;720 surure,
si on exigeait qu'a la limite dont il s'agit o/ , ¥/ , 2/, &/, ¥/, 2, «uu.
eussent aussi des valeurs donndes; cela ferait disparaitre autant de termes
de léquation (19); de sorte que, 'l devait en &tre de méme 2
'autre limite, cette équation se trouverait satisfaite d’elle-méme ;
mais alors les constantes introduites par lintégration se détermine-
raient en exprimant qu’'a l'une et & lautre limites &, ¥, 2z, e
a,y', 2, x, ¥, 2" ... ont les valeurs assignées.

76. Enfin, les limites de l'intégrale peuvent n’étre ni absolument

(3: —( dx") +(dx”' g oh(dx”) _(dx”’) iy o= (dx"’> iy
(@).~(& ) (G )= o=(F) = (& ) o= —
( y”) ( y”')ﬁ B 0—( dy” ) (dy’” > e 0—(dy’”) ey e
)~ Y o =D =Y s =D s
() (Y (2N o 0= () = (Y s 0m () s
(YA o o= () (Y s -

e 1T 3 eeee

u-‘o y eses

<

(

2

20)
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fixes , ni absolument indéterminées. On peut exiger , par exemple, qu’a
Ia premiére limite, on ait, entre #, ¥, 2, et leurs coefficiens diffé-
rentiels , une ou plusicurs équations de relation, telles que

F(x ) x/ N x” 3 eeieany y > y/' y// g esenery Z z, ' z//, sertae ):—"‘—L:O M

il en resultera I'équation

( ), Xt (2 >X+(§T) Xy o |

+<dL>Yo+(dL> °+<d” OY//°+"" L; (21)

() 24 () 7 o () 2|

et on pourra en avoir d’analogues pour l'autre limite. On ajoutera

)
Il

alors & l'équation (1g) les produits de ces équations par des
multiplicateurs indéterminés ; égalant ensuite 4 zéro dans I'équa-
tion somme , les coefficiens des diverses fonctions X, X/, X/, ..uea
Y, Y, Y, .. Z,Z,Z",... etéliminant enfin les multiplicateurs
indéterminés entre les équations résultantes , il en résultera des
équations qui , conjointement avec

Lo=0 (22)

et ses analogues, serviront & déterminer les constantes.

77. Appliquons présentement ces procédés i divers exemples.

PROBLEME VIIL Quelle est la plus courte ligne entre deuz
points de lespace?

Solution. Soient (4o, b, ¢o), (a;, b, ,¢,) les deux points donnés ;
Tous aurens ici /= y/ a/ify/s4-z/, et par conséquent
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ar = av x
<——- =0, ( > ‘/xz+ylz+zlz H <dx//> 0,005, o
( ! al(xlgyla g zta) o (ala iy y L2121 >
dx/ ) (x’2+_)"“'+2")‘l ! ( da!! —=0,40.00
(3 )=t
ar 5 ‘
( dy )-— ( ) ‘/x/z+,y/2+zu < dy”) =0,....:

( (a2 gyt 2 22 ) my ! (! x”-}-y’y”-f—z’z”) dV )
d_y (x’3+y’2+z/2); y” =0 PERER ,

//
ar ) (
( % \&@ > ‘/;;q:;,z_,_z,, < o ) 0,..:%
z”(x"‘-{-y” + z/z)__ zl(xlx/l_‘..:y(,y”+ z’z”)
dzl ) (x’3+}r/2+z/z)% ( dz! ) =0 000

dV \/ 3 .
’dz” :;.'07"er

En conséquence, I'équation (14) sera

Tom. XIII, s
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[&/(@/* Ay /rdez/?Y—a/ &/ 5/ 1Ay /y ! -2/2) ] X ]
+[y”(x/'+y”+z”)—y’(x’x’/+y’y”+z’z”,] Y | =0
+[ 2/ gty ral)—z/ x’x”+y’y”+ 2212

-
»

dans laquelle il faudra égaler séparément i zéro les coefficiens de
X, ¥, Z. Cela ne donnera que la double équation

ou, par une prémiére intégration

o/=Mz , y'=Nz,

et ensuite

z2=M:4-G , y=Nz+H ,

exprimant ensuite que cette droite passe per las deux points
donnés , on aura , en éliminant les constantes arbitraires , pour les
équations de la ligne cherchée

=0, _ y=—bo __ z=¢

= — .
01""00 61"50 cl..-co

78. PROBLEME 1X. Quelle est, dans Pespace , la plus_courte
ligne d'un point donné & une surface donnée ?
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Solution. Soit (a, , by , ¢, ) le point donné , et soit L=o0,

I’équation en z, y, z de la surface donnde; on aura d'abord,

comme dans le précédent probléme, pour les équations générales
de la ligne cherchée

=Mz4C , y=Nz+H .

En exprimant que cette droite passe par le point (24, 8., ¢4)
ces équations deviendront

x-—ao=M<z-—-L'o) s y—-boz N(z——-c,) 3

et tout se déduira A déterminer les constantes M et N.
A cause de la premiére limite fixe , 'équation aux limites sera
simplement (19), en supprimant le dénominateur commun,

1’1X1+}”;Y;"|"Z’1Zx =0

eu, en mettant pour 2’ et y/ leurs valeurs Mz/, Nz/, et divisant
par &,

MX,+NY +Z,=0 ;
en y ajoutant le produit de I'équation

(&) x+(5), 1+ (5) 5=

par un multiplicateur indéterminé » , et dgalant ensuite séparés
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! 3 . N . ~
ment 3 zéro, dans I'équation somme, les coefficiens de X, , ¥y
Z., il viendra

M4 (dL .._o, N—}-A(%’—)‘:o, i+>.(-g;—)x=0;

d’oit on cenclura, par I'élimination de a,

n(£) =),
()()

mais , en différentiant I'équation Z,==o0 , on a
( dL dz, + ( dar )
— — — =0
dz I dxx dx I ’

( dL dz, s dL
dy, dy J:

-

=03

' ¥ dL
mettant donc dans ces derniéres les va]eurs de( ) ( )

tirdes des précédentes , il viendra , en supprimant le facteur
dL> -
(%)
dz, dz,

M4 --——-o, N4 — dy,

?

ce qui prouve que Ja plus courte ligne d'un point & une surface
courbe est la normale menée de ce point & cette surface; d'ou il
est facile de conclure que la plus courte ligne entre deux surfaces
courbes est la normale qui leur est commune,
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79. PROBLEME X. Quelle est , dans Uespace, la plus courte
ligne d'un poini donné & une courbe-donnde quelcongue p
Solution. Soit encore , comme ci-dessus, (@,, b,, ¢,) le point
donné , et soient K=o, L=o0 les deux équations de la courbe dont
il s’agit ; nous aurons encore, comme dans le précédent probléme ,
pour les équations générales de la ligne demandée

zg—a,=M(z—c;) , y—bo=N(z—¢,) ,
et pour I’équation aux limites
MX+4NY,+Z,=o0 ;

en lui ajoutant les produits respectifs des équations

dK dK dK
(E? >X+( G}"),Y 1+(7;),Z’==° ’

() x5 ) rH(5E) 2=

par des multiplicateurs indéterminés a et «, et égalant séparant i
zéro , dans I'équation somme, les coefliciens de X, , ¥, , Z, , il viendia

M+A(%>,+~(%),=°»
N (o ) 52 )=o

I+A(—§—? )x-ﬁ«(%)l:o

d’olr on conclura, par I’élimination de a et g 4
Tom. X111, n.° 111, 1.°* septembre 1822. 13
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(560 -(F) (5
o= [(E). () ()]
+ [ AF)(F).

mais , en différentiant le systtme des deux équations K=o,

L1=0, on a
("33? xrs +( dy"), EZT""(’.T:.)““”
dL Y dw: dL dy[
(Ef;‘)x dz} 4"‘(‘3‘;) dz‘ ( ) —0!

d’ou on conclut

()= ()
(57 )-( ()]
(.G, >< =)
@ EENDD

au moyen de quoi l'équation ci- dessus ,en M et N, devxendra ,

par substxtutron et suppressnon du facteur commun ,
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dx, d,’[
I+M E—; +N —(_I-Z =0,

ce qui prouve que Ja plus courte ligne d’'un pornt & une courbe
est la normale menéde de ce point & cette courbe ;d o il est facile
de conclure que Ja plus courte ligne entre deux courbes quclcongues
est la normale qui leur est commune.

80. De ce résultat et de celui du précédent probléme , on peut
conclure également qie Ja plus courte ligne entré une courbe
et une surface courbe quelconque est la normale commune & l'une
et @ lautre.

81. PROBLEME XI. Quelle est la plus courte ligne entre deuz
points sur une surface courbe donnée ?

Solution. Soit §=o0 Déquation de la surface courbe dont il s’agit;
pour donner deux points sur cette surface , il suffira de donner
leurs projections sur le plan des xy ; nous supposcrons que ces
projections sont (@, , &5), (a:, &,).

Nous aurons encore ici, comme dans le probléme VIII,

[a//(x/ 4y 24 2/*) =2/ x/‘x”+y/}.’”+ é'z”)] X
[y (&g 2t )y (20 2! Ay g 2l 2 1Y | =o;
[ al y o z?) =zt aiy y 2 )| Z

mais les fonctions X, ¥, Z devront étre lides entre elles par
la condition (16)

(2 )x+(GIT+ (5 )7=o.

Ajoutant le produit de cette équation par a & la précédente , et
égalant & zéro les coefficiens de X, ¥, Z, dans I’équation résul-
tante , il viendra, aprés I’élimination de a entre les trois équations
auxquelles on sera parvenu,
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x/(z/? Ay -2/?) — 2/(alxl gty A2/ 2
as
=)
y//< xSy 4 z/‘) —_— ,y/(x/a,//_l_y/ /! e z’z”)

— z//(x/’+y/3+z/1) — z/(x/x//+y/y//+z/z//)

(%)

Telles seront donc alors les deux équations différentielles de la ligne
cherchée; et il est aisé de se convaincre , comme nous I'avons an-
noncé (7z), que, eu égard & I'équation §=o , elles n’équivalent
qu'd une seule ou, ce qui revient au méme, qu'elles comportent
cette équation. Si, en effet, on différentie I'équation §=o, en y
considérant z, ¥ » 2 comme des fonctions de 7, il vig:ndra

e () o

or K si l'on substitue dans cette dernidre équation les valeurs de
ds
( > ( )urees des deux premiéres, et qu'on supprime en-

suite le facteur (d— ), commun i tous les termes de léquauon
<

résultante, cette équation sera tout-a-fait identique.
La double équation de la courbe cherchée donne, en réduisant

g( = ) ( s )z’ (z’,zl/._x/z//)‘_k — ))’/()’/Z“——z_y”)

s Iarll /1
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ds
() (3 I rwmern( Jetswims

S )
= ( L) 2/ z//lmn! 1Y
(dz ( yy )
d’od l'on tire, en éliminant et réduisant de nouveau ;
Vgt gl X (gl gt Vgl gttt = (gl et
dal—alzli= = (2ly!!—y'x’") o y'2/l—zlyl= ;—;(zy —y'z!) ;

mais il est connu que le plan osculateur de la courbe au point
(«, £, ) a pour équation

(9 &ty 5 ) (Va2 — By =y 2 z—C)=0

en y mettant donc ces valeurs et divisant ensuite par z/y//—y/z//,
cette équation deviendra simplement

&/ xmu)ty/(y—) A2/ (z—v) =0
mais si, par ce méme point, on méne un plan tangent & la

surface sur laquelle cetie courbe est tracée , I’équation de ce plan
sera, comme l'on sait,

(2ot () 0o

puis donc qu’on a, comme nous l'avons vu tout & I'heure ,

(&) yra( £ ems,

il en faut conclure qu'en chaque point de la courbe,; son plan os-
culateur est perpendiculaire au plan tangent au méme point de la
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surface sur laquelle elle est tracée ; et que par conséquent son rayon
de courbure absolu est partout normale i cette surface. C'est, au
surplus, ce qu’on peut reconnaitre aussi par des considéiations
mécaniqres ; la courle cherciée ne devant ¢tre antre que celle
qu'affecterait un fil élastique que l'on tendrait entre les deux points
donnés , et sur lequel la surface donnde n’cxercerait aucune sorte
de frottement. /

82. PROBLEME XII. Quel est, sur une surface donnée , le
plus court chem:in d'un point donné & une courbe donnée ?

Solution. Soit tovjours S=o I'équation de la surface donnée, et
soit R=o I'équation d'une autre surface qui la coupe suivant la
courbe donnée. Soient enfin (@, b) les coordonnées de la projection
sur le plan des 2y du point donné sur la premiére des deux sur-
faces. L’équation générale de la ligne cherchée sera encore la méme
que ci-dessus, et il ne s'agira conséquemment que d’avoir égard
anx conditions relatives aux limites.

Or , ’équation aux limites sera ici (73, 77) simplement

’ P

X'y X+ yl!‘ ) Y+ Z — .
Verare ot Vampeae: U Vergegen 250

puisque la premiére limite est absolument fixe, A la seconde, on
devra avoir '

R=o0 ; S=o;
d’olt (76)

- N

(42, %k () ri (22 2=,

()5 (), () 2

Si, 3 T'équation ‘aux limites, on ajoute les produits de ces deux-ci
par A et u , et qu’aprés avoir égalé & zéro, dans I’équation somme ,
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les coefficiens de X,, ¥, , Z,, on élimine a et x entre les équa~-

tions résultantes, il viendra

SNOROIE
'—!—y’:[(;;). w).—(& )< )j =°
e[ (E)

mais , si 'on différentie les deux équations R=o0 , S=o0, en y consi~
dérant x et y comme des fonctions de z, il viendra , en passant

a la limite,
.m dw, dy, | /4R
dx y dzr ( ) dz, +< dz >‘ =0,

dx. dS dy: as )
) dz; dy dz; +( -—0,

équations d’olt I’en tirera

()2 < ()]
ENOREICNES
() )( >< ]
N OIECNEN

mettant les valeurs données par ces deux dernitres dans 1'équation
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ci-dessus , et supprimant le facteur commun dans l'équation ré-
sultante, il viendra, en divisant par 2/,,

+ x'; dxy y;x _dy_: —0-
-:’6—’; a;-: -z_': dz; -

ce qui montre que Ja plus courte ligne tracée sur une surface
courbe , dun point donné & une courbe donnée, doit couper cetle
courbe orthogonalement. 1l est facile d’en conclure que la plus
courte ligne tracée sur ume surface courbe entre deux courbes
données doit couper lunme et lautre courbes orthogonalement ; la
courbe doit d’ailleurs , dans P'un et lautre cas, avoir ses rayons de
courbure constamment normaux i la surface sur laquelle elle est
tracée (*).

83. Pour compléter la tiche que nous nous sommes imposée ,
nous aurions encore a traiter des intégrales de la forme ffUdzdy ,
ol z est fonction de x et y, et que, pour suivre l'analogie, il
faudrait d’abord ramener 4 la forme ffF/d¢du, dans laquelle z, y
et z seraient tous trois fonctions de 7 et z; mais la longueur et
la complication des calculs reculeraient , d’une maniére notable, les
bornés de ce mémoire , déja excessivement long , et f]ue méme
nous n’aurions pas entrepris , & travers une multitude de distractions
sans eesse renaissantes, eu que du_moins nous aurions remis i une
époque plus favorable, si, dés'abord, nous aviens pu en prévoir
Tétendue.

84. Que si présentement on nous demande quels avantages peu-
vent avoir nos notations et nos mcthodes sur l'algorithme et les

(*) On ne doit pas perdre de vue , au surplus , qu’il v’y a proprement

minimum que lorsque la courbe cherchée se termine & des parlies convexes
des courbes donnédes.

procédés
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proeédés ordinaires du calcul des variations , et quelles vérités nou-
velles nous avons ajoutées a celles qui étaient deja découvertes,
nous répondrons que tel n’a pas été notre but; que nous conseil-
lerons méme de préférer , dans la pratique , comme neus employons
nous - mémes pour notre propre usage, la méthode des variations
proprement dite. Tout ce que nous nous sommes uniquement pro-
posé , c'est de ramener la solution des problémes qui ont donné
naissance & cette méthode} & une forme qui n’exigeit que l'appli-
cation des notions les plus communes, des théories les plus vul-
goires 3 c’est en un mot de faire ensorte qu'en lisant ceci chacun
demeure convaincu que les questions de mazima et de minima ,
dans les formules intégrales indéterminédes, n’exigent pas , pour
étre résolues, plus de contention d’esprit que n’en demandent tant
d’autres questions qui, jusqu’ici, n’ont pas pass¢ pour difficiles ; et
nous n’aurons aucun regret de nos soins, si l'on trouve que nous
ne sommes pas demeurés trop loin du but.

85. Nous devons, en terminant, réclamer I'indulgence du lecteur
pour les négligences,, nombreuses sans doute , et méme pour les
erreurs qui auront pu se glisser dans cet éerit. §il en faut croire
ce quon trouve dans un Opuscule de M. le D Prompt ,
imprimé en 1820 , le travail de I'illustre Lagrange sur la méme
matiére ne serait pas lui-méme exempt de reproches. Les notations
embarrassantes de ce grand géométre d’une part , et de l'autre le
laconisme de M. Prompt, ne nous ont pas encore permis de vérifier
jusqu'd quel point ces reproches peuvent étre fondés ; mais c’est
la un sujet sur lequel nous nous proposons de revenir dans une
autre circonstance (*).

(*) Le lecteur est prié d’observer qwi la page 6, ligne 7, en remontant ,
tous les d¢ doivent étre changés en dw.

Tom. XIII. | a4
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ANALISE TRANSCENDANTE.

2 i 7
Eclaircissemens sur le deéveloppement de Cos™x , en
Jonction des sinus et cosinus d'arcs multiples ;

Par M. Pacast MicHEL , ingénieur & Genéve.

M. Poisson a fait connaiire le premier que le développement de
Cos™z , en fonction des sinus et des cosinus d’arcs multiples , com-
posé de deux parties, I'une réclle et Pautre imaginaire , qui s’anéantit
lorsque m est un nombre entier positif , doit , pour étre exact,
conserver ces deux parties, lorsque /z est un nombre fractionnaire
ou négatif ; et que, par éonséquent, le développement donné par
Euler est en défaut pour ce cas. Sil'on fait, pour plus de simplicité,

X=Cos.mz+4 ?— Cos (m=—2)z-}- —?—- - m:l Cos.(m—4)z .

me=1

Sin.(me—4)z-t=..e

. m _, Coom
X/'=8inmar+ —Sin(m—2)z-+ —-
1 X 2

on a I'équation

2™ Cos."x=X+X/=\ .

Si m= < ,les deux termes du second membre de cette équation
q

subsistent , et on a pour /27 CosPx deux valeurs imaginaires.
D.prés M. Poisson, ces deux valeurs sont deux raginqs distinctes 5



DES PUISSANCES DES COSINUS. 95
et il a montré comment on pourrait les tirer toutes d’uve méme
formule, en mettant a la place de # les arcs @, a2z, 24w,
2467 ,.00. .. 24+2(g—1)=, dont le nombre est ¢, et qui, ayant
tous le méme cosinus qﬁc « , donnent la méme valeur pour Cos.fx.

Cependant M. Lacroix, dans les additions & son Zrei:é de calcul
différentiel ot de calcul intégral ( twm. Il , pag. 6ob ), observe
que la théorie de M. Poisson, quoique trés-satisfatsanie , laisse
encore & désirer guelques éclaircissemens, 4 quoi il ajoute plus
loin : une plus ample connaissance du sujet ne serait pas nuiile
car il présente encore d'autres difficultés , lorsquon vy introduit
la considération des dquations différentielles. Cela parait d'autont
plus nécessaire que , d’aprés un procédé de M. Deflers ( veoyez
m?*me volume , pag. 616 ), il semblerait que la quantité ¥ n’est
que le développement d'une fonction toujours nulle, quel que soit
m et quelque valeur que I'on donne 4 .

Avant de développer mes observations sur ce sujet, je crois né-
cessaire de distinguer d’abord , dans toute fonction irrationnelle , la
quantité et la valeur. Par quantité d’un radical, j'entends le nombre
qui, multiplié par une expression de la racine du méme degré de
Punité, positive ou négative, et élevé ensuite & la puissance du
degré marqué par I'exposant de ce méme radical, produit la fonction
qui en est affectée. La quantité est donc toujours dquivalente 3 un
nombre réel et positif, et elle est unique , quel que soit son expo-
sant, Jappelle valeur d’un radical , expression, soit réalle, soit ima-
ginaire , qu’on obtient en multiphiant la quantité du méme radical
par une quelconque des racines de l'unité , positive oa néga-
tive, et telle qu’en P'élevant a la puissance indiquée par le radical,
on ait la fenction placée sous le signe. D’ott I'on voit qu’un radical
doit avoir autant de valeurs différentes qu’il y a d’unités dans son
exposant.

Cela posé, lorsqu’cn veut obtenir , par les séries, la quantité d’un

radical y'X; il est évident qu'il faut développer la fonction (=X 77 -
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d’aprés la formule du binome de Newton , en prenant le signe
convenable pour avoir une série convergente ; et la limite de la
série donne la quantité de {/X. Nommons @ cette limite, et nous
aurons visiblement (,'"X= QC/E ; mais on voit que chaque
valeur de y/==: est , en général, de la forme «4py/=7;
d'ol il suit que les 7 valeurs du radical y X , seront toutes
comprises dans la formule @ «—4 gy =1) ; pourvu que lon
donne 3 « et a @ successivement toules les valeurs dont ces lettres
sont susceptibles, d’aprés le degré du radical.

Nous avons tacitement supposé que la fonction X avait une forme
réelle; mais , si cette fonction avaitune forme imaginaire , le développe-
ment par la formule du binome aurait lnoi-méme une forme imaginaire,,
et ’on n’aurait plus la quantité, mais bien une valeur de {/X. Dans
ce cas, toutefois, il ne serait pas difficile d’en obtenir la quantité,
et par suite toutes les valeurs. En effet , soit 4--By/ =1 le dé-
veloppement de y'X. Nous avons vu plus haut que toutes les valeurs
de y“X sont comprises dans la formule Q(e48y/=7), Q étant la
quantité du radical , et «t8y/ =7 une des racines du degré n de
~1 ou —r; il faut donc que, parmi ces racines, il sen trouve
une pour laquelle on ait

A4+ By =i=Qwt ey =) .

Cette équation nous donne

@

4 B , «
Q:—:?, d’od TB_=

B A

La derniére est une équation de condition qui doit avoir lieu toutes les

fois que Vexpression A+4By/ =1 est valeur d'une racine d'une

fonction réelle, et fera connaitre, dans ce cas, les nombres « ét
. A B

; aprés quoi on aura la quanti rimée par — ou par — ;
g3 aprés q ura la quantité Q exp par — par —

Toutes les valeurs de /X seront donc données par 'une des deux
formules
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A —_ B
T ey =) 7 (Hey=h)

dans lesquelles il faudra mettre & la place de « et g les noﬁlbres

o

. . . A
qui satisfont 4 la condition — = o sans cesser cependant d'étre

compris parmi ceux qui expriment la racine 2™¢ de <41 ou —r,
et ou il faudra de plus mettre successivement pour « et g/ toutes
les valeurs qui répondent 4 cette méme racine n™¢,

Le développement de 2™.Cos."z étant, comme nous I'avons dit,
X+ X'\/=1; nous aurons ici 4=X, B=-1X’; et par conséquent

la quantité de 2™.Cos.,™z sera représentée par — ou par ~+ = ;d’olt
@

il suit que toutes les valeurs de 2™.Cos.™x seront comprises dans
les formules

e U W = L7 N O

Il ne nous sera pas difficile maintenant de rendre raison de
toutes les singularités apparentes que présente le développement de
la fonction Cos.™z. Et d’abord on voit, par les formules (v), que
cette fonction est de la forme AX ou A’X/, A et A’ étant deux
constantes ; et voild pourquoi I'équation différentielle

. d
nySin.z4 {; Cos.z=0

est satisfaite par la supposition de y=A’X’ aussi bien que par
celle de y=4X,

. , . X ®
En second lieu , I’équatiou =x = Pous apprend qu'on a

#=0 lorsque X'=o0 , et vice versd. On voit donc pourquoi A’;
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AN
qui est égal & 4 ZHEV
- B

devient inflini toutes les fois avw'-n a

X’=o0; et pourquoi aussi on a X/==o pour tous les exposaus de
2Cos.z qui ne sont point fractionnaires; puisqu’alors toutes les va-
leurs de g doivent étre nulles.

Pour faire une application des formules (¢) , je choisirai I'exemple
méme que M. Poisson a-traité. On a, pour cecas, 4==, m=z,

et l'on obtient X=:y/7, +X’=+‘_/_§.\75'; et, comme 2Cos.=
: - - 2

=2X~r1, il faudra prendre, parmi toutes les valeurs de VI,
celles qui satisfont & I'équation

o

T 2

2 sV

2 3
V34 —
=03

!

il est aisé de conclure de Ii qu'il faut prendre
e== , =13 ;

Coae e ——— — . X
done la quantité de Y/ 2Covm est V2, puisque — =
; o

=X
8

-—;.*I
—.-Vz H

et toutes ‘ses valeurs seront comprises dans la formule
—— ,;-——
(e’ =0)v'z
pourvu qu'on donne % «/ et g/ les valeurs qui conviennent 3 la

. . T 3, ——
racine cubique de —1. Nous aurons done pour y/2Cos.# l'une des
trois expressions suivantes :

b

t ) — /3 = 1—y/ 3./ =1
—_—3 1 \/2‘/ , \/2\/ )

comme cela doit étre.

Il ne nous reste plus maintenant qu'd faire quelques remarques
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sur les observativns de M. Deflers, d'aprés lesquelles il paraitrait
que la fonction X’ est toujours nulle, quel que scit Pexposant de

2Cos.z. Son procédé se réduit au fond & démonirer que I'équation

[Ganad §

n n ne=—1 ——2
o=n4— (2—2)+ —-—(r—4)+ l:* ";“'23'* (n—=6)+....

2

est identique. Mais, si Uon fait attention que les decux premiers
N1 .
termes du sccond membre se réduisent 4 n.~——, que les trois pre-

. ne=i nN=—3
miers donnent, pour leur somme 7.

»

, et ainsi de suite ;

I
on se convaincra aisément que le second membre n’est autre chose
que le pioduit des facteurs, en nombre infini,

7w T T, ri-—3 n——4
n. - - »
1 2 3 4

.
seceengece 4

or, ce produit ne pent étre nul que pour des valeurs enticres et
positives de 7 ; d’ou il parait résulter que la démonstration de M.
Deflers, bien que fort ingénieuse, n’est pouriant point exacte.

Pour découvrir en quoi cette démonstration est fautive , observons
qu'en posant I’équation \

Nueal 7= 2

n n Nw=Y P n T I;
T=ni"-4- T(n——-z)l”"”+ - (n=4)1 "+-‘-'-2—--—§— (n=6)" "4

M. Deflers remarque que le second membre pouvant étre égal 2

d. n N Nee=i N Neuem] =2
pani IV BN LF T TRy, T i =6l ..., }
e L S s B e S T

et que la“série enire les parenthises étant le développement de
(¢42¢*)", on peut &crire
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d.
T=t - (¢27).

En exdécutant donc la différentiation dans le second membre de
cette équation, on aura

T=n{i4-1=' 1 (t—1"") »

On voit donc que M. Deflers suppose que le coefficient différen-
tiel du développement d’'une fonction est égal au développement du
coefficient differenticl de cette fonction. On verra tout-a-I’heure si
cette supposition est toujours permise. En 'admettant, on voit que
1a derniére valeur de T se réduit a zéro lorsqu'on fait /=1 ; mais
on a aussi, dans ce cas,

e e

comme il résulte de la premiére valeur de T ; donc le second
membre de cette derniére équation est nul. Telle est la conséquence
qu'en a tirée M. Deflers.

Mais nous observerons que la fonction n(t-l-t"')"‘"(f —12~1) n’est
pas égale a la premidre valeur de 7T'; ear , en développant le bi-
nome (Z42"')"= et en effectuant l]a multiplication par z—z"*, on
trouve , cn s’arrétant au quatriéme terme

é/a‘h Fon voit que, quelque loin qu’ on pousse le développement,
il restera toujours un terme dans la seconde ligne qui pe sera dé-
truit par aucun de ceux de la premiére. Il est donc certain que,
outes réductions faites, on aura

T=n

2

N1 pe=s n--3

-~ Ne=1 Ne==3 Ne=l pe—2 pe=3[Mm=%
o il —nl”+n —_— 3 n c— g d n.—-————-——-
\\) 1 +a. 1 2 + 2 3
-'-Il n—1 New=] =2
), — —F] , — i — __n_._....._.......___—
b | I 2 1

3
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I nw==2 n=—3 N

T=n(t41=t =i (tmt )4 = 2

et, si 'on fait #=x , on trouvera pour T, mais d’unc maniére
beaucoup plus simple , la valeur que nous avions d¢ja obtenue
ci-dessus.

Genéve , le 23 juin 1822.

s — —
— T

QUESTIONS RESOLUES.

Solution du probléme d'analise elémentaire proposé &
la page 316 du Xll. yvolume des Annales;

Par MM. A. L. Boyer, éleve au collége royal de Montpellier,
QuerreT , chef d'institution & St-Malo ,
Et DurranpE , professeur de physique au collége
royal de Cahors.

T s Ty e ) W T s

P ROBLEME. Il a fallu n vis d&Archiméde pour évacuer ,
dans le temps v, Ueau d'un bassin , dont la surface était a , dans
lequel la pluie tombait, et qui était en outre alimenié par une
source.

1l a fallu v/ vis d Archiméde pour évacuer , dans le temps v,
leau d’un second bassin , dont la surface était a/, dans lequel
la pluie tombait, et qui élait en outre alimenté par une source.

1! a fallu 0" vis d& Archiméde pour éyacuer , dans le temps '/,
Tom. XIII. 15
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Peau d'un troisiéme bassin, dont la surface était 2" ,dans lequel
la pluic tombait , et qui était en outre alimenté par une sourse.

On demande , d'aprés cela , quel sera le nombre N de vis d Ar-
chiméde nécessaires pour évacuer , dans le temps T , l'cau d'un
quatriéme bassin , dont la surface est A, dans lequel la pluie
tombe , et qui est en oulre alimenté par une source ?

On suppose d’ailleurs que l'eau est & la méme hauteur inconnue
dans les quatre bassins au moment oi Iopération commence , que
la pluie y tombe avec une égale intensité , que les sources y amé-
nent des quantités égales d'eau dans des temps égaux , et qu'enfin
les vis d Archiméde ont toutes une méme capacité d’évacuation.

Solution. Soit x la hauteur commune de I’eau dans les quatre
bassins , lorsque les vis commencent i jouer.

Soit 4 la quantité dont la pluié qui tombe pourrait  elle seule, dans
I'unité de temps , augmenter la hauteur de ’eau d’un bassin qui ne re-
cevrait. d’eau de nulle autre part, et qui n’en perdrait pas non plus.

Soit z le volume d’eau que fournit chacune des sources dans
chaque unité de temps.

Soit enfin ¢ le volume d’eau que peut évacuer une des vis dans une
unité de temps.

La surface du quatriéme bassin étant A , il se trouvera contenir,
au commencement de l'opération , un volume deau exprimé
par Az. x

A chaque unité de temps, il tombera dans ce méme bassin un

volume d’eau de pluie exprimé par Ay , ce qui fera, pour tonte’
la durée de l'opération, un volume ATy.

Enfin, pendant cette méme opération, il arrivera de la source
dans le bassin un volume d’eau exprimé par Tz.

De sorte que le volume de Peau a évacuer de ce quatrime
bassin sera Az+ATy+Tz.

Or , pendant la durée de lopération , chaque vis d’Archiméde

évacuant un volume d’eau exprimé par Ty, le volume total de Veau
évacuée de ce bassin sera NTv.
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Puis done qu'h la fin de Popération le bassin doit se trouver vide ,
on doit avoir

Az ATy+Tz=NTp ; (1)

A
et , comme les circonstances sont cxactement les mémes pour chacun
des trois autres bassins , on aura en outre

a zta ty+tt z=nty,
alxta' ¥yt z=n'tly , ¢ (2)
o/ x-a!ty -tz =pliglly
tout se réduit donc & tirer de ces quatre équations la valeur de
N, en fonction des données du probléme.
Soient pris successivement la somme des produits des équations (2)
1.° Par 2/(a'—a”) , t't(a""—a)’, W(a—a')
2° Par ta’'—t'a , tVa—ta" , to'—ia
3.° Par aa@/—t) , o"a(@—t") , aad'(t'—1t);
en posant, pour abréger,
P::it’l”[n(a’--a”)+n’\'a”—a)-{-t'a”(a—-a’)] ,
Q=ntlta" —a’ ;4-n't/ 1Vla—ta")F-n't!1a'—1'a)
R=nia'a"(1""—t')+n't'a"a(t—=t")4n"1"aa (t'—1) ,
S=t1"a(a'—a")+1"1a! (a"~a)+tt'a" (a—a’) ,

il viendra
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Sz=Py ,

Syi Qv ,
Sz=Ry ;

prenant enfin la somme des produits respectifs de ces derniéres
par 4, AT et T, et ayant égard i I'équatien (1), il viendra,
en divisant par STv, '

__ AP ATQ+TR

N ST )

formule -qui résout le probléme (*).
M. Durrande observe que, comme la véritable inconnue du pro-
bleme est un nombre abstrait, on peut, sans inconvénient , prendre

une des quatre inconnues # , ¥, Z, ¢ pour unité, ce qui simplifie un
peéu les formules.

(*) Ce probleme est, comme Pon voit , trés-aisé a résoudre ; il I’2st pourtant
moins que le Probleme XI de VArithmétique universelle, dont il n’est qu’une
extension ; aussi n’avons-nous jamais bien compris pourquoi ce dernier passait
pour difficile. C’est pourtant a tel point que , dans une Notice sur feu Mauduit ,
du collége de France , insérée dans le temps au Moniteur , le panégyriste crut
devoir indiquer, comme un des titres de gloire de ce professeur , qu'il avait
résolu le probléme des bocufs d’une autre maniére que Newton.

J. D. G.
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Solution du probléme danalise lranscendante propose
@ la page 321 du XIL® volume des Annales ;

Par MM. Pacast MicHEL , ingénieur & Geneve,
M....s, a Berlin,
C. G., a Grenoble,
StEIN, professeur au collége de Treves, ancien
éleve de Téeole polytechnique ,
Et Querrer, chef d'institution a St-Malo.

[l Vo ¥ Mo S o ¥ ]

P ROBLEME. On demande la somme Jfinie de la suiie infinie

aCos.x | a2Cos.ox + a3Cos.3x | atCos.fx

1+ + 1.2.3 + 1.2.3.4 o ?

I 1.2

Solution. La plupart des solutions qu'on a données de ce pro-
bléme reviennent pour le fond a ce qu'il suit.
Si, dans le terme général,

anCos.nx
9

1 0203.“. n

en met pour Cos.nz sa valeur connue

Cosnx=

(Cos.z=4-/ =1 Sin.z)"4(Cos.z—1/ —1Sin.z)*
2 2

en faisant, pour abréger,
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a(Cos.z4-y/ -—-ISin.x.);_:p , a(Cos.x-—i/:Si“‘x)"':q ’
ce terme général deviendra

p 4"

1!213."11 "'.n ?

donc la suite proposée est la somme de deux autres dont les termes
généraux sont respectivement
2 p" . q"

: PR SN

* 123 ueenn ? " 1023 veeenes

2
3

or , ces suites sont connues et somt les développemens respectifs deo
e, :_,89, 5
donc , en désignant par § la sbmme de la suite proposée, 611 aura
aS=cl et ,
ou, enremettant pourp et ¢ les fonc;ions dont ils sont les symboles,

aS= eaCos.x-{‘-\/ —1aSinx +eaCos.x-—\/:‘l aSin.x

*

ou bien encore

aCos.x

25= (e+\r:'fd5in.x+ e-\/"_:', aSin.x

)5

mais on sait que

=i6Sinx |, ==\ jaSin,
e+\/ 16510 +e V=;aSin x:zCos.(aSin.x) 3

donc enfin
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aCos.x

S=¢ .Cos.(aSin.z) .

M. Querret déduit ce résultat d'un théoréme trés-général, Si on
sait, dit-il , sommer la suite

A, A0 4,0 44,04 o ... (1)

dans laquelle 4, , 4, , A, ;... sont supposés des coefficiens nu-
mériques, et quon en représente la somme par f(2), on aura

f[2(Cos.x4y/ =:Sin.z) ] 4f[a(Cos.2—/ =;Sin.z)]

2

pour la somme de la série

A, 4A4,aCos.24A,a*Cos.25+A4,2*Cos.3z4..... (2)
et

fa(Cos.z=4/ =(8in.2)]—f[a(Cos.z—/ = Sin.2)]
PRV fr

pour la somme de la série
A,a8in.244,a*Sin.224+4 ,a’Sin3z4..50 (3)

En effet, suivant la signification donnée a la caractéristique f,
en changeant successivement a en

a(Cos.z+y —:Sin.x) et  a(Cosx—y/=iSin.z) ,
on a

f[a(Cos.z~4/=:Sin.z)]

pour la somme de la série
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A+ 4,0(Cosz¥y/ =3Sin.z )4 4,0*(Cos.zaty isin2a)f (B)

et
f[a(Cos.z—/ =1Sin.z)]

pour la somme de la série
At-A,a(Cos.o—y/ =iSina)+A ,a°(Cos.22~y/ =18in.22)+.. (5)

or, la série (2) est la somme des séries (4, 5) divisée par 2; et
la série (3) est la différence de ces mémes séries , divisde par
2y/<=1, donc la somme de la série (2) doit éwre la somme des
séries (4 , 5) divisée par 2; et la série (3) doit étre la difference
de ces mémes séries, divisée par 2y/=I.

L’application i la série proposée est facile; on a, comme l'on sait,

al ak

1.2.3 + 1.2.3.4

=1 +_€-_+-Z—; -+ R

donc e*=f(a); denc lasomme de la série

aCos.x a2Cos.2x a3Cos.3x aiCos.4x
L +-

1.2 1.2,3 1.2.3.4 Foe

sera , d’aprés ce qui précide ,

= ‘a(Cos.x+\/:_—,Sin.x) +ea(Cos.x—V:'f Sin.x)

¥
2

ou

aCos.x
e

—1aSin. =\ 1aSin,
_ (g':"'\,_—la in x+e vV 1aSin x)

—

; /
2 -

c'est-a-dire
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aCos.x

S=¢ Cos.(aSm.x) ;
comme ci-dessus ; résultat qu'on peut mettre aussi sous la forme
ae+xv"’ ae—xv""
e e

2

M, C. G. observe qu'au surplus le r’sultat

aCos.x aCos.x a2Cos.2x a3Cos3x

.Cos.(aSin.z) =14 -+ + — ..

1.2 1.2.3

peut se vérifier immédiatement par le développement. On sait,
en effet, que

aCos.x +aCos.x + a*Cos.ox + a3Cos.3x 4 atCos.ix +
=1 as
1 1.2 : 1.2.3 1.2.3.4 v
C Si ) a*Sin.2x a4Sin.béx afSinbx a8Sin8x
0S(23INT ) =1 = - —yy,
( ' 1.2 1.2.3.4 1.2.30u0 14230008 ’

multipliant ces équations membre & membre , ordonnant le se-
cond membre du produit par rapport & & , et faisant attention
qu'en général

n 7l Neml 5=m2 n=3
Cos.nx=Cos7z—— ——Sin."zCos. """x—}-——-—-- 3 -~4—Sm.‘xCos Srbpe
1 2 2

1l viendra

aCos.x aCos.x aICos.zx_La3Cos.3x atCos.fx

.Cos.(aSin.z)=1+ } -y +e. (%)

v
1.2 1.2.3

M. Stein observe que , parle méme procédé , on se convaincra
facilement que

“dom, XIII, 1G
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C o 1 2 i . i . .
a os.x Sin (aSm.x)::asnx -+ 2 SIZ” -+ asf::x s (8) ‘

nous observerons , 3 notre tour , qu’en changeant z en ;=—% , on
déduit de ces formules

aSm x Cos.(aCos :t)._. . +aSm x  a*Cosax __-a3Sin.3x o (7)
1.2 1.2.3
aSm. Sm.(aCos x)__aCos X + a3Sin.2x _a3Cos‘.3x _akSin.4x +... ()}

1.2 1.2.3 1.2.3.4

M. Querret dédait bien facilement lc premier de ces trois der-
niers développemens de sa formule générale. En continuant, en effet ,

de faire f(a)=c¢*, la série (3) deviendra

aSin.x a2Sin 2x a3Sin3x a4Sin.4x

+ 1.2.3.4 e

1 1.2 1.2.3
dont la somme sera conséquemment

K (Cos x4~y 1 Sin.x) . (Cos.x— V:‘;Sin.x)

gv-l ’
ou bien '
)
aCos.x , F\/=iaSin,x  —\/"TlaSinx
e (e v —e v )
2y =1 ’ i
ou cnfin
aCos.x
e SinlaSinz)

M. C. G. observe que la formule
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aCos.x aCos.2x | @3Cos.3x | aiCos.fz
12 1.2.3 1.2.3.4 oree

"% Cos. (aSin.z)=1-

a cela de tres - remarquable qu'elle renferme, comme cas panii-

culiers , les développemens , tant des exponentiels que des fonctions,
circulaires, Si 5 en effet , on y fait successivement F=0 ot

¥==i=~, on trouve

at

a3
I+ +——- 1.2,3 + 1.2.3.4 +.""-’

a? at ab
0S.8=[w=— — — vive 3
C 1.2 + 1.2,3.4  1.23...6 o
la formule
aCos x aSin.x | @*Sinax | @3Sin3x | a4Sin. 4x -
n ng)=
Sl (aS )= + 1.2 + 1.2.3 + - 12.3.4 e

donnera pareillement, en faisant z= I,

a3 ab a?

1.2.3 + "2'3-4-5- 1.2.30000007 o

R Q
Sing=— =
I

M. Stein remarque , & son tour, que, connaissant la série pro-
posée, on en peut déduire les sommes d'autres séries également
remarquables. En y ‘changeant , par exemple, z en 2, il vient

aCos.zx aCos.2x , a*Cos.tx | a3Cos.6x

.Cos.(aSin.22)=14

I 1.2 1.2,3

2".Cos.2nx . ,
de cette nouvelle série peut ¢ga-

ral
or , le terme géné 1.2.30000002

“

lement éire mis sous les deux formes
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ot 2a"Sin.2nxe 2a"Cos.2nzx at
— e B S ————— H
242 3uenent 123 weeens 30203 eveees 72 %2300 B

il viendra donc, en faisant successivement les deux substitutions;

8 3 .
caCos.zx.Cos (aSin.zx)=<l+% -+ _:.;. -+ -1—3 e

T2

aSin.2x a3Sin.22x a3Sin.23x
S D o aere
I 1.2 1.2.3
aCos. 22 . \ aCos.2x |, a2Cos.z2x |, @3Cos.23x .
P .Cos.(aSin.2x)= 2( o
( ’ b + 1.2 + 1.2.3 +
03

+2—<1+§—+ ;—;— -+ +-) ;

1.2.3

d'ol on tirera , en transposant et yemplacant l'une des séries par
sa valeur &%,

aSin.2x +a28in.=2x 238in332 eﬂ__gaCos.zx. Cos.(aslnzw)
1 1.2 1.2.3 e ?
2
2Cos.rz *Cos.1 3C0s.13 aCos.3x .
ot 2% HContaz +a 05.232 + e d-e .Cos.(aSin.2x)
D | 1.2, 1.2.3 ) 2 !

M. Stein remarque encore que , par des moyens semhlables i
ceux qui ont ¢té appliqués & la série proposée , on parviendrait
aussi a sommer la série

aSin.x e*Sin 2¢ a38in3x at8in.fx

1 a - 3 + 4 - +ou., Ky
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a"Sin.nx

dont lc terme généralest . Le résu'tat serait compligné d'ima-

ginaires qu’on ne pourrzit faire d.sparaitre que par des moyeus peu
directs ; et on trouverait hualement pour la somme cherchée

Are, '(Tang.:: oS );’

1=—2Cos.x

aussi la série proposée n’est-elle autre chose que la valeur que l'on
tire pour y de [’équation

Sin.
Tang.y= o

1—aCosux

trés-usitée en gdodesie.
M. Querret tire de sa méthode générale plusieurs autres som-
mations. Posant, par exemple, f(¢)=Log.(1-4a) ou

a a? o3 ab a5
==t s—g+s—

il en conclut que la somme de la série

2Cos.x e2Cos.2x | 03Cos.3x aiCos.4x

Sy aa——

3 2 3 4

vede

doit étre

Log.[ 1-4(Cos.z+1/ =18in.2)]-+Log.[ 14-2(Cos.x —y/ Z1Sin.x)]

i

4

ou encore

Log.(1-}2aCos.2-}-a2) .
7
2

de sorte qwon a
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2Cos. 3Cos.3
Log.(1+2aCos.x+a=)= 2 (an.:s.x e C:s 2% +a C;s 2 __‘) :

En faisant successivement a=--1 et ¢==—1, il vient

Cos. Cos. Cos.3 .
Log.(14Cos.z)=-Log.2+2 0: L — os:x -+ 0; . Coj['x +ee ),
t

Log-(I—COS.$)=-L0g.2-2(C'°:'x + Coe:zx +Coz3x + Co:4x +. ) ;

développemens donnés par Euler ( Voyez son Calcul intégral,
tom. I, 3 la fin du chap. VI); il en déduit ensuite

Log.Cos. -}x;—Log.m+Cos.x-— £ Cos.22+; Cos.3z— ; Cos.4z ..
Log.Sin. ; 2=—Log.2 —=Cos.2— ; Cos.22— ; Cos.34— ;Cos fzr—...

" Log.Tang.? #=—2(Cos.z-} Cos.3z+ £ Cos.bz+ £ Cos.7at . u0..) <




- RESOLUES, 115

24

Solution du probléme de géomelrie propose a la pag. 32y
du X1le volume des Annales ;

Par M. Pacant Micuer , ingénieur 3 Gentve.

[a 0 o V5 Vo Vo i Vi T Y ¥

P ROBLEME. On demande léquation d'une courbe telle que
si de lorigine on méne un rayon vecteur quelconque et une per<
pendiculaire & la tangente & son extrémité , 1.° le cube construit
sur le rayon vecteur soit double en volume du cube construit sur
la perpendiculaire @ la tangente ; 2.° que langle formé par la
perpendiculaire avec laze des x soit le tiers de l'angle formé par
le rayon vecteur avec la méme droite?

Solution. Ce probléme est évidemment un probl¢me plus que
déterminé ; non pas de ceux qui renferment seulement quelques
conditions superflues ; mais bien de ceux dans lesquels les condi-
tions sont incompatibles.

Soient , en effet, O lorigine , OX la direction de Paxe des
z, M un quelconque des points de la courbe cherchée , et N le
pied de la perpendiculaire abaissée de O sur la tangente en ce
point. Puisque le rapport du cube de OM ia celui de ON est
donné , le rapport de ces deux droites est aussi donné; le triangle
rectangle MNO est donc donné d’espéce ; Pangle MON de ce
triangle est donc donné ; mais cet angle doit étre les deux tiers
de XOM et le double de XON ; donc ces derniers sont aussi
donués ; donc les directions OM et ON sont tout a-fait Hxes et
détermindes ; donc tous les points de la courbe cherchée devraient
dtre sur la droite OM ; cetic courbe devrait donc se coufondre
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avec cette droite , ce qui est impossible , puisqu’alors ses tangentes
ne pourraient étre perpendiculaires i la direction ON.

On ne peut donc résoudre le probléme qu'en faisant tour-a-tour
abstraction de chacune des deux conditions ; et c’est aussi ce que
nous allons faire successivement; nous montrerons ensuite que les
deux courbes ohtenues sont essentiellement différentes.

I. Nous vencns de voir qu'en exigeant” seulement que le cube
construit sur OM soit le double du cube construit sur ON, l'an.
gle MON’ est tout-i-fait déterminé; I'angle OMN l'est donc aussi;
la question revient done alors simplement 4 trouver une _courbe

dans laquelle les rayons vecteurs fassent un angle ecoustant avec
la tangente 3 leur extrémité.

Soit @ la tangente tabulairc de cet angle, et soit fait, suivant 'usage ,
d . !

-(-}Z— =p , langle que fait OM avec l'axe des x étant A
x ~ .

x 1

pous devrons avoir

P

=z ou (ay—2zp+(az+y,=o ‘
1p L |

équation dont l'intégrale est

2 Are.(Ta g
Vagp=Ce * ( "= )

°

C’est I'équation d’une spirale logarithmique . comme l'on pouvait
bien s’y attendre (*).

Dans le cas particulier qui nous occupe, on a

(*) Voyez la page 136 du VIILe volume du présent recucil.
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oM 1
- a:Tang.OMN= = = ——3
OM —ON' - ON \z ?
v 7/ ' (m

fmais .
3 P—
OM on T va
done :

N N
Ve

de sorte que I’équation de la courbe sera

4 {VZ—xArc.(Tang..-_-.% )

Vg =Ce Va SN0

ol € est une constante arbitraire.

I1. Supposons , en second lieu, qu'on ne veuille avoir égard qu'a
la seconde condition seulement; il faudra qu’on ait

Ang.MOX=3Ang.NOX :

d’ou
3Tang. NOX—Tang NOX
Tang MOX = 2% ang"NO ;
1—3Tang.:NOX
mais on a
Tang.MOX:—.% > TangNOX=m—m— .
4
done

Tom. XII. 37
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cette équation donne d’abord la solution particulidre y==z ; mais
il est clair qu’elle ne saurait convenir & la Guestion qui nous occupe.
En éliminant y entre. elle ¢t sa dnffeff.ntxelle ) 11 vient , toutes

réductions faites

dx __ 3(pr41)dp
z ~ ppr=np-3)

ce qui donne, en intégrant,

i Cz= ‘

ce qui donne, en @glgiglian,t,

.-l-_gpl
(pl—x)%

Cy=

prenant donc la somme des quarrés des valeurs de x et y , il
viendra, en réduisant, ' '

C:(xa+y=)— ’i":l ) ,

pr—1
d’od
P
p—1

=y G@EaD 3

ce qui donne



RESOLUES. ‘10

= P —
\/ Cz(xz-h)n)—-x

substituant cette valeur dans ’équation

) S
et changeant la constante € en T il vient

Y wity E’ﬁ___
y__;// +2 R ()
— — <
& %H’ }y%%w+; '

I11I. En passant, pour plus de simplicité , aux coordonnées po-
laires , les équations (1 et 2) deviennent

k
o dor

r étant le rayon vecteur et 7z I'angle qu’il fait avec I'axe des =.
On voit, 4 cause des constantes arbitraires C et 4, quil y a

une infinité de courbes qui résolvent le premier des deux problémes,

sans résoudre le second , et unc infinité de courbes qui résolvent

le second sans résoudre le premier.
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Afin donc que le probléme ptt étre résolu tel qu'il a été pro-
posé , il faudrait que dans les deux séries de courbes il sé trouvat
une ou plusieurs courbes communes; c'est-a-dire , qu'il faudrait
que, par une détermination convenable des constantes C et £,
on pit amener les équations (1 et 2) 3 étre identiquement les
mémes : or , cest une chose évidemment impossible , puisque
la premiére de ces équations est toujours transcendante quel que
soit € et la seconde toujours algébrique quel que soit 4. Le pro-
bléme , tel qu’il a été proposé , ne saurait donc étre résolu , comme
nous l'avons d’ailleurs déja prouvé/dés le début.

 Gendve, le 4 juin 1822,

QUESTIONS PROPOSEES.

Probléme de Geométrie.

UNE des propriétés de la sphére est que les plans tangens aux
deux extrémités de chacune de ses cordes font des angles égaux
avec cette corde ; mais an congoit que cette propriété peut fort
bien n’étre pas exclusive 3 la sphére. On propose donc d’examiner
si elle ne eonvient pas également a d’autres surfaces , et de donner,
dans le cas de laffirmative 4 'équation générale de ces surfaces ?
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R
[ —— — ——— — ————

MATHEMATIQUES APPLIQUEES.

Essai sur les forces qui déterminent les divers €tats
des corps ;

Par M. H. G. ScuMIDTEN.

s s . A . P s W s W R

ON peut regarder la matitre comme un assemblage de points
d’ott émanent des forces répulsives et des forces atiractives. Celles-
ci sont constantes dans le méme corps , mais celles-la sont variables.
Faisant I’élément variable qui y entre =r , et la distance la plus
courte entre deux centres de forces =m , on peut toujours faire
répondre la valeur 7=o0 A la valeur m=1.

Désignant par ¢/m) la somme de toutes les forces attractives d’un
corps sur un point C ( fig. 1 ) , dans la direction CD , et par
Wm ,r) la somme des forces répulsives suivant la méme direction ,
on a ¢(m)—y(m , r) pour l'expression de la force toiale qui altire
le point G vers D.

Actuellement , pour déterminer le volume du corps en état d’équi-
libre , on doit chercher m en fonction de I'élément variable 7, pae
le principe des vitesses virtuelles. En effet , si 'on suppnse CD=o:
c’est-a-dire, si l'on suppose que le point C fait partie du corps,
I'état d'équilibre de ce point se déterminera par ’équation

d.o(m) _ dAd(m,r) —o

dm dm

om)—+.m,r)=maximum , ou bien

Tom. XIII, n.° IV, 1.°* octobré 1822, 18
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On a ainsi une relation entre m et r, d’ou l'on peut déduire
le volume et la quantité ¢(m)—¥(m, r), en fonction de r seule ,
et c'est sur-tout de la forme de cette derniére fonction que dépend
celle du corps.

Dans l'ignoranée ot V'on est sur la nature de ces fonctions, on
éclaircit ceci, autant qu'il est permis de le faire, parla considération des
courbes ou les abscisses représentent les diverses valeurs de m de-
puis o jusqu'd e , et ou les ordonndes sont les fonctions @(72)=
¥(m ,r) qui leur répondent, pour une valeur constante de 7. Si
I'on désigne les forces répulsives par des ordonnédes négatives, on
voit qu’a lorigine des abscisses 'ordonnde doit &tre — oo ; et qu'a
I'abscisse infinie doit répondre 'ordennée o. De plus, si la courbe
a la forme epy (fig. 2 ), on voit que, dans I’état d'équilibre , la
quantité m doit avoir la valenr AB; et Bg étant positive, le corps
doit étre solide. D’ailleurs, il est frés-possible, et méme vraisem-
blable , que la courbe contient plusieurs mazimums , et que par
conséquent ce corps pourrait avoir plusicurs équilibres stables.

Telle parait devoir éwre l'explication des changemens brusques
qui s'operent dans plusieurs corps, par un certain changement de
température.

Maintenant , si on augmente Paction du principe dont l'inten-
sité est désignée par 7, il est naturel qu’en général les ordonnées
positives deviennent de plus en plus petites au point de devenic
enfin négatives , de sorte que le mazimum positif devient un mi- .
nimum négatif , et que la courbe prend la forme ag/y ou «p/’y
(fig. 3). Mais le corps n’étant plus solide, parce que I'ordonnée
n’est plus positive, il faut absolument qu’il soit liquide ; car P’état
aériforme ne saurait répondre 4 aucune situation stable. Cependant ,
si- 'on augmentait encore la quantité r , jusqu'd ce qne le corps
n'eit plus aucune situation stable, ou que-la courbe ett la forme
ey (fig. 4), ce corps serait aériforme; et, comme il doit cher-
cher un volume od lordonnée devienne un minimum , on voit
quil n’aura jamais un équilibre stable, parce que le minimum vers
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m=c. Ainsi les gaz peuvent seulement

lequel il tend répond
action des forces extérieures, et ne com~

ére en équilibre par
portent aucun rapport déterminé entre les quantités m et r, parce
que l’équation

a
17

d.e(m) _ dd(m, r =0

dm dm

existe seulement pour la valeur m=eo.

Le caractére des corps solides et liquides est donc de n’admettre
qu’une variable indépendante 7 , tandis que les corps aériformes
dépendent des deux variables m et 7.

La quantité plus ou moins grande de r se fait remarquer par
la température qui , dans les solides et les liquides , est fonction
de r, tandis que, dans les substances aériformes, elle I'est de m
et de 7. Un fait général sur cette fonction est que deux corps a
des températures indgales tendent toujours & partager le principe r
entre cux , de sorte que finalement les températures deviennent
égales.

Commencons par les solides et les liquides, en discutant , autant
que possible , la nature de cette fonction entre r et la tempéra-
ture 2. Faisant, ce qui est permis, =0 en méme temps que r=o,
on prend pour unité de r une quantité quiest en état de produire
un certain effet, par excmple, de fondre une certaine masse de
glace. Si les abscisses représentent les valeurs de 7 et les ordonnées
celles de 7 qui leur répondent respectivement , on voit que ces
ordonnées doivent, en général , augmenter avec les abscisses ; mais,
pour cela, il n’est pas impossible gue la ccurbe ait un ou plusieurs

maximums., Ge qu'on appelle chaleur spécifique n’est que le rap-
. . dr

port de Ulaccroisscment de 7z & celui de r ou 5 5 ¢t cette

quantité doit étre variable, & moins que la ligne ne soit droite ou

qu’on ait
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t=ar4b .

Les expdriences , qui montrent que la chaleur spécifique augmente
avec r, font voir que la courbe est concave vers l'axe des r ;
mais , dans les limites resserrées de nos expériences , sa courbure

est pen considérable.

Un fait général pour tons les solides est qu'arrivés & un certain
degré de température, cette température n’est plus augmentée par
une augmentation de 7, jusqu'a ce qu'un changement d’état lait
rendu susceptible de recevoir un nouvel accroissements

Si l'on regarde ce point comme répondant & un mezximum dans
la courbe des températures , ce qui convient avec la forme con-
cave , on obtient une explication compléte des phénomenes qui accom-
pagnent le passage des corps d'un état 4 un autre. Soit , par
exemple , la courbe des températures de la forme «gyy (fig. 5);
il faut que la température diminue , lorsque 7 devient plus grand
que AB; mais, ayant égard & l'impaifaite conductibilité du prin-
cipe r, on voit que cetle circonstance doit donner lieu aux phé-
nomeénes qui se¢ présentent dans la nature. b

En effet, i’accroissement de r se communiquant d’abord a une
trés-petite partie du corps, doit y opérer un changement consi-
dérable , et y faire passer la température au minimum , jusqu'a
une valeur dgale a celle de l'autre partie de ce corps; mais alors '
il ne pourra monter plus haut sans le reperdre, a cause du prin-
cipe de I'égalité des températures, jusqu’d ce que ce changement
se soit opéré sur tout le corps, qui alors pourra augmenter de tem-
pérature comme a l'ordinaire. Supposant que la température va en
diminuant , et que le corps est parvenu & I'état qui répond i la
température Dy=Bg, on verra de méme qu’en diminuant le prin-
cipe 7, d’abord une petite partie du corps, en passant par I'état
qui répond a cette température , doit y rester jusqu'd ce que, dans
tout le corps, le principe r se soit diminué de la quantité BD,
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Oependant , si le changement n'était ni trés-considérable ni trés—
subit, il se pourrait que le corps ne changeit pas encore brus-
quement d'état ; mais qu’il diminudt de température jusqu’au mi-
nimun Cy , et qu'y étant arrivé, il dat passer subitemcat a I'érat
qui répond & Bg. On voit ainsi une diffcrence essenticlle entre ces
deux situations , savoir, le point de liquéfaction qui est fixe, ctle
point de " congélation qui est susceptible de variations. Clest ainsi,
par cxemple , qu’on peut faire acquérir 2 ’ean une tempdrature
fort infcricure a celle de la congélation, sans que pour cela clle
cesse d'¢tre liquide. Muis une question a laquelle il parait impos-
sible de répondre, dans l'ignorance o nous sommes de la forme
des fonctions ¢ et ¢, est celle de savoir si un tel changement
brusque doit toujours produire un passage de la solidité a la liquidité,
etvice versd , ou , ce ui revient au méme , si le maximum de ¢ doit
toujours répondre & une valeur nulle ou A pen prés nulle de la fonction
qui constitue la solidité ou la liquidité, selon qu’elle est positive ou
négative. En effet, il faut bien distinguer trois fonctions différentes
de r, savoir, le volume proportionnel a m?*, la température ¢ et
la force ¢(m)—¥(m ,r). Les observations n'offrent que tris-pen
de données pour les déterminer, et les tables de la dilatation des
corps pour des températures différentes donnent seulement la rela-
tion entre les dcux fonctions inconnues Z et 3. La scule maniére
de déterminer I'unc de ces fonctions serait de chercher les chaleurs

. dr .
spécifiques =+ pour les diverses valeurs de r, d’ott 'on conclu-

1Y

rait ¢ par l'interpolation et I'intégration ; mais il est trés.difficile et
presquimpossible d’obtenir les expériences nécessaires pour cela.
Pour se faire une idée du passage d’un liquide a Iétat aériforme,
on doit se rappeler la courbe qui répond a la liquidité, savoir,
«dy (fig. 6), ol les abscisses sont les valeurs de 2 : et les ordon-
nécs celles de ¢/m)—¥(m, r), pour une valeur constante de 7.
Or, si un accroissement de r venait a changer le minimum g cn
un point d'inflexion g/, on détruirait nécessairement l’équilibre
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stable par un nouvel accroissement de r, quelque petit qu’il fat,
ct 'on contraindrait le corps 4 en chercher un autre qu'il n'obtien-
drait dans ce cas que pour une valeur infinie de m ; c'est-a-dire
que le corps deviendrait aériforme. On sait qu’il fant augmenter
considérablement la quantité r pour faire passer un corps a cet
état ; mais on verra néanmoins qu'un changement trés-faible de cette
quantité peut 4 la longue avoir le méme effet, a cause de l'im-
patfaite conductibilité; car l'accroissement de r, se communiquant
d’abord & une petite partie du corps, la transforme avant que de
s'étre communiqué au reste ; et la partie transformée absorbe encore
de ce principe, jusqu'sd ce que I'égalité de température ce soit établie ;
mais la température des vapeurs étant fonction de 7 et du volume,
on voit que la pression extéricure, aussi bien que la température
du corps vaporisant, détermine la durée de la .vaporisation. Il est
d’ailleurs évident que, par exemple, la nature de la vapeur de la
glace doit éire la méme que celle de la vapeur d’eau & la méme
température. -

Nous avons déja observé que le caractére des vapeurs est que
la quantité m n’est pas fonction de 7, ou qu’il 0’y a pas d’¢qui-
libre stable; si Yon veut éclaircir cette théorie par la considération
des courbes, il faut choisir d'autres fonctions que celles que nous
avons considérées plus haut, Pour cela, nous tracerons une courbe
ou les abscisses représentent, pour une valeur constante de 7 les
valeurs de la quantité indépendante 7 , tandis que les ordonnées
correspondantes sont les forees qui s’opposent, dans chaque point ,
aux forces extériceures qui tendent & comprimer la vapeur. Il est
d’abord facile de voir que , lorsque m=o0 , l'ordonnde doit étre
=-—c0 , tandis que pour m=o cette ordonnée doit étre nulle.
Si cette courbe , que nous supposons étre apyy (fig. 7) a un
mazximum , il est facile d'en déduire les conséquences. Si, en effet,
les forces extérieures compriment la vapeur jusquw'a ce que m=AC,
on voit qu'elles doivent, en vertu des forces intérieures , changer
brusquement de forme, en passant 4 un étal qui répond - au mini-
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mum Bg; mais, davs la nature, cette opération est tonjours plus
compliquée, & cause du principe de I’égalité des températures; car
celles-ci étant fonctions de m et r, il est facile de voir que,
pour que Z reste constant lorsque m varie , il faut que r varie aussi;
mais, dans l'ignorance ol l'on est sur la forme de cette fonction,
on peut seulement savoir qu'en cette rencontre il se dégage une
partie considérable de cette quantité,

Il est dailleurs évident que le point ot la vapeur se converlit
en liquide est fixe; mais que la vaporisation s‘optére a toutes les
températures. L’ordonnée Cy représente la plus grande force élas-
tique dans chaque point de la masse. La distinction qu'on établit
entre les vapcurs et les gaz secs pourrait bien, au surplus, con-
sister uniquement en ce que ccux-ci sontdes vapeurs trés-éloignées
du mazimum , ou en ce qu'ils sont représentés par une courbe de
la forme «py (fig. 8); et dans ce cas, il serait absolument im-
possible de les réduire a I'diat liquide, du moins tant que 7 resterait
constante.

Dans tout ce qui précide, nous avons évité de faire des hypo-
théses sur la nature de la matiére. Dans ce qui va suivre, nous
allons seulement déduire quelques conséquences mathématiques de
deux hypothéses contraires entre lesquelles les physiciens sont en-
core aujourd’hui partagés, savoir, celle de la continuité et celle de
la discontinuité des parties, Dans la premiére , la plus courte dis-
tance entre deux centres de forces est infiniment petite ; dans la
seconde elle est finie. Les conséquences de la premiére peuvent
donc se dédnire de celles de la seconde, comme on déduit le calcul
diflérentiel du calcul aux différences finies. Nous considérerons donc
d'abord la premic¢re , comme la plus simple , en rappelant ce fait
d'expérience que Dattraction moléculaire est insensible a une distance
sensible du contact.

Soit donc un plan indéfin1, 2 une distance s d’'un point attiré,
Supposons la mati¢re dans I'état od m=1 , et lattraction d’un point
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3 une distance x égale & ¢(x) , alors Dattraction totale sur
le point A (fig. 9), exercée par le plan, dans la direction per-
pendiculaire AB, sera 2ssI1(s), en faisant "

) rT=Ss
Sdze(x) =II(s) ;

=N

d'ol T'on conclut pour l'attraction exercée par le corps entier 4 la
distance s,

~

S=s8
2-_/:;1-1(5)(15 .

S= 0

Pour la valeur s=o0; nous désignerons cette intégrale par 2=C".
Maintenant , si m n’était plus égale 2 I'unité de son espece, on
voit qu'ad cause du rapport infini entre s et la plus petite distance

entre deux centres, il en résulterait seulement que I'attraction totale

' . 2= C/
deviendrait alors .
m

Si, au contraire, la matitre n’est pas continue, il faudra avoir
égard aux diverses positions des centres attirans, ee qui fera que
m entrera sous le signe ¢; et dans ce cas on ne pourra plus em-
ployer le calcul différentiel pour trouver la somme des attractions.
Toute la théorie de l'action capillaire est fondée sur I'hypothese de
la continuité de la matiére ; et il parait en effet permis de I’adopter,
ou du moins de suppeser la matiére assez voisine de cet état pour
quon puisse se permettre, sans erreur sensible , de substituer les
.différentielles aux différences finies. Si présentement on considére
la force répulsive , en supposant qu’elle agit aussi & une distance

. B .. A
finie ,“on pourra représenter par gt la force qui agit sur ce méme

. : . 22/ , .
point, en sens contraire de — B étant celle qui répond 4 m=1,

et
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et étant conséquemment uniquement fonction de r. Dans ce cas,
pour déterminer les conditions de Iéquilibre , il faudra faire
2wC'==B

m3
qu'on ne fasse m=o. Il faut donc que la force répulsive ait une
autre forme que la force attractive , relativement & m, ce qui

maximum par rapport 3 m , ce qui est impossible , 3 moins

n’est possible que lorsqu’elle n’agit pas 4 des distances finies ; de
sorte que m doit entrer sous le signe V. Donc, en général |
2=C’ . . .

— —¥(m , r)=mazimum ;ce qui donne lieu a toutes les recherches
que nous venons d’exposer.

L’on voit ainsi qu’en admettant la continuité de Ia matiere ,
Paction du cerps 4 distance devient absolument indépendante du
principe répulsif; de sorte que la force de cohésion doit exister
méme dans les gaz. En effet, l'action d’un corps sur un point A

2@ (s)
3

3 la distance s (fig. 10) étant , celle quil exerce sur un

élément de la méme nature que le corps lui-méme, parallele an
2wy (s)ds . .,
———; et celle du cerps entier situé au-dessous

plan CD sera

du plan GD , sur celle qui est au-dessus du méme plan sera
K -

~— ,ou l'ona

mb

P,

=2afds¥(s) = .

S=w

La force répulsive n’agissant qu’i des distances infiniment petites, on

. Lot K .
voit que la force de cohésion est ~ » et par conséquent tou-

jours positive.

Les différentes propriétés qui distinguent les corps les uns des
antres sont encore I'élasticité , la dureté , la ductilité , qui dé-
pendent de la forme des forces attractives et répulsives , et dont

Tom. XIII. 19
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la derniére est parfaite dans les liquides. La fragilité dépend da
plus ou moins rapide décroissement de la force atiractive , & rai-
son de l'accroissement des distances. La force de la pesanteur doit
étre fonction de quelque force élémentaire;ect c'est de cette fonce
tion que dépend le poids des atomes. Enfin les forces élémentaires
d’un liquide, combinées avec celle de la pesanteur, produisent les
phénomeénes capillaires.

Quant aux substances aériformes , nous observerons que , dans la
2=/ .y )
force — —V¥(m ,7r), la quantité m\ est beaucoup plus grande que

dans les solides et dans les liquides, & température égale, et que
r augmente avec /2, a une température constante. Donc, si l'on
voulait développer ¥(m ,r) en une série convergente, il faudrait
faire en sorte que 7 n'en détruisit pas la convergence ; observant

donc que ¥(m, r) est nul ou infini, suivant que = est a 'inverse
infini ou nul, on peut faire

&;(m,r):"!’l(m»r)+"Pz(m;r)+‘?’3(m’r)+

m m3z m3

.
03005 9

les fonctions ¥,, ¥, , ¥, ,eu. étant toujours comparables & une
quantité. constante , quelque grand que soit m. En conséquence ,
la force totale agissant sur un point quelconque de la masse sera
ainsi

. ¢x(m,r)+¢2(m,r)+'J/;(m,r)—sz’

m m? m3 LXTYYY} ;

et Pon voit que , pour une valeur considérable de m, on peut
rejeter , sans erreur sensible , vis-d-vis du premier terme , tous
ceux qui le suivent; admettant de plus que ¢,(m , r) est propor-
tionnelle 3 la température , on obtient la loi de Mariotte. Cette
maniére de se rendre compte de cette loi est loin, comme on le
voit, d’étre rigoureuse, et il serait bien difficile de parvenir a quel-
que chose de plus satisfaisant, dans l'ignorance ou l'on est relati-
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vement 3 la forme de la fonction ¥(m , ) ; toutefois , elle est peut-
éwre aussi légitime que celle qu'on a employée dans la théorie du
son, pour ddémontrer que son intensité est en raison inverse du
quarré de la distance au centre de 1’ébranlement.

Si I'on n’admettait pas la continuité de la mati¢re , Vexpression
de la force attractive aurait en général la forme

a o c

;l——}- - +7];3—+ ;
et, pour obtenir la loi de Mariotte, il faudrait établir une nouvelle
hypothése propre & faire disparaitre la quantité a.

J’ai essayé de faire voir jusqu'a quel point il serait possible , dans
Pétat actuel de Ianalise mathématique et de la physique expéri-
mentale, de se rendre compte des principaux phc¢noménes qui ac--
compagnent les différens états des corps.

Dans Tignorance ou l'on se trouve relativement a la force des di-
verses fonctions qui doivent étre envisagées dans ce genre de re—
cherches, on se trouve contraint de se borner 4 des considérations
beaucoup trop générales; combien donc les difficultés ne se trou-
veraient-elles pas encore accrues, si 'on voulait faire entrer en
considération de nouvelles forces, telles, par exemple, que I'élec~-
tricité , d'ot dépendent les combinaisons chimiques , et dont la
nature nous est encore plus cachée. L’on voit aussi combien mal-
gré la simplicité des lois de la combinaison des corps et principa-
lement des gaz, découvertes par I'expérience , il deit étre difficile de
trouver seulement une relation entre les chaleurs spécifiques et les
quantités de chaleur absorbdes ou dégagées par les transformations

et les combinaisons.
Plombi¢res, le 24 juillet 1822,
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GEOMETRIE ELEMENTAIRE.

Deémonstration de la propriété de minimum dont
jouissent la circonférence du cercle, entre les péri-
mélres des figures planes de méme surface, et la

surface de la sphére entre les surfaces des corps de
méme volume ;

Par un ABoNNE.

- (T ERGONNE

ON avu a la page 61 du présent volame , que, méme en em-
ployant les puissans moyens que fournit la méthode des variations,
il v’est pas du tout aisé d’établir la propriété dont jouit la sphere
d’éire le corps de moindre surface entre tous ceux de méme vo-
lame, ou le corps de plus grand volume entre tous ceux de méme
surface. Cest pourtant la une propriété tellement saillante qu'on
ne saurait trop sefforcer d’en rendre la démonstration assez
simple pour pouvoir l'introduire dans les élémens de géométrie,
et tel est le but que nous nous proposons ici; Mais, comme la
propriété dont jouit le cercle d'étre la figure plane de moindre
périmetre entre toute celle de méme surface, ou la figure plane
de plus grande surface entre celles de méme périmetre , a une treés-
grande analogie avec celle-l4, nous nous en occnperons également.
Ce sujet a déja été traité a la page 338 du 1V.® volume du présent

recueil ; et si nous y revenons de nouveau ici, ¢’est uniquement dans
la vue de le présenter d’'une maniére plus simple,
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LEMME 1. De tous les triangles de méme base et qui ont leur
sommet sur une méme droite indtfinte , celui dans lequel la som-
me des deux autres cdiés est la moindre possible , est celui dans
lequel ces deux cétés font des angles égaux avec la droite indéfinie.

Démonstration. Soient AB (fig. 11 ) la base commune a tous ces
triangles, et DE la droite indéfinic sur la quelle leurs sommets doi-
vent étre situés; de 'une quclconque A des extrémités de cette
base soit abaissée sur DE une perpendiculaire AF, prolongée au-dela
de cette droite d’'une quantité FG=FA. En quelque point C de DE que
I'on veuille placer le sommet de 'un des triangles dont il s’agit, on aura
toujours CG=CA ; donc CA+4CB sera la moindre possible , quand
CG+CB sera la moindre possible; c’est-a-dire, lorsque le pomnt G
sera en ligne droite avec les points B et G; mais alors les angles
BCE et GCD seront égaux, comme opposés par le sommet ; puis
done que , par suite de la construciion , les angles GCD et ACD
sont anssi égaux ; il s’ensuit que les angles ACD et BCD doivent
aussi étre ¢gaux , comme nous l'avons annoncé,

LEMME 1I. De tous les trapizes qui ont bases égales et méme
hauteur, le trapéze isocéle, c'est-a-dire , celui dans lequel les deux
cbt:'s non paralleles sont égaux , est aussi celui dans lequel la som-
me des longueurs de ces deux cdiés est la moindre possible.

Démonstration. Soit AA’ (fig. 12 ) la base commune a tous ces
trapeézes , et soit DE la droite indéfinie sur laquelle doit se trou-
ver l’autre base ; en portant la longueur de cette derniére sur AA’
de A’ en G, vers A, de quelque maniére que 'on pose cette base
BB/ sur DE, on aura toujours BC=DB/A’; d’ou il suit que, pour
que AB+A/B’ soit la moindre possible , il sera nécessaire et il
suflira que AB4-BC soit elle-méme la”plus petite possible; donc
( Lemme 1. ) les angles ABD et CBE devront étre égaux ; il en
sera donc de méme de leurs alterncs internes BAC et BCA; on
devra donc avoir AB=CB et par conséquent AB=A’B’. Le traptze

devra donc étre isoctle, ainsi quil avait été annoncé
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LEMME 1Il. De toutes les pyramides triangulaires qui oni
pour base commune un méme trapéze et dans lesquelles le sommet
se trouve situé sur une méme paralléle aux cétés paralléles de cette
base , celle dans lagquelle la somme des aires des faces latérales.
qui ont pour base les deux cdtés non paralléles de ce trapéze est la
moindre possible, est celle dans laquelle les plans de ces deux
Jaces sont également inclinés sur le plan du trapéze.

Démonstration. Soient AA’ et BB’ (fig. 13) les deux c6tés paral-
Itles d'un trapéze, base commune d’une suite de pyramides qua-
drangulaires de méme hauteur, ayant toutes leurs sommets sur une
méme paralléle 2 ces deux droites, paralléle dont nous supposcrons
que la projection sur le plan de la base de la pyramide soit CC’
coupant en C et C/ respectivement les deux cétés non paralleles
AB et A’B’ de cette base.

Desdeuxextrémités B et B/ de 'un BB’ des c6tés paralleles du trapeze
soient abaissées les perpendiculaires BD et B/D/ sur la direction du c6té

. opposé AA’. Soient prolongés les cotés BA et B/A/-au-dela de A
et A’ en E et E/, de telle sorte que CE et C'E/ soient dgales a
la hauteur commune de toutes nos pyramides. Des points E et E
élevons des perpendiculaires sur CE et C/E/, terminées en I et
F/ 4 leur rencontre avec les perpendiculaires élevées & CC/ en C
et C’; enfin menons la droite FF’.

Considérons présentement une de nos pyramides , dont le sommet
se projette au point G de CC’; menons, par ce point G, la droite
KL perpendiculaire commune aux deux c6tés paralltles du trapéze,
et conséquemment égale 3 BD et B/D’. Menons les droites GF et
GF/, et abaissons sur les directions de AB et A/B/ les perpendi--
culaires GH et GH’.

Si l'on joint le sommet de la. pyramide au point H. par une
droite , cette droite sera dvidemment la hauteur de la face laté-
rale dont AB est la base ; cette hauteur sera donc l’hypothéxiuse
d’un triangle rectangle ayant GH pour Pun des c6tés de I'angle
droit et pour l'autre la hauteur de la pyramide , c’est-a-dire , une
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longueur égale a CE ; de sorte que la hauteur de “cette face trian-
gulaire aura pour expression

)

or, les trois triangles rectangles semblables BDA, CEF et GHC

donnent
KL

GC:GH= E.GC »

' AB:BD ou KL ::
CF:CE= XL . CF .
' — aB ' ?

donc
KL. FG

GH 4-CE _< ) (GG +CF )= (=

au moyen de quoi la hauteur de la face latérale dont la base est
AB se trouvera simplement exprimée par
KL.FG
AB
et par conséquent l'aire de cette face aura pour expression
KL.FG
2
Or , comme les circonstances sont absolument les mémes de. part
et d’autre de la droite KL, il s’ensuit que I'aire de la face latérale
dont la base est A’/B/ devra avoir pour expression
’ KL.F'G
2
ja somme des aires des deux faces latérales ayant pour bases AB
et A’B/ aura donc pour expression

L. . KL
K FG+KL2F'G ou ~ .(FG+F/G) ;

H

2

. KL . . . )
i cause du facteur constant —— , il sera nécessaire et il suffira ;
2

peur que cette somme soit la moindre possible, que la somme
GF+4-GF” le soit elle - méme , ce qui exigera ( Lemme 1) que
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le point G soit tellement situé sur CC/ que les angles FGC et
¥/GC/ soient égaux entre eux. k

Les deux triangles rectangles FCG et F/C/’G devront donc étre
semblables ; de sorte qu’on devra avoir
GC:GC/::CF : C¥/ ;
mais les triangles rectangles semblables déja employes donnent
GH :GC :: CE : CF ,
GC/: GH/:. ¥ : CF/,

multipliant donc ces proportions terme & terme, il viendra , en
réduisant

GH :GH’:: €CE : C’E/ ;
or, par comstruction , les deux derniers termes de cette proportion
sont egaux ; donc, on doit avoir GH=GH’, ce qui montre que le
point G doit étre l'intersection de GG/ avec la droite qui divise
en deux parties égales l'angle formé par les directions des cotés
non paralleles AB et A’B/ du trapéze, base de la pyramide.

On veit de plus que les triangles rectangles formés par la hau-
teur de la pyramide, les perpendiculaires égales GH et GH/ et les
hauteurs des deux faces latérales ayant pour bases AB et A/B/ seront
égaux ; d’ol il suit que les plans de ces faces seront également inclinés
sur celui de la base de la pyramide, ainsi qu’on I'avait annoncé.

LEMME 1V. De tous les troncs de prismes triangulaires qui
cnt les trois mémes arétes latérales et la méme section perpendi-
culaire a leur direction commune , celui dans lequel la somme des
aires des deux bases est lamoindre possible est le tronc de prisme
triangulaire isocéle, c'est-d-dire , celui dans lequel le plan qui passe

par les milieux des trois arétes latérales est perpendiculaire & leur
direction commune.

Démonstration. Soit abc ( fig. 14) la section perpendiculaire aux
arétes AA’, BB/, €C/ d’un tronc de prisme triangulaire, Par I'un
(/ des sommets de I'upe des bases A/B/C’ seit conduit un plan

upC.
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apC’ , parall¢le au plan de lautre base ABC; ce plan détachera du
tronc une pyramide quadrangulaire , ayant pour base le trapéze «A/B/g
et devant avoir son sommet en quclque point de la paraliele menée
pac le point ¢ aux deux bases du trapéze. En outre, les deux
triangles ACB et «C’z scront égaux ; de sorte que, la face laté-
rale AA/B/B étant donnde, pour que la somme AGB4-A’C/B/ des
aives des deux bases soit la moindre possible , il sera nécessaire et
il suffira que la somme 2C/e+A’C/B’ des aires des faces latdrales
de la pyramide, ayant pour bases les ¢otés non paralliles «p et A/B/
du trapéze, soit la moindre possible, ce quiexigera ( Lemme I11')
que Paréte CC/ soit tellement situde que les plans de ces denx
faces soient également inclinés sur la base de ce trapize ; d'od
il résultera que les deux bases ACB et A/C/B/ seront aussi égaleruent
inclindes sur la face latérale ABB’/A/,

Ainsi , les situations de deux des arétes latérales da tronc
étant donndes, la situation de la troisiéme qui rend minimum la
somme des aires des deux bases est celle qui rend ces bases ¢ga-
lement inclindes sur le plan des deux autres ardtes ; d'ou il suit
que, pour que la somme des aires de ces bases soit un minimum
absolu, il faut que leurs plans soient également inclinés sur celui
de chacune des trois faces latérales ; or, c’cst ce h quoi on parvient
évidemment en placant les milieux @, & , ¢ des trois arétes AA/, BB/,
CC’ sur le plan de la section perpendiculaire & leur dircction com-
mune ou, en d’autres termes , en rendant le tronc isocele,

THEOREME I. Entre toules les figures planes de méme surface ,
le cercle est ccile gui a le moindre périmétre.

Démonsiretion. Si T'on nie cette proposition , il faudra admettre
que , parmi les figures plines d'une méme dtendue donnde , celle
de moindre périméire est autre que le cercle 5 et que c'est par
conséquent une figure dans laquelle on pourra trouver deux cordes
paralléles, infiniment voisines , qui n’auront pas leurs milieux sur

une méme perpendiculaire 3 leur direction commune.
Tom. X111, 20
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Soit AA/ ( fig.15) une de ces cordes , et soit MN la perpendi-
culaire indéfinic mende & sa direction par son milieu a ; soit BB/
la corde consécutive & AA’, ayant son milieu & hors de MN ; si
Ion fait glisser cette corde BB/, jusqu’a ce que son milieu se trouve
sur cette droite, en faisant suivre le mouvement i toute la partie
intérieure de la figure ; sa surface totale n’en aura éprouvé aucun
changement, mais la somme AB--A’B/ et conséquemment le péri-
metre ( Lemme I1') sera devenu moindre; d’od ’on conclura que

la surface proposée n’est pas celle de moindre périmétre, entre
toutes ceiles qui lui sont équivalentes.

Coxotlaire. 11 suit de la qu’entre loutes les surfaces planes de méme
périmetre, le cercle est celle de plus grande étendue. Supposons
en effet que l'on prétende que la surface de moindre étendue,
sous un périmctre donné P, soit une surface S différente d’un cercle,
Soit fait un cercle € équivalent & §; son périmétre @, par ce qui
préceéde , sera <P ; donc, si on fait un cercle €/ dont le péri-
meétre soit =P, ce cercle aura une surface plus grande que € et
conséquemment plus grande que S d’ol il résultera que S ne sera

pas la plus grande surface contenne sous le périmeétre P, comme
on l'avait d’abord supposé, ‘

THEOREME II. De toutes les courbes planes qui , ayant une
- corde commune , enferment le méme espace enire elles et cetle
corde , l'arc de cercle est celle dé moindre longueur.
Démonstration. Admettons qu'il n’en soit pas ainsi. Soit I'arc de
cercle 4 et un arc d'une autre courbe, d’une longueur €< 4 en-
fermant le méme espace §, et soit achevée la circonférence. Sup-
posons que la longueur du surplus soit L, et qu’elle enferme un
espace T3 nous aurions ainsi un méame espacg S-+T renfermd d’une
part par une circonférence dont la longueur serait 4=+L, et d'une
autre par une courbe non circulaire dont le périmétre serait C+ L A+L,
ce qui est impossible ( Théoréme 1), :
Corollaire. Par un raisonnement tout semblable i celui dont nous
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avons fait usage dans le précédent corollaire , on démontrera qu’a
I'inverse entre tous les arcs de courbes de méme longueur, qui ont
une corde communc , larc de cercle est celui qui renferme lc plus
grand espace entre lui et sa corde,

THEOREME 111, Extre tous les corps de méme volume , la
sphére est celui qui a la moindre surface.

Démonstration. 8i V'on nie cette proposition, il faudra admettre
que, parmi tous les corps d'un méme volume donné, celui de
moindre surface est autre que la sphére, et que cest par consé-
quent un corps dans lequel on pourra trouver trois cordes paral-
I¢les infiniment voisines , au moins, non situées dans un méme plan,
dont les milieux ne soient pas dans un méme plan perpendiculaire
4 leur direction commune,

Soit ¢ (fig. 16 ) le milicu d'une corde, et soit le plan de la
figure un plan conduit par ce milieu, perpendiculairement & sa
direction ; soient @, # les points ou ce plan est percé par deux
autres cordes paralltles a celle-la qui en soient infiniment voisincs
et qui ne soient pas situées dans le méme plan avec elle ; et sup-
posons que ces deux nouvelles cordes n’aient peint leurs milieux
en a ct 4. Concevons le plan de la figure partagé en un réseau
de triangles infiniment petits, par les sommets desquels soient menées
des cordes parallcles aux trois premiéres ; ces cordes seront les
arétes latérales d’une suite de tronecs de prismes triangulaires dont
nos triangles seront des sections perpendiculaives aux arétes,

Cela posé, on pourra faire glisser les cordes ou arltes gui passent
par ¢ et b, jusqu'a ce quelles aient leurs milieux en ces puints. En
opérant ainsi de procke en proche sur toutes celles des avires cordes
qui n’auront pas leur milieu sur notre plan, jusqu'd ce qu'on les
ait amenées a4 les y avoir toutes , on n'aura point changé
le volume du corps dont il s’agit , tandis qu’on cn aura ( Lemme IV")
diminué la surface j; d'ot I'on conclura que cette surface n’était
pas la moindre de toutes celles qui pouvaicent contenir le volume donné.
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" Corollaire. 1l suit de 1 qu’entre tous les corps de méme surface,
la sphére est celui du plus grond volume. Supposons, en effet, que
Pon prétende que le volume de moindre étendue, sous une surface
doanée §, soit un volume ¥ différent de la sphére. Soit faite une
sphére = équivalente a 77, sa surface §’ sera, par ce qui pré-
cede <8 ; donc, si I'on fait une sphére =/ dont la surface soit
dgale a §, cette sphére aura un volume plus grand que =, et
conséquemment > ¥ ; dou il résulterait que ¥ ne serait pas le
plus grand volume contenu sous la surface §, ainsi qu'on lavait
supposé, -

TIHEOREME 1V. De toutes les surfaces courbes qui , se ter-
minant @& une méme circonférence de cercle , renferment le méme
volume cnire elles et le plan de ce cercle , la calotte sphérique
est celle de moindre étendue.

Démonstration. Supposons qu'il n’en soit pas ainsi. Soit la calotte
sphérique C et une autre surface §<C enfermant le méme volume
V et soit achevée la sphére. Supposons que la surface du surplus
soit €’ enfermant un volume F7 ; nous aurions donc ainsi un méme
volume V477 enfermé d'une part par une surface sphérique C+C7,
et d’une autre par une surface moindre S+4-C/, ce qui est impos-
sible (Théoréme 111) (*). .

Corolluire. Par un raisonnement tout semblable & celui dont nous
ayons fait usage , dans le précédent corollaire , on démontrera qu’a
Pinverse de toutes les surfaces courbes de méme étendue, terminées
) une méme circonférence de cercle, la calotte sphérique est celle
gui enferme le plus grand volume entre elle et ce cercle,

(*) Ceci explique , en particulier, pourquoi les bulles de savon sont sensie
blement sphériques ; elles le seraient rigoureusement si elles étaient partout
d’uvae épaisseur uniforme, et si la pesanteur n’existait pas.

J.D. G,
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QUESTIONS RESOLUES.

Deémonstration du théoréme de géomelrie enoncé & la
pege 321 du XIL® volume des Annales ;

Par MM. Pacani MicHeL , ingénicur & Geneve,
QuerreT , chel dinstitution a St-Malo,
Et Durranpe , professeur de physique au collége
royal de Cahous.

e W W e e 2 W T S

T HEOREME. La circonférence qui passe par les cenires de trois
guelconques des quatre cercles qui touchent @& la jfois les trois
cbiés d'un triangle quelconque est double de celle qui passe par les
trois sommels de ce triangle. x

Démonstration. Soient A, B, C (fig. 17) les trois sommets da
triangle dont il s’agit. Concevons que l'on en ait divisé les trois
angles cn deux parties égales par des droites; il est connu que
c~s droites concourront toutes en un méme point O, centre du cercle
inseiit. Par les sommets d’olt partent ces droites , menons-leur res—
pectivement des perpendiculaires , formant, par leur rencontre deux
a deux, un nouveau triangle circonscrit au premier. Socient A/,
B/, G/ les sommets qui, dans ce dernier , sont respectivement op-
posés aux sommets A, B, G du premier ; ces points seront , comme
Pon sait , les centres des trois cercles ex~inscrits au triangle ABC ;
c’est-a-dire , les centres de treis corcles dont chacun teuche, i la
fois , un c6té du triangle ot l2s prolongem i »des deux auirces.

Les points A/ et O, étant ainsi les cecirss de deus cercles ins=
crits 3 un méme angle BAG, devront se wrouver en ligne droite
avec le sommet A de cet angle; ct, pour de semblables raisons ,
les points B’, O, B, ainsi que les points C/, O, C seront égales
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ment en ligne droite ; de sorte que le point O , intersection des
droites qui divisent en deux parties égales les trois angles du triangle
ABC, pourra aussi étre considéré comme celui ou se croisent les
perpendiculaires abaissées de chaque sommet sur Ja direction du
cOlé opposé , dans le triangle A/B/C/, et que le triangle ABC aura
ses sommets aux pieds de ces perpendiculaires.

Remarquons présentement que , lorsque deux triangles ont un
cbté égal, et que Pangle opposé dans T'un est supplément de I'angle
opposé dans l'autre , ces deux triangles sont nécessairement ins-
criptibles & un méme cercle ou 2 des cercles égaux ; puisqu’en les
opposant base a base, on formera un quadrilat¢re ayant deux angles
opposés supplément l'un de l'autre , et conséquemment inscriptible
au cercle; et que le cercle qui lui sera circonscrit le sera en méme
temps aux deux triangles dont il s’agit.

Or, a cause des angles droits opposés en B et C, le quadri-
latére OBA’C est inscriptible au cercle; donc l'angle BOC , et
conséquemment son opposé au sommet B/OC’ est supplément de
I'angle A’; d’ou il suit , par ce qui vient d’étre dit ci dessus,
que les deux triangles B’A’G/ et B/OC’ sont inscriptibles &
des cercles égaux ; et, comme on prouverait évidemment la méme
chose de chacun des deux triangles C’OA/, A/OB/, comparés au
méme triangle A’B/C/, il s'censuit que les circonférences qui passens
par les centres de irois quelconques des quatre cercles qui touchent
& la fois les trois cdtés d'un méme iriangle sont toules égales entre
élles 5 et ont conséquemment méme rayon. Il reste donc & établir
que le rayon delunc d’clles, de celle qui est circonscrite au triungle
A/B'C/, par exemple, est double du rayon de celle qui est cir-
conscrite au triangle ABC.

Pour y parvenir, remarquons d’abord que le rayon du cercle
c'rconscrit & un triangle dtant égal au produit de ses trois edtés
divisé par P’aire du triangle, et Paire d'un triangle étant la moitié
du produit de deux quelconques de ses cotés par le sinus de I'angle
compris , il s’ensuit que /e rayon du cercle circonscrit & un triangle
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est dgal S un de ses cotés divisé per le double du sinus de Pangle
opposé 5 ce que l'on peut d'ailleurs démontrer directement d’une
maniére fort simple.

Cela posé, si 'on désigne par R et I/, respectivement les rayons
des cercles circonserits aux triangles ABG et A’B/C/, on aura
AB=2RSin.C , AB/=2R'8in.C/ .
Mais , si ’on circonscrit au triangle A/AB/ un cercle, dont le rayon
scra 2 A/B/, ce cercle se trouvera aussi circonscrit au triangle AB/B ;
de sorte que son rayon pourra dégalement étre exprimé par
o dob il suit que
AB=A'B’Sin.AB'B ;
mettant donc dans cette derni¢re équation pour AB et A/D/ les
valeurs trouvées ci-dessus, elle deviendra
RSinC/'Sin AB'B=RSin.C . {

Or , parce que le quadrilatere OAB’C est inscriptible au cercle,
Pangle AB/O ou AB/B doit étre égal & ACO ou ACC/ ou moitié
de 'angle G ; au moyen de quoi la derni¢re équation ci- dessus
devient

R'Sin.C/'Sin.;C=RSin.C=2R8in.;CCos.5;C ;
ce qui donne, en réduisant,
R'SinC/=2RC0s.;C »

Présentement, de méme qu'on a 4ng.C’B/B= ;G on doit avoir
pareiliement

AngB.C/G=3iB , Ang A/C/C= ;A ;
d’od, en ajoutant,

C/=:{(A+B)=;=—;C ;
done

$in.G/==Cos5.5C 3
R'=2R ;

ce qui compléte la démonstration du théoréme.

donc finalement
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Telle est, en substance , la démonstration donnée par MM. Pa-
gani et Querret. M. Durrande , en partant des mémes préliminaires,
emploie , pour parvenir au but, un trés-élégant théoreme de géo-
métric €lémentaire, démontré par M. Poncelet, a la page 215 du
XL.® volume du présent recueil ; lequel consiste en ce que les pieds
A, B, C des perpendiculaires abaissées des sommets A7, B/, C/,
d’'un triangle ( fig. 18 ) sur les directions des co6tés opposés , les
milieux A7, B”, C”, de ces mémes cbtés , et les milieux A/,
B/, G/, des distances des sommets au point O ol se croisent
les trois perpendiculaires , sont neuf points appartenant a une méme
circonférence.

1l en résulte d’abord immédiatement que le cercle circonscrit au
triangle ABC Vest également au triangle A”B/C/ , semblable 2
A/B/C/ et ayant ses cotés moitié des siens; d’olt il suit que le rayon
du cercle circonscrit h ce dernier doit étre double de celui du
cercle circonscrit au triangle ABC.

En outre, le méme cercle circonserit 4 ABC V'est aussi & A7/B//C//,
semblable 3 A/B/O , et ayant ses c6tés moitié des siens ; d’ou il
résulte que le rayon du cercle circonscrit & ce dernier doit aussi
étre double de celni du cercle circonscritd ABC , et conséquem-
ment égal a cclui du cercle circonscrit 3 A’B’C/ ; ce qui démontre
complétement le théoréme.

En renversant le théoréme proposé, on obtient le suivant:

THEOREME. La circonférence du cercle circonscrit & un triangle
est égale & celle de chacun des cercles qui passent par deux de ses
sommets et par le point de concours des perpendiculaires abaissées
de ces mémes sommets sur les directions des cdtés opposés ; cha-
cune delles est double de celle qui passe par les pieds des trois
perpendiculaires.

Bien que ce dernier théoréme se trouve suffisamment établi par

ce qui précéde, M. Durrande le démontre aussi directement, par
les fonctions circulaires.
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GEOMETRIE TRANSCENDANTE.

Solution nouvelle d'un probléine énoncé dans la
correspondance sur l'école polytecknique;

Par M. Tuaomas pE St-LAvumenT, licutenant , aide-major
du corps royal d'état major , au 7.° régiment dartillerie
a pied.

o %0 Yia Yo Vi Vg Vi Mo e

Ala page 275 du IL® volume de'la Correspendance sur I'école
polytecknigue, on trouve ce qui suit:

« Un ancien éléve, directeur des couanes & Fuligro, département
» de Traziméne, M. Dubois-Aymé sc promenait sur le bord de
» la mer; il apergut, a quelque distance, quelqu'un de sa connais-
» sance, et se mit & courir pour l'atteindre; son chien, qui s’était
» €carté, courut vers lui, en décrivant une courbe dont Iempreinte
» resta sur le sable. M. Dubois, revenant sur ses pas, fut frappé
» de la régularité de cette courbe, et il en chercha I'équation,
» en supposant , 1.° que le chien se dirigeait constamment vers I’en-
» droit ol 1l voyait son maitre; 2.° que le maitre parcourait une
» ligne droite; 3.° que les vitesses du maitre et du chien étaient
» uniformes.

» Prenant pour axe des y la ligne dreite parcourue par le maitre,
» et pour axe des @ la perpenciculaire abaissée sur cette droite
» du poirt de dépzrt du chien , on trouve, pour léquation de la
» courbe

Tom., ZIil, n.° V', 1.%% povembre 1822. 21
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dans laquclle 7 est le rapport -des vitesses du chign et de son
maitre ; et « Vangle que fait Iaxe des y avec ladroite qui joint les
» points de dépurt du maitre et du chien (¥).

.» Celte courbe est telle que ses rayons de courbure sont pro-

portionnels aux abscisses des points auxquels ‘ces rayons appar-
» tiennent ».

»

En cherchant & me rendre compte de lanalise qui avait pu
conduire 4 cctte équation , elle m’a paru inexacte , et il m’a semblé
que la courbe qui résout le probléme ne pourrait, en particulier,
jouir de la propriété annoncée. Je vais exposer ici la marche que
j'ai suivie et les résultats que j'en ai obtenus; en laissant au lecteur

‘A prononcer entre ces résultats et ceux qui se trouvent consignés
dans la Correspondance.

Quelle que soit la courbe décrite par le chien, on peut toujours
supposer qu’a ‘chaque instant il marche sur la tangente & cette
courbe ; d'ot il suit qu’a chaque instant aussi la tangente menée

~a la courbe quil déerit , par le point de cette courbe ou il se

trouve, va couper ladroite décrite par son maitre au point ou celui-
ci se trouve lui-méme en cet instant.

Soit prise cette droite pour axe des y, les coordonnédes étant

(*) On pe dit pas ce que @ représente ; mais on

peut présumer que c'cst la
distance de lorigine au point de départ du chien.

J. D. G,



rectangulaires et Porigine quelconque. Si I'on désigne par (27, y)
le point de la courbe ou se trouve le chien d un instant quel-
conque , la tangente en ce point , dirigée vers son maitre, aura
pour équation
dy’
y=y'=—5 @—a); (1)

on aura donc la position du maitre sur la droite qu’il déerit, ou
sa distance  l'origine , en cherchant lintersection de ce cette tan-

gente avec l'axe des y , c’est-i-dire la valeur de son ordonnée qui
répond & x=o0 ; désignant donc par y¥ cette ordonnée, on aura

dy’
1 =t ., 2
¥ z == (2)

Or, présentement , si l'on désigne par 2 le nombre d’'unités de
longueur que parcourt le maitre pendant que son chien en parcourt
une seule, et que, suivant Pusage, on représente par s’ la lon-
gueur de l'arc de courbe commengant & un point quelconque et
se terminant en (z/, y/), on aura

dy” d),// ds? N
P s (3)

mais , d’une part, en différentiznt I'équation (2) et vy considérant
2’ comme la variable indépendante, il vient
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substituant donc, et supprimant les accens , désormais inutiles ,
on obtiendra pour I'équation différentielle seconde de la courbe

cherchée
s L =nf i (L) - (4)

Remarquons d’abord , avant d’aller plus loin, que, d’aprds la
manié¢re dont nous avens procédé , cette €quation ne suppose pas
essentiellement que les vitesses du chien et de son maitre soient
constantes ; mais seulement qu’elles sont 4 chaque instant dans le
méme rapport. On congoit , en effet, que la nature de la courbe
décrite par le chien ne saurait dépendre des vitesses absolues.

On sait qu'en représentant par r le rayon de courbure d’une
courbe en Vun (#,y) de ses points, on a

REEN

dar

(5)

dz
en mettant donc dans cette formule pour —(—i—l’ sa valeur (4), il
x

- 2{(2)]

d’ou Yon voit qu'il n’est pas vrai que le rayon de courbure de la courbe
dont il s’agit soit, comme on I’a anroncé dans la Correspondance ,
proportionnel & son abscisse. On voit en effet que ce rayon est
proportionnel au produit de I'abscisse par le quarré de la co-sécante
de son iuclinaison sur l'axe des .

viendra

Pour obtenir Pintégrale premidre de I'équation (4), faisons , sui-

dy . _
vant l'usage, ™ =p;elle deviendra ainsi
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dp Sy —
& a—;uﬂ%1+p= H

c’est-a-dire ;

d dx
d =n -—

Vigp: x

équation séparée dont l'intégrale est

Log.(p+v/ 194p2) =nLog.d+-nLog.a =nLog.dz=Log.(4xz)" ,
d’ou
1

A= —{p+y/ Sl (7)

x

A étant la constante arbitraire.

Employons cette constante a fixer la position de I'origine, sur
laguelle nous n’avons pas encore statué, en la prenant de la ma-
ni¢re la plus propre 3 simplifier la forme de I'équation primitive.
Remarquons pour cela que , les résultats auxquels nous sommes
parvenus jusqu’ici étant absolument indépendans du temps , il nous
est permis de ne pas considérer de point de départ, c’est-a-dire,
de supposer que le malire et son chien marchent depuis quel temps
on voudra; d’aprés quoil on peut concevoir une époque ol la tan=-
gente mende & la trajecicire par le point de cette trajectoire ol
le chien se trouvait alors éiait perpendiculaire 3 la droite indé-
finie décrite par son matire , c’esi-d-dire , & I'axe des y; et ou
conséquemment le maitre se trouvait au pied de cette perpendiculaire,
c'est-a-dire , & l'oricine. Prenons done cette tepsentz pour axe des
a , et supposons qu’alors la distance du chien & son maitre est
a ; cela reviendra & admettre que , tandis que le maitre part de
lorigine pour parcourir 'axe des y, dans le sens des y positives,
son chien part d’un point de I'axe des & distant de ceite origine
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de la quantité 2: on devra donc avoir, en méme temps , z=a et p=o0;
au moyen de quoi I'équation (7) deviendra simplement

. I
A=- ,
a

valeur qui, substituée dans cette méme équation (7), la changera
en celle-ci :

b 4
a

—_— N x \1
{p-‘-vx_*_pz,ﬂ, ou p+‘/;+pz=<:> .

8w~

En transposant et faisant disparaitre le radical , on tire de cette

derniére
()=}

valeur qui devient également infinie , soit que # soit nul ou bien
qu’il soit infini,
On tire de 13 successivement

r=i{(3 ) —=+(3)"
R alCOLICHIN ©
& =var={()+(2)1

ce qui dopne, en intégrant,

=T n (G =m (3T

d’on
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Si I'on veut compter les arcs depuis le point que nous avons con~
sidéré comme point de départ du chien , on devra avoir & la fois

s=0 ¢t ¥=a, ce qui donnera

a( 1 1
T2 a1 n—1 9y’

puis en retranchant

= COAI T CO R N

Drapres les formules (6 et g ), on aura

o a \2ut=1 a N\2h—%1 Ja
T:l;’—zg<7> 2 -%—(:;-) 2 § ; ([I)

d'olt on tirera

ar 3 o \2)‘1«}«[ ( a \2h—1
= (2 ()
an A 2Ne=m § )73 vens | a 2141
Xg +1(.‘f_)————z _ <w>-———-2 %
2 aQ 2 x

le rayon de courbure mezimum ou minimum répondra donc an
point pour lequel on aura I'une ou l'autre des deux équations

m\zn-\-t' a \t=1
(-Z-/ 2 ~1"<-{—c—) z =0,

on-fei x \an=—17¥ a \ Ltn+1
~ e 2 et 1 =0
2 < fai)

La premiére, cui revient a
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(3)'=

x—a'\'?—x ) (‘2)

donne

valeur qui ne sera réelle qu'autant que » sera une fonction ayant
un dénominateur pair, et qui sera alors égale 3 —a. La seconde
donne

3"/211-—-!

x_aﬁ/ g (13)

valeur qui sera toujours réelle , lorsqu’on. aura 2> ; ; mais qui,
dans le cas de n< < ne sera réelle qu’autant que z sera une fraction
ayant un dénominateur pair. Quant au rayon de courbure au point

. . a
de départ du chien ou #=a, il sera — ;
n N

Passons enfin 4 la recherche de Téquation de la courbe. En

d
remettant pour p sa valeur —‘% dans la formule (8), on a

reomif [ TE) fo
c’est-a-dire
y+0—-;{n+x< )Hl ne—1 I §

En se rappelant qud y=o doit répondre x=a , on aura

d'ou, en retranchant



Tor. Xlll,p(an.l,pag.ldt —34 5.
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NI O TR

Telle est donc I'équation de la courbe.
Cette équation peut étre mise sous la forme suivante :

n ¢ o \t1 1 a \"™*
EN =—(Z) +=(5
a 722 1 n—1I 7] 7y Y X

de sorte qu’en portant ['origine au point de Paxe des y pour le-

quel on a

P (16)

2
72 2 e §

ceite équation deviendra simplement

r=tim() ()T (i7)

Si 'on pose

a a \n+1 a a \Mt=1
2y = — 2y = ——) ; 18 -
7 n+1< a > ’ Y n-—x(x ! (18)
on aura

y=y=y” .

En construisant donc les courbes exprimées par les équations (18) ;
ce qui sera facile an moyen des logarithmes , les ordonnées de la
courbe cherchéde seront la somme des leurs.

En désignant par y/ la distance du maitre & l'origine , lorsque son
chien est au point (#,¥), on a, pour la distance du chien & son

maitre ,
Tom, XIII. 22
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Var o= 5
mais la formule (2) donne
y/-—y::—-px ’

ce qui donne, en substituant,

AN OOE

ou encore -
(2T ()7 (19)

Aprés avoir ainsi déterminé les formules générales , venonsa quel-
ques cas particuliers. Supposons , en premier lieu, que la vitesse
du chien soit égale i celle de son maitre ; on aura alors =1,
ce qui rendra infinie une partie du second membre de V'équation
de la courbe. Cette circonstance annonce nn changement dans la
forme de la fonction, et nous oblige de refaire une partie de
nos calcals pour ce cas particulier.

Nous aurons ici \

Il

42},

S.‘c..

ce qui donnera, en intégrant
B=: = 4aL )
Ky = - — arog.x H
+B= (< +aLogs) ;

en se rappelant toujours qu'a s=o deit répondre =4, on aura
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= 5(2-; +aLog.a) ;

d’olt, en retranchant,

g K2mempy 2
T

~-alLog. —-—;

ou encore

= (—E—)a+Log. (—-j—)z-.-t :

Nous aurons ensuite (11)

TIGNO I
RO

a

ou bien

I'abscisse du point pour lequel le rayon de courbure est le moin-

dre , sera

L]
’

== ——

Q-I

el sa longueur sera

K
o

i
°|
N

Quant au rayon de courbure au point de départ du chien, il sera
égal a a.
On aura enfin
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yre=i f (55 )i

y—l—C:: %(-::—;— -—aLog.x) ;

c’est-a~-dire ,

en se rappelant donc qu'a y==o0 doit répondre x=a, on aura

z an
C=: <—2;— -—-aLog.a> )

d’out, en retranchant,

"2 i
»‘4—0 =3 -—Log.(ﬁx) I

Cette équa‘ion peut étre écrite ainsi

X2 e x
yrT=EETIs T

d'od P'on voit qu'en descendant Vorigine sur I'axe des y de la quantité

o . )
- I'équation de la courbe sera simplement

x3 a

y=—--—-——-—Log.—j:- ; (20)

4a 2
de sorte qu’en posant -

a2

a
y'= e y/’:-—-;Log,.—E- , (21)

on aura

y=y—y" .
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En construisant donc les deux courbes exprimdes par les ¢

157
guations
(21), dont la premiére est une parabole ayant pour axe I'axe des
y, son sommet 3 la nouvelle origine, et son foyer & une distance
a au-dessus , tandis que la seconde est une logarithnique , les dif-
férences de leurs ordonnées correspondantes scront les ordonndes
de la courbe cherchée. ,

On voit aisément , par la forme de Végnation (1g), que la courbe
est entitrement située du cOté des @ positives ; elle I'est également
du coté des y positives ; car, pour que y put étre négatif, il
faudrait qu'on pht avoir (1g)

%2 e L x (Z)* e\
i < ~ Log. — ou ¢ <K " ;
. . . . ’ . k2 fe2 K 2
ce qui est impossible, puisqu’ona, en général, ¢ =1+-;+:+-->1£ :

Cette courbe est donc entiérement située dans I'angle des coordonnées
positivess La valeur de p, qui est ici

x a)
—_———,
a X

ai ir d’ailleurs que 2 croissant de @ & linfini, p croitra de zéro
fait voir d )
a linfini positif, tandis que, x décroissant de @ a zéro, p décroit
de zéro 3 linfini négatif ; et comme d’un autre c6té y devient éga-
lement infinie , soit qu’on fasse x nul ou qu'on le fasse infini , on
en doi u u our c nt convexe vers l’ax
doit conclure que la courbe, constamment convexe vers [’axe
es ux br es infinles comme la parabole , avec cette
des z, a deux branches infi 0 la parabole , 1t
diffcrence que ces deux branches n’ont pas la méme courbure.
On voit, en cffet, que I'unec d’elles est hyperbolique, ayant I'axe
des hour asymptote , tandis que l'antre a pour asymplote une
I ’ q I
parabole située du c6ié de sa concavité et ayant pour équation

“ln

p:

x*=4ay .
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Enfia, I'expression générale (1) de la distance du chien & son
maitre devient, dans le cas actuel,

e k(2]
quantité qui tend sans cesse & se réduire A ;@, 3 mesure que =z
devient plus petit. Ainsi, non seulement le chien n’atteindra jamais
son maitre , mais il en sera toujours 4 une distance plus grande
que la moitié de celle qui I'en séparerait au moment du départ.
Il est facile de conclure de la que, si I'on développait la courbe
décrite par le chien, en l'appliquant contre I'axe des y, son ex-

trémité tomberait a4 une distance ;& au-dessous du point de départ
du maitre.

Pour second cas particulier , supposons que la vitesse du maitre
soit double de celle de son chien, c’est-a-dire , supposons n=2.
Nous aurons d’abord (10)

O RIS

w‘n

ou encore

wiw

s
a

(Z=)[(Z)+(2) w(2)+ .

Nous aurons ensuite (11)

=5l () EFY

ou bien
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L’abscisse du point pour lequel le rayon de courbare sera mini-
mum , sera (14)

z=ay/

et la longucur de ce rayon sera

wlw]

3

r= (1T RVT.

L’équation de la courbe scra (15)

()= (2

En portant lorigine (16) au point pour lequel on a

2

wn

LA
(73

— a
y==za,

cette équation deviendra simplement (17)

SELOON

de sorte quen posant (18)
y) x 3 yﬂ x
3J—=2<-—) 2——(-—):!,
a a aQ aQ

y=y'~+y” :

on aura

ILes ordonnées de la courbe seront donc la somme de celles d’une
parabole cubique et d’une hyperbole ordinaire ayant leur centre
commun a la nouvelle origine et situées dans les deux angles des

coordonndes de mémes signes; les nouveaux axes étant les asymptotes



\

160 PROBLEME

de I'hyperbole et celui des # étant une tangente & la parabole cu<
bique. La courbe cherchée aura donc aussi un centre 2 la nouvelle
origine ; elle sera composée de deux parties séparées, parfaitement
égales , situdes dans les angles des coordonndes de mémes signes ,
et ayant chacune deux branches infinies , comme la courbe qui
répond au premier cas , dont I'une hyperbolique et l'autre para-
bolique. Les denx branches hyperboliques auront I'axe des y pour
asymptote commune. Lasymptote commune des deux autres sera
la parabole cubique. On sent dailleurs que la partie de la courbe
situde dans l'angle des coordonnées positives sera la- seulc utile au
probléme, T

“« o ‘. , .
On trouvera enfin ici (19), pour U'expression générale de la dis-
tance da chien 2 son maitre ,

.- S x \3 a
a3\ — )+ — 5
l a X
quantité qui tend a devenir infinie, & mesure que z devient plus
petit. Ainsi, I'avance du maitre sur son chien croitra ici indéfiniment.

Pour dernitre application, supposons qu’d I'inverse la vitesse du
chien soit double de celle de son maitre , *Cest-3-dire, supposons
n=1:, Nous aurons d’abord

3 x
2..5—:_.1- i>:+ .f.. 7_:.
¢ *\a a 3

Nous aurons ensuite (11)
a X \3
r= — 1+—) ;
2 a

d’'ot T'on voit que le rayon de courbure sera le plus petit possible
lorsque 2 sera nul, et que sa longueur sera alors ;a.
I’équation de la courbe sera ici (15)

ai'e
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J’ — ! x %’_ ———— i %‘— R -
2—;-—7§(;) I} {(0) I§,
mais en portant I'origine au point del’axe desy pour lequel on a (16)

y=sa,

elle deviendra simplement (17)

SOOI

de sorte qu’en posant

y'=1a( < ) , yr=a( 2 ) ;
(2)=(3), (E)=7.

y=y'—y" .

¢’est-a-dire ,

on aura

Il est aisé de conclure de la que la courbe est toute situde du
c6té des z positives; qu’elle est symétrique par rapport au nouvel
axe des # , qui en est un diamétre principal ; que la nouvelle
origine est le sommet de ce diamétre ; que la courbe par-
tant de ce point s’écarte également de I'axe des z, en dessus et
en dessous , jusqu’a la distance ¢ de I'axe des y, olt il y a unc
double ordonnée maximum égale a >a; que, passé ce terme, les
deux branches se rapprochent de I'axe des z ou elles vont se couper
4 une distance 32 de Porigine, en faisant avec lui des angles de
30°; et qu'ensuite elles se prolongent indéfiniment, en s'écartant
de plus en plus de cet axe.

Tom. XIII. ‘ 23
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L’expression générale de la distance du chien & son maitre (1g)

devient ici
1 x x
/4 <l+ :’)V_; ,

qui est nulle en méme temps que 2. Le chien atteindra donc son
maitre ; et comme , abstraction faite du signe, pour #=0, ona

K

wla

a,

il s'ensuit que, lorsqu’il Patteindra, le maitre aura seulement par-
couru les ; de lintervalle @ quil’en séparait au moment du départ.

Mais , afin que la loi de continuité soit maintenue, la figure de
Ia courbe indique que le chien, aprés avoir atteint son maitre, le
fuira en conservant toujours une vitesse double de la siennc.

On voit donc, en résumé, qu'excepté le seul cas ol les vitesses
sont égales , la courbe décrite parle chien est toujours algébrique;
et que , sans qu'il soit nécessaire de faire disparaitre les radicaux ,
ce qui quelquefois pourrait étre assez difficile , on pourra toujours
commodément la déerire , au moyen de deux courbes auxiliaires
dont une sera de la famille comprise sous la formule générale

¥ =Ada,

tandis que l'autre sera de la méme famille ou de la famille com-
prise sous la formule générale

suivant que 7 sera moindre ou plus grand que l'unité.
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YA SR RN

ARITHMETIQUE.

Addition a lUarticle sur les puissances et racines
numeriques , inseré & la page 359 du XIL° voluwne
clu present recueil ;

Par M. Quereer , chef d'institution & St-Malo (*.

Li a été observé, a I'endroit cité, quen posant succesvivement

Tett =4,

Bl ——

(*) Tout ce quon va lire se trouvait en substance dans larticle rappelé 3 mais
le défaut de développemens suffisans ne nous permit alors d’en comprendre que
ce que nous en publidmes.

J. D. G,
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m ey

TS —— am.z+bAm~;;Amgz;

I 2
m
T @™ e-b Ap. 2=Am- 19

am4bAp. =Ap

on avait
4m= (a+2)" ;

et on a appliqué cette remarque a la formation du cube de 47
Nous remarquerons présentemeut que , si 'on pose successivemen.

A, +b =4, ’
A, b4, =4, ,

A, b4, =4,

Am. l+bA/m_ — A/m— I 2

on aura

Ana= 'n% (at-d)m" 5
qu'en posant ensuite ‘
A’l -+ =A", ’

A/z E“&A”l =A//2

2

2

N Al bAu, =qn,
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Ayt bAd/ e s =A4" s 5
on aura

m .me=1 o
A//m-z= 'I'" > (a+5)m 2

qu'en posant encore

A7, b =A",
A, FbAV, =A",

AV, b, =AY

...........'....’

A AAN gy = A
on aura
m m===1 m

—0,
A”Imu s - _I_. ..__2__... 3 (a+6)'ﬂ 3,

et ainsi de sunite, On a donc ainsi
A n =(‘z+5>m ’
m
A/ m-l= T ((l-*—ﬁ)m” »

m  Mme=I

A= — - (a+l)"?

Al(m-x):—r:-l (a4-0) ,

Ao(”‘) =1

v
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(@Fbte)" = A b el A e e e e 4, O

Appliquons ce résultat a la formation de la cinquiéme puissance
du nombre 473. Nous avons déja trouvé , a. I'endroit cité.
A4,=2070,
A, =1744900 ,
A, =1762143000 ,
A ,=181350010000 ,

A =22634500700000 ;

—~

d’aprés quoi on conclura successivement des précédentes formules,
en prenant constamment 7o pour &,

A, =di4o , A’ =2210 , A" =2280, A" =2350
A’ ,=1894700 , A//2=20294oo , A4 ,=2209000 ,
A’ ;=894772000, 4,=1038240000,
A’ ,=243984050000,

22934500700000 «  1==22934500700000

24398400000 . 3= 931952150000

1038240000 « Q= 9344070000
2209000 . 27= 59643000
2350 . 81= 1go350

I . 243= 243

On aura ’ (473)}=23675856753593 .
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En renversant le probléme , on est conduit, pour l'extraction des
racines & un procédé simple et uniforme, qui nexige que Vemploi
de I'addition et de la multiplication par des nombres d'un senl chiffre.
Nous allons Pappliquer 2 un exemple, ¢n nous bornant A la pra-
tique; la théorie pouvant étre aisément déduite de ce qui précede.

Soit un nombre entier dontil faille extraire la racine cinguidme
et supposons qu'aprés I'avoir partagé en tranches de cing chiffres
chacune, en allant de droite & gauche , les trois premieres tranches
a gauche soient

2380,12582,56547 5 v v vttt
voici d'abord I'opération, dont nous expliquerons ensuite les détails.

2380,12582,565047 ;. v 473 00t

1024

135612582
126945007

866757556547
741356053593

125401502954 .. . v en .

La racine cinqui¢me en nombre entier de la derniére tranche 3
gauche étant 4 , nous formerons le tablean suivant, dont nous
allons expliquer l'organisation
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40 1600 64000 2560000
5 10 10 5
L
200 16000 640000 12800000 (M)

7 1449 122143 5335001

207 17449 762143 18135001 o)
7 1498 132629 6263404

214 18947 894772 24393403
7 1547 143458

221 20494 1038230

On écrit d'abord les quatre premiéres puissances du premier
chiffre 4 de la racine, en mettant 4 la dreite de chacune autant
de zéros qu’il y a d'unités dans le nombre qui en marque le degré.
On écrit au-dessous les quatre coefficiens intermédiaires 5, 10, 10, 5
de la cinquiéme puissance d'un binome ; et on prend les produits
des nombres correspondans , ce qui forme une suite dont le dernier
nombre est désigné par (M) et que nous appellerons premiére -suite

- Aprés
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Aprés avoir écrit sous la derni¢re tranche du nombre proposé la
cinqui¢me puissance de 4 qui est 1024, on fait la soustraction,
et on abaisse 3 la droite du reste la tranche suivante du nombre
proposé , ce qui donne un premier dividende 135612582 , dont la
division par le nombre (M) donnera un quotient entier qu’il ne
faudra jamais prendre au-dessus de g, et que le second chiffre de
la racine ne pourra jamais excéder. On trouve ici 9.

En soumcttant successivement ¢ et 8§ & la vérification que nous
allons expliquer, on les trouve trop grands ; on passe donc 2a 7
que l'on vérifie comme il suit:

Au moyen de la premiére suite,. on forme la-seconde et la troi-
sitme simultanément de la mani¢re gque voici: on dcrit 7 sous le
premier terme de la premicre suite, auquel on l'ajoute; on porte
le produit de la somme par 7 sous le second terme de la premicre
suite , auquel on l'ajoute ; on porte le produit de la nouvelle somme
par 7 sous le ftroisicme terme de la premicre suite , anquel on
Pajoute également ; et I'on continue ainsi , jusqud ce qu'on soit
parvenu & former le dernier terme de la froisiéme suite que nous
avons désigné par (N). Cest parce que le produit de ce dernier terme
par 7 est moindre que notre premier dividende que I'on reconnait
que lc chiffre 7 peut étre admis comme second chiffre de la racine.
On porte ce produit sous le premier dividende, on - fait la sous-
traction et l'on abaisse la troisi¢me tranche 4 la droite du reste,
ce qui donne un second dividende 866757556547.

Retournant alors de nouveau aux. suites; de la troisitme on dé-
duit exactement la quatriéme et la cinqui¢me , en employant tou-
jours le chiffre 77, de la méme maniére que la seconde et la
troisiéme avaient été déduites de la premicre. Par le méme procédé
on déduit Ja sixiéme et la septitme dé la cinquiéme , mais en”
arrétant celles-ci & un terme de 'moins; de la septi¢me on déduit
pareillement la huitiéme et la neuviéme , que Ton arréte encore
a un terme de moins; en poursuivant ainsi , jusqu’a ce qu’on soit
arrivé a4 deux derniéres suites d'un scul terme,

Tom. XIII. . 24
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Pour continuer l'opdration , on formera le second tableau que
voici, et dont nous allons expliquer la formation,

2350 2209000 1038230000 243984050000 (M)

3 nodq 6648177 3134634531

2353 2216059 1044878177 247118684531  (N)

3 7068 6669381 3154642674

2356 2223127 1051547558 250273327205

3 7077 . 66go6i2

2339 2230204 1058238170

2362 2237290

2365

La premidre suite de ce tableau est formée des derniers nom-
bres des colonnes du précédent, 3 la droite de chacun desquels
on a écrit autant de zéros qu’il y a d'unités dans le nombre qni
en indique le rang. Le second dividende divisé par le dernier terme
de celte suite, que nous avons désigné par (M), donnera un quo-
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tient eutier qu’il ne faudra jamais prendre supérieur 3 9, et que
le troisicme chilfre de la racine ne pourra jamais excéder. On
trouve ici 3 que lon vérifiera en continuant exactement le second
tableau avec [ui comme on avait continué le premier avec 7.
Lorsqu’on sera parvenu au dernicr tcrme de la troisitme série,
que mous avons désigné par (IN/), on verra que le prodait de ce
terme par 3 peut étre retranché du second dividende ; et clest
ce caractére que l'on reconnaitra que 3 peut étre admis comme
troisime chiffre de la racine, Portant donc le produit de (N/) par
3 sous le second dividende, faisant la sousiraction et abaissant a

" la droite du reste la quatriéme tranche , on aura ainsi wn #roi-
, Siéme dz'ﬂ'e{ena’e. On achévera le second tableau avee 3 comme on
avait achevé le premier avec 7 ; et on se servira des derniers
nomhres de chaque colonne de ce dernier pour en commencer un
troisicme , qui devra étre employé de la méme maniére que les
deux premiers & trouver un nouveau chiffre de la racine.

Le procédé, dans chaque degré, est susceptible de quelques:
simplifications que nous n’avens pas cru devoir indiquer pour le
cinquitme , parce qu’clles rompent l'uniformité du ca'cul ,.sans
I'abréger d’une maniére notable. Cependant, comme clles ne sont
pas & ndgliger, lorsqu'il est question de la racine cubique, nous
allons montrer & quoi elles se réduisent dans ce cas.

Supposons qu’ayant a extraire la racine - cubique d'un nombre
cntier ct 'ayant partagé en tranches de trois chiffres chacune, cn
allant de droite & gauche, les quatre premitres tranches & gauche
soient 671,507,068,841 ,...... ; voici comment on disposera l'opé=
ration , dont nous allons expliquer les- détails. .
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67‘,507;968,84! ; o:ﬂu'. 8756u_uuo

512 19200 (M) 247

159507 1729 ‘

146503 20929 b (N)

1300468 49

m1418875 m (M) 2615
1586093341 13175 )

2283775 (N7
25
229687500 (MY) 26256
157536
229845036 ) (N%)

36 ,
¥ 23000260800 M)

La racine du plus grand cube contenu dans la dernitre tranche
A gauche 671 est 8 qu'on écrit & droite, comme premier chiffre
de la racine; son cube 512 étant porté sous la tranche 671 on
fait la soustraction, ct, & la droite du reste , on abaisse la tranche
suivante, ce qui forme le premier dividende. ‘

On écrit sous la racine 8 le triple de son quarré que l'on fait
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suivre de deux zéros, etlon a ainsi le premier diviseur , que nous
avons désigné par (M)\, et qui, divisant le premier dividende , donne
un quotient entier qu'on ne doit jamais prendre supérieur a g ,
et qui ne saurait étre moindre que le second chiffre de la racine,
Ce quotient serait ici 8 ; mais, en le soumettant a la vérification
que nous allons indiquer pour 5, on sassure que c'est ce dernier
chiffre qui doit étre admis,

Aprés avoir écrit 7 comme second chiffre de la racine , on écrira
ce méme chiffre 73 part, sur la droite de (M), et & sa gauche le triple
24 du premier chiffre 8 de la racine; ce qui donnera le nombre
247 , dont on portera le produit par 7 sous (M) auquel on I'ajoutera;
ce qui donnera une somme que nous avons ddsignée par (N);
et c’est parce que le produit de ce dernier nombre par 7 pent
étre retranché du premier dividende qu'on reconnaitra que 7 peut
&tre admis. Portant donc ce produit sous le dividende, faisant la sous-
traction et abaissant a la droite du reste la tranche suivante , on
obtiendra ainsi le second dividende.

Pour continuer l'opération , on portera sous (N) le quarré 4g
du second chiffre 7 de la racine ; on fera la somme des trois
nombres compris dans l'accolade, ‘3 la droite de laquelle on écrira
deux zéros, et I'on aura ainsi le second diviseur que nous avons
désigné par (M’), et qui, divisant le second dividende , donnera
un quotient entier qu’il ne faudra jamais prendre au-dessus de g
et qui ne pourra étre inférieur au troisitme chiffre de la racine.
Ce quotient est ici 5, que l'on vérifiera ainsi qu’il suit.

Sur la droite de (M’) on écrira 5 et & sa gauche le triple 261
de la racine 87 déja écrite; ce qui donnera le nombre 2615, dont
on portera le produit par 5 sous (M’) auquel on Pajoutera ; on
aura ainsi une somme que nous avons ddésignée par (N/); et cest
parce que le produit de cette somme par 5 peut étre retranché
du second dividende qu’on reconnaitra que le chiffre 5 peut étre
admis comme troisitme chiffre de la racine. Puitant donc sous ce
second dividende le produit de (IN) par 5, faisant la scustraction ,
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et abaissant A la droite du reste la tranche suivante , on obtiendra
le troisiéme dividende.

Pour continuer I'opération , on derira sous (N’) le quarré 25
du dernier chiffre 5 trouvé 3 la racine; on prendra la somme des
trois nombres compris dans l'accolade, a la droite de laquelle on
derira deux zéros, ce qui donnera le froisiéme diviseur qui, di-
visant le troisiéme dividende fera connaitre le quatri¢me chiffre 6
du quotient , que l'on vérifiera de la. méme maniire que les
précédens,
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NOMBRES APPROXIMAYIFS,

ARITHMETIQUE.

-

Evaluation de lerreur qui peut affecter les quotiens
et racines approximatifs ;

Par un ABONNE.

[ ¥ O W VL W, VR N, WL V]

DANS la plupart des calculs, les nombres sur lesquels on opdre
sont des nombres décimaux, et c’est aussi en parties décimales
que l'on évalue les résaltats de ces calculs.

Lorsque les élémens du calcul sont des nombres rigoureusement
exacts, on peut compter avec certitude sur la précision du ré-
sultat, a quelque ordre de décimales qu’on en pousse I’approxi-
mation,

Mais 1a plupart des nombres décimaux qu'on emploie dans les
calculs sont des nombres approchés , desquels on sait seulement
qu’ils ne sont pas fautils , soit en plus soit en moins , de plus
d’une demi-unité décimale du dernier ordre; et alors on nc peut
compter sur l'exactitude du résultat que jusqu’d un certain eordre
de décimales. _ ,

Or, il est de la plus haute importance de connaitre & l'avance
quel est cet ordre de décimales , soit pour ne pas prolonger vai-
nement des calculs sur les résultats desquels on ne pourrait faire
aucun fond , soit pour ne point compliquer ces résultats en pure
perte , soit enfin pour ne point faire illusion a soi-méme et aux
autres sur leur degré de précision.
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A la page 376 du XIL.° volume du présent recueil , nous avons
déja indiqué comment on pouvait évaluer le maszimum derreur
des produits et des puissances des nombres approximatifs. Nous
allons présentement compléter cette théorie, en indiquant comment
on pent évaluer ce. maximum dans les divisions et dans les extrac-
tions de racines.

Mais anparavant nous observerons que, comme toutes les apérations
sur les nombres déeimaux se réduisent i des opérations sur des nombres
entiers, sauf une virgule a placer dans le résultat d’une maniére
convenable, nous pourrons, sans nous écarter de notre but, simpli-
fier la recherche qui nous. occupe, en supposant que les nombre$
sur lesquels naus avons a opérer sont des nombres entiers, fautifs
au plus d’une demi-unité, soit en plus soit en moins.

Soit donc, en premier lieu , un nombre entier @ 3 diviser
par un autre nombre entier 4, tous deux apprechés a moins d’une
demi-unité prés. Le cas le plus. défaverable, et c’est celui que nous
devons considérer ici, serait celui ot I'un de ces nombres pécherait
par exceés et l'autre par défaut et ou lerreur en plus, comme
Verreur en moins serait précisément.d’une demi-unité; alors le véritable
quotient devrait étre.

a1 20 %%
> ou -
bE T EN
tandis que nous prenons -
a 24a
— ou — ;
b EY

prenant donc la différence de ces quoliens, nous aurons pour la.
plus grande erreur possible..

DY Rl | LY == (a-}-bYy i
2bo=t | 26 b(abzRa)]

Or,
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“Or, pour peu que 5 soit grand, on pourra supprimer l'unité vis-a-
vis de 24, ce qui donnera simplement

: (a4-b)

———r—

b2 ’

c'est-a-dire, que Ja plus grande erreur & craindre sur le quotient
de la division de deux nombres entiers , approchés @& moins d’une
demi-unité , est le quotient de la division de la demi-somme de
ces nombres par le carré du diviseur.

St, par exemple, le dividende est 732 et le diviseur 324, la limite

de D’erreur du quotient scra c’est-a-dire environ un demi—

104976 7
centi¢me; on pourra donc pousser la division & deux chiffres décimaux,
sans craindre d’é¢tre en erreur de plus d’'une demi-unité décimale
du dernier ordre ; mais les chiffres décimaux qu’on admettrait au-deld
pourraient tous étre fautifs.

Mais si, le dividende étant toujours 732, le diviseur était 3,24,
les deux chiffres décimaux deviendraient les deux derniers chiffres
de la partic enti¢re, de sorte qu’on ne pourrait obtenir le quotient
qu’a une demi-unité pres. _

Si, au contraire , le diviseur restant 324, le dividende était
seulement 7,32, on pourrait, sans crainte d’une erreur plus grande
qu’une demi-unité décimale du dernier ordre, pousser’approximation
dans le quotient a quatre chiffres décimaux.

Le cas le plus ordinaire est celui ou le dividende etle diviseur ;
considérés comme entiers, s’il est nécessaire, ont le méme nombre
de chiffres; c’est, par exemple, le cas ou l'on divise deux lo-
garithmes l'un par l'autre , et c’est encore celui ou l'on divise le
sinus et le cosinus naturels d’'un angle I'un par Tautre , pour en
conclure la tangente. Alors (e-}-4) se trouwe avoir communément
autant de chiffres que 5, tandis que 4* en a un nombre double,
d’ot P'on voit qu’alors, en considérant les deux nombres comme

dom. XIII. 25
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enticrs , on peut pousser I'approximation dans le quotient & autant
.-de chiffres décimaux quil y a de chiffres dans le diviscur.

X

Ainsi, par exemple, pour avoir la valeur du nombre a

=
trente chiffres décimaux , comme Euler I’a donnée quelque part,
il faut employer le nombre = avec trente chiffres décimaux, et il
serait méme convenable , pour plus de sureté, d’en employer
irente-un,

Soit, en second lieu, un nombre entier @ pouvant au plus étre
fautif d’une demi-unité, duquel il faille extraire une racine dont
le degré soit m ; on voit que l'erreur i craindre dans le résultat
devra étre la différence entre C'/Z et \70:
quantité revient a

. Or , cette dernitre

X
L]

— o

- — +-uu
m 2a 1.2.n? fa* 1.2.3m3 8al

‘?Izg (+ i. 1 m=—i 1 + (m=1)(2m=1) 1

N

de laquelle retranchant la premiére, on obtient, pour I'expression’
de l'erreur possible,

—F

m-(1 1 __ m=—1 1 (m=—1)(2m==1) 1 __
Fyal— — =+ - Pyrie ST O
m 2a 12m?* 4a? 1.2.3m3 8a3

or iei, ou il me s'agit que d'une limite , les termes de la sdrie
qui suivent le premier sont évidemmment négligeables , vis<a-vis de
celui-ci , de sorte- qu'en faisant abstraction du signe , on peut
prendre simplement

m, -

Va _ !

— = T

ama ) 2mv ‘am—l

cest-d~dire.que. Perreur qui peut affecter ‘une racine d'un degré
quelconque d'un nombre entier , approché seulement & moins d’uné
demi-unité , est une fraction gui , ayant l'unité pour numérateur ,
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a pour dénominateur la racine du méme degré de la puissance du
degré immédiatement inférieur du nombre proposé , muluplise par
le double de lexposant de la racine dont il s’agit.

Si, par exemple, 54324 est le nombre proposé, dont il faille
extraire la racine cubique, son quarré sera 2951096976 , dont la
racine cubique , bornde & la partie entiére, sera 1434 qui, mul-
tipliée par 6, donnera 8604 ; de sorte que la limite de l'erreur
possible sera

1 3
5353 > 0,0001

on ne devra donc pousser l'approximation qu’i trois chiffres dé-
cimaux seulement.

Si donc le nombre proposé était 54,324 , on pourrait ponsser
I'approximation , dans I'extraction de laracine, jusqu'a quatre chiffres
décimaux.

Supposons , en général , que @ soit un nombre entier de 7 chiffres ;
4™~ pourra n’en avoir que (m—1Y(n—1)=1 , d’olt il suit que y/ gm-t
(m—1)(n—1)-4-1

’

et, dans les cas les plus
m

pourra 'n’en avoir que

ordinaires , son produit par 2,2 pourra n'en avoir pas davantage ;
la limite de l'erreur sera donc une fraction ayant l'unité pour nu-
' . (m=—1)}{(n—1)}1
mérateur , et pour dénominateur un nombre de —————
m
chiffres ; d’our il snit qu’il ne faudra pousser I'approximation qu’a

wn nombre de chiffres décimaux exprimé par

(m—1)(n—1)~}-1 (m=—1)(n=—2)
— 1 on —m——
m m

Si le nombre entier proposé avait un grand nombre de chiffres,
et quil fallat en extraire une racine d’un degré trés-dlevéd, 1 et 2
pourraient étre négligés vis-a-vis de m et z, d’oi I'on voit quon
pourrait , dans Iextraction de la racine , pousser I'approximation a
autant de chiffres décimaux que le nombre proposé aurait lui-méme

de chiffres.
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QUESTIONS PROPOSEES ,
Probléme de Dynamique.

UN cliien, qui se trouve en un point donné de I'un des bords d’un
canal rectiligne d'une largeur constante, apercevant , en un point
donné de l'autre bord , son maitre qui marche le long de ce bord,
avec une vitesse constante , se jette & la nage pour le rejoindre.
En nageant, il se dirige constamment vers son malitre avec une
force toujours la méme ; mais le courant de Veau le détourne con-
tinuellement, et avec une force constante, de la direction qu'il veut
prendre ; on demande , d’aprés ces circonstances, quelle courbe ce
chien décrira sur la surface de I'ean?

Problémes: de Statique.

I Sur un plan rectangulaire inflexible et inextensible, on a in-.
variablement assujetti, par les bords , une autre surface de méme
grandeur , mais parfaitement. flexible et indéfiniment estensible. On
introduit entre ces deux surfaces un volume donné d’un fluide in-
compressible et sans pesanteur; et.on demande quelle figure doit:
affecter alors la dernitre des deux surfaces ? ‘

II. On suppose qu’il w'esiste rien autre chose dans 1'univers qu'un
fil infiniment délié, parfaitement flexible , mais incompressible et
inextensible, On suppose, en outre , que ce fil est invariablement:
fixé par ses deux extrémités & deux points immobiles dont la dis-
tance est moindre que sa longueur. On suppose enfin que les mo-
lécules dont ce fil est compesé exercent les unes sur les autres.
une attraction directement proportionnelle 2 leur masse et inverse-
ment proportionnelle aux quarrés de leurs distances aux autres mo-

lécules sur lesquelles elles agissent; et on demande quelle courbure
le fil affectera dans l'élat d’équilibre ?
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GEOMETRIE APPLIQULE.

Pelit traité de perspeclive lincaire ;

Par M. GERGONNE..

. Pt Pl P . W s o ..

SUPPOSONS qu’un spectateur ayant devant les yeux un riant paysage,
on interpose entre lui et les objets qu’il contemple une grande glace
verticale, parfaitement transparente; il est clair qu’il n’y aura abso-
lument rien de changé pour lui.dans le spectacle qui s'offrait d’abord
a sa vae.

Considérons, en particulier, un point appartenant a 'un des objets
dont ce spectacle se compose; et concevons. un fil tendu de ce point
3 I'ceil du spectateur, et percaut la glace en quelque endroit; cet
endroit sera évidemment celui & travers duquel sera vu le point
dont il s’agit.

Si donc, en cet endroit méme, on appliquait sur la glace un
point coloré et opaque, exactement- de la teinte sous laquelle se
montre l’autre, placé i l'extrémité du fil, ce dernier cesserait d’étre
visible ; et- cependant rien, dans I'aspect des objets, ne serait changé
pour le spectateur, puisqu’il recevrait toujours, dans les mémes direc-
tions, les mémes sensations de couleurs qu’auparavant.

Ce que nous venons de supposer pour un premier point des objets
placés en vue du spectateur, nous pouvons le supposer pour un
second, pour un troisiéme, pour dix, pour cent, pour mille, pour
tous enfin; c'est-3-dire , que nous pouvons remplacer chacun d’eux

Tom. XIIl , n.° V1, 1.° décembre 1822, 26
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par un point opaque convenablement coloré, et appliqué & I'endroit
méme de la glace & travers lequel il est apergu. Cette glace,
devenue ainsi tout-i-fait opaque , ne laissera plus rien voir des
objets placés derriére elle; et cependant le spectateur croira toujours
apercevo}r ces mémes objets. A /

Que sera donc devenue la glace pour le spectateur ? Elle sera
devenue ce qu'on appelle un tableau. 1’objet général de la perspective
est d'enseigner & colorer ainsi une simple surface, de telle sorte
gwelle offre, pour un spectateur convenablement situé,le méme
aspect que lui offriraient des! objets cn relief distribués dans I'espace
d’'une maniére déterminée.

Remarquons, avant d’aller plus avant, 1.° que , bien qu'on suppose
communément, et que neus ayons nous-mémes le dessein de supposer
dans tout ce qui va suivre , que la glace destinée 3 devenir un tableau
est une surface plane verticale, on pourrait, tout aussi bien, la
supposer une surface plane inclinée, ou méme une surface courbe
quelconque; 2.° que , bien qu’on suppose aussi que les objets qu'on
a dessein de représenter sur le tableau sont situés derriére lui,
relativemeni au spectateur , on pourrait également supposer qu’ils
sont , en tout ou en partie, situés du méme c6té que lui, par
rapport au tableau. Nous pensons méme que des tableaux cons-
truits dans cette derniére hypothése seraient quelquefois susceptibles
d’un trés-grand effet.

Le probléme général de la perspective se subdivise tout naturel-
Iement en deux autres. On peat, en effet, se demander 1.° en quel
point du tableau doit étre représenté chacun des points des objets
que l'on se propose d’y faire figurer; 2.° quelle couleur il faut
appliquer en ce pointdu tableau pour qu’il soit en effet la représenta-
tion fidele du point dont il s'agit. L’art de résoudre cette derni¢re
partie du probléeme a été appelé perspective aérienne, sans doute
a cause de l'influence de l'air interposé entre l'eil et les objets
sur la couleur apparente de ceux-ci. Bien que cette partie de la
perspective soit, jusqu'a un certain poiat, susceptible de procédés ri-
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éoureux, cependant, comme ces procédés ne pourraient &tre déduits
que de considérations physiques assez délicates, et dont I'application
présenterait des difficultés de plus d'un genre, elle a é1é assez pen
cultivée; et la plupart des praticiens s’y laissent guider par le coup
d'eil et une sorte d'instinct qui, comme on peut le croire, ne
les sert pas toujours aussi heurecusement qu’on pourrait le désirer,
De 14 la distinction des écoles en école FFlamande, école Francaise,
école Italienne, etc. Il est évident que ,si les vrais principes étaient
mis en pratique, il n’y aurait plus qu’une école unique, celle de
la nature.

Quant a la premiére partie du probléme, comme elle est une
conséquence fort simple des principes de la géométrie la plus ri-
goureuse , il y a long-temps que tout le monde est d’accord sur
les résultats qu’on en doit obtenir , quoique ceux qui en ont écrit
différent souvent dans le détail des procédés qu'ils prescrivent pour
parvenir 3 ces résultats. Comme, dans cette partie,'il suffit de
tracer certaines lignes pour résoudre les diverses questions qu’elle
peut offrir, on lui a donné le nom de perspective linéaire: c'est
la seule dontil sera question ici.

Dans tout ce qui vasuivre, nous ne nous occuperons constamment
que du seul cas ot le tableau est surface plane; et, pour fixer les
idées, nous supposerons aussi constamment que cette surface plane est
verticale. Les objets & représenter sur ce tableau pourront d’ailleurs
étre indistinctement supposés en arriére ou en avant de lui, par
rapport au spectateur. ‘

Les objets & représenter seront dits les objets originauz , et leur
représentation sur le tableau sera dite /a perspective de ces mémes
objets.

" Draprés la notion que nous avons donnée de la perspective , on
congoit aisément que le méme tableau ne peut représenter les
mémes objets originaux que pour un spectateur unique ; et encore
faut-il supposer que ce spectateur n'a qu'un il ouvert. A la
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vérité , si ce tablean représente des montagnes, des arbres, des
nuages , et en général des objets susceptibles de toutes sortes de
formes , il arrivera seulement qu'il ne représentera pas, pour deux
spectateurs , les mémes montagnes, les mémes arbres, les mémes
nuages, etc.; mais si , au contraire, le méme tableau représente
des objets assujettis & des formes déterminées , des objets suscep-
tibles de description rigoureuse, tels, par exemple , que des mo-
numens d'architecture ; alors deux spectateurs non seulement ne
pourraient voir , I’'un et Tautre , ces objets & leur véritable place ;
mais méme ils pourront paraitre tout-a-fait difformes pour I'un d’eusx.

Toutefois , lorsque le spectateur s’éloigne peu du point ou le
peintre a supposé qu'il se placerait, la déformation n’est pas trés-
choyuante , sur-tout lorsque le tableau est fait pour étre vu d’un
peu loin ; et voild aussi comment 1l est possible d’exécuter un
tableau qui fasse illusion & la fois & plusieurs spectateurs. Le peintre
doit alors supposer son spectateur idéal au centre des moyennes
distances des tétes dc tous les spectateurs, afin que la déformation
des objets ne soit pas trop choquante pour aucun d’eux. Clest,
en particulier , ce que pratiquent les décorateurs de nos théatres,
qui supposent communément leur spectateur au centre du parterre.

Avant de se propeser de représenter sur un- tableau la pers-
pective de divers objets originaux , réels ou-supposés, il est -donc
nécessaire de fixer le point de I’espace ol I'on suppose le spectateur;
il ne l'est pas moins de fixer aussi, dansl'espace, la situation des
objets que Ton se propose de représenter. On parvient au but,
en rapportant I'eeil et les objets , ainsi que la perspective de ces
derniers, & certains plans, 2 certaines droites et A certains points
que nous allons faire connaitre.

Outre /e tableau , on congoit par I'eeil deux autres plans; Pun
vertical et perpendiculaire au plan du tableau, qu'on appelle,
pour cette raison , Je plan vertical ; et autre horizontal , et con-
séquemment pérpendiculaire , comme le premicr, au plan du ta-
bleau ; celui-ci est appelé le plan korizontal. Ces deux plans coupent
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le tableau suivant deux droites yerpendxculanes Pune 3 l'autre ; ap-
pelées respectivement lg ligne verticale et da lzgne Izorzzontale,
lesquelles se coupent en un point qui est év1dem‘mem,rla projection
de lI'wil sur le tablean, et qu’on appelle /e point de pue. Eafin,
on appelle rayon principal la distance de I'@il au point de vue,
cest-a-dire , la perpendiculaire abaissée de 1'ceil sur le tableau (*)

Toute surface étant composée de lignes et toute ligne de points,
le probléme fondamental de la perspective consiste A assigner la
perspective d’un point original donné. Cela revient évidementa chercher
en quel point le tableau est percé par la droite qux joint ce point
a el du spectalcux\

Lorsqu’un point original est donné , on doit connaitre sa projection
sur le tableau et sa dlslancc a cette projection, Pour que la situation
de I'cell soit donnée, il faut parecillement connaitre sa projection
sur le tableau, que nous avons appelée le point de vue , et sa distance
3 cette. projeclion, que nous avons -nommde le rayon principal.
Ces deux derniéres donndes sont invariables pour tous les poiats
originaux que I'on se propose de représenter sur le tableau.

‘Soient donc TT le tableau (fig. 1 ), HH et VV les lignes horizon-
tale et verticale, se coupant au point de vue O/, et soit OO’ le
rayon principal, de telle sortc qu'en élevant au plan du tableau
par le point O/ une perpendiculaire égaled 0’0 , cette perpendiculaire
aille se terminer 4 I'eeil du spectateur.

(*) Outre les trois plans dont il vient d’étre question , les praticiens en con-
sidérent encore uu quatriéme horizontal qu'ils supposent étre celui du terrain
et qu'ils appellent plan géométral ; et ils donnent le nom de ligne de terre i
Phorizontale suivant laquelle ce plan coupe le tableau ; mais ce plan et cette
ligne sont de véritables superfluités , puisque trois plans suffisent pour. fixer la
situation des points de l'espace; et d’ailleurs on ne sait plus ot placer' I'un ¢t
Yautre , lorsque le terrain w’est pas un plan horizotal, ainsi qu’il peut sou\cng
arriver. | :

i
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" Solent pareillement P/ la projection sur le-tableau du point origi-
nal, dont on se propose d'assigner la perspecﬁve, et PP/ sa distance
a cette projection, de telle sorte qu’en élevant au plan du tableau
par le point P/, du coté opposé a I'eil ou du méme cété que
lui, suivant que le point original est en arritre ou en avant de
ce tableau, une perpendiculaive égale 2 PP/, cette perpendiculaire
aille se terminer au point dont il sagit.

"Ces choses ainsi entendues, soit menée sur le tableau , une droite
O’P/ du point de vue O/ a la projection P/ sur ce tableau du point
original qu’on a dessein d'y représenter. Soit élevée a cette droite:
au point O/, n’importe dans quel sens, une perpendiculaire 0’0,
d’une longueur égale au rayon principal. Soit ensuite ¢levé 3 la
méme droite, au point P/, en sens contraire de 0’0, ou dans le
méme sens, suivant que le point original est en arri¢re ou en avant
du tableau , une perpendiculaire P/P d’une longueur égale 3 la
distance de ce point original au tableau, En menant OP, coupant
O’P/ en p, ce point p sera la perspective cherchée.

Si on congoit, en effet que l'on fasse tourner le plan commun
des deux triangles rectangles p 0’0, p P’P autour de la droite O/P/,
jusqu’d ce quil soit devenu perpendiculaire & celui du tableau, il
est visible que, dans cette situation, le point O se confondra avec
I'eil du spectateur et le point P avec le point original; la droite
OP sera donc alors celle qui va de I'eeil & ce point, et qui doit
conséquemment percer le tableau au peint cherché.Puis donc que
dans le mouvement, le point p de cette droite ne quitte pas le.
tableau, il s’ensuit que ce pointest le point cherché.

Ce procédé, comme lon voit, est déja fort simple; cependant
le grand nombre des pérpendiculaires de directions différentes
qu'il obligerait & mener, si 'on avait 3 représenter sur le tableau
les perspectives. de beaucoup de points, le rendrait d’'une exécution
un peu lente. On peut dene désirer de le simplifier, et c’est une
chose extrémement facile , comme on-va le voir.

Il est connu que, lorsque deux triangles semblables ont leurs.
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cdtés homologues paralléles , les droites qui joignent leurs sommets
homologues concourent en un méme point. Tout étant donc d’ailleurs
dans la figure 2, comme dans la figure 1, si'on porte 0’0 sur VV en
0’0/’ , et que du point P/ on éléve une verticale P/P/ égale 2 P/P, en
joignant OO" et PP/, les triangles isocéles semblables 00’0/ et
PP’P” auront leurs c6tés homologues paralléles; d'ot il suit que
le point cherché p sera tout aussi bien déterminé par lintersection
de O’P’ avec O”P” que par son intersection avec OP.

b

Voici donc présentement 2 quoi se réduit le procédé ( fig. 3 ).
On prendra sur VV au-dessous du point de vue O/ une lorigueur
0’0 égale au rayon principal; et le point O se trouvera ainsi dé-
terminé une fois pour toutes, et pour tous les points dont on pourra
se proposer d’obtenir la perspective. Soit donc P’ la projection de
I'un de ces points sur le tableau; on élévera on on abaissera en ce
point , suivant que le point original sera en arriére ou en avant
du tableau , une verticale PP égale 4 la distance de ce point
original au tableau ; menant ensuite OP et O’P/, leur intersection
p sera la perspective cherchée.

La perspective d’une ligne droite ou courbe, plane ou a double
courbure , est évidemment l’ensemble des perspectives de tous ses
points ; c’est la suite des points ot le tableau est percé par les
droites menées de I'eil 4 tous les points de la ligne originale dont
il s’agit; c’est donc, en d’autres termes , l'intersection du plan du
tableau avec une surface conique qui, ayant son sommeta l'eil,
passe par celte ligne originale. La perspective d’une ligne est donc
une autre ligne.

En particulier, lorsque la ligne originale est “droite, la surface
conique_se réduit & un plan qui coupe le tableau suivant une autre
droite. Ainsi, la - perspective d'une ligne droite est elle-méme une
ligne droite; de sorte quil suffit , pour la déterminer , d’assigner
les perspectives de deux quelconques des points de la dmoite originale ;
ce qui raméne le probldme au précédent; mais nous allons voir
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qu’on: peu souvent parvemr au but d’'une maniére beaucoup plus.
simple. E »

D’abord, si une droite. originale est paralltle au tableau , sa pers-
pective lui. sera parallele ; car d’une part elle devra étre avec elle
dans un méme plan passant parl'ceil, et de I'autre elle ne pourrait ren-
contrer la droite originale sans que celle-ci ne rencontrat le tableau
auquel on la suppose paralléle.

La perspective d’une droite originale paralltle au tableau est donc
aussi parallele a la projection de cette droite sur le tableau , projection
qui est censée donnée ; de-sorte que, pour obtenir-la perspective de-
mandée , il ne s’agit que d’assigner la perspective de l'un des points
de la droite originale, et de mener ensuite par cette perspeective.,
une paralléle a la projection de cette méme droite sur le tableau.

On voit par la qu’en particulier si la droite dont il s’agit est ho-
rizontale ou verticale, et c’estle cas le. plus ordinaire , sa perspec-.
tive le sera également.

Supposons. présentement que la droite originale dont on veut ob-
tenir la perspective ne soit point paralléle au tableau ,elle percera
ce tableau en un point qui sera & lui-méme sa perspective. Si en-.
suite on congoit par I'ceil une paralléle & cette droite, cette paralléle
percera aussi le tableau en un point; et il est encore aisé de voir
que ce point sera aussi un des points de la perspective cherchée ;
on aura donc cette persPecuye en joignant ce second paint au pre-
Iier par une.droite. : :

Hl résulte de cette comstruction que les. perspectives de tant de
droites originales paralléles entre elles qu’on voudra, concourent toutes
en.un méme. point, lequel n’est autre que celui our le- tableau- est-
percé Par la parallele commune a ces. droites conduxte par l'ceil.
1l ne slagit dong , pour ; tracer.ces perspectives , que de déterminer
ce pomt et de le )omdre syccessivement , par des droites , avec
ceux ou les dxmtes ongmales percent le tableau.

’ On vpit quen particulier , lorsque les droites originales sont
Perpendu.ulanres au tableau , leurs perspectives concourent toutes

aw
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au point de vue; dans le cas contraire, le point ol concourent-
ces perspectives est appelé point de vue accidentel.

Il n’est pas diflicile, d’aprés ce qui précede, de déterminer la
perspective d’un polygone ou d’une portion de polygone icctiligne,,
plan ou gauche ; puisqu'il ne sagit pour cela que de joindre par des
droites les perspectives de ses sommets ; ce qui donne un polygone
ou portion de polvgone plan rectiligne.

§’il s’agit de la perspeclive d'une courtbe plane ou a double
courbure . on prendra sur elle des points assez voisins Tes uns des
autres pour que les cordes menées conséeutivement des uns anx
autres se confondent sensiblement avec leurs arcs; ce qui ramenera
la question au cas précédent. Mais , lorsque la nature de la courbe
originale est connue, on en profite pour simplifier la recherche de
sa perspective. Si, par exemple cette courbe est un cercle, sa pers-
pective devra étre une section conique , dont il suffira de déterminer
les quatre sommets pour étre en état de la construire,

S’agit-il de la perspective d'un corps; tout sc réduit a assigner
Ja perspective de la ligne qui sépare la portion visible de sa sur-
face de sa portion invisible ; laquelle ligne pourra étre un polygone
rectiligne plan ou gauche, ou une courbe plane ou a double
courbure , ce qui rentrera dans 'un des cas précédens. En par-
ticulier , si le corps est une sphére, cette ligne sera un cercle; la
perspective de la sphére est donc encore une section conique (*).

On suppose quelquefois , dans la pratique, que I'ceil se trouve
infiniment distant du tableau, sur une droite oblique au plan de
ce tableau. Les perspectives des différens points originaux sont alors
les points ou lec tableau est percé par les parallcles menées par
ces points a la droite sur laquelle on suppose I'eil situé. On en
use ainsi, en particulier , pour les figures de la géomdtrie a trois
dimensions , pour les dessins de machines et d’appareils, ou pour

*) Voyez, sur ce sujet, la page 311 du VIL® volume de recueil.

Tom. XIII. 27
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ceux des monumens d’architecture isolds ; parce qu’en méme temps
que les procédés en deviennent plus simples, les représentations des
objets en sont moins. altérées.

Tracer une carte de géographie, c’est tracer, sur unc surface
plane , la perspective d’une portion plus ou moins étendue de la
surface d'un globe terrestre, réel ou purement idéal. Le tracé des
cartes géographigues n'est donc qu’une simple application des prin-
cipes de la perspective; et, suivant les diverses situations que l'on
"suppose au plan de la carte et i Vil du spectateur , par rapport
au globe terrestre, on obtient différens systémes de cartes. Dans
le systéme de Ptolémée , par exemple, le plan du tableau est
celui d’'un grand cercle, et I'ceil du spectateur est & 'un de ses
poles. Il en résulte de ce double avantage que les perspectives des
cereles de la sphére sont elles-mémes des cercles , et que les pers-
pectives de deux cercles se coupent sous le méme angle que ces
cercles eux-mémes (*).

L’art d’assigner la figure des ombres des corps , sur les surfaces
ou elles se projettent, ou ce que I'on appelle la théorie des om-
bres , cst également une application de la perspective lindaire. On
voit en effet que , pour résoudre les questions du domaine de
cette théorie, il n’est question que de considérer la lumiére comme
I'eil du spectatedr , le corps qui projette une ombre comme
un objet original, et la surface sur laquelle cette ombre se pro-
jette comme le tableau. La recherche de 'ombre se réduira a celle
de la perspective sur ce tableau de I'objet original.

Il arrivera sculement ici que les objets originaux seront cons~
tamment en avant du tableau, par rapport au spectateur. En par-
ticulier , s'il s’agit d’ombres solaires, & raison de 'excessive distance

ou nous sommes du soleil, on retombera sur le cas ou l'eil est
infiniment éloignd.

(*) Voyez , sur ce sujet,la page 356 du XL volume de ce-recucil.
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§'il s'agit de figurer , dans un tableau, les ombres que projellent

les corps qui y sont représentés , il faudra d’sbord déterminer, par

ce qui préceéde , quelles scraient les ombres effectives des objets

originaux , et tracer ensuite la perspective de ces owbres; on fera
donc , dans ce cas, unc perspective de perspective.

En un point quelconque d’une surface plane ou courbe, pris
pour centre d'un cadran solaire que l'on se propose de tracer sur
cette surface, soit fixé un style parallele 3 laxe du mondc, Enun
quelconque des points de la direction de ce style, concevons qu’on
lui éléve, dans P'espace, 24 perpendiculaires, faisant conséeutivemen ¢
des angles égaux entre-eux, et conséquemment de 15° chacun
en dirigecant daillcurs ces perpendiculaires de telle sorte que deux

perpendiculaires opposées soient avec le style dans un méme plan
~ vertical.

Soit ensuite un point lumineux, placé sur le méme style , au-
deld du pied commun des 24 perpendiculaires ; par 'effet de I'exis-
tence de ce point , celles-ci projetteront, sur la surface & laquelle
le style est fixé, des ombres que 'on saura déterminer d'aprés ce
qui précéde ; or, ces ombres ne seront autre chose que les lignes
horaires du cadran i construire. La gnomonique est donc une simple
application de la théorie des ombres.

Ainsi, le tracé des cartes géographiques, la théorie des ombres
et la gnomonique ne sont que des applications toutes simples de
la perspective linéaire qui repose elle-méme sur les notions les plus
élémentaires de la géométrie.

On a éerit sur toutes ces choses , a l'usage des praticiens, des
gros traités qui sont d'ordinaire précédés de quelques notions de
géomdtric. Peu de ces ouvrages sont utiles & ceux pour qui ils
sont dcrits , tant parce que les notions de géométrie qu’ils renfer-
ment sont superficielles et incomplétes , que parce qu’on ne sauraity
considérer tous les cas ; de sorte que, lorsque les praticiens se trouvent
dans des circonstances que leur livre n’a pas préva, ils ne savent
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plus quel parti prendre. Aussi trouvent-ils toujours ces sortes d’ou-
yrages trop courts. Les véritables géometres, au contraire, les trouvent
trop longs, on plutét ne les lisent pas, parce qu’ils n’en ont pas
besoin. Les praticiens feralent donc beaucoup mieux de laisser la
leurs gros livres et d’étudier la géométrie ; car , en méme temps
que tout alors leur deviendrait aisé , ils posséderaient une science
de plus, qu'ils pourraient appliquer & beaucoup d’autres choses.

On a vu autrefois des professeurs fatiguer leurs éléves , et leur
faire consommer beaucoup de temps pour leur enseigner a résoudre
péniblement, sans le secours de ’algcbre ou du calcul différentiel ,
des problémes de géométrie qui auraient cédé sans effort & 'emploi
des procédés de l'une ou de l'autre. Ils croyaient gagner du temps
et ne voyaient pas qu’ils en perdaient réellement, et laissaient en
méme temps ignorer, & ceux qu’ils enseignaient , I'usage de deux
leviers puissans, et d’un service trés-étendu. Aujourd’hui méme,
dans nos colléges, on donne des lecons de cosmographie, de géo-
graphie et de cristallographie & des éléves qui n’ont pas les pre-
micres notions de la géométrie ’ qu'on a pourtant dessein de leur
enseigner ensuite. On sent asscz combien ces legons peuvent leur
¢tre intelligibles et profitables.

Lorsqu’une science en domine ainsi un grand nombre d’autres ;
on ne saurait la placer trop prés de l'entrée des cours d’étude; et
c’est sans doute le parti qu'on prendrait relativement 4 la géomé-
trie,, siceux quiont la direction supréme de V'enseignement n’étaient
pas d’ordinaire trop attachés aux anciens usages, et trop peu sou-
cicux de consulter , sur l'enchainement des études, les hommes
qixi ont la main A 'ceuvre.



CERCLE TANGENT A TROIS AUTRES. 193

——

—
m————

GEOMETRIE ELEMENTAIRE.

Sur la construction du cercle tangent a trois cercles
' donnés ;

Par un ABoNNE.
GereonNne.

Au Rédacteur des Annales;

MONSIEUR ,

EN examinant avec attention l'ingénieuse théorie par laquelle M. e
professeur Durrande ,au commencement du XI.® volume des Annales ,
est parvenu & démontrer géométriquement I'élégante construction
que vous avez déduite de I'analise algébrique, i la page 302 du VII®
volume du méme recueil, pour la détermination du cercle qui touche
a la fois trois cercles donnés, il m’a paru que cette théorie éuait
susceptible de simplification assez notables ; qu’elle pourrait étre rendue
indépendante de tout calcul, et méme de la considération des pro-l
portions; et qu’elle devenait ainsi, cn quelque sorte, le résultat d’une
pure intuition. J'ai 'honneur de vous transmettre le résultat de
mes réflexions sur ce sujet, dont vous ferez I'usage que vous jugerez
convenable.

J'admets uniquement les principes connus sur les pdles et polaires
et sur les axes radicauz , principes que l'on peut démontrer soit
a la maniére de Monge, soit comme I’'a fait M. Durrande , soit
de toute autre manitre; et je les rappelle en ces termes: '

1. Les sommets de tous les angles circonscrits & un méme cercle,
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de telle sorte que leurs cordes de contact concourent toutes en un
méme point, sont tous situés sur une méme droite qu'on appelle
la polaire de ce point, et qui est perpendiculaire a la droite qui
le joint au centre.

2. Réciproquement, les cordes de contact de tous les angles cir-

" conscrits & un méme cercle, de telle sorte que leurs sommets soient
tous sur une méme ligne droite, concourent toutes en un méme
point, qu’on appelle le pdle de cette droite , et qui se trouve situé
sur la perpendiculaire qui lui est menée par le centre.

3. Dot 1l suit que deux polaires d’un méme cercle se coupent
au pole de la droite qui joint leurs poéles , et que réciproquement la
droite qui joint deux péles d'un méme cercle a pour pdle l'inter-
section de leurs polaires.

4. Le lieu de tous les points du plan de deux cercles desquels
on peut leur mener des tangentes de méme longueur est une droite
perpendici;laire a celle qni joint leurs centres , et qu’on appelle l'axe
radical des deuz cercles. | '

" 5, Cela posé , soientdeux figures semblables quelconques , tracées
sur un méme plan, et soit un point pris arbitrairement sur Pune
d’elles ; si I'on demande son homologue sur l'autre et que les
deux figures soient divisibles en m parties égales et superposables,
par des droites partant de deux points homologues, le probleme
aura évidemment 7 solutions, =

~ 6. En particulier , si les figures données sont des polygones régu-
liers de m cOtés, et que le point donné sur P'un d’eux soit autre
que son centre , son homologue sur 'autre pourra étre pris de am
maniéres différentes, ‘

7. Des choses analogues auraient lieu, si une droite indéfinie étant
tracde arbitrairement par rapport a I'un des polygones, on deman-
dait son homologue par rapport i l'autre,

8.1l suit de la que, deux cercles étant tracés sur un méme plan,
et un point ou une droite étant donné par rapport i l'un d'eux,
ce point ou cette droite pourra avoir une infinité d’homologues par
rapport a l'autre., Il suffira en effet que les distances des centres
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4 ces deux points ou 4 ces dcux droites soien proportionnelles
aux rayons; ce qui assujettira simplement le point cherché & étre
sur une cerlaine circonférence, ou la droite cherchide & lui étre
tangente.

9. Il n’en sera plus de méme'si 'on détermine , dans les deux cercles
donnés, des diamétres que 'on regarde comme homologues , en fixant
celles des deux extrémités de ces diamétres que 1'on répute hom-
logues, ainsi que les demi-cercles homologues. Il est évident qu’alors
le probléme d’assigner, pour I'un des cercles, un point ou une
droite qui soit I'homologue d’un point ou d’'une droite donnés par
rapport a I'autre n’admettra plus qu’une solution unique.

10. Soient deux cercles tracés sur un méme plan; on peut tou-
jours, sur la droite qui joint leurs centres, assigner deux points
et deux points seulement, I'un entre les centres ct l'autre au-deld
du centre du plus petit dont les distances & ces deux centres soient
proportionnelles aux rayons des deux cercles. Ces points scront
les seuls points homologues communs que puissent avoir les deux
cercles; encore faudra~t-il, pour qu'ils puissent étre réputés tels,
que l'on considére les diamétres situés sur la droite indéfinie qui
joint les centres comme deux diamétres homologues. Ce sont ces deux
mémes points que M. Durrande a désignés, d’aprés Monge , sous
les dénominations de centres de similitude interne et externe. Leur
choix détermine les extrémités des deux diamétres qui doivent étre
réputées homologues; ces extrémités devant étre constamment les plus
voisines ou les plus distantes du centre de similitude que I'on choisit
comme point homologue commun,

11. Il suit de ces considérations que le point de contact de deux
cercles qui se touchent est un centre de similitude qui sera in-
terne ou exlerne, suivant que les deux cercles se toucheront exté-
rieurement ou seront l'un dans l'autre. On doit aussi remarquer
que , lorsque deux cercles sont égaux, leur centre de similitude ex-
terne est infiniment éloigné. Quant & leur centre de similitude in-
terne , il est évidemment au milieu de la droite qui joint leurs centres.
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12. Deux figures scmblables quelconques élant données , et des
droites homologues étant tracées dans ces deux figures, si, par
des points homologues de ces deux droites, on méne deux nou-
velles droites formant, du mémwe coté et dans le méme sens, des an-
gles égaux avec les premieies, il est connu que ces nouvelles droi-
tes” seront aussi des dioites homologues. Or il est évident que toule
droite mende par I'un des deux centres de similitude de deux cercles
est dans le méme cas par rapport 4 ces deux ceicles; donc elle
en est une ligne homologue commune;elle les coupera donc en
segmens semblables si clle les coupe ; elle sera tangente a l'un
si elle I'est a l'autre; et,si elle ne rencontre pas celui ci, clle ne
rencontrera pas l'autre non plus.

13. Réciproquement, to:te droite homologue commune & deux
cercles doit passer par I’'un de leurs centres de similitude , puisque la
droite qui joint les centres cst aussi une droite homologue commune
qui doit éire coupée par la premiére en un point homolog()e commun.

14. 1l suit de la que si, considérant comme diamétres homolo-
gues de deux cercles ceux qui se trouvent sur la droite qui joint
leurs centres, on détermine des points homologues quelconques dans
ces deux cercles; la droite qui joindra ces deux points passera par
I'un des centres de similitude.

15. Donc, en particulier (11), lorsque deux cercles se touchent,
toute droite mende par leur point de contact est une ligne homo-
logue commune ; et réciproquement, toute ligne homologue com-
mune doit passer par le point de contact. Il doit donc en étre de
méme de toute droite qui passera par des points homologues de ces
deux cercles.

16. Soient trois cercles C, C', C/, et soient

I , E les centres de similitude interne et externe de C et C/,

l’,E’ceuxde S 1 X o

I” ) E” ceux de . . . . . . . . . . . . C et C/ .

-Les droites Il et E/E/” seront donc l'une et l'autre (12) lignes

_ homolognes
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homologues communes a C” et C et lignes homologues communes
a4 C et C/; elles seront donc homologues communes 3 C/ et C%,
et conséquemment elles devront (13) passer par I cu E ; mais,
comme il est d’ailleurs évident qu’clles ne pourront ni I'une ni l'autre
passer entre les centres de C/ et C/, ce sera par E qu'elles pas-
seront toutes deux, Ainsi les centres de similitude externes de trois
cercles, pris deux & deux, sont tous trois situés sur une méme ligne
droite ; et chacun d’eux est en ligne droite avec deux des centres
de similitude internes; de maniére que ces six points sont aux inter-
sections de quatre droites. Ce sont ces droites que M. Durrande a
nommées axes de similitude des trois cercles; ce sont des lignes
homologues communes a ces trois cercles.

17. Donc, en particulier (11), lorsqu'un cercle en touche deux
antres , les deux points de contact sont en ligne droite avec l'un
des centres de similitude de ces deux derniers ; savoir, le centre de
similitude externe ou le centre de similitude interne , suivant que
les deux contacts sont de méme nature ou de nature différente.
Cette droite est donc (t1) un axe de similitude des deux cercles.

18. En considérant l'un ou l'autre centre de similitude de deux
cercles comme un pdle commun & ces deux cercles, il aura (1)
une polaire sur chaque cercle. Les deux polaires relatives & chaque
centre sont ce que M. Durrande a appelé polaires de similitude
externes et polaires de similitude internes. Ce sont évidemment des
lignes homologues des deux cercles, qui conséquemment, lorsqu’ellesles
counpent , les partagent en segmens semblables. Le pole des deux der-
niéres est compris entre elles, tandis que celui des deux premiéres
est hors de Dintervalle qui les sépare.

19. Soit C” (fig. 4 et 5) I'un des centres de similitude de deux
cercles, par lequel soit menée une sécante homologue commune,
comprenant dans ces cercles les cordes homol&gues AB, A’B/, dont
les péles soient P, P’; ces dcux poéles seront des points homo-
logues des deux cercles, par lesquels menant les perpendiculaires
PQ, P/Q’ a la droite qui joint Ies centres , ces perpendicnlaires

Tom. XIII, 28
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seront (3,18 ) les polaires de similitude relatives au centre C#;

et il est de plus évident que les triangles isoctles homologues

APB , A’P/B’ seront semblables ; mais , en prolongeant PB et

P/A’ jusqu’d leur.rencontre en R/ , et PA et P/B/ jusqua leur
rencontre en S/ , le triangle BIR”/A’ sera semblable 3 chacun de ces
deux-]a , et il en sera de méme du triangle B/S”A ;ils seront done
isoetles comme eux ; de maniére que les deux tangentes R//B et
R/A’ secont de méme longueur , ainsi que les deux tangentes
S8’ et §”A. Donc , si Uon méne R#”S/”, cette droite sera (4)
Taxe radical des deux cercles , et comme telle paralléle aux polaires
de similitude. :

20. Il suit évidemment de 12 que, si on fait tourner la sécante
commune autour du point fixe G, les points P, P’ et R/, S/,
dans leur mouvement , ne sortiront pas des trois paralléles PQ,
P/Q’ et R”S” , dont la situation est tout-a-fait indépendante de la
direction de cette sécante.

21. Mais, si la sécante devenait tangente, le milicu de Vinter-
valle entre les points de contact serait (4) un point de l'axe ra-
dical : donc cetle tangente commune a ses parties interceptées de
part et d’autre entre I'axe radical et les deux p'olaires égales entre
elles ; dod il suit que cet axe radical est également distant de
I'une et de lautre.

22. 1l résulte de tout ce qui précéde que I'axe radical de deux
cercles est placé , par-rapporta tout cercle qui lestouche 'un et I'autre,

dela méme maniére que lesont , par rapport a ces deux-ci, leurs polaires
de similitude de méme dénomination ; savoir , leurs polaires de
similitude externes ou leurs polaires de similitude internes, suivant
que les deux contacts seront de méme espéce ou d’especes différentes.

Soient en effet deux cercles touchés par un troisitme en A et
B’ ou bien en A’ et B (fig. 6 et 7); la sécante AB’ ou A’B sera
denc (17) un axe de similitude des trois cercles. En achevant donc
les figures , comme nous Vavons fait ( fig. 4.et 5), les points P,

P/, R” ou S, potes respectifs de cette droite par rapport a ces
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trois cercles , en seront donc des points homologues; d’ou1 il résulte
que les droites PQ, P/Q’ et R//S§//, qui, passant par ces points,

font des angles égaux avec la ligne homologue commune, sont
elles-mémes des lignes homologues.

23. Toutes ces choses ainsi entendues, supposons qu’on demande
un cercle qui touche a4 la fois trois cercles donnés ; comme le
cercle cherché pourra toucher de deux maniéres chacun des cercles
donnés , il y aura généralement huit solutions possibles, et il faudra
d’abord s’entendre sur celle qu'on aura dessein d’obtenir.

Quelle que puisse étre cette solution ; comme I’on sait faire passer
un cercle par trois points donnés, la question se réduira & déter-
miner le point de contact du cercle cherché avec chacun des trois
cercles donnéds, ou plutdt avec I'un d’eux , attendu que la méthode
‘qu'on aura suivie pour la recherche de celui-la pourra étre éga-
lement appliquée a chacun des autres.

Soient donc ¢, ¢/, ¢/ les trois cercles donnés, C le cercle cher-
ché ; et proposons-nous de trouver son point de contact avec ¢ ;
tout se réduira (15) A trouver deux points p , P qui soient homo-
:Iogues par rapport & ces deux cercles ; puisqu’en joignant ces
_points par unc droite , cette droite deyra couper ¢ au point de
contact cherché,

Or, comme les intersections des lignes homologues sont des
points homologues , la recherche des points p, P se réduit a trouver
deux droites relatives & ¢ et leurs homologues dans G, ce qui est
facile , d’aprés ce qui précede.

Soit en cffet 7/ la polaire de similitude de ¢, comparé & ¢
polaire externe ou interne , suivant que ¢ et ¢/ devront étre touchés
par C de la méme maniére ou d’une mani¢re différente ; et soit
R/ I’axe radical de ces deux cercles. Soit pareillement r# la polaire de
similitude de ¢, comparé 1 ¢/, polaire externe ou interne , suivant que
c et ¢// devront &tre touchds par C de la méme manitre ou d'une

maniére différente ; et soit R/ Vaxe radical de ces deux cercles.
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« Il vient d’dtre démontré (22) que 7/ et R/ étaient des lignes
homologues de ¢ et G, et qu'il en était de méme de r// et R”.
En prenant donc pour p lintersection de 7/ et 7/, il faudra prendre
pour P lintersection de R’ et 8 et alors en joignant pP son in-
tersection avec ¢ sera le point de contact demandé.

On voit par la qu'il y aura quatre maniéres différentes de prendre
p , tandis que P demeurera invariable ; on aura donc quatre droites
PP , dont chacune détermirnera sur ¢ deux points de contact, entre
lesquels il faudra faire un choix , d’aprés la mani¢re dont ¢/ et
¢ devront étre touchés par C.

Les quatre droites 7/, r//, R’ , R forment un parallélogramme
dont la droite qui coupe ¢ aux points de contact cherchés est
une diagonale. Mais si o’ et ¢/ sont respectivement, sur ¢/ et ¢/,
les homologues de 7/ et r// sur ¢, les quatre droites 7/ , 77, ,,
¢/ formeront également un parallélogramme; et 1l résulte de ce
qui a été dit (21) que ses coétés seront doubles de ceux du pre-
mier ; il lui sera donc .semblable ; d'oli il suit que, si = est 'in-
tersection de ¢/ et ¢/, la droite pP , prolongée , s'il le faut, passera
par =. On pourra donc, dans la recherche de cette droite, subs—
tituer les polaires ¢/ et p/ aux axes radicaux R/ et R/ ; de sorte
que , pour la solution compléte des huit cas du probléme, on
n’aura réellement & mener que les douze polaires de similitude des
cercles pris deux 4 deux, et douze diagonales de parallélogrammes
formés par leur rencontre. )

Il me semble, Monsicur, que, pour qui aura bien compris ce
qui précéde, ii ne sera pas diflicile d’'amener au méme degré de
simplicité I’analise du probleme o il s’agit de décrire une sphére
qui touche i la fois quatre sphéres données ; et c’est pour cela
que je me dispense de traiter ici ce probléme.

Agréez , etc.

) Paris, le 10 d'aotit 1822.
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QUESTIONS RESOLUES.

Solution des deuax derniers problémes de géométrie
proposés a la page 380 du XII* volume du pre-
sent recueil ;

Par M. GERGONNE.

e o . i T i s s s

P ROBLEME 1. Assigner Parc de courbe le moins long , entre
tous ceux qui, se terminant aux deux exirémités de la base d'un
triangle isocéle donné, et éiant en ces poinis tangens aux deux
autres cdtés du triangle, partagent son aire en raison donnée?

Solution. Ce probléme semble , au premier aspect, présenter
une sorte de paradoxe. Il est d’abord d’une évidente possibilité .
et, si gquelque doute pouvait s'élever ici, ce serait uniquement
sur la question de savoir s’il peut admettre plusieurs solutions , ou
si, au contraire, il n’en admet qu’'une seule ; mais, d’'un autre c6té,
si on lui applique la méthode des variations, on le trouve, en
géaéral, plus que déterminé, et de nature 2 présenter un ensemble
de couditions tout-a-fait inconciliables.

On sait, en effet, que cette méthode , d’accord en cela avec
les considérations les plus évidentes de la géométirie pure , indigue
positivement l'arc de cercle comme le moins long entre tous les
arcs de courbes qui , avec d’autres lignes données quelconques,
concourt 4 enfermer un méme espace plan donnd. Or , dans la
question qui nous occupe, la condition d’avoir pour corde la base

du triangle et celle de partager son aire en raison donnée , sufisent
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a elles seules pour déterminer I'arc de cercle cherché , qui ne pourra
ainsi qu’accidentellement , et dans des cas particuliers seulement,
satisfaire 4 la condition de tangence avec les deux autres cétés de
ce triangle. Et si, au contraire, on combine seulement cette der-
ni¢re condition avec celle qui exige que I'arc de cercle ait pour corde
la base du triangle; cet arc se trouvera encore , par ces deux _
seules conditions , tout-a-fait déterminé ; de sorte que ce ne pourra

étre qu'accidentellement, et dans des cas particuliers , qu'il divi-
sera l'aire de ce triangle suivant la raison donnée. :

On peut d’ailleurs s'assurer bien facilement, et indépendamment
de la méthode des variations, que tout arc de-courbe , autre qn'un
arc de cercle, ne saurait résoudre le probléme. Soient, en effet,
AB la base et S le sommet du triangle dont il sagit ( fig. 8);
et supposons quon veuille prétendre que le plus petit des arcs
‘de courbes qui, ayant AB pour corde commune et SA, SB pour
“tangentes communes en A et B, partagent laire du triangle en

“raison donnde, est un certain are ADEB, différent d’un arc de
cercle ; en détachant de I’espace ADEB un segment plus ou moins
grand, par une corde arbitraire DE , et remplagant ee segment
"par un segment de eercle équivalent, ayant la méme corde; Varc
de cercle correspondant; augmenté des arcs restans DA et EB de
" Yautre courbe, formerait une ligne discontinue qui,remplissant d’ail-
leurs toutes les autres conditions du probléme, serait moins longue -
que la premiére qui ne jouirait pas conséquemment de la pro-
priédté du minimum de longueur , ainsi quon Pavait d’abord
supposé. -

Il est done absolument hors de doute que la partie de la ligne
cherchée non adhérente aux cétés égaux du triangle ne saurait
étre qu'un arc de cercle ; et dés-lors voici la seule mani¢re dont
le probléme puisse étre réselu. Soit toujours ASB le triangle donné
( fige 9). Soit menée 2 sa base une paralléle arbitraire XY , qui
en retranche , du c6té de cette base, une portion moindre que
celle qu'en doit retrancher la ligne cherchée. Sur XY, comme corde,
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et da coté da sommet, soit construit un segment de cercle XVY
qui compléte la portion & retrancher ; nous aurons alors une ligue
discontinue AXVYB, qui aura pour corde labase ABdu triangle ,
qui sera tangente en A et B A ses deux autres coiés, puisque
ses parties AX et BY se confondront avec eux, et qui partagera
en outre laire dua mangle suivant la raison do'mee; cette ligne
AXVYB remplira donc toutes les condmons da probleme, sauf
peut-étre la condition du minimum de longueur ; tout se rédmxa
donc .a profiter de I'indétermination de la distance de la base i sa
paraliéle XY, pour faire en sorte que cette dernitre condition soit
remplie; et c’est ce dont nous allons présentement nous occuper.

Tout étant d’ailleurs dans la figure 10 comme dans les précé~
dentes , soient XY et XVY la corde paralléle & la base et larc
correspondant qni résolvent le probléme ; soit joint le sommet S
au milieca C de la base AB, par une droite qui sera perpendi-
culaire sur cette base , ainsi que sur la corde XY, coupera cette
corde ainsi que son arc en leurs milieux Z et'V, et divisera l'angle
S en deux parties égales ; cette droite contiendra le centre de

I'arc , qui se trouvera ainsi en quelque point O de sa direction.
FFaisons

SA=a ; Ang ASC=a ,
SX=zx, . ArgVNOX =¢,
nous’ aurons '
SC=aCosse ; AC=0aSina ;
SZ=xCos.a, XZ=2aSin.« ,

d’ott nous conclurons
AX=g—z , CZ ={awmz)Cos.2 ;

en conséquence de quoi nous trouverons
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Trapéze CAXZ= CA+ZX

CZ=:(a*=2*)Sin,«Cos.» .

Le triangle SXO donnera ensuite

xSin.e 2Sin.«Cos.¢
dovt OZ=

Sint ’ Sin.t !

OX=

d’ou on conclura successivement

txSin.e
Sin.t

’

A rc.VX/:

t232Sin.?
SectVOX = 22002

2Sin.2¢

22Sin.24Sin.tCos.£

2Sin.2t

Triong.0ZX=1:0Z.ZX =

’

x2Sin.2a
Sin.3¢

" Demi-segment. YXZ= (#—Sin.tCos.t)=ar* ,

si donc on exige que la surface totale AXVYB soit équivalente
, N . .

celle =r* d’un cercle dont le rayon donné est r, il fandra que sa

moitié CAXYV soit moitié de celle de ce cercle , ce qui donnera

V'équation

22Sin.2¢

Sin.2¢

(a? —x’)éin.~Cos.~+

(2—8intCos.t)=w=r* ;

au moyen de laquelle, en. se donnant arbitrairement une des deux
variables # et #z, l'autre se trouvera aussitét déterminée. Si, par
exemple, c’est z qui est donnée , on tirera de cette équation

=Sin.z wr2=—a2Sin.2Cos.4 .
- [tSin.e—Sin.tSin.(t4#)]Sin.z ’

de sorte qu'en posant, pour abréger,
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. b= wr3==02Sin.«Cos.« )
— - 3
Sin,z

on aura simplement

x b .
Sing ~ {/ tSin.e—Sin.zSin. (i@

Cela posé, on a

txSin.«
Sin.t

-

’

Longueur AXV=AX+4-XV = gemz-}

ou encore
. . x
AXYV =a+4~(Sin.e=—Sin.t) — ;
Sin.t
i x , o . .
mettant denc pour 5 la valeur trouvée ci-dessus, il viendra
* n.

tSin.e==Sin.t

\/ tSin,a==Sin.tSin, (f=f-) ;

AVX=a+5.

il s'agira donc de prendre # de telle sorte que cette quantité scit
un minimum; ce qui se réduira A rendre telle la quantité

tSin.a==Sin.F

V/ tSim.a—Sin.iSin. (=)

égalant donc 3 zéro la différenticlle de cette dernidre prise par
rapport 4 #, il viendra, toutes réductions faites,

(S'm.t‘-ICOS.I) { 1==Sin.(¢+4<=) } =0 .-
Tom. XIII. : 29
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Légalié du premier. facteur a zéro donnerait /=0 de sorte
que la partie reiranchée du triangle se réduirait 3 un trapéze,
ce (ui ne peut convenir au minimum , puisqu’en retranchant ala
partie supérieure du trapéze une portion si petite qu'on voudrait
par ume paralléle 3 ses bases, et en remplagant la portion retran-
chée par un segment de cercle équivalent et de méme base, on
aurait une ligne totale moins longue que la premi¢re. Clest donc

Pautre facteur qu'il faut égaler 3 zéro; on doit donc avoir, pour
le minimum ,

Sin (l—+u) =I,

c’est-a-dire,, que les angles zet « doivent étre supplément l'un de
I'autre , ou que la droite OX doit étre perpendiculaire & 8X , ou
guenfin la droite XY doit étre A telle distance de la base AB
du triangle que I'arc XVY soit tangent 3 ses deux autres cotés
en X et Y. Il arrivera donc ainsi que la ligne totale AXVYB qui

résoudra le probléme sera aussi peu discontinue qu’elle puisse
1A
étre.

On a denc aipsi )
I=:5—a, Sin.z=Cos.« , Cos./=Sin.a,
ce qui donne

= bCos.e » ! wr2==g:5in.«Cos.« .
V (3 —a)Sin.a—Cos.a e

'a-_-a)Tang a—1]Tang.« ¢

et la longueur de la ligne minimum sera

AXVYB=2a+2(“Si!i.M—-COS.¢) V[( : wrieeg3Sin.«Cos.a

Bemect) Sin,e==C0s.4]Sin. & :

. 8i, par exemple , on demandait que cette ligne divisat le triangle
en deux parties équivalentes, on devrait avoir
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wr=; a*Sin.«Cos.« ;

ce qui donnerait

aCos.z
a= s

Va—(ﬂ—zu)Tang.u ?

et la longueur de la ligne cherchée serait alors

2a(aSin.a==Cos. z)

V a=—(@ —24)Tang.x

On voit, par ce qui précéde , que; s'il sagissait de trouver une
courbe qui, ayant pour corde la base d’un rectangle , étant tan-
gente aux cOtés adjacens aux deux extrémités de cette base et
divisant le rectangle en raison donnée , et la moindre longueur
possible , la partie retranchée devrait étre un autre rectangle sur-
monté d’un demi-cercle.

PROBLEME II. Assigner la portion de surface courbe la moins
étendue , entre toutes celles qui , se terminant & la circonférence
de la base d’un cbne droit donné, et touchant sa surface comvexe
suivant celle circonférence, pariagent son volume en raison donnée?

Solution. Ce probléme donne lieu 3 des observations tout-i-fait
analogues & celles que nous avons faites sur le précédent, et que
pour cette raison, nous nous dispenserons de répéter ici; il s’ensuit
que , pour le résoudre, il faut d’abord faire dans le céne une
section par un plan paralléle & sa base, et assez peu distant de
cette base pour qu’il ne retranche pas de son volume toute la portion
exigée par I'énoncé du probléme; en construisant ensuite sur la
section comme base, et du c6té du sommet , un segment sphérique
qui compléte ce qui manque de volume au tronc pour que le
cone soit divisé suivant la raison donnée, la calotte qui terminera
le segment, augmentée de la zone conique comprise entre elle et
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la base du céne formera une surface discontinue qui remplira toutes

les conditions du probléme , sauf celle du minimum de surface ;

et il ne s'agira plus que de profiter de I'indétermination de la dis-

_ tance du plan coupant i labase du cdne, pour faire en sorte que
cette derniére condition soit remplie.

Supposons que la figure 10 représente la section du céne par
un plan quelconque passant par son axe j et concevons les mémes
dénominations et notations que ci-dessus. Alors AC et XZ seront
les rayons des deux bases du tronc de cdne, dont la hauteur sera
CZ; ZV sera la fleche du segment sphérique , dont le rayon sera
OX ou OV ; la dreite AX et 'arc VX seront les lignes généra-
tiices de la zone "conique et de la calotte sphérique; enfin «sera
T'angle générateur du come, et # sera I'angle générateur d'un autre
céne dont il faudra retrancher le volume de celui du secteur sphé-
rique engendré par la révolution du secteur circulaire VOX pour
obtenir le volume du segment sphérique.

Ces choses ainsi entendues , on aura d’abord , pour le volume
du tronc de cone engendré par la révolution du trapéze CAXZ ,

;= (@*—2%)Sin.*«Cos.x ;

en trouvera ensuite successivement

a8in.c

CirOX=2w. <oz

V2= OX-OZ._,‘?_E'_E— (1m=Cos.2) ;

x38in.2«

Calotte VX =27, ———— (I—Cos £) 5

" Sect.VOX=3%= .w35m. (1=—~Cos.7) ,

: Sin3t
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Cercle ZX ===2*Sin* ,

238in.3aSin.2tCos.¢

Céne O2ZX = : =. . ,
: Sin.3¢

3Sin3a
Segm NXZ= 1% =. f’s“’;? (1—Cos.£)* 24Cos 7).

Si donc on veut que le corps engendré par la révolution de la
génératrice VXA détache du céne une portion équivalente au vo-
lume d'une spheére dont le rayon donné est r, on devra avoig

. :3Sin. 3
(a*—2°)Sin.*«Cos.« -} xSinnit (1—Cosu)*(24-Cos.2) = 4ar? ;

€quation qui détermine chacune des deux indéterminées z et ! au
moyen de l'autre, et de laquelle on tire, en particulier,

z=Sin tiy 4r3—-a3Sin.2xCos.» )
[28in.a(1~—Cos.£)—Sin.*Sin (t-«))Sin"w '

de sorte qu'en posant, pour abréger,

3 4r3==a38in.2aCos.«
Sin.«

b=

?

on aura simplement
x 5
Sind  y/ 2Sin.e—Sin tSin. ()

Cela posé, la surface de la zone conique engendrée par AX est
w(a’—-x’)Sin.’a 5

en y ajoutant donc la surface de la calotte sphérique , déja déter-



a1o QUESTIONS
minée ci-dessus ; mous aurons pour la surface totale engendrée
par la ligne VXA,

’

#2*Sin,e+4=Sin.a{ 2an.a(x-Cos.t)-Sm.’t} S
inAty

hd . x‘ .
en y introduisant donc pour S0 la valeur trouvée ci - dessus,

elle deviendra

2a*Sin.at- wH28in.x } § 2Sin.a(1—Cos. i)—Sm.*t}

\/ { 2Sm.a¢.(x-—-Cos,t)-—Sm.’tSm.(t-{--m%z 5

telle est donc la quantité qui doit étre minimum; ce qui se réduit
3 rendre telle la quantité
2Sin.a(1==Cos.f)==Sin.2¢ .
{ 2Sin.a(1—Cos.t)=Sin. ¢Sin.(t-f-a)} 7 *

dgalant donc sa différentielle & zéro , il viendra, toutes réductions
faites ,

(1—Cos.* § 1—Sin(t+s)} =0 «

L’égalité du premier facteur 4 zéro donne =0 qui, pour des
raisons touyt-a-fait analogues 3 celles que nous avons donnédes ci-
dessus, ne saurait convenir au minimum ; c’est donc le second
qu’il faut égaler 3 zéro pour ’obtenir; il faut donc encore ici
que l'angle # soit supplément de Fangle « ; la calotte sphérique
qui , avec la “zone cenique , doit composer la_surface résolvant
le probléme doit donc étre tangente & cette zone suivant la cir-
eonférence par laquelle elle s’unit 2 elle; la surface qui résout le
probléme est donc encore ici aussi peu discontinue qu'elle puisse
Iétre.

D’aprés ce résultat , on trouvera

7= 3/ (a3Sin.2¢Cos.a==4r3)Cos.« .
. (1~Sin.z)>Tang.2« ?

et la surface minimum aura pour expression

= g d’Sin.u-{- V’(ﬁSinﬂuCos.w—'ﬁrl‘)Z(I—Sin.u)ﬂ; :

Sin.x
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Si, par exemple, on demaqde que le cone soit partagé en deux
parties équivalentes, on devra avorr

4ri=1438in.aCos.% ,

2=aCos.« V—————-—COSZ“ ;
2(1==Sin.e)?
et la surface minimum sera
%ﬂ‘a’Sin.u{z'—l—'\’/’z(I- Sin.x)’Cos.“uf .
Si, au lieu d'un cdne, ¢’était un cylindre droit qu'il fallat diviser
en raison donnée , on voit, par ce qui précéde, que la calotte
sphérique devrait étre alors un hémisphére.

ce qui donnera

Concevons que sur la base d’un.c6ne ou d’un cylindre droit creux ,
en fer-blanc, par exemple, on ait appliqué un cercle de méme grandeur
d’une étoffe parfaitement flexiblc et élastique, comme serait, & peu prés,
un morceau de vessie, et que I'on ait assujettie invariablement sur cette
base, par sa circonférence seulement. Si alors, a I'aide d’une petite
ouverture pratiquée dans la base, et au moyen d’une pompe de com-
pression ou d’un soufflet, on introduit de P'air entre cette base et
le cercle de vessie, il est aisé, par ce qui précede, de voir ce qui
arrivera, On voit en cffet que le morceau de vessie se courbera d’abord
en calotte sphérique d’un rayon continuellement décroissant, et con-

“tinucra d'affecter cette figure, jusqu'a ce qu’il y ait assez d’air in-
troduit peur rendre la calotte tangente a la surface latérale du céne
ou du cylindre; mais ce terme une fois atteint, si on continue 2
introduire de l'air, la partie de la vessie la plus voisine du bord
s'appliquera exactement contre la surface latérale du céne ou du
cylindre, ol elle formera une sorte de zone, tandis que le surplus
continuera & se développer en une calotte sphérique, formant un
prolongement 3 la zone , a laquelle elle sera tangente de toutes
parts.

Les choses se passeraient a peu prés de méme si, au céne ou
au cylindre, on substituait un vase conique ayant le diamétre de son
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ouverture plus grand que celuide son fond, avec cette seule différence
qu’ici la calotte sphérique pourrait devenir plus grande que I'’hemisphere,
et demeurerait constamment telle dés qu’elle le serait devenue.

QUESTIONS PROPOSEES.
Probléme d Acoustique.

UNE modulation mineure est bien établie , soit par les accords
fondamentaux du ton fréquemment rebattus, soit par une phrase
de chant terminée par une cadence parfaite. Pour fixer les idées,
on suppose que cette modulation soit celle de /g mineur.

Cela posé, on propose ‘de faire marcher la basse par semi-tons
chromatiques, depuis la tonique /e jusqu’a son octave supérieure,
chaque note portant harmonie ; et 'on demande quelle serait la
succession d’accords la plus propre 3 maintenir toujours loreille
dans le méme ton de /a mineur. On propose également de trouver
une pareille succession d’accords, dans le cas ou, au contraire,
la basse descendrait , par semi-tons chromatiques, de la tonique
Iz 4 son octave inférieure. On propose enfin d'assigner les deux
mémes successions d’accords dans le cas du mode majeur ? (¥)

Theoréme de Geéomelrie.

Deux hyperboles équilatéres quelconques tellement disposées
Yune par rapport & lautre, que les diamétres principaux de cha-
cune sont les asymptotes de I'autre , se coupen/tutoujoursé angle droit.

(*) Dans les partitions des grands maitres , on irouve bien des passages
ehromatiques de plusieurs notes consécutives , avec une harmonie conservant
Vimpression du ton dominant; mais il ne parait pas qu'on y rencontre un pas-
sage de 12 semi-tons consécatifs ot le sentiment de la méme tonique se trouve
maintenu. La solution de cette difficulté semblerait devoir offrir beaucoup de
ressources ct de moyens de variété & 'harmoniste habile dans 'art de préluder,
attendu que connaissant alors non seulement tous les accords du ton dans le=-
quel il se trouverait , mais encore les accords éloignés qui pourraient s’y rat-
tacher, il se trouverait ainsi beaucoup plus maltre de son clavier , et pourrait
par conséquent produire plus facilement des effets désirés.
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ANALISE TRANSCENDANTE.

Solution d’une difficulté connue que présente la theorie
des fonctions angulaires , relativemént au dévelop=
pement des puissances fractionnaires des cosinus;

Par M. CreLrE , docteur en philosophie , membre du
conseil supérieur des batimens civils de Prusse.

Oxa

2Cos.z=(Cos.z+41/ =iSin.z)+ (Cos.z—1/=;Sin.z)

g

mais
(Gos.z41/ =1Sin.z)(Cos.e—/ =1Sin.z)=1 ;
d’o
I
Coslx-—\/:tSin.x= Cos.z+/ —iSinz ’
donc

——— o I
2Co0s.2=Cos.z —iSin.z m————
+v +Cos.x+‘/_—-xSm.x ’
Si donc, pour abréger, on pose

Cos.z+y/ =3Sinz=u ,
on aura

Tom. XII1, n.° VII, 1.°% janpier 1823, 3o
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X
2Cos.x=u-4 pall

cela donne

o M e B m__, m .77_1- Mw 2 _"1_7)7.‘”'[ mw 4
(2Cosaa)"= u+-;) =um4- —u A ——u

m me—1 1) w2 -~
Iy 7L
1 a 3
ou bien

1L ¥

y—m+a

X m m
(2Cos.x)”’.—.—.(-— +uz) =u "t m gmma g
u X 1

2

Ces deux développemens ont évidemment lien pour une valeur
quelconque de m.

Mais on a, comme l'on sait, aussi pour une valeur quelconque
de m ,

(Cosczr4y/ =1Sin.z)" = Cos.mz~4/ =1Sinmz ; =
ce qui donne successivement

u"=Cos.mz-ty/ —=iSin.mz ;

u*m=Cos.mz -/ =1Sin.mz ,
pm=? ::‘Cos.'(m--z).z'-"-l— vV =1Sin.(in=—2)z ,
"2 = Cos (m—2)2—{/ =iSin.(m—2)z ,
u™"% = Cos.(m— 4) x4 V".'_'}Sm. (mv;-'4)x° ,
UM+ 4 = Co5. (e f) 7y 3 Si0 (o ) 5

© % a4 et e & 8 .4 s e s e € &

ce qui donne, en substituant,
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M )

" : Cos.(m~4)z+ e

(2Cos.z)™ = Cos.ma+ —?— Cos.(m—2)z - —?— :

v [Sinma L Sin(m—2)et -T2 S0 (m— f) 24|

-

p]

Telle est Pexpression générale de la m.™° puissance de 2Cos.z,
en cosinus et sinus des multiples de x , poeur une valeur quel~
conque de w,

Si l'on fait, pour abréger,

77 veses

b m 1
Cossma-t Tﬂos.(mmz)x-{- —— Cos(m=4)z4=n=P ,

. . e Mee=-Y
Sinnz-t- -n;z Sin(mwm2) 24 =.
£

Sio.(m—4) 7tz @

¢l aura
(2Cos. @)= P+ /=1 .
3.

X x
Euler, en observant qu'on a z- — = — ~}u , suppose aussi
123 u
I \" I kg , —— e
Cu+ ';) --(-; +u) , et par consequent P+ V~1Q=P~V~1Q,
d’ot Q=o0; et, par suite
(2Cos.z)"=P ,
pour une valeur quelconque de m.

Lagrange, dans ses Legons sur le caleul des fonctions , (Lecon XI),
trouve aussi , par Ja veie des équations différenticlles
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(2Cos.2)"=P;

mais cette expression est en défaut pour toutes les valeurs de =
qui donnent des valeurs négatives pour Cos.z, lorsque les valeurs de m
sont fractionnaires et de numérateurs pairs, car alors (2Cos.x)™ est
une quantité imaginaire ; il est donc visible qu'on ne peut pas gé-
néralement supposer ()=o. La formule

Py =0,

et non la formule P, semble donc é&tre précisément I'expression
générale de (2Cos.z)™.

Mais , lorsque (2Cos.z)™ est une quantité réelle, la formule
P+/=(Q n’est pas moins embarrassante que l'est la formule P
pour le cas ou (2Cos.z) ' est imaginaire ; parce qu’on ne voit pas
que Q doive étre nécessairement nul pour les diverses valeurs de
z et m qui peuvent répondre i ce cas.

Il y a donc la une sorte de paradoxe dont lexplication était a
désirer.

4o

M. Poisson parait étre le premier qui ait fait voir que la for-
mule P/ =7 est réellement la véritable expression générale de
(2Cos.z)™; que cette expression ne rentre dans la formule d’Euler
(2Cos.2)"=P que dans le cas ou m est un nombre entier, et
quelle peut donner toutes les différentes valeurs de (Cos.z)m qui
existent pour une valeur fractionnaire de m , si I'on met succes-
sivement pour &, z-}+2% , 2+4#, x467, et généralement z-4-2n= ,
= désignant deux angles droits , et » un nombre entiér quelconque.
Il a montré en nombres l'exactitude de Vexpression (2Cos.z)"=P
Fv=1Q, pour le cas particulier de == et m=3; (voyez la
Correspondance sur T'école polytechnigue, tome 1I, page 212).

~



DES COSINUS. 217

C’était 1a sans doute un grand pas vers explication du paradoxe ;

car une grande partie de la difficulté consistait en ce qu’on ne
voyait pas comment la formule

(Cos.zx)"=P+/=1Q ;

pourrait donner plusieurs valeurs différentes pour P/ =iQ, et
seulement une valeur unique pour (Cos.z)”. L’heurcuse idée de
M. Poisson de mettre z-~}2n= au lieu de 2, ce qui est toujours
permis , puisque les expressions Cos.z et Cos.(z-}-2n=) sont iden-
tiques , léve euticrement cette partie de la difficulté,

5.

Mais il faut avouer que la question n’était pas encore comple-
tement éclaircie, puisqu’on ne voyait pas encore comment, pour
une valeur quelconque de #, la formule générale P/ =1 pour-
rait donner tantdt une quantité réelle et tantét une quantité ima-
ginaire, Les travaux de M. Deflers, dont on trouve une notice dans
le troisitme volume de la nouvelle édition du Traité de calcul dif-
Sérentiel et de calcul intégral de M. Lacroix ( page 6o 6) et ceux
de M. Plana, dans le XL¢ volume des Annales de mathématiques
(page 84) ne semblent pas lever toutes les difficultés; et il reste
encore a faire voir comment la formule générale (2Cos.z)"=P
Tt/ =1Q s’applique A tous les cas, et sur-tout & trouver les va-
leurs du nombre » dans z4-2n= auxquelles correspondent les va-
leurs purement imaginaires et les valeurs purement réelles de
( 2Cos 2)™ (*).

Tel est, principalement le but que je me propose dans cet écrit.

(*) On peut encore consulter , sur le méme sujet, un mémoire de M.
Pagani Michel, inséré & la page 94 du présent volume,
: J. D. G.
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6.

Soit m égal & [a fraction -;— , ou £ peut étre un nombre entier

quelconque. Pour plus de simplicité , nous supposerons ce nombre
positif, L’application 3 d’autres cas n’aura aucune difficulté.

On sait, par la théoric des équations, que, dans le cas dem

fractionnaire et égal & 'II:_ , la quantité (2Cos.2)™ a toujours % va-
leurs différentes, savoir, les valeurs des % racines de la quantité
2Cos.w. Si 2Cosx est positif et & impair, une de ces racines est
enti¢rement réelle, ou de la forme p; d’antres peuvent étre en-—
tiérement imaginaires, ou de la forme —{/=1¢ ; le reste des ra-
cines est de la forme py/—=i1g. Si 2Cos.x est positif et £ pair,.
deux de ces racines sont de la forme p ; le reste est de la forme
P/ =19. Si 2Cos.z est négatif et % impair, une seule racine
est réelle , ou de la forme p ; les autres sont de la forme p+y/ 1g. Si
enfin 2Co0s.z est négatif et 4 pair, aucune racine n’est réelle; mais
deux racines sont entiérement imaginaires , ou de la forme
v/ =17, et le reste est de la forme pf‘/:g.

La forme générale des racines de 2Cos.z est donc

rrv=ig ;

et c’est précisément la forme de Vexpression générale P+/ =70 ;
trouvée ci-dessus pour (2Cos.z)™ Mais, dans les cas particuliers ,
il faut que tantét p ou P et tantét ¢ ou ) s’évanouissent , pour
donner, suivant ces différens cas, des racines enti¢rement réelles,
ou des racines entiérement imaginaires.

11 s’agit donc de trouver les valeurs de », dans #-}-2n=, pour
lesquclles P ou @ devient égal a zéro.-
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7e
On a généralement
Cos.z=Cos.+(2nat2z) ;

Sin.z=§in. T (2n=42z)=8n.[(end-1)m7~=z] ;

mais on ne peut metlre que 227 pour x, dans Vexpression

de 2Cos.z, parce qu'il n’y a que cet arc seul qui ait en mime

temps le méme sinus et le méme cosinus que larc . ‘
On a donc généralement

(2Cos.z)m=Cos.m(x2n=) 1/ 5Sinm(x+2ns)

m

+— [Cos.(m—-2)(zt2n=)1 /5180, (mw—2)(xt207)]

m M)

4 2 B2 [Cos. (memdhan=) g/ TiSin. (meeg) (w20 )]

i - - - o ~ R _ o
. - ° . . . . . - . - . . - = ~
Ld (\ A . L }

de sorte qu'en pozant, pour abréger;
mo . :
Cosun(atanwm)+ — Cos(mmm2)(z L 2n=)tun= P,

Sinmlz 7t 2ne-- -’—:—Z Siny(7nem2)(a 20z )40 22 Q,

nous aurouns

2Cos.x)?=P, T/ 50
) -_

n
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8.

Maintenant j'observe qu’on peut toujours exprimer une quantité
de la forme (2Cos.z)™ par [2Cos.z]™(+1)", pourva que I'on con~
vienne de représenter par [2Cos.z]™ la valeur arithmétique , c’est-
a-dire, la valeur numérique absolue de la quantité 2Cos.x , prise
sans signe.

En effet, la formule [2Cos.z]™.(71)™ exprimera toutes les % valeurs

de (2Cos.2)™ ou (2C0s.z)k d’'une maniére aussi compléte que l'ex-

pression (2Cos.z) i elle-méme.

Mais [2Cos.z]™.(F= 1™ n’est autre chose que la valeur de (2Cos.z)™,
prise pour =0 et x==, et multipliée par [2Cos.z]™ puisque
Cos.o=-41 et Cos.w=-—1. Donc on aura aussi [a valeur de (Cos.z)",
si 'on met dans l’expression générale de (2Cos.z,™, donnée ci-
dessus , =0 et 2=w, et quon multiplie le résultat par [2Gos.z]™.
On trouve, pour z=o,

P,=Cos.m(*+2n=)+ -Ln; "Cosm==2)(2na)4 vt

m m me—x
=Cos.2mn=r(x 4 — T ——
I 2 2

=2".Cos.2amn=}

, . . m . .
Q,,=Sm.m(i2nw)+—l— Sin/m—2(TF2n=)4....
, mo.om mee
==Sin.2mr= ( 14— 4 —- — +)

S I 2
=+ 2™ Sinamn= ;

et pour r==
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P,,-:.z"'.Cos.zm(n—l— 1 }'n ’ Qn= _'1_'2"’~Sin.m(2n+ l)‘u .
donc
(2Cos.z)m=[2Cos.z]™.{ Cos.2mnat{/ —=1Sin.2mn=} ,

ou
(2Cosix)™=[2Co0s.2]™.{ Cos.(1F2n)nty/=1Sinm(1 £ 2n)m} .

9.

Ces expressions se vérifient sur-le-champ ; car la formule gé-
nérale connue ‘

(Cos.z+/ =1Sin.g)" = Cos.mz+y/ =iSin.m=z
donne , si on y fait z=2nx,
(4+1)"=Cos.2mn=—ty'=1Sin2amnn ,
et si I'on y fait z=(112n)=

(—1)m=Cos.m(1t2n)=ty/ =iSinm(1t2n) .
\
Substituant donc ces valeurs de Cos.2mnnty/=;Sin.2mny, et de
Cos.m(1t2n)nt\/=1Sinzm (11 2n)= dans 'expression de (2Cos. )™,
trouvée en dernier lieu, on aura

(2Cos.z)ym=[2Cos.2]™. (1),

comme cela doit &tre.

Voila donc une preuve certaine de l'exactitude de l’expression
générale de (2Cos.z)™ A laquelle nous sommes parvenus en dernier
lien.

Pour distinguer la nouvelle expression ci-dessus de I'expression
générale P,/ =1Q,, désignons-la par

Tom. XIII. 31
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[2Cos.2]™ A,/ =i Bmy=(2Cos.2)" ;
de manidre que

A+ =Bua=(" .

10,

Maintenant nous observerons que , pour toutes les valeurs de #
qui donnent le méme signe a Cos.z, la réalité, ou généralement
la forme des racines différentes de 2Cos.x, est absolument indé-
pendante de la valeur de # méme, de maniére qu'on peut mettre
une valeur quelconque pour z, par exemple, #=0 pour un cosinus
positif et z=== pour un cosinus négatif, sans passer d’une racine
réelle 4 une racine imaginaire, ou généralement de la forme d’une
racine quelconque, correspondant & une certaine valeur de 2,
unc autre forme, Cest , au surplus, ce que I'expression

(2Cos.z)" =[2Ces.x]™.(F1)"

fait voir clairement; car les % valeurs qu'expriment les deux for-
mules (2Cos.z)™ et [2Co0s.2]™.(1-1)™ étant identiquement]es mémes,
et [2Co0s.#]™ n’ayant qu'une seule et unique valeur, il est clair
que les valeurs de (2Cos.z)™ sont purement réelles, purement
imaginaires ou de la forme p+y/=ig dans les mémes cas que les
valeurs de (F1)™, c’est-a-dire, les valeurs de (Cos.z)™ pour z=o0
et z=m= le sont elles-mémes.

xl.

On trouvera donc les valenrs de n qui donnent les racines de
2Cos.z toutes réelles; toutes imaginaires ou de la forme p+y/ g ,
si I'on cherche les valeurs de #' qui donnent pour {(+1)m des

§ .
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racines de méme forme ou, ce qui est la méme chose, si l'on
met z=0 et z== dans l'expression générale de (Cos.z)™, et qu'en-
suite on cherche les valeurs de » pour lesquelles cette expression

prend les formes 4,, /=18, ou 4,1 =1B,.
12.

Puisque , lorsque Cos.z est positif,

2n . . an
A,=Cos.2amn== Cos. + ™» B.=Sin.2mna="Sin, ="

tandis que, lorsque Cos.z est négatif

. b= . Y-~
A, =Cos.m(1+2n)n=Cos. -!-—7‘-32 n, By=Sin.n(1+2n)n=Sin. =

7
il s'ensuit que, dans le cas o Cos.z est positif, on aura

T [ s S
TP TG yce e

A,=0 , si on fait

=3
[

. . an
Bn=0 ’ S1 l,On falt _k-=o’ I) 3, 3 ’Ocn;::

et que, dans le cas ou Cos.z est au contraire négatif , on aura

1==an
k

‘A,=o0 , si I'on fait z

,OQIQ:O;

1=an
K

By,=o0 , si l'on fait =0, 1,2,3,....5

on pourra aisément trouver par 13, pour chaque valeur de k%
les valeurs correspondantes de z.
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13,

Nous remarquerons d’abord que le nombre des valeurs différentes

2

n
de - et de
étre plus grand que le nombre % ; car le nombre des valeurs diffé-

12

, et conséquemment de 5 , ne pourra jamais

rentes de la quantité (2Cos.x)f ou de Cos.m(zt2nas), Cos/mw2)
(#+2n%) , wr , Sinum(z+3nm), Sin(m—2)(27205), ., correspon-
dant & ces valeurs, éiant toujours égal au nombre %, le nombre
des valeurs de » sera aussi égal & ce nombre, en commengant par
zéro , et en parcourant tous les nombres entiers, Donc n ne sera
pas plus grand que 4.

Il suit de la qu’on aura

I Pour Cos.z positif.

n

1. 4,=o0 seulement pour —- =;: et , eu pour 22=:% et

vlw
X~

an 7
2. B,=o0 seulement pour & To et 1, ou pour 2z=o et k;

puisque ar ne doit pas surpassér 2k.
IL. Pour Cos.z négatif.

1*2n s .
1. 4,=0 seulement pour ——:= et ;, ou pour 2n=1k et 1k

'Y

2. B,=o seulement pour

=1 et 2 ,0u pour 2= k1 et 2k~—1

-e

car, n ne pouvant étre fractionnaire, les valeurs 27n=—+(ok—1)
n’existent pas. De plus 2z ne pouvant surpasser le nombre 24,
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il faut que la valeur de 2z se trouve entre (;Z—1) et (fk—1),
pour A,=o0, et entre k—rx et 3kft pour B,=o. Mais la plus
petite valeur de % étant 2, les valeurs ;k—i1 et 34k—1 de :n
donnent déji les nombres 4 et 5, c'est-a-dire, 2k et 2/4-1 , dont
la premiére est la limite des valeurs de 27, tandis que Vautre
la surpasse. Mais, puisque la valeur de 27, correspondant a une
des limites elle-méme , égale toujours la valeur pour l'autre, Ia
valeur $%4—1 ni toutes les_suivantes n’existent pas pour A4,=o0, ni
la valeur 3%4—1 et toutes les suivantes, pour B,=o. Donc il ne
reste que les deux valeurs ;%Z—1 et ;A—1 dc 27 pour An==0 et
les deux valeurs Z—1 et 2f=1 pour B,=o. ‘

14.

Puisque 4, et B,, P, et Q, s'évanouissent en méme temps , ou

pour la méme valeur de », ainsi que nous l'avons vu (9, 10,
11), et que lon obtient (7), pour l'expression générale de
(2Cos.2)™ ,

(2Cos.2)"=Cos.m(z+2nn)+/ =:Sinam(zt2nn)=P, v/ =i Qs ;
-+ 1:— Cos.(m—z)(ziznn),j_‘ —? v/ =1Sin.(m—2)(z+2n=)
7.2 ¢ ~+ann)+ » I =Sin(m— )@ 2n)
+ —-=—— Cos(m—4)(zan") X - —

+ ¥ . e .+ v e e v e % e e e .

-
.
.

en ajoutant, dans I'expression,

P,i‘/.'._,Qc,:Cos.mxi‘/:;Sin.mz

m m — e \
)t = | —18in. (M2 2
;I-—}" Cossm=—2)z+ - v/ =18in/(
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m == - V — ¢
+ —x--—z-: Cos.(m—4)xt :1 72';: / =1Sin(m—4)z

. o Pt

la quantité +2nn & =, il suit de ce qui a été dit ci-dessus
qu'on a

Pour Cos.x positif

P,=o0, en ajoutant & x l'une des quantitds +:kn et k=,
ouen ajoutant & mz la quantité =m(; k=)= ;= ou tm(:km)=F}n.
Q=o, en ajoutant i 2 l'une des quantités o et k=,

ou en ajoutant a mz la quantité o ou tmin="TF=.

On devra avoir de méme

Pour Cos.z négatif

P,=o0, en ajoutantd z1'une desdeux quantités +(3k-1)net +(;k-1)7,
ou A mz la quantité +m(rk-1)n=—(;=m)= ou +m(tk-1)n=+ (;-m)w.
Q,=o0,en ajoutant} z 'une desdeux quantités +(k—1)net T (2k—1)7,

oudmszlaquantité Tm(k-1)e=1t(1-m wou tm(2k-1)a=1{2-m)w
15,

Les différences de toutes ces doubles valeurs surajoutées & mz
sont partout égales & = On trouverait aisément aussi que les
différences des doubles valeurs surajoutées aux quantités (m—2)z,
(m=4)%, s..a sont toutes des multiples de =. Mais les sinus et
cosinus changent tout au plus de signes, et jamais de valeur
absolue , si l'on ajoute aux arcs un nombre quelconque de demi-
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circonférences ; donc toutes les doubles quantités trouvées ci-dessus ,
pour P,=o0, Q,=o0, se réduisent toujours & une seule, et par
conséquent on aura

1. Pour Cos.z positif.

. . k
P,=o0, en ajoutant seulementd z, + k=, quirépond & n=— ;

4
de sorte que P.,=o:
es q %
Q.=o0, en n'ajoutant rien & # ; ce qui correspond a4 n=o0;

de sorte queQ,=o .

I1. Pour Cos.x négatif

L4 L x . » \ k—z
P,=o0, enajoutant seulementaz , +(:k-1)w, qui répond an= —

de sorte que P:(k_2)=° .

. ., . k=1
Q.==0, enajoutant seulement & #, +=(4—1)w, qui répond a n==—vx ;
2

de sorte que Ql(k—x)=°'

16.
1l suit de la que

I. Pour Cosx positif,

1.° La quantité P, ne peut s’évanouir ou , ce qui revient au méme,

b
(2Cos.z)k ne saurait avoir des valeurs purement imaginaires, 3
moins que % ne soit multiple de 4, puisqu’'on a trouvé la con-

.. k . . .
dition n= 7 etque n doit toujours étre un nombre entier.
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2.° La quantité Q_ s'évanouit toujours , c'est-2-dire , qu’une valeur

de (2Cos.z)* toute réelle existe dans tous les cas, et pour toutes
les valeurs possibles de %, puisque, pour cette valeur réelle , la

quantité n est loujours égale a4 zéro, et par suite indépendante
de 4.

1. Pour Cosz négatif:
1.° La quantité P, ne peut s’évanouir ou , ce qui revient au

méme , (2Cos.x}% ne saurait avoir des valeurs purement imaginaires,
3 moins que %—2 ne soit un multiple-de 4 ; car on a trouvé, dans
ce cas, n=£§-, sous la condition que 7 soit un nombre entier.
2.° La quanuté Q. ne peut s’évanouir, ¢ est—a-dxre »qu’il ne peut
exister des valeurs enti¢rement réelles de (2Cos. .'r)k A moins que %
ne soit impair , puisqu'on a trouvé pour ce cas n-.li.-:f-x- , sous la

condition que 7 soit un nombre entier.
17.

, . , ' : . . X
L’expression générale de (2Cos.z)%, si I'on y substitue la valeur—k-

de m , donne

(zCos.x)i =P,*+y/= Q,,

= Cos. -:;- (z+ana) Sin.i— (x-+2n=)
-l—-i Cos.(—,:-—z) (#+2nn) +7:-Sm (——z)(x-i‘znw)
ma I
I Cos. (— —4> (zt2nw) + 7;-. £~ Sin, ( -;— —4) (#+2nx)
T s T e .o + .o
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si donc on introduit dans cette expression générale les valeurs
particulitres de » qui répondent aux fiivers cas de P,=o0 et
Q.=0, trouvées ci-dessus (15), pour déterminer les valeurs de

(2Cos.2)k toutes rdelles ou tout. imaginaires gul répondent i ces
mémes cas, on parviendra aux résultats que voici:

1. Pour Cos.x positif,

1.° Si l'on veut avoir, dans ce cas, les valeurs purement ima-

ginaires de (2Cos.z) , il faut supposer P =o. Mais (15) la valeur
% de » répond & P,=o0, donc il faut mettre n=% ou 2z=2% dans
tous les termes dont la quantité Qs est composée, en supprimant
d’ailleurs P,; on trouve ainsi

Sin. —— (s7-an=)=Sin. -;?(xi k=)
=Sin. (-:—- "_‘fﬂ)=ic°3--§ ="1Cos.mz ;
. (1 A | . ‘
Sm.(_—,-‘- —z) (xizn@:Sm.(-z -—2) (zt k=)

= Sin.[( -I-t- —2)‘vj( : =—k)=z | =1 Cos (% -—2)x=jCos.(m—2)x 5

> - - - -
- .

. - 3 3 . . - .

. - . . . . . . . - . * o

En -conséquence ,Ja valeur de Q,, qui est alors Q- P devien/dra.
. m m me1,
Q% ;[=—_igCos.mx+ I—Cos.(m-—z)a:-i- - .Tcos.(m —4)z+..,§=jpc‘

de sorte qu'on aura, pour ce cas,
Tom. XIII.. 32
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(2Cos.z)E=+y/ =3P, ;

d’od P'on voit que, pour Cos.z positif et % muliiple de 4, il

b 4

existe toujours -deux valeurs purement imaginaires de (2Cos./)t ,
ne différant que par le signe , et dont la valeur commune abso-
lueest /=1P,.
Si l'on voulait savoir & quoi se réduit alors la quantité Pik’
4

que nous avons dit devoir s'évanouir dans ce cas, il faudrait faire
k k
également n=«—4— ou 2p=—, dans tous les termes dont P, est

composé ; on trouverait ainsi successivement

] I X R
Cos. ;‘-(xi‘znw);—__—Cos..-’-h- (7t k=)

/

= Ces. -;— +2 w) ==+Sin. i]:- ="+Sinmz ;

Co‘s.(% —-2> (szn»):.—Cos.(—;--—z (a1 k=)
_C[_‘_ Yot (: —k —+s'<_‘. 9)—+s; )
=Cos (k —2 )zt (; —k)m | =+ Sin, 7 —2 )= in(m—2)z,
Eo conséquence la valeur de P,, qui est alors P, , deviendra

. m . m meI _,

P'_‘,hk:»"i_':;S'm.mx-]- = Sin.(m—2)gt — - — Sm.(m—-,-4)x+...§= +Q;
d'olt T'on voit que, pour le cas de Cos.z positif et.de & multiple

de 4, on doit avoir Qu-:_.-o.

2% Les valeurs toutes réelles de (2Cos.z)* qui répondent 3 toutes
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les valeurs possibles de % (16) se trouveni sur-le-champ ; car,
pour ces valeurs, » étant égal & zéro, elles ne seront autre chose
que 1-P,, de sorte qu’on aura

(2Cos.2)k=+P,

L’ambiguité du signe tient & ce que la valeur est nécessairement dou-
ble si 4 est un nombre pair. Si 2 au contraire est impair, le

signe =+ a seul lieu. Car l'expression de (2Cos.z)t étant toujours

1
soumise aux mémes conditions que I'expression (1)t , ce qui re-
vient , pour le cas actuel (g), a

ann

(+1)i=Cos.-2-:—"i‘/:_xSin. z,

il est aisé de voir que cette derniére expression donne toujours
une couple de valeurs toute réelles, ne différant que par le signe,
pour 2n==0 et 2n=Fk ; car ce sont les valeurs de n pour lesquelles

. 2"’ 14 ) ’ A

Sm.-,;-— est égal & zéro. En effet, ce sont les mémes valeurs
déjd trouvées (13), pour le cas de Q,=o0; et, puisqu’il y a deux
valeurs entiérement rdelles pour (--1)k, en supposant 2z=0 et

an=k, il y a aussi nécessairement deux valeurs réelles de (2Cos.x)E'~
pour les mémes cas. Mais 2n=Fk suppose % pair. Si % est impair,
on n’'a pas 2n=Fk, puisque » doit toujours étre un nombre entier.
Dans ce dernier cas, on peut donc seulement mettre 2z2=0, et il
n’existe que la valeur positive. Donc il n'y a que deux valeurs

entidrement réelles de (2Cos.z)k , ne différant que par le signe,
si k& est pair. Elles sont, comme on vient de le voir, égales 2
+ P, Sik est impair, il n’existe que la valeur 4P, seule.

Au reste, puisqu'il existe foujours une ou deux valeurs entié-
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rement réelles de (2Cos.z ¥, dans le cas de Cos.z positif, et
qu'en méme temps il existe aussi deux valeurs purement imagi-
naires. dans le cas particulier oit% est un multiple de 4, il sen-
suit que ces deux derniéres valeurs doivent étre essentiellement
distinctes des premiéres, de ‘maniere qu’on a , dans ce cas , quatre

X
valeurs de (2Cos.
La quantité qui s’évanouit dans le cas des valeurs entiérement

réelles de(2Cos.2)k , toujours pour Cos.z positif, se trouve, aussi
sur-le-champ. Elle n’est en effet autre chose que @, , puisque,
dans le cas actuel » doit étre égal & zéro. On a donc 1'équation

x

Q=o0, pour le cas des valeurs entitrement réelles de (2Cos.x)k 3
ce qui s'accorde parfaitement avec ce qu’on vient de trouver plus

haut. Car les valeurs cnti¢rement réelles de (2Cos.z)k ayant zou-
jours lieu pour Cos.z positif , il faut que le cas de £ égal & un
multiple de 4, dans lequel il existe en outre deux valeurs pure-

z
ment imaginaires de (2Cos.z)t, donne aussi =0 ; puisque, dans
ce cas, les deux valeurs entiérement réelles et les deux valeurs

purement imaginaires de (2Cos.z)k existent en méme temps ; et c'est
précisément ce qu'on vient de trouver.

P

Il. Pour Cos.x négatif ,

1.° Pour avoir les valeurs purement imaginaires de (2Cos.2)% qui
existent, si k—2 est un muliiple de 4 , il faut (16) 3ubstituer

k—2 . ., .
la valeur e de n qui (15) correspond a ce eas dans Ja quantité @, qui
alors devient Q.(k—2), et constitue 3 elle seule les valeurs cher-

3

chédes, Cela donne successivement
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Sin. —;;-(xjjznw)z Sin, %(zi ’i;: w)
=j__"Cos.-E- (z+=)=+Cos.m(z+ =),

Jomn
Sin. (-%- -—-:.:) (xizm:):S'm.( %_,)(xi - 2 w)

=+Cos. (+ —2) (tm)= £ Cos(m—2)ata)

. » o . . - - - . . . - .

. donc la quantité Q, se réduit, dans le cas actuel, a

Q%(/:-—-z): + { Cos.m(xjﬂ-{-—?— Cos.(m-—n)(:vi@-{—....}: iP; -

3
d’ou résulte

T
(2Cos.zk =/ 5P, ;
ce qui donne les deux valeurs purement imaginaires de (2Cos.z)t qui
existent, dans le cas ot A—a est un multiple de 4, Cos.z étant
négatif.
. ’ . . E 4 - -
La quantité P, ou PE (2’ qui doit s’évanouir dans ce cas;

. ' . k2
s'obtiendra , en substituant la valeur - de 7z dans tous les

termes qui la composent. Sans faire ici le calcul, qui ne serait
qu’une répétition de celui que nous avons fait plus haut, il nous
suffira de dire qu'on trouve définitivement

P%(k_2)=i Si“'m(-"’i“’)'i"-? Svin.(m—zv)(xiu)—}-....} =+Q. ;

“in

il vient alors, en développant,
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P, )= + {SinamzCos.mw=tCos.maSinmw= |
-+ :-2 [Sin.(m—2)2Cos.(m .—z)wiCos.({n—z)xSinA(m—z)w]

i "L-';’ [Sin.m>4)2Cos.(m—4)= +Cos.(m==4)xSin.(m— 4)=]

1

- - 1.
e . . . . . . . . . . L . . . . .
or,

Cos.mw=Cos.{m—2'=z=Cos.[m—4}m=x. s . | .
Sinmw = Sin(m=2)d = Sin(m—4 ==, . . . © .

donc, en dyant égard A ces relatlons

P}(Iz- 2)’_: +Cos.m= { Sin.ma4- 3;— S'm..(m--n)x+ —?- . T;Sin,(m..4)¢+,m§

FSinm= g Cos.m;z'-'l— —";- Cos.(m—2)z4 —?- . ﬁ;:—! Cos.(m—4)z4.... g;
é’e‘st-&-‘dire , . , ‘:
: Pf (,{T_Q);i(Bosin'm’iQoCOS'm") :
Donc-; si ix=% est ‘un multiple de 4, et que Cos.z soit négatif,
on :aura toujours la relation -
- P.Sin.mo+Q,Cosm=Q. =o0:

* 2.° Les valeurs entidrement réélles de (2Cos.z k qui existent (16)
dans le cas ol & est impair, Cos.z étant toujours négatif , se
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trouvent en substituant la valeur i—;-l de n, qui correspond i c;.a
cas, dans lous les termes de P, , qui devient ainsi P%(k___])’, et
qui constitue a elle seule la quantité cherchée. Cela donne

Cos. ;t-(xiznw) =Cos. -;‘— [zt (k-—1)=]

===Cos. % (#tw)==Cos.m(z+w=) ,

Cos. ( ;‘-—-2) (zx2nw)=Cos. ( -i— —z>[xj(7t—- D=]

= —Cos. ( —’:- —-2> (#E=)==Cos(m=—2)(2L=) ;

. - - . - - .
a . - . . . . . . - . . - ] L) - -

et par suite

P, )=__{c°s.n;(zir)+-_{"’ cos;.(m-zx;_ta)-};‘.....}=_P§'

done

(2Cos.2 )k :.—.P% ()= --P% 3

ce qui donne I'unique valeur entidrement réelle de (2C6§.x)§ ,
pour le cas oi % est impair et Cos.z négatif.

Quant 3 la quantité ,Q:M‘_l) qui doit s'évanouir dans ce cas,
on trouvera, par un calecul semblable & celui qui a été employé
pour P%Uf“")’
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Q-}(/(--}) = Sin.m(xic)-F -:2- Sin.(m —-2)(xi‘-;+.-:-;=-Q‘l

d'ou

Résumons présentement les divers résultats auxquels nous,

. venons de parvenir.
Posons, pour abréger, comme ci-dessus,

Cos.n;(x'f“zn'\-i-—— Cos (m——n)(x'*‘«"')
+-7§"—E: Cos.(n;~4)(xi2n')+-.--=Pn >
Sinm(a=tans)4 = Sin (m—a)(zt2nm)
-+ T_‘.".'_::Cos (m--4) (@t anm) i =Qu »
et, par suite, pour m=o0;

Cos.mz+ %Cos.(m-—z),z-l— -";1‘22:—-’- Cos,(n—4)z4wun =P, 5.

]

Sin.mz-4- -’;Sin‘.{m—n)x-{a _11’. m=r Sixlx.(m--4)x_—lé.',.:.=Q;, .

2.

et pour 22=1 ou n=;
Cos.m:
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Cosim(a7tayf = Cos(m—32)(a7tx)

F ot §

Cos{m—4 (xm)4wi=2: , .

m
-t —-
I

2

Sin.m(z )+ ’;”_ Sin.(m—2)(@ =)

+ ’_l"_ R Sin.(m—4)(# X m) 4w =Q: ;

2

de maniére que :
P,=PyCos.mntQ,Sin.m= ,

Q.= P Sinmn~+ Q.Cos.mn ;
supposons de plus

m="_ »

k

nous aurons les résultats suivants.

La quantité (2Cos.z)% a toujours % valeurs différentes; qui s'ex-
priment généralement par

(2Cos.z)k=P,+y/=7Q, .
Mais
I. Dans le cas de Cos.x positif ,
il existe toujours, parmi ces %k valeurs, pour toutes les valeurs

possibles de z , une valeur enti¢rement réelle de (2Cos.x)%, si %
est impair, et deux valeurs ne différant que par le signe, si £
est pair. Les valeurs enti¢rement réelles , en donnant pour indice

3 (2Cos.z)t les valeurs correspondantes de 7, sont exprimées par

(2Cos.a:)k(o - {k)=i_P° .

Qutre ces valeurs, il cn existe deux autres, purement imaginaires,
qui s’expriment par

Tom. XIII, 33
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‘ (2Cos.z)k =tV =P

dans le seul cas ou X est un multlple de 4.

Le surplus des k valeurs (2Cos.x)bs expriment toujours par

(2Cos.x)1=Pui‘/;'iQn )
n
ot I'on peut donnmer 3 » toutes les valeurs entidres et positives
autres que celles qui répondent aux cas particuliers que nous venons
d'examiner, savoir , 0 pour tous les cas, o et ;4 pour % pair,
et enfin o, ;4 et ;% pour % multiple de 4.

A quoi il faut ajouter que, pour tous les cas possibles d'un
cosinus  positif , on a toujours

Qs=o .
IL. Dansle cas de Cos.x négatif ,

. , s
1.9581 k est pair, il n'existe, parmi les k valeurs de (aCosia)t
que deux valeurs purement imaginaires , exprimées par

(2Cos.x, k=1 gy k=™ +\/-1P. ;

si k—2 est un muhrple de- 4, le reste des % valeurs est de la
forme -

(QCOS.&‘ L' P+¢~1Qu s

ol 1’on peut mettre pour z tous les nombres entiers-, depms o

k—a 3l
jusqu’a k , excepté les deux nombres — et =

i T
Pour toutes les autres valeurs paires de %, pour lesquelles k—2
n'est pas un maltiplé™de 4, il n'existe ni valeurs entitrement

kS
réelles ni valeors purement imaginaires. de (2Ces.z)*. Toutes les
k valeurs sont alors de la forme
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(2Cos,x)é=1’,.'*_‘;/:'; n 2

ol n peut étre quelconque.
2.° Si % est impair, il existe toujours une valeur ennéremen:
réelle, exprimée par

(2Cos.x "_-_l_ ""P: .
le reste des % valeurs est de la forme

(2Cos.x)’f=P,,j_';/:

n?

ou n peut étre quelconque.

En outre , pour tous les cas possibles d’un cosinus négatif,
on a toujours la relation

P,Sin.mntQ,Cos.ma= Q.=o, ~ Yo

’9’
- Les équations

Q=Sinmat = Sin(m—s)at =-"Sin, (m=4)s-iin=0;
pour Cos.z positif , et |
h é_=Sin.m(xiu)+lxl Sin.(m-—:z)(xi-)h....»:o;

pour Cos.z négatif , lesquelles subsistent pour toutes les valeurs
possibles de z, expriment des théorémes trigonométriques remar-

quables par leur généralité et par leur simplicité, Si I'on développe
la premiére , elle donne

m .. m me1 .,
< Sin.2z+ - Sin.4z-4. ..
2 s .

Tang.mz =

5

: m m eI ¢
1 = Cos.z‘x+‘-x—---—a—— Cos.4z4..u

de sorte que , pour #= =, on aurait
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m m—1 m—2+ m me—1 me=2 m-—3 m—-4
T e s n —— - — ——gerte
. 1 2 3 4 5
Tang. ima=
m m—1 m m—1 m—2 m—3
J —— - - — — . e
2 I 2 3 4
.
20.

: 1
L'expression ordinaire ‘de (2Cos.z)* qu'on a admise jusqu'ici,
pour tous les cas possibles, est généralement

(zCos..z)ki= P, ;

de plus on a tacitement supposé

Q.=o,
pour tous les cas,
En comparant ces expressions aux résultats qu’on vient de trou-

ver, on voit aisément les exceptions auxquelles elles sont sou-
mises.

- En effet l’éxpression (2Cos.zjk=P,, admise généralement, n’est
exacte et compléte que dans le seul cas o Cos.z est positifet &
un nombreimpair. Si% est un nombre pair, I'expression (2Cos.z*=P,,
ne donne qu’une seule ‘des deux’ valeurs TP, qui existent dans

ce cas, Et de plus clle ne donne pas les deux valeurs purement

imaginaires de (2Cos.z)¥ qu'on doit obtenir, si % est un multiple
de 4, et qui sont Fy/—=iP,. Si Cos.z est négalif et k pair,

I’expression (2Cos.z) =P, est en défaunt ; car, dans ce cas, il n'existe

pas de valeurs enti¢rement réelles de (2Cos.z)*, mais seulement

deux valeurs purement imaginaires , ne différant ’'une del’autre que par
s

le signe, gt‘doqt I'expression est 1=y/—yP*, si k—2 est un multiple

de 4. Si, cos.z étant toujours negatif, & est impair, I'expression de
/
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(Cos.z =P, est encore en défaut; car la valeur entitrement réelle
qui répond & ce cas n'est pas P,, mais—P, ; de sorte que giné-
3

ralement (2Cos.x‘f=Po est en défaut pour tout cosinus négatif, -

Du reste cette formule ne donne jamais qu’une seule valeur

3
de (2Cos.2%k , au lieu de % valeurs différentes qui doivent exister
Al q :

dans tous les cas.

L’équation Q,==0, admise généralement , estexacte pour tout cosinus

q ) 8 ) P
positif. Mais elle est en défaut pour tout cosinus négatif. Dans ce
dernier cas, c’est J:=o0 qui doit lui étre substitude.
a

2X.

Je pn’ai rapporté ici qu'un précis de lexplication du paradoxe:
Ceux qui désireront un plus grand détail, et en particulier I’analise
du calcul d’'ot on a tiré jusqu'ici la valeur incompléte et souvent

z

fautive de (2Cos.z)k , pourront consulter la traduction allemande
des Legons sur le calcul des fonctions de LAGRANGE , qui est préte
a4 paraitre, et qui doit former le deuxi¢me volume du recueil complet
des ouvrages analitiques et géométriques de ce grand géométre et
que je publierai dans la méme langue, en y joignant des notes et
des additions, soit pour éclaircir les passages difficiles, en faveur
des personnes qui ne sont pas suffisamment versées dans P’analise,
soit pour généraliser et simplifier les théorémes quien sont susceptibles.
Ce qui précede offre un exemple des notes de la derniére sorte.
Je publierai les autres en frangais, 3 mesure que l'occasion s'en
offrira.

Berlin, le 21 septembre 1822,
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QUESTIONS RESOLUES.

Rectification de l'énoncé du probléme de gcéomeétrie
proposé & la page 321 du XII° volume des Annales,
et traité a la page 115 du présent volume , et
solution compléte de ce probléme ;

Par M. W. H. TaLsger

Extrait dune lettre au Rédacteur des Annales.

-
S

Lorsque je vous parlai, Monsieur, & mon passage & Montpellier,
d’'une courbe qui résolvait, 4 lafois, le probléme de la trisection_
de Pangle et celui de la duplication du cube, si jeusse préva que
vous en proposenez la recherche 2 vos lecteurs, jaurais. tiché de
mieux m’en rappeler les propriétés caractenanues. Ma: mémoire
m’a évidemment mal servi. M. Pagani Michel a completement rai-
son en tous points; et je demande bien sincirement pardon 3
vous et a-lui de mon inadvertauce. Je vais licher de la réparer
de mon mieux, en consignant ici le véritable énoncé- du probleme
et en montrant quelle est la courbe qui le résout. !

Le probléme doit étre énoncé comme -il suit:

PROBLEME, Un axe fixe et un pdle fixe sur la direction de
cet axe étant donnés sur un plan,quelle est la courbe qui jouiy
de cette double propriété? 1.° que son rayon vecleur est cons-
tamment proportionnel au cube de la perpendiculaire abaissée du
pdle sur la direction de la tangente & son extrémité , 2.° que angle
de ce rayon vecteur avec l'aze est constamment triple de celuy
que fait la perpendiculaire avec la méme droite.
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Le probléme est encore ici plus que déterminé, comme dans
le premier énoncé, et chacune des deux conditions suffit a elle seule
pour faire obtenir I'dquation différenticlle de la courbe dont il
s'agit; mais ces conditions ne sont plus incompatibles ; et elles se
se trouvent I'une et lautre satisfaites par /a courbe enveloppe de
Pespace parcouru par l'un des cités dun angle droit dont le som-
met décrit une hyperbole équilatére, tandis que son. autre cdté passe
constamment par le centre de la courbe.

Soit en effet (#,y) un des points de cette enveloppe , rappor-
tée aux axes de, lllyperbole, dont nous supposons la lengueur
commune 248 ¢t smt (2, /) le point correspondant de cette der-
niére courbe ; nous aurons d’abord

Fir—yP=a* . (1)
De plus, la droite qui joindra nos deux points, tangente i la
courbe cherchée au point (z, y), aura pour équation

a/zyly=a"* 4y, (2)

Enfin, il faudra exprimer que le point (#,y) demeure le méme

lorsque le point (x' y’) vane infiniment peu, en parcouraqt
Fhyperbole , ce qui donnera

214z —y'dy'=o0,
(z=22/)da/~+(y—2y/)d'=0; v
d'olx on conclura, par élimihaﬁpn,
y'at-2'y=4aly’ . (3)

L'équation de la courbe cherchée sera donc le résultat de I'élimi-
nation de 2/ et y’/ entre les équations (1,2, 3).

Pour y procéder commodément, et développer, chemin faisant,
les propriéiés de cette courbe qui fopt le sujet du probléme, élimi-
nons d'abord, tour-a-tour, z et y, entre les équations (2,3); en
ayant égard i l’équation (1), on aura ainsi
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ay=3aly —y" (4)

a*x=a*=3z/y” . )

En divisant ces deux équations I'une par l'autre, on a

3 ' ' \? .
Y - 3xl2qlemyl3 _ ;, = '; ) (5)
_; x/3—3x!yl> - v\ *
=3 L;,

Or en désignant par O lorigine ou péle, par OX la direction
de I'axe des #, par P le point (¢, ) de la courbe cherchée et
par P/ le point correspondant (a7, /) de 'hyperbole on aura

2 —TangPOX , Y —TangP/OX ;
x 2 . x

au moyen de:quoi I'équation (5) deviendra

3Tang . P’'OX—Tang 3P’OX

Tang. POX= 1—3Tang. *POX

=Tang 3P/0X ;

donc, en premier lieu, I’angle POX est constamment tnp]e de langle :
P OX, comme l'exige la question,

En prenant la somme des quarrés des mémes équation (4), on
trouve

ok (@' ' )=(2"+y") )
ou encore
Wa>4y'3 _ ,
"J‘Zh y—l— -"a ;
" mals : . . .
v;—"=+y=‘=or , Vi is=0P ;
done
‘o’
oF —4i

ainsi les cubes des perpendicalaires OP’ sur les tangentes PP’ sont

constamment
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constamment proportionncls aux rayons vecteurs des puints de
contact,

Sans aller donc plus avant, nous voild assurés que notre courbe
remplit a la fois les deux conditions du probléme.

En supposant donc la' courbe tracée , et désignant par A le point
ol elle coupe I'axe OX, lequel point est un sommet commun i
cette courbe et 3 I'hyperbole, sil'on veut 1.° résoudre le probléme
de la trisection de I'angle, on menera un rayon vecteur OP , faisant
avec l'axe OX, un angle XOP égal & I'angle donné et se terminant
2 la courbe en P; abaissant ensuite la perpendiculaire OP/ sur la
tangente PP/ en ce point, I'angle XOP/ sera I'angle cherché, tiers
de l'angle donné XOP. »

2.° YVeut-on résoudre le probléme de la duplication du cube ?
du point O comme centre, et d’un rayon OP’/ égal & l'aréte da
cube donné, on décrira un cercle. On menera a ce cercle et 3 la
courbe une tangente commune P/P touchant cette derniére en P,
On cherchera ensuite un point Q de la méme courbe.tel qu'on
ait 0Q=20P, et menant la tangente QQ en ce nouveau poink
la perpendiculaire OQ’ sur sa direction, cette perpendiculaire OQ/
sera I'aréte du cube cherché, double en volume de celui dont I'aréte.
est OP/,

On voit au surplus, par cette construction, qu’il serait tout aussi
facile de trouver un cube dont le volume fit au volume de celui
dont l'aréte est OP/ dans tel rapport on voudrait. Il ne s’agirait
en effet, pour cela, que de faire varier le rapport de OQ4a OP,

Poursuivons présentement la recherche de I'équation de notre
courbe, L’équation (6) donne

¢/a+y/a_—_as (xz+y2>':' ;

a2

en rapprochant de celle-ci 1'équation (1) qui est
x”-—-y”:a‘,

et prenant successivement leur somme et leur différence, on aura
Tom. XIII. \ 34
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2z =g* g (f%t—’:)%-l-l ; ’

2yh=a’ g (=’+y- Pt g .

a?

()

retranchant successivement la seconde du triple de la . premiére
etle teiple de la seconde de la premiére, il viendra, en divisant

par 2, :
3x”—y”=+a‘{ ‘t’+7 4 g
T2

xa+y: b

--3y" =——g® z

- ces deux derniéres, divisees Pune’ par lautre, donnent

.. xy? T 4a
=t Eﬂ:,, ¥ @

et les équations (7) divisées anssi Pune par I'autre , donnent , Pal
~Fextraction -de la racine “carrée,

z‘-H") )
Z i%‘;?—)‘;‘ s (o)

mais l’équation (5) peut. etre xmse sous cette lorme

J'I 33;/:_1,1:

o S————— '( v
= “I Xl demen, 5]"

- substitnant donc les valeurs (9, 10), nous aurons Gnalement _pour
. -P’équation de la courbe cherchée

. (x’+y’)+ (g:%?: _:-—x _:.
e |
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&quation qui est exactement I'équation (2) de M. Pagani Michel
(pag-119),eny changednt simplement 4 en 2. H est donc certain
que la derniére des conditions du probléme emporte aussi la
premiére. ’

Cette courbe, dont I'équation polaire peut éire amenée 3 la

forme teés-sumple
(:- )%=Séz:. 1,
a

jouit de plusicurs autres propriétés géométriques et mécaniques

fort curieuses. Si j'en trouve le loisir, jen ferai, Monsieur, le

sujet d’un petit.mémoire que j’aurai '’honneur de vous adresser (*).
Agréez , elc.

Florence, le 11 octobre 1822, .

| —— —— — —— —

e ——— —

QUESTIONS PROPOSEES.

Probléme d’analise,

Assigner la somme finie de chacune des trois séries infinies que
voici:
aCos.x a3Cos.3z a5Cos.5¢  a7Cosyx _ -

i 3 5 g 7 +nu 5

,Cos3z |, 1.3 Cos5x 135 Cosgz
. 2 i . . 4
a¢ Cosabi——t 7.+ 75—
Cos.xCos.y  Cos.2xCosizy , Cos.3xCos.3y  Cos.fxCosly
3.° - —_ " -+ 3 —

e

4.

. ‘-

€*) Nous croyons devoir rappeler, 3 cette occasion, qu'une éarabol’e‘; accom-
‘pagonde de sa développée, jouit également de la propriété de pouvoir résoudre
i la fois le probléme de la duplication du cube et celui de la trisection de Vangle
¢ Anaales ,tom.. 1X, pag. 204, et tom. X, pag. 242). ‘
‘ J. D. G.
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Zizeoreme de gcomelrie elémentazre.

Le point 0 dun plan mduﬁm dont la somme OA+OB+OC
des distances ‘3 trois poirts A , B, C, situés comme on le
voudra hors de ce plan est un minimum esttel que si, par Iune
quelconqne des “droites OA, OB ; OC, on conduit un plan perpendh
culaire ‘au plan dont il s'agit, ce plan divisera en deux parties ega‘es
Iangle formé par les deux 3utres droues.

Theor_:eme de - Géometrie transcendante.

On sait que le lieu des pieds des perpendiculaires abaissées: da

eentre d'une hyperbole sur toutes les tangentes a cette conrbe ‘est
une sorte de Auit renverse () appelé Lrmniscate, ayant mémes
axes, méme centre et méme sommet que I'hyperbole.
- Supposens -que- Thyperbole soit équilatére, et soit--son axe égal
4 24, Sur cet axe, comme grand axe, soit construite une ellipse
dont le, petwame soit égal 3 la distance entre ses foyers (*); cette
ellipse, circonscrite 4 la Lemniscate, auga comme elle méme centre
et mémes sommets gue l‘hyperbole.

Soit désignée par E I'excés fini de 'asymptote infinie de lbyperhole
_.comptéé - du “centre , sur le quart aussi infini de cette courbe. (**)
Soient en outre ¢ le quart du périméire de la Lemniscate et Q
le quart du penmetre de I'ellipse ; on -aura

“) Clest }elhpse pro;ectxon d’an cercle sur un plan qui fait avec lé¢ sien un
qng!e demi-droit. Elle jouit de diverses propriétés remarquables.
— (”’) C'est la distance du centre au point de I'asymptote ol viendrait aboutlt
'le pomt de la courbe qui se trouve au sommet, si cette courbe supposée ﬂexnblc
était appliquée. sur. son asymptote ; sans déplacement du pointde contact & Vinfini,
ol ARt .
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MECANIQUE APPLIQUELE.

Reflexions sur lusage de l'éprouvette, dans Uartillerie ,
pour apprécier la force de la poudre;

Par M. HErie , lieutenant dartillerie.

ON donne , dans l'artillerie, le nom d'éprouvettes aux instrumens
destinés a estimer la force relative des poudres de diverses qualités.
Ce n’est qu’en examinant les effets produits parla poudre quon
peut se former une idée de ce qu’on doit entendre par sa force.
Lorsqu’une certaine masse de poudre s'enflamme , les gaz qu
se forment et se développent ayant une trés-grande force élastique
tendent & se dilater en tous sens. S’ils rencontrent quelque corps
mobile dont la présence géne cette dilatatien, ce corps ¢prouve
de leur part, une pression qui le met en mouvement. La vitesse
- qu'il acquiert, d’abord infiniment petite, s’accroit continuellement
par leffet de la pression ; mais cette pression devant nécessaire -
ment diminuer d’intensité & mesure que la vitesse du mobile tend
a devenir égale 4 celle du gaz, il arrive enfin un terme ou elle
devient tout-a-fait nulle, et ol conséquemment le mobile n'a plus
d’autre cause de son mouvement que la vitesse qui lui a été anté-
_rieurement communiquée. Pendaut tout le temps de la durée de
Pimpulsion , le mobile a regu & chaque instant une quantité de
mouvement infiniment petite ; et on juge de la force de la poudre
par la somme des quantités de mouvement ainsi acquises, c’est-

dom, X111, n.° VIII, 1.°F féprier 1823, 35
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A-dice, par la quantité totale de mouvement acquise par ce mobile.

La quantit¢é de mouvement infiniment pelite communiquée au
mobile 4 chaque instant dépend, & la fois, des valeurs qu’ont, a
cet instant, la force élastique des gaz, la vilésse de ce mobile et
les résistances qui peuvent géver son mouvement. Une foule de
circonstances étrangdres 3 la qualité de la poudre peuvent d’ailleurs
influer sur sa force -élastique ; et tels sont par exemple le volume
et la figure de l'espace qui la contient, I'dtat de plus ou moins
grande compression ol elle s’y trouve, I'endroit et la maniére dont
le feu y est appliqué, etc, etc.

Nous ne nous occuperons uniquement ici que de ce qui concerne
les effets de la poudre dans les bouches i feu.

Supposons donc une charge de poudre placée au fond de I’dme
cylindrique d’un canon et surmontée d’'un projectile. Au moment ot
I'inflammation commence, les gaz qui se forment et qui cherchent
3 se dilater dans tous les sens poussent a la fois le projectile et
le canen, dans des directions contraires.

Pour examiner d'abord le cas le plus simple, supposons l'axe
de la piéce horizontal, les centres de gravité du canon et du
boulet placés sur cet axe, le boulet sphérique ou cylindrique et
le vent nul. Imaginons encore que le canon soit posé sur un plan
horizontal, sur lequel il puisse glisser librement, sans qu’aucun
obstacle s’y oppose. Faisons enfin abstraction de toute résistance ,
et négligecons en outre la circonstance du gaz qui s’échappe parle
canal de la lumiére, Chacun des deux corps ne recevra ainsi de
la poudre qu'une impulsion rectiligne et horizontale.

L’opinion généralement adoptée est que les quantités de mouve-
ment communiquées pendant le méme temps au boulet et au canon
sont égales entre elles.

Je n'en citerai qu'un exemple, M. Petit (drnales de chimie , tome
VIII, page 2g6) veut avoir 'expression de la force vive que la pou-
dre communigue duns son explosion; force vive qui est représentée
par M7 ~me*, M et m désignant les masses respectives du canon
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et du boulet, V et ¢ leurs vitesses acquises. 1l observe qne, /e
boulet et le canon étant soumis & la méme force, doivent acquérir
la méme quantité de mouvement dans le méme temps. En consé-
quence, il pose l'équation MF =mys, et change ainsi I'expression

P

m
récédente en celle-ci: mo? — 1.
précédente celle-ci mp(x-{-M
Mais ce principe ne soutient pas |’épreuve de I'analise.

M et m désignant toujours les masses du canon et du boulet,
soient, & un instant quelconque ¥ la vitesse du premier, ¢ celle
du second, % lahauteur de colonne d’eau i laquelle ferait équilibre
I'clasticité du meélange gazeux.

Désignons par g la gravité , par p la densité du melange gazeux,
celle de I'cau étant prise pour unité. Pour faciliter le raisonnement,
supposons le boulet cylindrique, en sorte que la face de ce corps
exposée a laction de la poudre soit plane et perpendiculaire a
I'axe de la piéce.

Si le boulet et le canon devenaient tout & coup immobiles, le
fluide exercerait sur 'unité de surface de chacun de ces corps une
pression égale & gh. Ainsi & désignant la section transversale du
canon, ghb exprimerait la pression totale qu'éprouveraient le fond
du canon et le boulet. —t
Si, au contraire, le boulet et le fond du canon étaient subite~

ment enlevés, le fluide s’échapperait, de part et d'autre, avec

une vitesse 3 p 25_’;_ .

Dans l'état réel des choses, le boulet a une vitesse ¢; le fluide
qui le presse a donc aussi cette vitesse ; celle que ce dernier
prendrait s’il était libre éitant, comme nous venons de le dire,

—————

Vzg .g. , celle qu'il perd, par ligterposition du boulet , est done

h
. 2g -é-;—l’.

- Lie boulet éprouve donc la méme pression que s'il était immobile
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et pressé par un fluide d’une densité » , tendant 3 s’échapper avee

——

une vitesse Vzg—’;- —p. Soit %/ la hauteur de la colonne d’eau

a laquelle ferait équilibre I'élasticité de ce fluide, il est clair qu’on aura

Vzg Vzg — —v 3 par conséquent, la pression exercde

sur le boulet, et qui est représentée par gbh’, aura pour valeur

12} h v,
—2— 25-}— .

La quantité de mouvement infiniment petite que cette pression
communique au boulet est

I2)
mdv._-—z—- ;Vzg -{;— —-V% dt

dz étant I'élément du temps. On trouverait, par un raisonnement
analogue , pour la quantité de mouvement communiquée au canon ,

__ be A *
May= —;—{V2g T—V}dt .

Comme la valeur de 7 est trés-différente de celle de ¢, on ne peut
pas supposer les quantités Md/ et mdp égales entre elles. La premicre

MdV est toujours la plus grande, 3 cause que F est plus petit
que .

Donc, 4 chaque instant, le canon regoit de Paction de la poudre
une quautité de mouvement plus grande que celle que recoit le

boulet. (*)

(*) M. Petit, 3 'exemple de tous ceux qui ont traité la méme question avant
lui, n’a pas fait attention &la diminution gue la vitesse déja acquise par chacun
des deux corps apporte 3 la pression que ces corps éprouvent. Il a également
négligé cette quantité en s’occupant de la question suivante : ( voyez le mémoire
déja citd, )

Soit un cylindre fize , horizontal et fermé par un de ses bouts. Un Slaide
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Dans la pratique , la différence est encore plus grande, 3 cause
du vent du boulet, de la résistance de lair,etc, ete.

Si T'on considére les quantités de mouvement totales acquises par

élastique est placé entre le fond de ce cylindre et un piston. Il exerce sur
ce dernier une pression qui le met en mouvement. Il s'agit de trouver la force
vive acquise par le piston? . .

Soit @ la longueur du cylindre primitivement occupé par le fluide ; soit x
celle qu’'il occupe actucllement. Soient 4 la hauteur de la colonne d’ean 3 laquelle
son élasticité pouvait faire équilibre quand il occupait I'espace ¢, m la masse
du piston, ¢ sa vitesse actuelle, & la section transversale du cylindre ; et
prenons la densité de leau pour unité,

.. . , Ly . . ha . - .
L’¢lasticité da fluide s'est réduite & —, La pression qu'il exerce sur le
x
. ha . .
fond du cylindre est gb — . M. Petit suppose que cette valeur est aussi
x

. ; . , o, . mde ha
celle de la pression exercée sur le piston. En conséquence , il écrit e ==gh— ou

mede ha , . . . . . .
—~—=g — . Intégrant ensuile cette équation , il obtient ainsi la valeur de m¢2.
dt x & ’ v

Mais, a cause que le piston a une vitesse acquise v, la pression exercée sur
sa base est nécessairement moindre que celle que supporte le fond du cylindre.
Soit & la densité du fAuide , lorsquiil occupait I'espace a; sa densité actuelle

ad . . . . .
devra &8tre exprimée par < La vitesse qu’il prendrait, si 'on enlevait subi-

< ha
. o x B , "
tement le piston serait 28. = ,/ 2g-d\>.Donc,la vitesse qu'il perd,
a
2

par l'iaterposition du piston , est ,/ 2g —;—- —v. Soit i la hauteur de la colonne

d'eau & laquelle ferait €équilibre I'élasticité génératrice de cette vitesse 3 on aura

% g N sx
(Vzg T\--—P =2g_£1 --2':}&’, ' z?:

dod
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les deux corps, on voit qu'elles doivent différer encore davantage.
Ea effet, dés les premiers instans de Iexplosion , le boulet, chassé
hors du canon, n’éprouve bientét plus, de la part de la poudre,
qu’une action a peu prés nulle; tandis qne celle qui est exercée
sur le canon est encore considérable.

Il est donc bien prouvé que l'explosion de la poudre commu-
mque au canon une quantité de mouvement plus grande que celle
qu'elle communique au boulet. :

La relation qu'ont entre elles ces deux quanhtes de mouvement
depend d'ailleurs de la loi de développement des gaz dans la
charge de poudre que l'on considére. Ainsi , cette loi venant &
varier , la’ relation variera aussi. Donc cette dernitre dépend de la
nature de la poudre.

Une de ces quantités de mouvement détermine /e recul de la
picce., l'autre Ja distance a laquelle est porté le boulet ou /s
portée. Ainsi, la relation entre Ie recul et la portée depend
Bénéral , de Tespice de poudre ‘que T'on emploie.

. De 1a il résulte quil peut arriver que, de deux charges égales
de poudres de qualité dxffereme, 'une donne un petit recul et
l_me grande portée, et qu’au contrairé I'autre donne un grand recul
et une petite portée.

ey h )’
y A — - .
b= 25x(VQ€ T )

donc la pression bgh! qu’éprouv; le piston a pour valeur

bad
. BT

donc enfin

Lo 3§ - mde bad )
(T )

formule bien dxﬁ'ereme de la précedente.
Je ferai encore observer que Rosils , dans ses Nodveaux principes d’art:llem,
a commis Ja méme inadvertance,

~
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En effet , la quantité de mouvement que recoit le houlet ne
dépend guére , du moins dans les picces de peu de longueur, que
de ce qui se passe dans les premiers instans de Pinflammation ;
celle que regoit le canon dépend , au contraire, des circonstances
de la durée totale de l'explosion., Or, il est aisé, d’apres cela,
d’imaginer deux lois de développement des gaz dont 'une soit telle
que le boulet n’obtienne qu'une trés-petite quantité de mouvement,
pendant que le canon en recevra une trés-grande, tandis que , suivant
I'antre, le boulet acquerra une grande vitesse, tandis que la quan-
tité de mouvement du canoa, quoique toujours supéricure i celle
du boulet, soit cependant bien moindre que dans l'autre cas.

Ainsi, en général , les poudres qui donnent les plus grands re-

culs diff¢rent de nature de celles qui donnent les plus grandes
portécs. :

Au reste, ce n’est pas toujours la méme poudre qui donne la
plus grande portée ou le plus grand recul.

En effet, c’est un fait bien reconnu quela loi de I'inflammation
varie , en général, non seulement avec I'espéce de poudre, mais
encore avec la masse sar laquelle on opére. On congoit donc que
la poudre qui, sous une charge donnée , produit la plus grande
portée ou le plus grand recul, peut fort bien ne pas conserver cet
avantage , lorsque le poids de la charge viendra a varicr.

Les obstacles que les gaz rencontrent, en cherchant 3 se dé-
gager , influent aussi singuliérement sur la manitre dont ils se
forment et le degré d'é¢lasticité qu’ils acqui¢rent. Le projectile s'oppose
d’autant plus 4 leur développement que I'angle sous lequel on tire
est plus considérable. Ainsi, la poudre qui donne la plus grande
pottée peut, toutes choses égales dailleurs, varier avec l'angle de
projection.

La grandeur du vent , la position de la lumiére , le degré
d’échauffement de la pitce , etc., sont encore autant de circons-
tances qui influent sur la loi de développement des gaz.
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D’aprés cela » On congoit aisément que les effets des poudres
doivent varier avec l'espéce des bouches a feu.

Il résulte de tout ce qui précéde que la méme poudre qui,
dans de certaines circonstances , proauit de trés-grands effets , peut,
dans des circonstances différentes , n’en produire que de trés-faibles. (*)

Et, comme on juge de la force de la poudre par les effets
qu'elle produit, on voit que la méme poudre peutse montrer forte
dans un cas et faible dans un autre. Ainsi, par exemple, on a vu
que la méme poudre pourrait en méme temps donner un grand
recul et une petite portée. Si donc l'ona seulement égard a cette
portée, la poudre sera réputée faible, tandis que si, am con-

traire, on ne considére uniquement que le recul, elle sera réputée
forten i i

s

Par conséquent la méme poudre n'est pas également propre %
Produire tous les effets possibles.

Les épreuves qu'on fait subir aux poudres se réduisent ordinai-
rement & essayer leur effet ‘dans un cas particalier. Celle qui pro-

duit leffet le plus considérable est réputée supérieure a toutes
les autres. :

Mais la supériorité de cette poudre n’est constatée que dans le
cas particulier ol elle a été essayée; et il est trés—possible qu'elle
se montre, -dans d’antres circonstances, fort inférieure a celles sur
lesquelles on .Jui aura. donné la préférence.

. De 1A résulte que. la méme poudre peut se montrer trés-faible
dans. une éprouvette et trés-forte dans ‘une autre.

On peut diviser les éprouvettes ‘en deux sortes principales; dans

Jes unes on mesure soit la quantité’ de mouvement imprimée au

Y

(*) Au nombre de ces circonstances, on ne compte point ici celles qui changent
da nature de la poudre , comme les'. variations hygrométriques. La poudre est

supposée toujours dans le méme état. La quannte employée ¢t les effets a
‘produire vanen: seuls,

i

.

projectile
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projectile soit la distance i laquelle il est porté : dans les autres
on observe le recul du canon qui renferme la poudre.

Le mortier-éprouvette , dont on se sert en France, appartient
la premiére classe : I'éprouvette hydrostatique de M. Reynier appar-
tient 4 la seconde. ( Voyez sa description dans VAdide-mémoire du
général GASSENDI ).

Dans le premier cas , la poudre qui donne la plus grande portde
est réputée la meilleure ; dans le second , c’est celle qui donne
Ie plus grand recul.

Ainsi , de deux poudres dont I'une porte le globe de I'éprou=
vette - morticr 4 230 métres et autre 3 220, la premiére est
regardée comme supdricure ; mais sa supériorité peut trés - bien
n'exister que dans 'éprouvette; et il est possible que, dans d’autres
bouches & feu, la seconde donne une plus grande portée.

L’éprouvette-mortier et I'éprouvette hydrostatique doivent souvent
donner des résultats contradictoires ; la poudre s’y trouve, en
effet, dans des circonstances fort différentes. Dans la premiérey
la charge est de trois onces; elle n’est que de trois grammes seu-
Iement dans la seconde qui, en outre, n’a point de projectile. De-
plus, les effets observés ne sont pas du méme genre,

Toutes ces réflexions se trouvent , au surplus , complétement:
confirmées par l'expérience.

Toulouse , le 27 décembre 1822..

ZTom. XIIL 36
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GEOMETRIE TRANSCENDANTE.

Solution dun probléme de géomélrie , dependant des
équations aux différences mélées ;

Par M. VErNIER , professeur de mathématiques au collége
royal de Caen, ancien éleve de 'école normale.

f

PRoBIEME. Trower 1o courbe plane sur laquelle un point
lumincuz , parvenant d'un point donné de son plar , dans quel-
que direclion que ce soit , aprds avoir subi deuz réflezions , retourne
au point méme de départ? (¥)
Solution. Soient O le point domé , P, P/ les points de la

courbe ou les deux réflexions consécutives doivent avoir lieu; il
fandra donc que , quelle que puisse étre la direction primitive
OM, en menant les normales PN, P/N/, on ait 4rg. OPN = Ang NOP/
et AngPP/N'=Adng NP/O.

Soit pris le point O pour origine des coordonnées rectangulaires.
Soient z, y les coordonnées du point P et soient 2/, y/ celles du

point P/ ; etsoient enfin désignées par Az , Ay , respectivement, les
différences a/—z , y/—y.

(") Ce probleme, proposé dans les Acta eruditorum ( septembre 1745), a
€té traité pour la premiere fois par Euler ( méme recueil , 1746). M. Biot s%en
est aussi occupé ( Mémoires présentés & llnstitut , tom. 1 ). Voyez le Traité
des différences et des séries de M. Lacroix , pag. 588.

J. D. G,
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Concevons une ellipse qui, ayant les points O et P pour foyers ,

passe par le point P/; par la propnue fondamentale de cette courbe
les coordonnées 2/, y’ satisferont & l'équation

‘/x/z_;i_y/z—}-‘/(x/_x)z_‘_(]/___y)z=Constame.
La différentielle de cette équation, prise en considérant 2/, ¥/ comme-

variables et z, 5 comme constans, et en remplagant respective-
ment 2/—2z et y/—y par Az, Ay est

=0.

Ax + x/ Ay y! } dy’
V Axi-Aya V wligyla { \/Ax2+A.7 + ‘/a/z,_*_y/z da’

Or, par les propriétés connues de Iellipse, les lois de la réflexion
et la nature du probléme, il est aisé de voir qu’au point (2/, y/)
l’e]lipse dont il s’agit doit avoir un élément commun et par con-
séquent une tangenle commune avec la courbe cherchée, de sorte

(e . . . dy’
que , dans I’équation ci-dessus , le coefficient différentiel " de

Pellipse peut étre remplacé par celui de cette courbe. Désignant
donc ce dernier par z/ et substituant, notre équation pourra étre-
mise sous la forme

1/1+< Yy Pa(Z)

ce qui donne, en quarrant , chassant les dénominateurs et transposant:

ot Z SV (=

cette dquation est dvidemment satisfaite en posant:
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mais c’est une valeur introduite par I'élévation au quarré, puisqu’elle
ne satisfait pas & P’équation sous sa premiere forme.:

En faisant le développement , I'équation pecut é&tre mise sous
cette forme

A ’ ’
(L L) r(r L= Yoo

NP - Ay
et donne conséquemment, pour la véritable valeur de  —
. x

Ay p/23'1+2p/x/_y/ ( )
—_—=—, 1
Ax /2 plym=mp 20!

La considération d’une seconde ellipse qui, ayant pour foyers
les points O et P/, passerait par le point P, donnera pareillement,
en désignant par P le coefficient différentiel au point O,

Ay __pytopr—y

Ax T—-2py—p2a ) (2)

Les équations aux différences mélées (1, 2) ne paraissent faci-
lement intégrales que dans le cas od le point O est infiniment éloi-
gné ; cest-a-dire , dans le cas ou les rayons PO et P’O sont pa-

ralleles. Alors z et 2/ sont respectivement infinis par rapport a y
et y/, ce qui réduit les équations (1, 2) aux suivantes

Ay 2p \ Ay 2p’
Ax — l—pl 4 (3) -X; = X—R/l ’. (4)
ce qui donne
2p 2

—

1....p: I..pll .

d'ol résultent ces deux valeurs



MELEES.

265
I
rp=p ., -

dans le cas olion ap=p’; c’est-d-dire, dans le cas ol les tangentes
a la courbe en P ¢t P/ sont paralleles. Soit y=f(z) d’ou

Ay=(la+Azx)—fz) ,

et soit f/(2) la dérivée de y ou f(z), de maniére qu'on ait p=={/(x) ¢
nos équations seront alors
[ Ax)=(x)

2f/(x)
Ax

= y [N@)=f/(z-} .
T (2)=f(a-}Ax)

La premicre revient &

~

fi(x).A
Fa4-Az)—[(z)= f_—_(—fzx—)’]i ; ©)

en la différentiant, la différentielle de son premier membre sera
f(x4Az) 14-d.Az)—f/ )

eny mettant pour f/(z-Ax) sa valeur f/(#), donnée par la seconde

équation, cette différentielle se réduira a f/(z).1.Az ; de sorte qu'on
aura

2f(x).Ax
7 =d., —
(z).dAz=d. T

Cette équation différenticlle entre f/(z) et Az s’intégre facile-

ment et donne, comme on pecut le vérifier par la différentiation ,
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1—[/(x)]*

A.t::C.-—E/(-;)]—; .

en mettant cette valeur dans Péquation (5), elle devient

f{x-{-c:";" }.—‘— =-:;—(,:- , ()

o} , pour plus de simplicité , nous avons mis y et y/ pour f(z):
et f/(z).

Posons z=¢(z), ¢ étant une fonction de la variable indépen~
dante z de telle forme qu’on ait

a4+C. 2L =o(zt1) (B)
Posons encore y=f(z)=f[¢(z)]="¥(z); puisque y'= —3—3-;-_,‘ nous:
d.d(2)

aurons aussi y/= ; au moyen. de quoi les équations (A et B).

d.o(2).
deviendront , en n'écrivant, pour plus de simplicité, que les ca-
ractéristiques des fonctions ,

d

Yyt =2C ﬁ% ; %)
-de N3

@ Q== C(W -C. (B)

Cela posé , L'équation [/(z)=F{"(2-4}-Az) prouve que :-;ne change-

pas, lorsque z se change en #-+Az, ce qui prouve que % ;1&

doit pas changer non plus , lorsque z devient z-41. Donc i

dy
est égal A une fonction arbitraire g, qui ne change. pas., lorsque

z devient 21 ; de sorte quon a
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yo~¥=2Cg ; ¢—o=Cg—C ,
d’ott 'on tire

v=2aCgz+m , ¢=C(g*~1):+4n,

g, m, n étant des fonctions arbitraires de z dont la différence

doit &tre nulle, mais qui ne sent pas indépendantes entre elles;
do

car, comme on a supposé g= i’ il faut qu’on ait

-

_ Cgr—c4-2Cgzg'4-n'
- 2Czg/~2Cg~-m/ ’

g’, m', n’ éiant les dérivées respectives de g, m, n, prises par
rapport 4 z. Cectte équation de condition se réduit a

Cg*+m/g+(C—~n’)=o0,
d’ob

/e AT

&= 2G

et les valeurs de g et ¥ , ¢’est-a-dire de & et y seront , en conséquence
— z
&= (—m'~}\/ mig-Crl —},C3) - c —Cz+4-n;

y=(—m'+y/ m>3iC=})e+m

Passons au second des deux cas pour lesquels on peut facile~

ment intégrer les équations du probléme, c’est-d-dire au cas ou
Yon a

Ay __ 2p | !

a5 1= ? p'——Pf )
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et oll, par conséquent, les tangentes en (z, y) et (#/, y/) sont
. perpendiculaires l'une. 3 lautre.

Posons encore

=fz) e p=f(a);

nos deux équations deviendront

I

flet-Ax)=—f(x) —_. 2f’(x) .
o P(x4axy ~

Ax T x=[f(a)) ]

f/(x)i—

Posons ensuite #=¢{z) , ¢ étant une fonction de la variable in~
dépendante z de telle forme qu'on ait

‘ 2-+Ax=9(z-}1) :
Posons enfin y=[(x)=f[¢(z)] ="(z); nous aurons , comme ci-dessus,.
dd,
f/(z)= % , fa4Az)= ——4—/—

au moyen de quoi nos deux équations deviendront

) _2dfide. & x
=T
. “do:

.. d¥ s . s
Soit :1% =u;la deuxiéme équation deviendra zu,=—1, et pourra.
sintégrer. En effet, remplagant », par u--Au, elle deviendra

\ ' .
wtulu=e=1, d’oll ut+Au=m1 = , et par suite

oy Aus=y—m =
u

Or, la différence du second membre est nulle ; car, si z se change

oo x : ) r
en z+1, il devient — ——u,, qui est la méme chose que —— 4w ,.
z ) u

Euisq_ue I'équation zz,=-——» donne-
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[7==8 ] et — o— =”t

5
7 u

on a donc
2u4-Au=g ,
g étant une fonction de z dont la différence est nulle; d'ot 1'on
tire, en intégrant, par la méthode connue,
¢
U= —— —5’+\‘1)?\/1+ 3.
Revenant ensuite a l’equauon

2d+, dcp
¢z"“\,b"'(¢( ¢) d\P’ dya H
elle pourra étre mise sous la forme

‘l’l“"'ﬁb d’&l/

) dy ,
puis donc quon a —d—% =u, eclle deviendra

0, —p== \Lx—\l/ I - "”l""‘\p

donc
o= V1
2 ?

k étant une fonction arbitraire de z dont la différence est nulle:
Il reste donc a obtenir une seconde intégrale. Pour cela, nous.
donnerons & celle que nous venons d’obtenir la forme suivante

2 2k
V=—— o —
g L g

dou
d-»l/ 2g/ 2 2kg! 2k
Prome == P — -
dz g 8 8 8

)Y

mais on a, comme nous l'avons vu tout a Iheure,

d«P
=g+(—1)'y i+g ,
d’'ou

Tom. XIII, 37
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d¥ de R
o = leH=DWVETE s

ay
égalant donc ces deux valeurs de — , on aura

R 2 2g’ 2kg! 2k
gV TR S — e

2 P — 0.
g g g
Posons
2g’
B___ g’ _ —g’
st (=Y gt~ (s itgtag’
: &
2kg! a2k! )
V= 8? _ ? okgl=—=agh

R BT (—1)ig"V itg +28’
+ — g a +3.
g+( J \/'+5 p

alors la valeur de ¢ dépendra de ’équation linéaire du premier ordre

¢+Ro+V=o0;
d’ou on tirera , en inlégrant,
—fRd JRd
— My SR ey

, o= ,
C étant une constante arbitraire.Cette équation jointe a I'équation

“P=-'§' Y4k,

donnera , pour résoudre le probléme , deux équations en ¢, ¥, z
ou en z, y, z, renfermant deux fonctions arbitraires 4 différence
nulle, et en outre une constante arbitraire,

Par la difficulté d’intégrer les équations du probléme , dans les
deux cas particuliers que nous venons de traiter , et par la com-
plication des résultats, on peut juger des obstacles que présenterait
I'intégration dans le cas général. Toutefois nous osons croire que
© D'essai qui précéde sera recu avec quelque indulgence par les géo-

métres qui savent combien est peu avancée encere la théorie des
équations aux différences mélées.
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GEOMETRIE ELEMENTAIRE.

Démonstration d'un théoréme de gcomelrie ;

v v . . [ . .
Par M. Amepte MorgL, capitaine dartillerie.

———— A - —

THEOBEME. L’aire de la projection dune figure plane quel-
conque sur un plan , situé comme on le voudra par rapport au
sien , est égale @ laire de cette figure méme, muliiplide par le
cosinus tabulaire de son inclinaison sur le plan de projection.

Démonstration. Toute fgure plane étant polygone rectiligne ou
limite de polygone 1ectiligne ; la proposition sera vraie pour toute
figure plane , sielle est vraie pour un polygone rectiligne quelconque.

Imaginons le polygone décomposé en triangles par des diagonales ;
les projections de ces triangles seront les triangles résultant de la
décomposition de la projection du polygone par des diagonales ,
projections de celles du polygone lui-méme’; et, comme les incli-
naisous des plans de ces triangles les uns sur les autres ne seront
autre chose que linclinaison du plan du polygone sur celui de sa
projection , il est clair que la proposition sera vraie, si elle I'est
pour chaque triangle, comparé a sa projection ; d’ou l'on voit que
tout se réduit & prouver que la projection de l'aire d’un triangle
sur un plan quelconque, différent du sien est égale a I'aire de ce
triangle , multiplide par le cosinus tabulaire de l'inclinaison de son
plan sur celui de sa projection.

Et comme, excepté le cas ol les deux plans sont paralleles ;
pour lequel la proposition est évidente, les deux plans forment
toujours un angle di¢dre, tont se réduit & démontrer que l'aire de
la projection sur Pune des faces d’un angle diddre d'un triangle
tracé sur P'autre face est égale & Iaire de ce dernier, multipliée
_par le cosinus tabulaire de l'angle- diédre dont il s’agit.
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Si, par 'un des sommets du triangle, on conduit un plan parall¢le
au plan de projection, sa projection sur ce plan sera égale a sa
projection sur l'autre ; de sorte que, si la proposition est yraie pour
celle-1a elle le sera aussi pour celle - ci.

Mais le second plan formera avec celui du triangle un angle
di¢dre égal au premier, tel que 'un des sommets de ce triangle
se trouvera sur son aréle; il suffit donc de démontrer le théoréme
pour un triangle placé dans de telles circonstances.

Ou bien un des c6tés de l'angle qui a son sommet sur laréte
de Pangle diedre se confondra avec cette aréte, ou bien ils ne se
confondront ni I'un ni I'autre avec elle. Dans ce dernier cas, 3 moins
que le cdété opposé au sommet dont il s'agit ne soit paralléle a
cette aréte; en le prolongeant, §’il est nécessaire, jusqu'a ee qu'il
la rencontre, notre triangle se trouvera étre la somme ou la diffé-
rence de deux autres, dans lesquels un des c6tés se confondra avec
Varéte dc l'angle di¢dre; de sorte que, si la proposition est_yraie
pour de tels riangles, elle le sera aussi pour le nétre.

Dans le cas particulier ou le c6té opposé & I'angle dont le som-
met est sur l'aréte se trouve parallele a cette aréte, en conduisant
par ce c6té un plan paralléle au plan de projection, la projection
sur ce mouveau plan sera la méme que sur le premier; il formera
avec le plan du triangle un nouvel angle diédre égal au premier,
et notre triangle se trouvera encore avoir un dec ses cOtés sur
I'aréte de cet angle diddre.

Ainsi, dans tousles cas,la question se réduit a démontrer que, lors-
qu'un triangle , situé sur l'une des faces d’un angle di¢dre a de
plus sa base située sur son aréte, l’aire de sa projection sur l'autre
face est égale & laire du triangle , multipliée par le cosinus ta-
bulaire de l'angle di¢dre dont il s’agit,

Mais le triangle et sa projection ayant alors méme base , lears aires
sont proportionnclles & leurs hauteurs, dont I'angle mesure I'angle di¢-
dre dont il s’agit, puisqu’elles sont des perpendiculaires 4 son aréte ,
menées dans ses faces par un méme point de cette aréte. D’un autre
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<6té, la hauteur du triangle se trouve étre I'hypothénuse d’un triangle
rectangle dont un des cotés de I'angle droit est la hauteur de sa
projection, et dans lequel I'angle de ces deux c6tés est la mesure
de langle diédre ; la question est donc ramende a savoir si, dans
un triangle rectangle, un des ¢dtés de l'angle droit est égal & son
hypothénuse , multipliée par le cosinus tabulaire de I'angle quelle
fait avec lui, ce qui est une conséquence immédiate de la définition
wéme du cosinus tabulaire d’un angle: notre théoréme se trouve
donc ainsi complétement démontré,

Corollaires. 1. L’aire de la projection sur la base d’une pyranﬁde
réguliére d’une figure tracée arbitrairement sur la surface convexe,
et pouvant embrasser tant de ces faces latérales qu’on voudra,
est égale a l'aire de cette figure méme, multiplide par le cosinus
tabulaire de l'inclinaison commune des faces latérales de la pyramide
sur le plan de sa base.

II. Laire de la projection sur la base d’'un céne droit d’une
figure tracée arbitraircment sur la surface du cone est égale
a laire méme de cette figure , multipliée par le sinus tabulaire
de l'angle générateur du cone.

III. Plus généralement, laire de la projection sur un plan fixe
d’une figure tracée arbitrairement sur la surface développable en-
veloppe de I’espace parcouru par un plan mobile qui fait un angle
constant avec le plan fixe , est égale a l'aire de cette figure méme
multipliée par le cosinus tabulaire de cet angle constant.

La Feére, 18 octobre 1822:
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ANALISE TRANSCENDANTE.

Extension et démonstration nouvelle du théoréme de.
M. de StammviLLE, présentée ¢ la page 229 du I1X.*
volume du présent recueil ;

Par M. GERGONNE.

L’IMPORTANCE da beau théoréme démontré par M. de Stainville &
la page 229 du IX.® volume de ce rccueil peut en faire désirer
une démonstration sinon plus simple , du moins qui exige assez
peu d’écriture pour pouvoir non seulement étre introduite daas.
les traitds élémentaires, mais encore étre présentée dans une lecon
publique , sur un tableau d’une médiocre étendue. On peut remarquer
en effet que, puisque I'un des principaux avantages de la langue
algébrique sur la langue vulgairc consiste dans la bri¢veté de ses
_notations, une démonstration dcrite dans cette langue doit étre
d’aatant plus claire et plus facile & suivre qu’elle est exprimée en
termes plus concis.

En nous occupant des moyens de parvenir & ce bat, relativement
an théortme dont il s’agit, nous sommes tombés sur un théoréme
un peu plus général qui se démontre avec la plus grande facilité ,
ct duquel Pautre se dédnit ensuite immédiatement. C'est & exposer
Je résultat de nos recherches sur ce sujet que nous destinons. le
présent a ticle.

Soit une série
: x x a3 4
F(a)=fo(a}tli(@). 5 1. (). — +f; (). ':9”!‘+f4(a>‘—:f +ee ()

dans laquelle nous supposons le premier tezme f, (@) une fonction
tout-a-fait arbitraire de 2 et de tant d’autres quantités différentes
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de £ qu'on voudra, et ol tous les autres coefficiens se trouvent
définis par I'équation

f.(a)=af,_,(a+k) , (@)
de telle sorte qu'en changeant, dans le coefficient de I'an quelconque
de ses termes @ en atk, et multipliant ensuite le résuliat par o,
on obtient le coefficient du terme qui suit immédiatement.

Si, dans cette série, vous changeons simplement @ en & nous
aurons cette autre scrie

x 2 x3 x4
FO=LOHLO): 5 +00. 5 4,05 40,0). 5+ ()

dans laquelle f, (5) ne différera de la fonction arbitraire f,(a) quen ce
que @y sera changé en 4, ct ol les cocfliciens des autres termes
se trouveront définis par Uéquation

£a(B)=0f,_, b4+E) , (4)
de sorte qu'en changeant, dans le coefficient de I’un quelconque
des termes, b en b+k et multipliant ensuite le résultat par 4, on
obtiendra le coefficient du terme qui suit-immédiatement.

Si l'on fait le produit de ces deux séries, on pourra I'ordonner

: x x2 a3 . .
Par Tapport & =, —, Zr e, O les cocfliciens de ses diffé-

rens termes seront des fonctions de @ et &, de sorte qu'on pourra écrire
. x2 a3 .
F(a)'F(é) =‘Pu(a P b)+¢,(a ’ 5) 'lf,' +2.(a, 5) o -+ 3 (a; 5) ET +.03 (3)
série dans laquelle on aura évidemment
eo(a, b)="£,(a).f5(0). (6)

Or ce que nous nous proposons de démontrer, c’est que les coefliciens
de tous les autres termes de cette série seront définis par I'équation

¢u(a> b)':g‘Pu—x(a"l'k; b)+5¢n_,(d , 0tk), (7)

c’est-a~dire, en d’autres termes, que, si dans le coefficient de 1'un
quelconque des termes, on change d’abord e en 24/ en multipliant
le résultat par 4, puis & en 5+% en multipliant le résultat par 4,
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la somme des deux produits sera le coefficient du terme qui suivra
immédiatement.

Pour y parvenir, faisons d’abord les premiers termes du produit
effectifs de nos deux séries ; nous trouverons ainsi

F(a).F(8)=fy(a) fu(BIHE(a)fa(8) | = +Fu(@)a(B) | 57 Ao (8)

Fh@)6G)|  A-2f(a)0)

- +1,(a)£,(8) |
il est facile de s’assurer que la loi annoncée i lieu dans ces premiers.

termes; en effet, si nous exécutons les opérations quelle prescrit
sur son premier terme, nous aurons. pour résultat

af(a4-k) £,(8)4-08(a).f(0+E) ;.
mais , par les définitions (2 et 4), on a
af (a+t-ky=f.(a), bE(04-k)=1.(8);
donc. cette quantité revient &
fi(a)fo(5) () f:(B)
qui est bien, en effet, le coefficient du second terme.
Si Yon fait les mémes opérations sur ce coefficient, le résultat sera.
AL @ISy B a I (8) L (a)E (b4 By o) (B 1)1 5
mais , par les définitions (2 et 4)
af,’a4-k)=f,(a) ,. o (b+-E)=f,() ,.
of o(a+1)=",(a) , by t-ly=6,(6) 5
substituant donc et réduisant, il viendra
f.(a)fo(b)t25(a) . (541, (a)f,(2),
qui est bien, en effet, le- coefficient du troisiéme terme,
Nous étant ainsi assurés de la vérité de cette loi pour les premiers.
termes du développement du produit de nos deux séries, il ne nous
reste plus qu'a démontrer qu’elle a lieu pour deux termes consécutifs

; xn= an .
quelconques. Prenons ceux qui sont affectds de ——et — ; il
(n=1)! n!

gst aisé de voir que ces deux termes sont
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xn—1

fue 1 (2)£:(2)

=1 )!

Ty T

+ —';'— £, a5, (8)

Nem—2

fn— 3 (d). f2 (5)

-----------

77, ven 2,

V7

-+ If‘l(g) Fue2(8)

i

fo(@) e s (9)
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+ Ea) fo(B] = s
-+ = fuml0) (D)

+ = Le) 0L0)
T .

R KON ARG

+ S L@

+ ROFN)

opérant sur le premier de ces denx termes comme nous avons fait ci-

dessus, nous aurons , pour résultat

+

foea(at+k).05(8))
i
1 'Fu-—z/.a_*-k)'fl(é) +
b A § N2 nNe=—1
- " S la-E0 0,00, .
e e e e e e e e e e e ), +b<+ -
7 mana | Tl Ne-=1
PN O DY IS
A §
- S la+-B)f, (D) -+
fo(a+R)0.,(0)) |+
Tom. XIII.

fm s (@) Fo (B4-E)

a0 F, (5

bz

T by (@£, ()

----------

Ttmend
= (@) f, (bR

n=—1
— F(a). fun, (344)

fOCIZ}’fn—- 1 (5 + k) /
38
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mais, en vertu de nos définitions (= et 4), on a

af,(a+h)=f(a) ,
af_(a+-k)=F,-.(a) »
afﬂ__;(d—l-'k) = fn-—z(a> ’

afz(”+]f)=f;<") ’

af,‘a+k)=fl, (a) »
aof"at-k)=1,(a) ,

substituant donc , il viendra

Mo+ R)=1.(2) ;5

BE (bR =f,(2) ,
B, (b+E)=f,(2) ,
U (bt EYy=F,_5(0) ,
b n bl =50y (8)
By (Bt E)=Fpny(B) 5

' £,(a)£o(5)) fom(a)£,08))
TR a0 (D) + 201, (a) £ (0)
+ @0 | TR L, @40
TS SO "'°""'>+&+' e e e e ),
+ IR @0 [+ T T L) s )
+ 1 (@) f ) += @)
< +f3(0).fn.. ;(5) J +f0(a) fn(b) J
observant alors que '
w1 n
1- -,
x 1
7l o[ n=—1 ) ne—3y - n=——1
- 1 b - a2
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Reel D=2 + N1 nN==2 n==3 N—n
- - . = —
1 2 1 2 3 3 !
- . . . . . - - . . . - . . -

et réduisant, il viendra ,
f,(a,£,(0) ,

! _iz_ f:x-x(”)‘fi({)> H
I
L @) (),
I 2

o e,
) "3:'1‘ fz(d) fn-llé) 9

-

+ = £(a) e () 4

+f(a).£02) ,
x’l

qui est précisément le coefficient de — ; notre loi est donc générale.

Il scra donc facile, dans tous les cas , de déterminer le produit
de nos deux séries, sans exdcuter la multiplication, puisqu’on con-
nait le premier terme f,/@).f,(4) de ce produit, et qu'on sait en
déduire un terme quelconque de celui qui le précéde immédiatement.

Supposons ,” par exemple, que les deux fonctlions semblables
fo(a), fo(?) soient l'une et I'antre égales & 'unité; d’apres les dé-
finitions (2 et 4), et en observant que 1 reste toujours v, soit
quon change a en a4k ou b en b4k, il est clair que nos deux

séries deviendront
x3

F(a):x—}—afl——l-a:a—l-ﬁ){—:- +alat+h)(atak) 5 4 s (9)

F ()= 145 2 b (A-h) = HU0H)G421) e, (1),
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puis donc qu’alors le premier terme de leur produit est 1, on aura ;

suivant la définition (7) que nous avons démontrée étre une, suite
nécessaire des définitions (2 et 4),

F@)F@)= 1+(a+8) T HatDlati+h) 5

- (a-B)a-t-b+ Y atb42k) §+ .

on voit que ces premicrs termes ne sont autre chose que les termes
correspondans de l'une on l'autre des decux séries multiplides, dans
lesquels on aurait changé @ ou & en a-4. Or il est aisé de voir
que cette loi s’étendra & toute la série, quelque loin qu’on la pro-

xt—1

longe ; car, si I'on suppose que le cocflicient de soit sou=

=1

mis a la loi dont il sagit, ce coefficient devra étre
(a+0)a+b4-E)(a4-b+42k) . [ad-b+(n—2)k] 5

. xﬂ "
celui de = devra donc étre (7)

a(a4-045) (a-fb42k) . [atbtn=2)k) {0 (a1 (04 2k) o [ad-b4-(n—2)E] 5.
c'est-a~dire

(a+-8)(a+bAE)(at+bd2k).wn[a+b(n—1)A] ,

c’est-d-dire, tel que l'exige cette loi, qui se trouve ainsi générale-
ment démontrée : on aura donc, d'aprés cela,

Fa).F(&)=F(a-0);

c'est-a-dire , que le produit des deux séries (g et 10) est une série
qui ne différe de I'une ou de l'antre qu’en ce que @ ou & sy

trouve changd en a5 ; et c’est précisément en cela que consiste
le théoréme de M. de Stainville. -

Nous renvoyons & I'endroit cité ainsi qu'ad la page 261 du méme

volume , pour les nombreuses et importantes conséquences du méme
thioréme.
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ARITHMETIQUE.

Note sur la mulliplication et la division numériques
Par M. Querrer , chef d'institution & St-Malo.

T e T e e s e s e T

LA multiplication n’cst, comme on sait, que le résultat d’une
addition dans lagnelle le muliiplicande doit cntrer autant de fois
qu'il y a d’unités dans le multiplicateur,

B Mais en exdcutant la multiplication de cette manic¢re, on serait
souvent entrainé dans des calculs non moios rebutans par Pespace
quils occuperaient que par leur longueur; puisque, pour en obtenir
le résultat, il faudrait faire la somme d'autant de nombres qu'ily
aurait d'unités dans le multiplicatcur,

Mais on peut aisément s’y prendre de maniére qu'on n'ait qu’autant
de nombres 4 ajouter qu’il y a d'unités dans la somme des chiffres
du muliiplicateur. '

Soit, par exewple, le nombre 7543 & multiplier par 257 ; on opérera
comme on le voit ici

754300
754300
75430
75430
75430
75430
75430
7543
7543
7543
7543
7543
7543
=543
———————

Produit. . 1938551
Tom. XIII, n.° IX, 1.5 mars 1823, 39
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On voit que le premicer des nombres ajoutés est le multiplicande
pris cent fois, et que ce nombre est repété deux fois ; chacun des
cing qui suivent est ¢gal 4 dix fois le muliiplicande; enfin chacun
des sept dernicrs cst ce multiplicande lui-méme ; d'our I'on voit que
le multiplicande entrc 257 fois dans la somme, qui est conséquemment
le résultat cherché. ‘

Si l'on voulait sc permettre de combiner ensemble I'addition et
la soustration, on pourrait toujours s'arranger de maniére & n’avoir
pas & opérer sur une plus grande muliitude des nombres que le
quintuple du nombre des chiffres du ‘multiplicateur.

Par exemple, dans le multiplicateur 257, le dernier chiffre 7
est la méme chose que 10—3;d’00 il résulic que ce multiplicateur
est la méme chose que 260—3. Mais les six dixaines pouvant 2
leur tour éire remplacées par 100—40; ce muliiplicateur reviendra
encore & 300—40—3, cc qui conduira A I'opération suivante

754300 75430

754300 75430

754300 75430

—_ 75430
2262900 =

32434 7343

24949 2543

Produit . 1938551 7543

[ e ——rs

324349

On voit que nous avons pris le multiplicande d’une part trois
q p P

cent fois et de lautre quurante-trois fois ; en retranchant done

la seconde somme de la premitre, le reste doit contenir le mul-
tiplicande pris un nombre de fois exprimd par 300—43 c'est-i-dire
257 fois; ce reste doit donc étre le produit cherché,

En considérant’opération sous sa premiére forme , on voit claire-
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ment ce que les procédés ordinaires ajoutent au nétre ; ils font
trouver immdédiatement les sommes particlles de nombres égaux qui
doivent entrer dans le produit total,

Bien quela division puisse, en général, avoir deux objets essentielle-
ment distincts, il est connu que, lorsqu’on I'exécute sur des nombres,
il est permis, dans la—pratique, de la considérer comme ayant cons-
tamment pour but de déterminer combien de fois le dividende
contient le diviseur.

Lec procédé qui s'offre donc le premier 3 la pensée pour exécuter
cette opération, est de retrancher le diviseur du dividende autant
de fois qu'on le pourra et de compter les soustractions dont le
nombre sera le quotient cherché.

Mais cctie mani¢re de procéder serait également rebutante et
par salongueur et par le terrain qu’elle occuperait, puisqu’clle cxigerait
autant de soustractions que le quotient, qui pourrait souvent étre
fort grand, devrait avoir d'unités.

Mais on pecut s’y prendre de maniére d n’avoir A faire qu’autant
de soustrations sculement qu'il doit y avoir d'unités dans la somme
des chiffres du quotient; et il ne s’agit pour cela que de retrancher
successivement du dividende les plus grands des multiples du
diviscur qu'on sait déterminer sans calcul, c’est-a-dire, le diviseur
suivi du plus grand nombre possible de zéros.

Qu’'on ait par exemple a diviser 1938551 par 7543, on opérera

comme on le voit ici
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1938551 79543
734300 —_—

297

1184251
754300
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On voit que cent fois le diviseur a ¢1é retranché deux fois, que
dix fois le diviseur a été retranché cing fois, et quenfin ce diviseur
lui-méme a été reiranché sept fois; nous avons donc retranché
du dividende 255 fois le diviseur ; puis donc que la derniére soustraction
n'a point lsissé de reste , il s'ensuit que 257 est exactement le
quoticnt.
On voit aisément que ce procédé est susceptible de quelques
simplific ions: quil est imuile d'¢éerire des zcros 4 la droite des

multiples du divicenr gqo’on veut retrancher du dividende , pourva

quion lcur lasse occuper un rang convenalile; et quiau leu d'derire
a la diote de hoque veste les ehiffres de la droite du disidende
qui D'anront pas eie carployés dans les soustractions , on peut“ne
fes descendre qud mesure qu'ils seront néeessaires pour rendre ces
opérations powsibles, en ayantsoin, toutes les fois que abaissement

d’'un scul de ces chiffies ne sufliva pas, d’Cerire un zéro au quotient ,

avant dababiser e soivant,

Si Fan pouvait peévoir & Pavance combien de fois on pourra
retrancher du dividend: un méwe muliiple da diviseur, on pourrait
en retraachier do suite ce méme multiple pris le méme nombre de fois,
Or c¢’cst une chose que Uon peut toujours découvrir par une Opé:'atidn
& part qui consistera & ajouter ce multiple continuellement & lui-
méme autant de fois qu'on le pourra sans excéder soit le dividende ,
si Popralion commence, soit le reste précédemment obtenu si clle
est déja commencée. De cetle maniére on n'aura a faire gu’antant
de soustractions que le quotient deit avoir de chiffres, et toutes les
sutres opcrations scront de simples additions.

Tout 'avantage du procédé ordinaire sur celui-ci est de faire
trouver plus promptement les sommes de ces diverses additions.

Il nous parait qu'en présentant les méthodes de multiplication et
de division numériques & peu prés comme nous venons de le faire,
le mdécanisme en deviendrait intelligible pour les jeuncs-gens méme

le moins pourvus d'intelligence , et que sur<tout U'esprit qui a présidé
N 2
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2 l'invention de ces procédés scrait bicn mis a découvert, On ne
denanderait plus alors, en particulier, pourquoi la division commence

par la gauche.

ALGEBRE ELEMENTAIRE.

Recherche du nombre des termes d'un polynome complet ,
dun degré quelconque, compos: dun nombre de
lettres aussi quelconque;

Par M. GErRGONNE.

e s W s o e T s e s e 8

J‘AI donné, & la page 115 du 1V® volume de ce recueil , d'aprés
M. G. Fornier, un procédé fort simple, pour parvenir a la for-
mule générale qui donne le nombre des termes d’aun pelynome com-
plet d’un degré quelconque, composé d’un no:ubre de lettres aussi
quelcongue. En revenant de ncuveau sur ce sujet, je me suis
apergu que la recherche dont il sagit pouvait étre présentée sous
une forme plus réguliere , ct par consénluentj)lus simple, et c’est
A3 la reproduire sous cctie nouvelle forme que je destine lariicle
que Pon va lire,

Soit un polynome complet du m.™® degré composé des letires
a, b, ¢, ..., au nombre de ». En svpposant tous les cocfliciens
positif et égaux a l'unité, il devra d'abord renfermer le terme 1.
Soient ensuite P, l’ensemble de ses termes d’une scule di-
mension , P, lensemble de scs termes de deux dimensions;
et ainsi ce suite , P; l’cnsemble de ses termes de % dimensions,
P,.. Uensemble de scs termes de m-—1 dimensions , et enfin
P, lensemble de ses termes de m dimensions , ce polynome sera
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P, 4Po Aot Pitot P+Pote1 )

dont il s'agit d’assigner le nombre des termer,

Ce nombre ¢tant évidemment déterminé, dés que m et n sont
connus , ne saurait étre qu'une fonction de ces deux nombres ;
fonction encore inconnue, que nous pouvons disigner par ¢m,n)

Tout sc reduit donc A assigner la forme-de la fonction désignée par o,
Soicnt multipliés

L'ensemble des termes P,  par a®+44°+4-c%+4-....ou n;

L'ensemble des termes Pp., par @ 40 4¢ F...,

- N
. . L] [ . . L - . L4 L L] . . . . . 9

P e e s e ey

L’ensemble des termes P, par gm=2-jm=2qcm=24. .. |
L’cnsemble des termes P, par g@=t}.hm=t4-cm=td ..,

Et enfin le terme I par @™ 57 ™ s

et soit prise, sans faire de réductions,la somme des différens pro.
duits, que nous désignerons par §.
Comme chacun des termes du polynome (1) aura éié multiplid
" par un polynome de =z termes , il s'ensuit que § aura n fois
autant de termes que (1), ct qu'ainsi le nombre des termes de §,
avant toutes réductions, sera exprimé par

ne(m , n)s
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De plus, dans chaque muliivlication, le multiplicande et le mul.
tiplicateur étant Lomogénes, et la somme de lenrs dimensions étant
constamment dgale & m, m scra anssi le nombre des dimmensions
des différens produits, et par suire de lzur somme S qui - sera
ainsi un pol.nome homogine de m dimensions , formé avec lesn
lettres ¢, 4,¢, ....

~ Or il est aisé de voir que, non sculement le polynome S re
fermera tous les termes de m dimensions que  lon peut forme
avec les 2 lettres a, b ¢, ooy mais que de plas chacon de ces
termes 8’y troavera répélc’ mAn fois; car soit un de ces termes

ear a
a“d v ...

avee la condition edsdyt.=m, ou iura obienuen mulipliant,
savoir

3y ns

a* par b8.%.., s* par «%¥ .., ¢ par a%B ...,

a®"' par al/"”b"’....,\ LRt par a®b¥..., YT par a“bPe..,,

"s

a® par a®" b cv..., b* par a%bP-c7. ., ¢* par a%lBcrn?

e ssy 2982

e par @*"'0PcY.., b par a%hl e L ¢ par a®5Pcr=?

ses0 g avege

@° par a* JR.¥.., 0° par a*b® c¥..., c° par a“b®c”

100 3 arEe

on 'aura donc obienu un nombre de fois exprimé par

" (¢+1)+(ﬁ+l)+(y+ I )+...=(u+ﬁ +'y+-.‘)+([ 1 +l+.--)=m+ﬂ ’

comtne nous l'avions annoncé.

Ainsi la somme § sera, apres les réductions faites, un polynome
homogéne complet de sm dimensions, formé avee les 7z lettres

a,
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a, 5, ¢, .. et dont tous les termes seront affccies du cocflicient mn ;
de sorte qu'on aura

S=(m-+4n)§,

S/ étant un parcﬂ polynome dans lequel tous les cocfficiens sont
égaux & T'unité. D’odt l'on voit qu'avant les réductions § devait
avoir m-n fois antaht de termes que S

Présentement si, dans 8§/, on fait une des lettres 2,5, ¢, ...}
a , par exemple égale A I'unité, le nombre de ses termes n’en sera
pas changé; mais il deviendra alors évidemment un polynome com-
plet du m™e. degré, formé des n—r lettres &, ¢, &, ..., dontle
nombre des termes devra étre exprimé par o(m, n—1}; dont tel
é1ait aussi-le nombre des termes de 3/ avant d'avoir fait a=r
d'our il suit qu’avant toutecs réductions le nombre des termes de §
devait étre

(m-{-n).0im, n—1).

puis donc que nous venons de trouver, tout a I'heure, que le nom-
bre de ces termes devait é&ire

neom,n),
il s’ensuit qu’on doit avoir
n.o(m, n)=(m-+n).o\m,n—1). (2)

Si l'on considére présentement que cette derniére équation doit
avoir lien quel quc soit le nombre entier z, en observant que,
‘d'aprés la nature de la fonction ¢, on doit avoir ¢(m, )=m-t1,
on pourra déerire cetle suite d'équations

nelm,n )='m-4n )em,n—1),

(n=1)0im, n— 1)A= (m~n—19(m, n—2),
Tom, XIII. 4o
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(nem2).0(m , n—2)=(m-tn—2)9(m , n—3),

3.0(m, 3)=(m+3)9(m , 2) ,
2.0(m , 2)=(m+2)¢m, 1) ,

1.¢(m, 1)='m-+1) ,
L J
en les muliipliant done meMbre 3 membre, supprimant les facteurs

communs dans I'équation résultante et résolvant enfin cette équaf
tion par rapport & ¢(m,n) on aura

m+x m+n m+3 m-}-n ' (m-}-n)! 3
ﬂm n)= 2 3 - ma ()

telle est la formule générale cherchée.
On conclut évidemment de

n-l—t n-l-z 3 min )
#(m, n)= ?(n,,m)._ " ";'_ -e : ; ()

on peut donc choisir, entre ces deux formules, celle qui se com-
pose d’'un moindre nombre de. facteurs. II résulte aussi de Jeur
équivalence gu'il y @ autant de termes dans un pobfnomee complet
du n™¢ degré formé avec m lettres qu'il y en a dans un polynome
complet du m™® degré formé avec n letires. Clest ainsi, par exem-
ple, que ’équation compléte du 3.° degré 2 deux variables et I'é-

quation compléte du 2° ‘degré a trois variables ont également diz
termes,
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Si daus le polynome {1) on suppose a=1, le nombre de "“scs
termes ne changera pas, et sera loujours ¢(m, n); mais alors les
polynomes P, , Pp.., ...y, weeP, 5 P, deviendront des polynomes
complets des degrés marqués par leurs indices respectives formés
des n—1 lettres restantes & ,¢,d, eu..; le nombre des termes de
chacun d’eux pourra donc étre ryeprésenté par @ (m, n—i1),
o(m—1,n—1), .0k, n—=1), wed(2 ,n=1), $(1 , =1 ); de sorte
qu'on doit avoir

o(my m=14¢(1 , n=—1)F-¢(2 , n==1)Fes0e.F-¢(m=1 , n==1)} ¢(m , n—3); (5}
en changeant m cn m—r1, on aura pareillement
¢(m—1,n)=1-4}0(1, n—1)+t¢(2, n—1)twutp(m—1, n—1);
ce qui donne, en retranchant,
" o(m, n)—¢(m—1 , n)=g(m, n=1)
ou en transposant
o(m , n)=g(m , n—1)+9(m—r1, n) ©)

.

formule qui justifie la construction du triangle arithmétique de
Pascal.

La formule (4) donne successivement

1, B=1)= L:-

o(2, p—1)= ot :
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¢3 n_l)_n n4-1 n2

— . —— .

2 3
; . o - - . O
., «_ n nd1 nia2 i .m+n-x .
Pm.n—1,= 1 a2 -3

m ]

substitnant ces valeurs dans I'équation (5) et mettant dans son
premier membre pour ¢m,n) sa valeur (4), on aura

1 I

. n

s

+f.."+' |
1 2 _.n-l-t nd2 nt3 nd-4 m+"£
n nttv nd-2 )l a ‘3 4 w
S B

AR Y
7 nd1 nta m4n—1
T —~

formule utle pour opérer des réductions dans divers xésultau
algebnques.
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QUESTIONS RESOLUES.

Solution du probléme de dynamigue €noncé @ la page
180 du présent volume ;

Par M. Tuomas bt St-Laurest , licutenant-aide - major
du corps royal d’état-major au 7.m¢ régiment d'artillerie

& pied ; et M. Cn. Stuam, de Gentve. (%)

P ROBLEME. Un chien, qui se trouve en un point donné de l'un
des bords d'un canal rectiligne d’une largeur constante, apercevant ,
en un point donné del'autre bord , son maitre qui marche le long
de ce bord, avec une vitesse constante, se jetle @ la nage pour
le joindre. En nageant, il se dirige constamment vers son maiire,
avecun effort tovjours constant ; maisle courant de l'cau, en Ientrai-
nant,le détourne sans cesse, et avec un effort également constant y
de la direction qu'tl veut prendre; on demande , d’aprés ces diverses
circonstances , quelle courbe ce chien décrira sur la surface de
Peau?

Solution. Pour rendre plus facile le rapprochement entre les for-
mules auxquelles nous allons parvenir et celles qui ont é1é obtenues

(*) Nous confondons dans une rédaction commune les deux solutions qui ne
diffecent entre clles que par des nuances tres-légeres, '

J. D, G,
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2 la page 145 du présent volume, nous prendrons pour axes des
y le bord du canal parcouru par le maitre , en supposant qu'il marche
dans le scns des y positives, ct que le canal est a sa droite , on
du coté des z positives , et nous prendrons pour axe des  une
perpendiculaire 4 celui des y que nous laissons d’abord indéterminde,
et dont nous nous réservons de fiser ultéricurement la situation

de manitre a rendre nos résultats les plus simplcs possibles,
Cela posé, soient

1.° g Le nombre d'unités de longuenr que parcourt le maltrei
chaque unité de temps le long de laxa des y.

2.2 % le nombre d'unités dec longugur que le cours de I'ean
ferait parcourir aun chien, i chaque unité de temps, s’il s'y abandon-
nait entiérement, sans faire le moindre effort soit pour accélerer
ou retarder la vitesse qu’il en regoit, soit pour en changer la
direction ; 2 ¢tant d'ailleurs positive ou négative, suivant que I'ean
court dans le sens de la marche du maitre ou cn sens contraire.

3.° Enfin % lc nombre d'unités de longueur que parcourrait a
chaque unité de temps, suivant une direction rectiligne, le chien
nagcant dans une eau stagnante , en faisant sans cesse un effors
égal & celui qu’il emploie 3 poursuivre son maitre.

Soient, au bout d'un temps #, compté d'une époque arbitraire ,
z/ et y/ les coordonndes du chien ,. 3 cet instant son maitre se trouvera
sur l'axe des y, & uve distance de lorigine exprimée par B+4g7,
B éuant unc longueur arbitraire dépendant de I'époque ol le temps

¢ est supposé commencer., Lia droite joignant le chien 3 son maitre
aura alors pour équation

z—at  y—y

x y'=—=B-—gt

d'od il suit que cette droite fera avec les axes des & et des g
des angles dont ‘les cosinus respectifs seront
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il y'—B—gt
V 2l —b—gt? V &l (yi—b—gt)* ’

N

en conséquence, les composantes de la vitesse & du chien suivant
cette droite , dans le sens des x et des y, scront respectivement

Lxt k( y'=B—gt) .
V i (y=b—gt* ’ V &l (y—B—gt)* ’

mais , tandis que la premitre de ces composantes existera seule,
la seconde devra étre augmentée de la vitesse A que le courant
imprime au chien. En considérant donc que la premiére de ces
composantes, d’aprés nos conventions, tend constamment a diminuer
la coordonnée 2/ ; quec la portion 4 de la seconde tend a augmenter
-la coordonnée y/, et que l'autre partic de cette derni¢re est dans
le méme sens qu'clle ou en scns contraire, suivant que B4-g¢ est
plus grand ou plus pelit que 4/ ; nous aurons, par les principes
connus, et cn supprimant les accens désormais inutiles

dx kx . dy 2 k(y—-B—gt)

— T i —_— =] - —————————— 2
de V w:4-(y—bB—gt)* ds V wip(y —B—gL)? ( _)

Telles sont done les équations différentielles du mouvement du chien,
desquelles, par conséquent, nous devrons déduire toutes les circons~
tances de la solution du probléme.

. Pour intégrer ces équations, posons
y—B—gt=zTang.z , 3)
1'angle z étant une nouvelle variable: les équations (2) deviendront ainsi
dx dy . . \
N =kCosz ; - =h=kSinz ; (4)

différentiant ensuite I'équation (3) elle deviendra
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dy . dx d.Tang.z -
== w—g=-— Tang.z+4zx. RAE 2
de g Angea e’ : ©)
. dx dy ,
mettant dans la derniére pour - VW les valcurs donndes par

les équations (4), réduisant ct pcsant, pour abréger, g-—]z:n/t,
on aura

d.Tang.z d.Tang.z dx

—nk=2a. = —_— 6
nk=a 9 xr dt a ()

. dx .
mettant encore dans celle-ci , pour 5 8 valecur donnce par

la premiére des équations (4, , clle deviendra

dx d.Tang z

n — =Cos.z.d.1’ang S ———————
x v r+4-Lung.2z

(7)

équation séparée, dont lintégrale est

N

nLog. (;Ix_) =Log.(Tang.z-v/ 1+4Tangz) »

‘ou bien

x \* ..__.___,
(:-z—) =Tang.z4/ 15 Tangz ; (8)
A étant unc constante arbitraire.

Pour déterminer cette constante, statuons & la fois sur la situation
de l'axe des &, que jusqu’ici nous avons laisséc indéterminée ainsi
que sar lorigine des temps que nous avons également laissée arbi-
,1rair¢5 et pour le faire de la manicre la plus propre a simplifier
mos résultats, remarquons que, bien que, par I'énoncé du probléme,
la largeur du canal soit déterminée, cette largeur néanmoins n’entre
aucunément dans nos formules; de sorte qu'il nous est permis de
la supposer indéfinie du co6té d’our part le chien, et d'admetire

que,
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que; poursuivant son maitre , il nage depuis un temps illimilé;
auquel cas on pourra conceveir unc certaine époque ou la droite
qui le joint & son maitre deviendra ou aura éié perpendiculaire au
bord du canal parcouru par celui-ci, c’est-d-dire & Paxe des 4.
Prenons donc cette époque pour origine des temps ; supposons qu’alors
la distance du chien a4 son maitre soit @, cette longueur se con-
fond:ja avecl’axe des z; etil est d’abord clair que, pour 7=o0, la distance
du maitre 4 l'origine devra étre nulle; puis donc que cette distance
est, en général B-g¢, on devra avoir B=o0; donc, en vertu de
I'dquation (3) on aura aussi alors tang. z=o; d’aprés quoi l'équa-
tion (8) deviendra

a L3
(-——) =1, dou Ad=a;
A
on aura donc, quel que soit &,
X n
(—a-) =Tang.z-4/ 14-Targ.z - (9)

En faisant évanouir le radical du second membre de cetie €quas
tion, on en tire

Tang.z=(§>n-:<%)" ’ (ro)

2 \? a \n
( 2Y-(2) 2 . (n
T 7 x N\~ a \r x " (z 1o .

()+(3) (2)+(5)
Pour parvenir présentement & I'équation différenticlle de la tra-

jectoire , éliminons d’abord d¢ entre les équations (4) ; il viendra
ainsi

d’on

Sin.z

Cos.z=

d kSin.z—h . ,

L 2R (12)

dx kCos.z
ou, en y mettant pour sin, z et cos, z les valeurs déterminées ci<
dessus

Tom. X111, Al

h]
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dy =k k+lz e (13)

valeur qui devient également nulle, soit que 2 soit nul ou qu ‘il
soit infini.

Si 'on veut avoir la vitesse qui répond & une valeur quelconque
de z, en représentant cette vilesse par ¢ ct prenant la som.ne
des quarrés des équations (4), il vicndra

p=( Y+ ) =k —2lhSina4 R
eu en mettant pour sin. z sa valeur (11)
Gty (S Y+kir (5
)+
dy d2y

Si, suivant I'usage , nous posons, pour abréger, i Rl )

dx?
1a formule (13) donnera

9__ k-—h< ) k+h( ) § (15)

on aura ensuite, par la formule (12),

k2—2khSin.z4-h2 v 3
L p——] .
I +P - k2Cos,2z — (kCos.z) ? (16) .

(‘+P’)":= (75:5—})’

en désignant donc par 7 le rayon vecteur , on trouvera

VI—-

(14)

d’ot

2¢2

r== ("};"72)% = -Z— . l/f /z)( > +(][+/2>( ) +'P

ou , en metlant pour ¢ sa valeur
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On avra encore, d’aprds la formule, (16) en désignant par s la
longueur de l'axe de courbe

ou, en mettant pour ¢ et cos. z leurs valeurs

%: —;;V(k-—hy( —J—:—>”+z(k‘+h’)+(l‘+h)’( —;’c—\ ;o (18)

équation qu'il faudrait intégrer pour obtenir la valeur de s.
Pour obtenir I'équation de la courbe, il faut intégrer I'équation
(13), ce qui donne

_a (keh/ x \rk3 4 Tk
o= (S )T (=)}

En se rappelant qud y=o doit répondre z=ga, il vicndra

__a k—h  k4+R)
¢= 21i§n+1+7;_1} ?

d’ou, en retranchant

o G o

Veut-on avoir le temps en fonction de Vabscisse, il ne s'agira,
pour cela , que de substituer pour Cos.z , dans la premiére des équa
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tions (4), sa valeur donnée par la derni¢re des formules (11), Il

Y‘leﬂdra ains;.
— ) —-— S : . ?d
..kd‘—"(< 2 ) "! ) z ’

te qui donnera, en intégrant,

- (= n+t 4 (i et
D"W"”{na—z(a) —=(2) }

Fn se rappelant d’ailleurs qu'a z=50 doit répondre #=a; il viendra

._5_‘_____‘ .
D=a) o — i g

d’ol, en retranchant

et (O R e (C) Rl B

Des formules (19, 20) on lire

_ a{ktg=h [/ x 1! keeg4-F e \ "1
s-s= SN (5T 1R 2R [(2) = 1

ou, en sc rappelant que g—ZAi==nk

rom 22 =(2)

mais la distance du chien & son maitre a généralement pour expression

V o (y—gt)

en y substituant - donc pour y—4g? la valeur que nous venons
d'obtenir, cette distance deviendra, toutes réductions faites
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formule qui ne pourra devenir nulle en méme temps que
qu’autant que 7z se trouvera compris entre +1 et —1.

Si T'on suppose I'eau stagnante, il faudra faire 2==0, et con-
séquemment g=nk , dans toutes les formules que nous venons
d’obtenir , lesquelles deviendront ainsi cxactement celles qui répon-
dent au probléeme traité a la page 145 du présent volume. Ce
probléme n’est, en effet, qu’un cas particulier de celui-ci.

L’équation (19) de ia courbe peut étre derite ainsi

ag ___a__sk——h k-4-h e\ R
y+ (n*=1)k 2k n—4-1 ( ) +n-—1 ( x > % ’ (“2)

si donc on transporte l'origine sur l'axe des y, 4 une distance

209

ag s e e e e
m au-dessous de longme primitive , en posant
=i
a (k—h) ) a(k+h) < a \n=1
- yl=—"-o=( =
r= 2("‘*")" ( 2(n—-x)k x) ? (23)

1'équation de la courbe deviendra

y=y-tr" (24)

En construisant donc, pour le nouveau systéme d’axes, les deux
courbes exprimées par les équations {23);les ordonnées de la courbe
cherchée seront les sommes d’ordonndes correspondantes de cés
deux-la,

1l est aisé de voir que, tant qne z est un nombre positif plus grand que
Punité, la premiére de ces courbes est parabolique et T'autre hyperbo~
lique. Si n, positif ou négatif, a unc valeur absolue moindre que I'unité,

les deux courbes sont paraboliques. Si cafin 2 négatif a une valeur
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sbsolue plus grande que l'uaits, c'est la premiére dus duix couibes
qui est kyperbolique, tandis que la seconue est pacaloiigue.

Mais il est un cas particalier qui rend illusoire une partie des
formules auxquelles nous venons de parvemir , a4 rasson du déno-
minateur z—1 qui affecte leurs termes: ¢’est celui ou le maitrs. muarchant
dansle sens du courant, a sur ce ccurant um excés de vilesse pré-
cisément égal 4 la vitesse que son chien ponrrait se doanner en nageant
dans une eau tranquille. On a alors, en effet, g—A=k, doda n=1,
ce qui rend infinis les termes affectés du dénomincteur —1. Cher-
chons donc, en particulier, les formules qui conviennent & ce cas;
ou plutét des formules qui remplacent les formules (19, 20), les
scules qui présentem cette circonstance.

Dans le cas dont il sagit, 'équation (13) devient simplement

%¢ qui donne, en intégrant

i 22 () (D))

3nais , parce que x=¢ doit répondre 3 y=o0, on aura

- —2 2k

d'olt, en retranchant,

PG (L) @

Dans le méme cas, 'équation
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— sl ; (7})-;{ %)} dz

trouvéde ci-dessus, se réduit a

299

xdx adx

-4

—2kdi=

a 14

dont I’intégraie est
el 4z o \*
p—, 5 o ¢ — o o, - .
Fe2fi 32K0) Lo{)(x)z,

en observant encore ici que #=g et /=0 doivent se correspondra
on aura

’

F=—

2

d'clt en retranchant

&= (53~

En éexivant I'éguation (25) comme il suit

(—h)a - (k—1\a *\? (k4 R)a 2N
T T T (a)"‘" 4 Lo"’(x) ’

on voitque si, ayant transporté 'origine sur 'axe des ¥, % une distance
. S ) %

(k—h)a
4k

(Ft-h) (1) a2 \?
I n a( > // i a LOg. (-—a':-) H (27)

on aura

au dessous de sa position primitive, on fait

y=y'ty’ ;
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de sorte qu'en construisant , par rapport an nouveau systéme d’axes,
les courbes exprimées par les équations (27), dont la premiére est
une parabole ordinaire et 1'awtre une logarithmique , les ordonnées
de la trajectoire décrite par le chien ne seront autre chose que les
sommes d'ordonnées correspondantes de ces deux courbes.

On peut remarquer que le probléme qui vient de nous oceuper
est aussi celui des circonstances du mouvement de la chaloupe d'un
bateau qui suit le cours d’un fleuve , lorsque cette chaloupe se détache
pour aller prendre des voyageurs qui marchent le long de I'un des
bords de ce fleuve.

Parmi les différens cas particuliers de ce probléme, le plus or-
dinaire , et conséquemment celui qui semble offrir le plus d'intérét
est celul de la route que suit une barque établie sur I'un des bords
d'un fleuve, pour transporter les voyageurs au point directement opposé
de l'autre bord. Dans ce cas a représente la largeur du fleuve, les
temps sc comptent de l'instant du départ de la barque, et la vitesse

g du point vers lequcl on tend est nulle; on a donc simplement
k . 1, . : . .
alors n==—=-- ,au moyen de quoi I'équation (19) de la trajectoire

devient
{D)=(2)F-(H)F o9

Or, pour que la barque puisse parvenir au point vers lequel elle
tend, il faut évidemment que la trajectoire qu'elle décrit passe par
Torigine qui est ici le bord d’arrivée ; et conséquemment il faut
que z et y soient nuls en méme temps, ce qui exigera évidemment
que kt—7 ne soient pas négatifs ; c’est-a-dire que, pour qu'une barque
qui, partant de I'un des bords d’un fleuve et tendant sans cesse
vers le point de I'autre bord directement opposé i celui du départ,
parvienne en ce point, il est nécessaire et il suffit que la force

d'impulsion des rames soit au moins égale a la force d’impulsien
du courant,
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Cette méme équation prouve aussi que, si la force d'impulsion
des rames était nulle ou celle du courant infinie, la barque sui-
vrait simplement le cours du fleuve , parallelement % la direction
du bord opposé i celui du départ; de sorte qu'elle n’atteindrait
ce bord qu'a unec distance infinie. Si au contraire la force d'impul-
sion du courant était nulle ou celle des rames infinie, la barque
parviendrait d’un bord & Tautre dans une direction rectiligne, per-
pendiculaire & la direction commune de ces deux bords.

En différentiant 'équation (28) et supposant toujours k> %, il vient

e T3 (20)

Si donc on représente par « l'angle que fait la direction de Ig
barque au moment du départ, ou zx==a, avec celle qu'elle tend a
prendre, on aura

dy _ k—h
de —

k—=h kb B ,
Tang.e= T R (30)

comme on pouvait bien le prévoir.

Veut-on savoir en quel point sa direction se trouvera perpen=
diculaire au cours du fleuve ou, ce qui revient au méme , paralléle
a celle qui joint le point de départ au point d’arrivée, il suffira

. d .
d’égaler & zéro la valeur de az- , ce qui donnera
x

: =P \_k_ .
a=a (o )R (31)

substituant cette valeur dans I'équation (28), il en rdsultera
Tom. XII1. 43
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Pln\’
(e

Si enfin on désigne par B I'angle que fait la direction de la barque
au moment “d'arrivée ou £==0, avec la perpendiculaire & la direc=-

oy
1Y
o,

tion du courant, on aura Tang. B=w» , ou B=;=, i moins pour-
tant qu'on ait A=/

- Mais cette derniére hypothése ne saurait étre admise dans la prae
tique. Ea effet l'équation (28) devient, dans ce cas

#F - a*=2a(za—y)

dquatien d’une parabole qui a pour foyer le point ol on veut at~
teindre et pour paraméire le double de la largeur du fleuve ; d’od
T'on voit que, si la force d’impulsion des rames n’était que rigou-
reusement égale a la force d'impulsion du courant, la barque
arriverait au dessous du point désigné, & une distance de ce point
égale a la moitié de la hargeur da fleuve

., Continuons donc de supposer k>4 ; g étant toujours nul, et consée

h
quemment 2=— — la formule (20) donnera alors

=) (] o

Pour avoir donc le temps employé 4 traverserle fleuve, il faudra, dans
sette formule , faire =0, c¢ qui donpera

t*“ag‘ 1 ;_a ak . ka
R 13 I TRy O

N
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mais si l’cau était stagnante, ce temps serait simplement _% ;d'oy

il suit que l'excés de temps d& i limpulsion du courant est

kn a ha

m: — T - k(k:qkz)

Ion voit que cet excés de temps croitra avec & , aigsi qu4
cela doit étre,
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'QUESTIONS PROPOSEES.

i

Problémes de Geometrie..

I Q?UE.LLE'» est la comrbe enveloppe de Pespace parcouru par un
des cotés d’un angle droit dent le sommet décrit une ellipse donnée , -
tandis que scn auire cOié passe constamment par le centre de cette
ellipse?

1. Deux angles égaux ou inégaux, donnés de grandeur, sont
assujettis a se mouvoir sur un plan de manitre que leurs sommets
ne quitent pss deux pbints fixes donnés sur ce plan, et qu'on c6té
de I'un coupe constamment un c6té de l'autre sur une droite indéfinie
donnée; on demande quel est le lieu de Tintersection mobile des
deux autres c6tés de ces deux angles?

IIL Quelle est, sur un plan, la ligne de chacun des points de la-
quelle menant des droites & deux points fixes, donnés sur ce plan,
ces droites intereeptent constamment des portions de méme longueur
d’une droite indéfinie, donnée sur ce plan?

IV. Quelle est dans 'espace la surface de chacun des points de la-
quelle menant a trois points fixes des droites, considérées comme
les trois arétes d’un angle trieédre ; cet  angle triédre intercepte
toujours des portions équivalentes d’un plan donné, fixe et indéfini ?
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QUESTIONS RIESOLUES,

‘Démonstration du théoréme de ge’ome’trz'e enoncé ala
page 260 du XII.e volume de ce recueil ;

Par M. J. B. DurranpE , professeur de physique au
collége royal de Cahors,

e e Wy W T s Y -

.LEM ME. Si un cercle coupe arbitrairement les denzx céotés d'un
angle , 1.* en considérant les cordes interceptées comme lcs cordes
de contact de deux angles circonscrits, les colés de l'un de ses
angles couperoni les cotés de I'autre en quatre points tels que , de
quelque maniére quon cn prenne deux qui n'appartiennent point
@ un méme cité, ils se trouveront en ligne droite avec le point de
concours des déux cordes de coniact, c'est-d-dire. avec le sommet
de langle donné; 2° Si l'on joint denzx & deux les quatre exiré-
milés des deux cordes de contact par deux systémes de denx droites ,
les droites se couperont , dans chaque systéme, sur l'une des deuz
droites dont il vient d'étre précédemment question, et sur la droite
qui joint les. sommets des deux angles circonscrits; 3.° enfin chacun
des deux points dintersection sera le pble de celle aé¢ ces deux
mémes droites sur laquelle il ne se trouvera pas situé , et le sommet
de l'angle sécant sera le pble de la droite qui joindra les sommets
des deux angles circonscrits.

Démonstration. Soient O (fig. 1) le centre du cercle dont il s'agit,
A le sommetde I'angle sécant, BC et DI les deux cordes intercepices
par le cercle sur ses c6tés, F et G les sommets des angles circons-

Tom. XII1, n.° X, 1. april 1823, 43
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crits dont ces cordes sont les cordes de contact; H-le point de
concours de FB et GD, I le point de concours de FC et GE, K
le point de concours de FB et GE, et enfin L le point de concours
de FC et GD. Soient finalement menées BE et CD se coupant en
. M, BD et CE se coupant en N.
Cela posé, il sagit de démontrer, 1.° que le sommet A est,}

Ia fois, en ligne droite avec les points H et I, et en ligne droite
avec les points Ket Li; 2.° que le point M est en ligne droite avee
les points H et I, et le point N en ligne droite avec K et L, et
qu’en outre ces deux points M et N sont en ligne droite avec les
points F et G; 3.° enfin que ces mémes points M et N sont les
poles respectifs de KL et HI, et que le point A est le péle de
TG,

- Pour y parvenir, concevons les pointsF, G, H, I, K, L comme
les centres d’autant de cercles, ayant pour rayons, savoir

Pour F , FB=FC ,
Pour G, GD=GE ,
Pour H , HB=HD ,
Pour 1 , IC=IE ,
Pour K, KB=KE ;
Pour L, LC=LD .

Concevons pour plus de bridveté, de désigner simplement chacun
de ces cercles, que nous nous dispenserons de tracer, pour ne pas
compliquer la figure, par la letire placée 3 son centre.

Les cercles H et 'T sont 3 la fois touchés extérieurement par le
cercle I en B et C et par le cercle G en D et E, d'ou il suit
que les droites BC et DE , concourant en A, contiennent I'une et
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Pautre le centre de similitude externe des cercles H et T, lequel
eonséquemment ne saurait étre autre que le point A qui, par suite,
doit se trouver en ligne droite avec les centres H et I de ces deux.
cercles.

Pareillement , les cercles K et L sont touchés ala fois extérieure-
ment en B et C par le cercle F et intéricurement en E et D par
le cercle G; d’ou il suit que les droites BC et DE, concourant en
A, contiennent P'une et I'autre le centre de similitude externe des
cercles K et L, lequel conséquemmentneshurait; étreautre que le point
A qui, par suite, doit se trouver en ligne droite avec les centres
K et L deces deux cercles. Voila donc la premiére partie de la pro-
position complétement démontrée, ’

En second lieu, le cercle K touche 4 la fois les deux cercles H
et I, le premier en B en l'enveloppant et le second en E extérieure-
ment. Le cercle L. touche aussi & la fois les deux mémes cercles,
le premier en D extérieurement et le second en G en I'enveloppant.
Donc les droites BE et CD, concourant en M, contiennent 'une et
Pautre le centre de similitude interne des deux cercles H et I, lequel
conséquemment ne saurait étre autre que le point M qui, par suite,
doit se trouver en ligne droite avec les centres H et I de ces deux
cercles.

Pareillement, le cercle H touche & la fois les deux cercles K et
L,le premier intérieurement en B et le second extérieurement en
D. Le cercle I touche aussi & la fois les deux mémes cercles, le
premier extérieurement en E et le second intérieurement en G. Donc
les droites BD et CE , concourant en N, contiennent I'une et l'autre
le centre de similitude interne des decux cercles K et L , lequel
conséquemment ne saurait &tre autre que le point N qui , par
suite , doit se trouver en ligne droite avec les centres K et L de
ces deux cercles,

De plus; le cercle K touche 4 la fois les deux cercles F et G,
le premier en B extérieurement et le second en E en I'enveloppant.
Le cercle L touche aussi & la fois les deux mémes cercles, le premier
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en C extéricurement et le second en D en I'enveloppant, Donc les
droites BE et CD, concourant en M, contiennent l'une et I’antre
le centre de similitude interne des deux cercles F et G, lequel
conséquemment ne saurait étre autre que le point M qui, par suite »
doit se trouver en ligne droite avee les centres I et G de ces
deux cercles.

Pareillement, les deux cercles F et G sont touchés & la fois exté-
rieurement par le cercle H en B et D et par le cercle T en Cet
E. Donc les droites BD et CE, concourant en N, conticnnent l'une
et autre le centre de similitude externe des deux cercles Fet G,
lequel conséquemment ne saurait étre autre que le point N qui,
par suite , deit se trouver en ligne droite avec les centres F et G
de ces deux cercles. La seconde partie de la proposition se trouve
donc aussi complétement démontrée.

En troisi¢cme lieu, parce que les points K et L sont les poéles
respectifs des droites BE et DG, 1l s'ensuit que le point M de concours
de ces deux droites est le péle de la droite KL qui joint ces deux
points. Pareillement, puisque les points H et I sont les péles respectifs
des droites BD ct CE, il s'ensuit que le point N de concours de
ces deux droites est le pole de la droite H I qui joint ces deux
points. Enfin, puisque les points I’ et G sont les poles respectifs
des droites BC et DE, il s’ensuit que le point A de concours de
ces deux droites est le pdle de la droite FG qui joint ces deux
points.

Remarque 1. La corde de contact BC demeurant invariable de
grandeur et de situation, si ’on fait varier la grandeur et la situation
de l'autre corde de contact DE, cequi entraincra aussi un mouvement
dans le point A sur le prolongement de BC, les points M et N
varieront aussi de situation, mais de maniére toutefois que la droite
MN ira constamment passer par le poiat fise ', appartenant évidem-
ment 4 la perpendiculaire sur le milieu de BC; on a donc le
théoréme suivant,

THEOREME. Si tant de quadrilatires qu’'on youdra, inscrits
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& un méme cercle, ont un coté sommun , les droites qui , dans ces
quadrilatéres , joindront lintersection des diagonales et le point de
concours des cotés adjacens au coté commun iromt toules concourir
en un méme point de la perpendiculaire sur le milicu de ce coré
commun,

Crest précisément 13 le théoréme de M. Hachetle , énoncé dans
le Bulletin des scicnces (aotit 1822, pag. 114), et démontré par
M. Valsh, de Cork en Irlande. Quelque confiance que doivent inspirer
d’ailleurs les savans rédacteurs de ce recueil, nous ne saurions nous
refuser 4 regarder la démonstration de M. Valsh comme teut au
moins incompléte. Elle suppose , en effet , ce qu'il aurait d'abord
tallu prouver, savoir, que les trois points M, N, F sont en ligne
droite, Elle établit ensuite que le point I" est constant , et cela en
vertu d’un certain rapport dont cependant tousles élémens sont varia-
bles. Ce rapport d’ailleurs, fiit-il-aussi constant qu’on le suppose, ne
paraitrait pas entrainer inévitablement I'immobilité de ce point F.
Ce qui précéde pourra donc devenir, au défaut de toutle autre
démonstration, une rectification de celle de M. Valsh,

Remarque 11. Au licu de se donmner 'angle sécant A, il revient
au méme de se donner arbitrairement le quadrilatére inscrit BCED ;
alors la figure FH(: sera un quadrilatére circonscrit ayant ses points
de contact aux sommets de linserit. 8i I'on considére en outre que
I'on peut toujours concevoir un cercle qui soit la perspective d'une
section conique donnée ; qualors si deux quadrilatéres sont I'un
inscrit et l'autre circonscrit a la section conique, de telle sorte que
les sommets de l'inscrit soient les points de contact du circonscrit ,
il en sera de méme de leurs perspectives par rapport au cercle ;
qu’enfin les perspectives des points en lignes droites et des droites
qui concourent en un méme point sont elles-mémes des points en
lignes droites et des droites qui concourent en un méme point ,
et qu'en outre la perspective du péle d’une droite est le pole de
la perspective de cette droite , notre lemme donnera le théoréme
suivant ;
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THEOREME.Si deux quadrilaréres sont Puninscrite l'autre cirs
conscrit-d une méme section conique, de telle sorte queles sommets.
de Ulinscrit soient les points de contact du circonscrit, 1.° Les
diagonales des deux 'quadrilatéres se couperont toutes quatre au
méme point; 2.° Les points de concounrs des directions des cdtés
opposés des deuzx guadrilatéres appartiendront tous quatre & une
méme ligne droite; 3.° Le point de concours des quatre diagonales
sera le pbdle dela droite qui contiendra les quatre points de concours
des directions des cOtés opposés.

Remargques. 1. Si T'on se rappelle que, dans tout quadrilatére, on
peut prendre deux cotés opposés pour diagonales, et réciproquement,,
on s’assurera aisément que ce théordme est tout aussi complet qua
le lemme d’ol nous l'avons déduit.

II. En vertu d’un théoréme de Newton démontré par M. Poncelet
( Annales , tom. XII, pag.109), on peut ajouter a tout ceci que
la droite qui joint les milieux des deux diagenales du quadrilatére
circonscrit contient le centre de la section conique dont il sagit

On reconnait facilement , dans le théordme auquel nous venons de-
parvenir, le théoréme de M. Brianchon, sifécond en belles conséquen-
ces , et dont ce qui précéde offre ainsi une nouvelle démonstration..
Passons présentement i celui qui fait le sujet principal de cet article.

THEOREME. Une surface du second ordre étant coupée arbi-
trairement par lss deux faces d'un angle diédre , 1.° en considérant
les interseciions des deux faces de l'angle diédre avec la surfacs
du second ordre comme les lignes de contact de deux surfaces.
coniques circonscrites , €es surfaces coniques se couperont suivant
deux courbes planes dont les plans. contiendront , 'un et lautre,
Paréte de langle diédre qui en sera ainsi- lintersection ; 2.° si
Lon considére les deux lignes de contact comme les directrices du
mouvement dun plan , dans la génération d'une surface dévelop=
pable , enveloppe de l'espace parcouru par ce plan , ce qui pourra
étre fait de deux maniéres différentes, les surfaces développables
résultantes seront deux surfaces coniques , ielles que le sommet
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de chacune sera situé sur Pun des deux plans dont il vient d'étre
question ; ces deux sommels seront en outre en ligne droite avec
les sommets des deux surfaces coniques circonscrites ; 3.° enfin,
chacun de ces sommets sera le pile de celui des deux plans sur
lequel 1l ne sera pas situé , et en outre laréte de I'angle diédre
sécant et la droite qui contiendra les quatre sommets seront pé-
laires réciproques l'une de lautre.

Démonstration. Soient F et G les sommets des deux surfaces
eoniques circonscrites , par lesquels et par I'un quelconque A des
points de laréte de I'angle diédre soit fait passer un plan que nous
supposerons étre le plan méme de la figure. Ce plan coupera la
surface du second ordre suivant une section conique BCED , et
Pangle dieédre suivant un angle plan sécant ayant son sommet en
A ct, pour les portions de ses c6tés interceptées par la section co-
nique, les cordes BC et DE. Les points B et G, ainsi que les
points D et E seront donc des points des lignes de contact des deux
surfaces coniques circonscrites , lesquelles conséquemment seront
coeupées par notre plan suivant les angles BF'C et DGE, circonscrits
a la section conique BCED. En conséquence , BME et CMD , ainsi
que BDM et CEN seront des arétes des deux surfaces dévelop-
pables enveloppes de I'espace parcouru par les plans qui toucheront
a la fois les deux lignes de contact ; de plus H et I, ainsi que K
et L appartiendront aux lignes d’intersection des deux surfaces
coniques circonscrites ; et on se trouvera exactement dans le cas
de notre précédent lemme.

Donc d'abord les points M et N ne sortiront pas de la droite
fixe FG quelle que soit la position du point mobile A sur I'aréte
de l'angle diédre. Or, soient P et Q les intersections respectives
de BC et DE avec FG ; ces points seront fixes quel que soit le
point arbitraire A , puisqu'ils seront sur FG qui est fize , et sur
les (oces de l'angle diedre qui le sont aussi. De plus, le quadrila-
tere complet dont les trois diagonales sont FG, HI, KL , et celui
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dont les trois diagonales sont MN, DE, BC, donnent, par un:
théoréme connu,

GM _ GN QM _ QN
. FM — FN’ PM ~ PN’
cest-a-dire ;.
FG—FM __ FN—FG PQ—PM: _ PN—PQ:
FM ~  EN ' PM ~  PN. '
ou bien
FG FG PQ _ . _PQ
M I ER Y M IT BN
ou eneore-
FG , FG _ PQ PQ
T FR =2 am T BN =2

ee qui revient .

FG(FMAFN)=2aFM.FN , PQPM+PN)=aPM.PN ;.
mais

FM=PM+4FP ,  FN=PN4FP,

FM~+FN=PM-4PN+4-2FP
done - ’

FM.FN=PM.PN~4-FP(PM4PN-}-FF*

valeurs qui, substitudes dans la-premiére dés deux équations ei=-
dessus, la changent.en celle-ci:.

(PG—FP)(PM~+PN)=2PM.PN—2FP.PG ;

en la combinant avec la seconde, il vient:

_ __PE(_‘:_ . _ PQ~PF.PG‘.
PMT‘-,PN——- rE-QQG " PM'PN—Z."‘M >

done
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donc Ja somme et le produit des deux distances PM et PN sont
donnés, donc ces distances le sont elles-mémes ; donc les points
M et N sont fixes sur FG; donc les surfaces développables dont
les arétes sont BL et CK , BN et CN sont des surfaces coniques;
donc toutes les droites AM , AN passent par les mémes points
fixes M et N et parl'aréte de I'angle di¢dre ; donc toutes ces droitcs
sont dans deux plans passant par cette aréte et par les points fixes
M et N; donc les points variables H et L sont dans le premier
de ces plans, et les points varirbles K et L. dans le second; donc en
effet les deux surfaces coniques circonscrites se coupent suivant deux
courbes planes dont les plans contiennent, 'un et Pautre l'aréte de
I'angle diédre, qui en est ainsi I'intersection commune, donc, en outre,
les sommets M et N des deux autres surfaces coniques sont res-
pectivement sur les plans de ces deux courbes, et en ligne droite
avec les sommets F et G des surfaces coniques circonscrites.

Présentement , les points M et N étant , pour toutes les situations
du point A,les poles respectifs des droites HI et KL, il s’ensuit
que ces mémes points M et N seront les péles des plans qui sont
les liecux de ces deux droites. De plus, les points fixes I et G étant
les poles respectifs des deux faces de l'angle ditdre, il s'ensuit que
Paréte de cet angle et la droite FG sont pdlaires réciproques'une
de l'autre.

On peut aussi remarquer, d’aprés le théoreme de Newton rappeld
ci-dessus, que si ’on choisit le point A sur I'aréte de I'angle di¢dre
de telle sorte que le plan coupant passe par le centre de la surface
du second ordre , ce centre se trouvera. aussi en ligne droite avéc

les milieux de FG, HI et KL,

BN
XN

Tom. XIII.
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A

Solution partielle du probléme de géoméirie enonce
& la page 288 du XII* volume du present recueil ;

Par MM. A. L. Bover et Cu. Sturm.

P ROBLEME. Déterminer, en fonction des quatre cdiés dun
guadrilatére rectiligne inscrit au cercle, 1.° langle de deux cdiés
opposés ;5 2.° U'angle des deux diagonales?

Solution. Soient, comme dans le mémoire de la page 269 du XII®

volume, @, b, ¢, d les quatre cOtés consécutifs du quadrilatére,
et z, ¥ les deux diagonales; la premiére se terminant aux som-

mets (@, b),(c, d), et la seconde aux sommets (b,c), (¢, d);
on aura, comme alors,

g (actbd)(eb¥cdy . (act-bd)(ad4-be) .
- ad--be ? y= ad--bc i

en outre , en POS&D%

b4-ct+-d—a=4A,
c+dta—b=3,
d+atb—c=C,
e+btc—d=D;’
nous aurons
Sin(a, &)= % ,  Sio(a, 5)= %‘f{% :
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A2 2 eormn 2 ' 2 2 nnn ] 2
artd: : Cos.(a,b):um—‘__.-l_b’ 0md

\ o
Cos(a,d)= 2(ad4-00) 2(abted)

Mais les prolongemens des c6tés opposés & et & forment avee le c6td
@ un triangle dans lequel 'angle opposé a ce c6té a est precisément
Fangle cherché (5, d; de deux cités opposés; en supposant denc,
pour fxer les idées , #>¢, nous aurons

@) D=w—[(e, d+(a, 5]
dou

Sin(b, dH=Sin[(e, &)¥(z, 8)]=SinSa, d)Cos.(a, b)+Sin.(a, £)Cos.(a, d)

ce qui donnera, en substituant,

Sin(3, d)= Le*bmcimd)d(ar4-d2—b2—c) Y ABLD
' T fadbe) bped) )

ou’, en rédaisant

. _ (01,—5’)1/;&3—65 .
Sll’l-(ﬁ H d)“ g(gd—{—bc)(ab‘*-“i) ’

tel est le sinus de I'angle des deux c6tés opposds & ez & ; on trou-
verait de méme

(5*—=d*)/ ABCD

‘2(adrbc)(ab-cd)

Sina, ¢)=

Si I'on cherche les cosinus des mémes angles, on trouvera
Cos.(b, d)=Sin.(2, 3)Sin.(a, d)~Cos.(a, 4)Cos (a, d)

ou, en substituant,

ABCD =( 03} d2emeb3van2) (a24-b 2 i omed]2)
N
COS'@ » )= 4(abdcd)(ad4bc) h

ou, en développant et réduisant
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(abt-cd)r}(ad Lbe)remm(at==cr)s .

Cos (2, d)= 2(abod)(ad$0) '

¢t on trouvera de méme

(ab-cd)2-}-(ad4-bc)2 (b rmmedr)1
2(ab+cd)(ad+bc) -

Cos.(a, ¢)=
De 13 on déduit

v g - __ (@r==c3)2em[(abd-cd)—(ad+-bc)]?
aSin.3(6 , dy=1—Cos (b, d)= 2(abgcd) (ad—bc) ’

ou, en décomposant, divisant par 2 et-extrayant la racine quarrée

. T -_E_T_E BD I
Sini(d, d)= 2 VW}"

et on aurait de méme

b—d
Sin(e,6) = V (ab+cd)(ad+bc)

et, comme on a

in(b, d in.
Cos.2(5 ,d)= S, D Cos.2 (2, o)= o (2,9

2Sin. £ (4, d) ° 28in.{ (a,¢)

il viendra, en substituant,

. _a+c AC
Cos.3 (8, d)= @Fed)(@d s ’

-

. b4-4d BD
C o3 — —— ——— -
i@ =" arenern

et de I3 encore
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BD
Tang.: (5, d)=;—+—c —c

b—d “3C
Tang.; (a,¢)= ey e
formules trés-commodes pour le calcul par logarithmes.

Passons a la recherche de Vangle des diagonales; pour cela re~
marquons que ces diagonales divisent le quadrilatére en quatre
triangles dont la somme des aires sera, en appelant a2/ et 2/ les
deux segmens de &, &t ¥/ et ¥/ les deux segmensde ¥,

Haty! Jxly gty faity”)Sin e , y)=1(a'42") (y'4y")Sinx, _y):%x:ySin.(x, 73

mais il a été prouvé, dans le mémoire cité que l'aire de ce qua-
drilatcre a aussi pour expression

3V ABCD ; -
donc
— VvV ABCD
Sinz , y)= Y/ ABCD iy 3
mais on 4

zy=as4-bd ;
donc finalement

V/4BCD

Sin(, y)= 2(actod) ©

De la onconclura facilement

a’—{-c’-b'—'—d’ B

COS.(&‘; _'y) — 2(40+bd) g

¢t emsuite
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AC

2Sin.? ;’(3‘ B }’)= 1—Cos(z, )= 2(act6d) ?

BD

2Cos.X(z, y)=1+4Cos.(z, y)== Yy H

dod
oy : AC i z ——--—BD
Sm_;(z',y)::;Vm ’ Cos.;_(x,y): ;Vac_i.bd H

et, par suite

Tang.:(z, y)= -—;%— ; )

formule  trés-commode pour le calcul par logarithmes, (*)

(* Nous rappellerons ici qu’il a été proposé de trouver des formules analogues.
pour le quadrilatére sphérique inserit & un petit cercle de la sphére. De telles
formiles ont bien été regues ; mais elles n'ont pas I'élégance suffisante pour
en. justifier la publication.

J. D. G.
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Démonstrations diverses du théoréme de géomerie
enoncé ¢ la page 212 du présent volume.

e Ay Sy e W e W g "W

THI*E'ORI}J ME. Deux hyperboles équilatéres telles que les diamétres

principaux de chacune sont les asymptotes de Pautre se coupent
toujours & angles droits,

Démonstration de M. W. H., T.

C’est un théoréme connu, et daillears trés-facile & démontrer
que , dans I'hypeibole équilatére , rapportée 4 son centre et i ses
diamétres principaux , la normale est constamment égale au rayon
vecteur.,

Cela posé; soit C (fig. 2) le centre commun de deux hyperboles
équilatéres dont les asymptotes soient dirigées suivant CN et CN’
et suivant leurs perpendiculaires respectives au point G; et soit P
un point commun aux deux courbes. Soient mendes les normales
PN et PN/, ainsi que le rayon vecteur CP , prolongé jus-
quen 'V,

Les deux triangles CPN et CPN/ étant isoceles , d’aprés ce qui
vient d’étre dit plus haut , il s’ensuit que les angles extérieurs
VPN et VPN’ sont respectivement doubles des intéricurs PCN et
PCIN/ ; d'ou il suit que l’angle total NPN/ est double de Tangle
total NCN/ ; c'est-d-dire que angle sous lequel se coupent deux
hyperboles équilatéres de méme centre est constamment double de
celui sous lequel se coupent leurs asymplotes ou leurs axes irans-
verses; d'ou il suit que , si ce dernier est demi-droit, les deux
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hyperboles se couperont perpendiculairement; ce qui démontre
complétement le théoréme,

Démonstration de M. J. B. DURRANDE , professeur de
physique au coltége royal de Cahors ,et d’'un ABoNNE.

On sait que la tangente d une hyperbole, terminée & ses asymp=
totes, a son milieu & son point de contact avec la courbe; et que
de plus elle est égale et paralléle au conjugué du diamétre qui
passe par ce point.. .

Et, comme il est d’ailleurs connu que, dans.I'’hyperbole équilatére ;
deux diamétres conjugués quelconques sont de méme longueur; il
s'ensuit que , dans une telle hyperbole , la tangente en un point
quelconque, terminée aux asymptotes est double du rayon vecteur
du point de contact.

Si donc deux hyperboles équilatéres ont méme centre, et qu'on
leur mene, par leur point d'intersection des tangentes termindes i
Jeurs asymptotes respectives , ces tangentes , qui se couperont par
leurs milieux, auront une longueur commune, double de celle du
rayon vecteur du. point d’intersection des deux courbes; elles for-
meront donc , avec leurs asymptotes , deu x triangles rectangles dont les.
hypothénuses, de méme longueur , se couperont par leurs milieux,
et dont les sommets opposés se confondront.

Au moyen de ces considérations , le théoréme proposé - revient
a dire que, si deux triangles rectangles ayant des lzypoﬂzc‘l\wses
ézales sont posés l'un sur lautre de telle sorte que les milicux de
lears hypothénuses ainsi que les sommets opposés soient communs.,
et que les cOléds de Pangle droit de l'un fassent un angle demi-
droit avec les cotés de I'angle droit de lautre , les devzx hypothé-
muses se couperont perpendiculairement.

M. Durrande démontre cette proposition 4 peu prés comme il
suit : soient SCT, S/CT/ (fig. 3) deux triangles rectangles ayant le
sommet C de l'angle droit commun et des hypothénuses égales

ST
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ST et S/T” se coupant & leurs milieux en P; en menant CP, cette
droite sera égale a la moitié des hypothénuses; de sorte qu'on
aura PC=PS=PS/, et qn’ainsi les triangles CPS et CPS’ seront
isocéles; en prolongeant donc CP au-dela de P vers V, les angles
extéricurs VPS et VPS/ seront respectivement doubles des angles
intérieurs PCS et PCS/; d’out il suit que la somme SPS’ des pre-
miers sera double de la somme SCS’/ des derniers; si denc cette
derniére somme est un angle demi-droit, la premitre sera un an-
gle droit ; c’est-a-dire que les hypothénuses ST et ST/ seront
perpendiculaires I'une & P'autre.

Pour parvenir au méme but, I'abonné décrit du point P comme
centre (fig.4), et avec la moitié des hypothénuses pour rajon.,
une circonférence, & laquelle les deux triangles rectangles se trou-
vent alors inscrits ; or les deux angles SPS/ et SCS/ embrassant
ainsi entre leurs c6tés le méme arc S§/ et ayant leurs sommets le
premier au centre et le dernier 3 la circonférence, il s’ensuit que
le premier est double du dernier, et que conséquemment si celui-
ci est demi-droit P'autre sera droit..

Démonsiration- de M. Querrer , chef dinstitulion
a St-Malo.

Soient & ¢ y les coordonndes de 'une des courbes, rapportées- i
son centre et a ses axes; elle aura pour équation

yr=zr—d

Soit z la tangente tabulaire de i'angle que forme cett¢ courbe ou
sa tangentc avec l'axe des z ; on aura

Il

Fle
R]s

Z==

Tom. XIIL 45
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L’équation de l'autre courbe , rapportée aux mémes oxes quela
premitre, lesquels en seront les asymptotes, sera

Soit 2/ la tangente tabulaire de V'angle que forme cetie courbe om
sa langente avec l'axe des &, on aura

dy _  «

) — .
2= =
dx z

Au point d'intersection, # et y seront les mémes dans les deux courbes,
d’ou il suit qu’on aura alors

x
£2zl= - -—-J-,—\;=--t , ou 14zz/=o0,
y\ =/

ce qui démontre la proposition annoncées

Ce théoréme n’est au surplus qu'un cas particulier du suivant;

Une hyperbole étant donnée , si I'on en construit une autre
dont les asymptotes soient dirigées suivant deux quelconques de
ses diamétres, et que sur les mémes diamétres comme conjugués,
on construise une ellipse , les tangentes aux deux hyperboles a
leur point d'intersection seront paralléles a2 un méme systtme de
cordes supplémentaires de cette ellipse , construites sur I’'un ou l'autre
de ces deox diameétres,

Si en effet on prend le diamétre transverse de la premiere hy-

perbole pour axe des 2 et son conjugué pour axe des y , ’équation
de ceute hyperbole sera

B:x:_dtx:__::Asz 5
et I'équation de l'autre sera

gy=0C .
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Soient z et z/ les rapports des sinus des angles que font les deux
courbes ou leurs tangentes avec les axes des # et des 4 ; on aura

dy  Buw ,_ Yy y
2= — = — , B/m e TR
dx Ay x x

d’ol on conclura, pour le point d’intersection,

2

27/ m——

, ou Azz/4-B'=o.

Or, cctte équation est précisément celle qui doit exister, pour les
cordes supplémentaires de Dellipse, eatre les quantités analogues
az et z/; dou il suit que si, par 'extrémité de 'un quelconque
des deux diameétres conjugués de cette courbe qui lui sont com-
muns avec la premiére des deux hyperboles on lui méne une corde
paralléle & la tangente a I'une de ces hyperboles au point ou
elles se coupent, la supplémentaire de cette corde sera paralléle

a la tangente & l'autre courbe au méme point.

Il ne serait pas difficile de démontrer, aun surplus que, deux
hyperboles ayant méme centre , si les asymptotes de l'une d’elles
sont dirigées suivant deux diamétres conjugués de Il'autre, les
asymptotes de celles-ci seront réciproquement dirigées suivant deux
diamétres conjugués de la premiére ; de maniére que, pour le méme
_ systéeme d’hyperboles, on peut obtenir deux ellipses qui jouissent
de la proprieté qui vient d’étre démontrée,

Si la premiére hyperbole est équilatére , et qu'on prenne ses dia-
métres principaux pour asymptotes de la seconde, qui alors sera
également équilatére; ellipse deviendra cvidemment un cercle,
dans lequel les cerdes supplémentaires sont constamment rectan-
gulaires; donc alors les deux hyperboles se couperont a angles droits.

Le théoréme qui vient d’étre démontré a quelque analogie avec
le suivant, qui nous parait digne de- remarque:
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Une ellipse et une hyperbole qui ontle méme centre et les foyers

communs se coupént toujours perpendiculairement.
Ce théoréme peut aisément se démontrer comme il suit. Soit ¢
Pexcentricité commune ; les équations des deux courbes rapportées

4 leurs diamétres principaux seront

Bz (B o)y =BB ), 1)
Brot (e =By =Bi(emBr) ; (a)
d’'od on tirera ; par différentiation
y__ B B B
dx By ’ dz ~ ' (ci=By

de sorte qu’en représentant par'z’ et z// les tangentes tabulaires
des inclinaisons des deux courbes sur I'axe des z, il viendra

Bx Bx
L P //—-
z (Bi4-c?)y ’ £ +(cz—Bz)y

En éliminant B* et B/* entre ces fermules et les équations (1 ,2),

il viendra
2yz "2 —y*—c*)z ‘—zy =0,
#_'y'z/7’+(x=_5,=__ ¢)e'm—zy=0,

donc, pour un point (z, ¥) d’intersection des deux courbes, z/ et z¥
sont racines de la méme équation du second degré

R A %
Z=—1=0 ;

2

d’olr il suit qu'on doit avoir

z/z//._-—l » oYl !"!_':z“zm‘=0
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ce qui démontre la proposition annoncée.

Cette proposition peat au surplus étre immédiatement prouvée
comme il suit. En représentant par A4 et A4’ les demi-premiers axes
de lellipse et de I'hyperbole les distances du centre aux points
d’intersection de I'axe des z avec la tangente  la premiére courbe
et avec la normale A la seconde seront , comme l’on sait

a4 (47+Bx
=z ' (A3
ou bien
Bafec2 cix
x ’ clmeBi2 7

mais, au moYyen des équations (r, 3), on trouve pour I'abscisse du
point d'intersection des deux courbes

= ‘/(Bz+cz)(cz.._B/z) ‘

4

or, en subsituant cette valeur dans les deux expressions ci-dessus;
elles deviennent également

. a E A
cVE.."‘i.:c 4
Clemm ]3/2 A7
1

donc la normale 2 I’hyperbole , & l'intersection des deux courbes ;
coincide avec la tangente & D’ellipse au méme point , d’'ou il suit
que les deux courbes se coupent perpendiculairement en ce point.

Nous venons de trouver pour l'abscisse du point d’intersection

des deux courbes

x—— V(C’+B2)(C’—BI‘;) — 4_4: .

>
c c

en substituant cette valeur dans I'une quelconque des équations
{1, 2), on en tirera
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BB
y=-——>7

c’est-a-dire que chaque coordonnée de [lintersection des deux
courbes est une quatriéme proportionnelle & I'excentricité commune
et aux moitiés des deux axes qui lui sont paralléles.

Si l'on congoit que , I'un des foyers communs restant fixe , Pautre
s'en éloigne continuellement et indéfiniment, la proposition énoncée
ne cessera pas pour cela d’avoir lieu; elle aura donc lieu encore
lorsque ce foyer sera infiniment éloigné du premier, auquel cas
les deux courbes deviendront des paraboles; donc , deux paraboles
qui ont méme aze et méme foyer se coupent toujours perpendiculaire-
ment ; pourvu toutefois que leurs courbures soient en sens inverse
ou, en d’autres termes , que le foyer commun soit situé enire les
deux sommets.

Cette derniére proposition peut, au surplus, se démontrer di-
rectement comme il suit. Soient ¢ et ¢/ les distances des sommets.

au foyer commun; en prenant ce foyer pour origine, les équations.
des deux courbes seront

yr=4c*+4cz ; yr=4elt—helz .

Soient z/ et z// les tangentes tabulaires des inclinaisons des deux.
eourbes sur I'axe des. # , nous aurons

2¢ d 2¢!

y , dx ¥

—
—

£le

z/= ’

éliminant ¢ et ¢/ entre ces équations.et celles des deux courbes,
il viendra

yz* }azz/ —y=o0 ,

Y/ t2zz/ ey =0 ;
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done , pour le point (#, ) d'intersection des deux courbes , z/ ct
2/ sont les deux racines de l'¢quation du second degré

X
242 — z—1==0 ;
Y
d’ou il suit qu’on doit avoir

2zl =—1 , ou 1~}z/z/=0 ,

ce qui prouve la proposition annoncée.

On peut encore remarquer que la distance du foyer commun an
point ou la tangente & la premiére parabole rencontre con axe
est, en général ,

—2—T

et que la distance du méme point & celui ou la normale 4 la
seconde rencontre le méme axe est

2042 ;

mais les équations des deux courbes donnent pour labscisse de
leur point d’intersection

Xx=(/=C ,;

substituant donc dans les deux expressions ci-dessus, elles deviennent
¢galement

- (L‘+€/ )

ce qui montre que, pour le point d’intersection des deux courbes;
la tangente & la premiére coincide avec la nermale a la seconde,
et quainsi elles se coupent perpendiculairement.

En substituant dans l'équation de l'une quelconque des deux
courbes la valeur z=¢’—c de l'abscisse de leur point d'intersection,
on obtient pour son ordonnée
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y=2y/cc

Deéemonstration de M. GERGONRNE.

En transformant le théoréme en probléme on peut se demander
quelle est la trajectoire orthogonale de toutes les hyperboles équi-
latéres qui ont les mémes asymptotes ?

En prenant ces asymptotes pour les axes des coordonnédes , on
pourra prendre, pour I'équation commune & toutes ces hyperboles ,,

zy=4d ,

dans laquelle A4 est un paramétre indéterminé. Si alors (z/, y/) est:
le point de I'une de ces courbes ou elle est coupée par l'une deés
courbes cherchées, les équations des tangentes & ces deux courbes.
en ce point seront "

- = .
y—yl=— (g=—a'),  y—y'= - (3-2);
afin donc qu’elles s¢ coupent perpendiculairement, on devra avois.
— 2l =p ou, a/dat—y/dy/=0 ;

équation qui a pour intégrale, en supprimant les accens,

z*—y*=B,

qui appartient bien, en effet, 3 toutes les hyperboles équilatéres qui
-ont paur diamétres principaux les asypptotes des premiéres.

Démonstration
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Démonstration du théoréme de géomeéirie énonceé a la
page 248 du présent volume ;

Par M. W. H, TALBOT

THEOBEME. Le point d'un plan indéfini dont la somme des
distances a trois aulres points , situés hors de ce plan , esi un mini-
mum, est tel que si, par la droite qui va de ce pointa lun quel-
conque des trois autres, on conduit un plan perpendiculaire a ceiui
dont il s'agit , ce plan divisera en deux parties égales angle formé
par les droites qui vont du méme point aux deux points restans.

Démonstration. Soit représentée la figure en relief (fig. 5),en
représentant par des lignes ponctudes tout ce qui est hors da plan
indéfini, Soient O le point cherché sur ce plan , et A B C les
trois points donnés hors du méme plan; de maniére que OA-O
B~+OC doive étre un minimum.

I.° Supposons, en premier lieu, que I'une des distances , OA par
exemple , soit donnée, de telle sorte qu’il ne soit question que de
rendre minimum la somme OB-4OC des deux autres; @, 4, ¢ élant
respectivement les projections de A, B, C sur le plan indéfini. Alors:
le point O sera I'un de ceux d’une eirconférence ayant son centre
en @, et, en menant une tangente TU a cette circonférence par
ce point, il faudra, pour que OB4OC soit minimum , que les
angles BOT et COU soient éganx ; car, soit substitué & O un autre
point 3/ du cercle ou de sa tangente , infiniment voisin du premier,
du cété de T, il est clair que BO se trouvera diminuée d’'une quantité
00/.€C05.BOT , tandis que CO se trouvera augmentée d’'une quantité
00’.Cos.BOU. Or le caractére du minimum est que la diminu-

Tom. XII1. 46
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tion d’'une part se trouve exactement composée par I'augmentation
de l'autre, ce qui exige que lesangles BOT et COU soient égaux.

2.* La tangente TU étant perpendiculaire au plan du triangle
Aa2O , de I'égalité des angles que font OB et OC avec cette tangen-
te on peut conclure I'égalité des angles que font les mémes droites
avec ce plan,

3.° 1l suit de 1a que les distances des points B et C i ce plan;
lesquelles ne sont autre chose que les perpendiculaires bz, ¢y abaissées
des projections de ces points sur le prolongement du rayon 2O,
doivent étre dans le rapport de OB & OC. Mais si P est le point
ou le plan AaO rencontre BC et que p soit la projection de ce
point, évidemment située sur le prolongement de @O, on aura

bpicyi:bp:cp:: BP: CP;
donc on doit avoir aussi

OB:0C::PB:PC;

ce qui prouve que la dreite OB suivant laquelle le prolongement
du plan AgO coupe le triangle BOC divise I'angle BOC en deux
parties égales,

Rome, le 25 novembre 1822.

S RN s

Autre démonstration du méme théoréme;

Par M. Querrer , chef d'institution a St-Malo.

OBSERVONS d’abord que, lorsqu’un cercle et une ellipse, situéds
dans un méme plan,-n'ont qu'un seul peint commun, ils ont né-
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tessairement la méme tangente en ce point, Car, si la tangente a
Pellipse n’était pas en méme temps tangente au cercle, le centre
de celui-ci serait hors de la novmale,du point de contact ; de sorte
qu'en menant de ce centre une autre normale, elle serait plus
courte que le rayon, d'ou il suit que lellipse aurait un peint in-
térieur au cercle qui, conséguemment, devrait la couper en deux
points au moiuos. )

Observons encore que si un cercle et une ellipsoide engendrde
par la résolution d'une ellipse autour de son grand axe n'ont qu’un
seul point commun, la tangente au cercle en ce point sera situde
dans le plan tangent a lellipsoide au méme point. En effet, le
plan du cercle détermine dans l'ellipsoide une section elliptique
qui n’a qu'un point commun avec ce cercle et qui a pour tangente
en ce point l'intersection de ce plan avec le plan tangent a Pellipsoide,
intersection qui doit étre tangente au cercle par ce qui précede.

Cela poséd; soient A, B, C (Fig.6) les trois points dont il s’agit,
et O le point du plan donué dont la somme des distances a ces
trois-1a est un minfmum. Conduisons par OA et par la perpendi-
culaire A a, le plan AOez perpendiculaire 4 ce plan; et du pied
@ de la perpendiculaire Ag, comme centre etavec 20O pour rayon,
décrivons un cercle dans le méme plan. Il est clair que ce cercle
aura pour tangente en O la perpendiculaire TU au plan AOg. Main-
tenant si I'en décrit, dans le plan BOG une ellipse ayant ses foyers
aux points B et G, et dont le grand axe soit =BO-+O0C, et qu'on
fasse tourner cette ellipse autour de BC ; elle engendrera une
“ellipsoide dont la surface ne devra rencontrer notre cercle qu'au
seul point O; car si elle le coupait en un autre point S, on aurait
BS+-CS=BO+4CO, d'ou1, & cause de AS=AQO, on conclurait
AS4DBSH4-CS=A0-+4BO+CO, ce qui serait contre I’hypothése.
Donc, daprés la dernicre des deux observations faites ci-dessus,
la tangente TU au cercle au point O est dans le plan tangent en
ce point a la surface de lellipsoide; et, comme cette tangente est
perpendiculaire au plan AOa, il en résulte que le plan tangent &
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I'ellipsoide est aussi perpendiculaire au plan AOg ; donc réciproque=
ment ce plan lul est perpendiculaire, et par conséquent il passe par
la normale 2 l’ell;psmde au point O ; mais la normale & Vellipsoide
de révolution en chacun de ses points se confond avec celle de T'ellipse
génératrice , lorsqu’elle passe par ce point ; donc enfin le plan AOz
passe par la normale & 'ellipse dont les foyers sonten B et C et dont
BO et CO sont deux rayons vecteurs ; donc cette normale n’est autre que
la droite OP suivant laquelle le plan AOg rencontre le plan BOC, la-
quelle doit ainsi diviser en deux parties égales 'angle BOC des rayons
vecteurs. Lie plan mené perpendiculairement au plan donné, par
I'une quelconque des trois droites OA, OB, OC divise donc I'an=-
gle des deux autres en deux parties égales ; le plan mené par cha-
cune d’elles perpendiculairement au plan donné divise donc l’angle
des deux autres en deux parties égales (*).

(" M. W, H. T. observe quen supposant nulles les trois hauteurs Aa, Bb,
Cc, le probléme reviendrait & trouver , sur le plan d'un triangle donné, un point
dont la somme des distances & ses trois sommets soit la moindre possible; pro=.
bléme qui a été traité, ainsi qu'un grand nombre d’autres problemes analogues 5,
a la page 377 du 1.°F volume du présent recueil; mais que la situation des.
trois points donnés peut ne pas donner de minimum proprement dit; circonstance
qui doit également se reproduire dans quelques cas particuliers du probléme énoncé
4 la page 380 du XIIL® volume du présent recueil.

Nous observerons , & notre tour que , si le théoréme qui vient d’étre démontré .
est propre & jeler du jour sur la solution de ce dernier probléme , cette solution,.
toutefois , n’cn résulte pas immédiatement et reste encore a trouver.

Jr‘ D. G'
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ANALISE TRANSCENDANTE.

Consideérations analitico-géométriques , sur les solutions
particuliéres des equations différentielles du 1.+
ordre ;

Par M. J. L. Worsarp , répétiteur de mathématiques A
' Iécole d'artillerie de Metze

P Y e . e o e

ON sait que l'intégrale d’une équation différentielle du premicr
ordre renferme une constante arbitraire ; et que, par conséquent,
cette derniére équation peut étre considérée comme représentant une
infinité de lignes, dont on obtiendrait les ¢équations individuelles,
en faisant varier , depuis l'infini positif jusqu’a Pinfini négatif, le
paramétre arbitraire qui entre dans lintégrale compléte,

Mais on trouve aussi quelquefois des polynomes qui, sans étre
des cas particuliers de l'intégrale compléte, ni des facteurs com-

. dy TP
muns A tous-les coefficiens de Fll dans l'équation différentielle,

satisfont néanmoins aux conditions. exprimées par cette derniére.,
quand on les égale a zéro. Nos analistes modernes les ont appelés
Solutions particuliéres; ils en ont expliqué I'origine; ils ont donné
le moyen de les obtenir, sans résoudre I’équation différentielle pro-
posée , et ont fait voir que les lignes qu’elles représentent sont
les enveloppes de celles que reprisente lintégrale compléte.
Jai considéré le méme probléme dans un ordre inverse, c’est-
A-dire que jai cherché a déduire des propriétés des lignes enve:
Tom, XIII , n,° XI, 1. mai 1823, 47
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loppes la démonstration de I'existence des solutions particulitres ]
dans certaines équations différentielles, et i les déterminer , sans ré-
soudre les équations dont elles dérivent. Qnoiqu’en général il soit
peu important d’obtenir, par de nouveaux moyens des résultats
déja connus, j'ai pensé que néanmoins une mdéthode géométrique
pourrait offrir quelque intérét, parce que souvent elle rend sen-
sibles des raisonnemens difficiles 2 saisic, et que d’ailleurs elle m’a
“conduit & plusieurs conséquences importantes qui, je crois 4 n'ont
point encore été signalées.

Pour exposer convenablement la théorie que j'ai en vue, je suis

obligé de rappeler succinctement les propriéiés déja connues des
ligues enveloppes,

1. Soit ¢(x, ¥, €)=o0 une équation quelconque A deux variables,
renfermant un paramétre arbitraire ; on peut toujours imaginer une
ligne AMB (fig. 1), rapportée 4 deux axes rectangulaires, telle que,
pour une valeur déterminée du paramétre ¢, les coordonndes de
chacun de ses points satisfassent & I'dquation o(z, ¥, c)=o0. Géné-
ralement cetie ligne changera de figure et de situation par rapport
aux axes , quand on fera varier la valeur du paramétre ¢; ainsi,
elle pourra devenir suecessivement A‘M/B/, A”M/B/, ..., lors
qu’on remplacera ¢ par ¢/, ¢/, w.. On appelle enveloppe des lignes
représentées par équatior ¢{z,y,c)=o0, une ligne M M/ M~ ...
tangente commune a toutes celles quon peut obtenir en faisant varier 1a
valeur de ¢, depuis l'infini positif jusqu'a l'infini négatif; et les
fignes AMB, A’M/B’, AYM”B”, .... qu'elle touche, toutes en sont
dites les enveloppées.

2, Soient AMB, A’M/B/, deux enveloppées consécutives, dont
les équations sont respectivement ¢(z,y, c)=o0 et o(z, ¥, ¢)=o0;
elles différent d’autant moins de forme et de position que la différence
c—c’' est plus petite ; et , si l'on vient a la supposer tout a fait
nulle, la branche M’/A’ de la seconde viendra se confondre avee
la branche MA de la premitre ; d’od il suit qu'd mesure que ¢
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sera devenu moins différent de ¢, le point K d'intersection des deux
courbes se sera mu sur la branche MB de la premiere, de maniére
3 coincider avec le point M de celle-ci, lorsque ¢/ sera devenu
rigoureusement égal a ¢; donc les points communs i ]’enve!oppante
MM‘M/..... et a l'enveloppée AMB sont les points d'intersection
de cette derniére ligne avec celle qu'on obtient en faisant varier
infiniment peu le parameétre ¢ dans I'équation (', ¥, ¢)=o0. Donc
pour avoir les coordonnées de cette intersection, c’est-d-dire du
point M, il faut résoudre simultanément les deux équations

. d. 2 Y C )
’(x;y’o)=°) ¢(x,y':€)+ ——{-?%udc':o . *)

3. On en conclut ordinairement que, la premiére réduisant la

saconde, elles peuvent étre remplacées par le systeme de ces deux-ci ¢

dse(x, v, OF
oz, y,6)=0, §(dc, =05

mais cette simplification , employée inconsidérément, peut quelque-
fois faire négliger des racines communes; c’est ce qui aurait licu,
par exemple, si on l'appliquait & I"équation

(rﬂ.‘._y’)?__x,i-c:o P
qui représente un cercle, d’un rayonm constant=r, ayant son centre

en un point déterminé de l'axe des #. En la différentiant par rapport
a ¢, on trouve 1=o0 d’ol l'on serait tenté de conclure que deux

—

(*) On trouve ce point de doctrine nettement déduit de la série de Taylor ,
sans considération d’infiniment petits , ou aulres ¢quivalentes , & la page 363,

du Il volume du présent recueil.
J: Do G‘
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» . - . A [ X
cercles consécutifs ne se coupent pas. Mais on reconnaitra faciles
' 1

ment Verreur de cette conclusion , si 'on eonsidére que (r*—y?*)* peut
étre pris avec deux signes; et que, par conséquent, supposer que
dec est la différence des deux polynomes

3 k]

(r*—y*j—y+e , (FP—y*y—z4ctde,

c¢’est chercher seulement les points d’intersection de demi-cercle AMB
(Fig.2) avee le demi-cercle A’M/B/, et ceux du demi-cercle ANB
avec le demi-cercle A/N/B/; tandis qu’on omet les points K et L
d’intersection du demi-cercle ANB avec le demi-cercle A’/M/B/, les—-
quels se confondent avec A et B, lorsque la distance CC’/ des
- centres devient nulle. Nous en conclurons que la simplification in-
diquée ci-dessus ne doit étre employée que quand l'équation ne
renferme aucun terme susceptible de plusieurs valeurs diffé-
reates, et que , dans le cas contraire , il faut combiner tour &
tour toutes les fprmes de Tune des équations avec toutes les
formes de Tautre. Ainsi, dans l'exemple précédent en considé-

T

rant (r*—y*)* avec le signe 4, dans la premitre équation, et avec
le signe - dans la seconde, le résultat de la soustraction eiit été

(r*—~y*)* —dc=o,
ou, a cause de d¢ infiniment petit
r’=—y*=o, dou y==r et 2=

Clest ce qu'on aurait également trouvé, au surplus, en mettant
Péquation sous la forme
r*e—y?*—~(x—c)*=o.

Néanmoins, pour simplifier les raisonnemens, je suppeserai que
Péquation ¢(#, ¥, ¢)==0 n’a aucun terme susceptible de plusicurs
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taleurs. Dans beaucoup de circonstances , on pourra lui donner cette
propriété , en faisant disparaitre les radicaux, et, dans tous les cas,
au moyen de la remarque précédente, il sera facile de modifier
convenablement les principes qui vont étre établis,

4. Puisque le systéme des deux équations

d.¢(x, v,
¥x,y,c)=o0, ._3(.%61_2_ =0

détermine ceux des points de Ienveloppde AMB (Figt) qui
appartiennent i ’enveloppe MM’/M....; élimination de ¢, entre ces
deux équations , donnera l'¢quation de I'enveloppe. Cette régle estla
conséquence des premiéres notions de la géométrie analitique. Je
vais actuellement examiner quelques resultats auxquels conduit son
application ; en représentant, pour plus de bridveté, la fonction ¢(z, ¥, ¢)
par la simple lettre o.

d . 4, . .
Dabord -dﬁ sera indépendant de ¢, toutes les fois que ¢ sera de
c

la forme mec4n, ot m et n sont des fonctions de &, y et des
constantes autres que ¢. Alors il n’y aura pas lieu a élimination,
et deux enveloppées quelconques seront représentées par les équations

metn=o, mc’'4n=o.

Sim estindépendant de # et de y, ces deux équations seront in~
compatibles, et les lignes qu'elles représenteront n’auront aucun point
commun ; ainsi, par exemple , en faisant varier ¢ dans P'équation
¥4az+4c=o0 , on oblient une suite de droites paralléles. Si, au
contraire m cootient les variables, ou seulement l'une d’elles, les
deux équations ne pourront étre satisfaites qu’en posant séparément
m=0, n=o0, et par conséquent toutes les enveloppées se coupent
en des points déterminés , et en nombre fini. Ainsi, par exemple,
en faisant varier ¢ dans V'équation y*=cz, on obtiept des paraboles
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qui passent toutes par l'origine et dont les branches ne se rencon-
trent pas.

. . . 1 dg .
Mais, hors le cas ci-dessus indiqué, a—;—connendna encore ¢, et

en Dégalant a zéro, on en tirera, pour ce paramétre des valeurs.
qu’on substituera dans I'équatiorr ¢=o0. Le résultat de la substitution-
des valeurs de ¢, fonction de z et y , donnera les enveloppes cher~
chées. Mais le résultat de la substitution des valeurs constantes don-
nera des cas particuliers de ['équation ¢==0. Ce seront ceux pour:
lesquels deux enveloppédes consécutives se confondrent en une seule;:
et par conséquent on trouvera, par ce moyen, toutes celles qui:
servent de limites aux autres (¥).

Par. exemple , en différentiant par rapport a ¢ I'équation.
y=(1==catc?,,
qui représente une droite, on trouve-

m—2083c*=0,.
d'ott: .
£==0 et c=3 %

Si on substitue ¢==o dans la proposée, on ftrouvera y—z, équa=.
tion de la droite BG (Fig.3). C’est, parmi toutes les enveloppées:,
celle qui fait le plus grand. angle aigu avec 'axe des #. Si, au con-
traire on substitue ¢=3z , il viendra.

— 403
y-x-——;;x 9

(* On trouve un exemple de l'introduction de ces enveloppées particulitres
dans Péquation générale des enveloppes, dans.un article de M. Poncelet sur la
shéoric des polaireg xéciproques ( Anmales, tom, YIII, pag. 210mw226. )
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&quation de Penveloppe de toutes les droites BC, B/C’, B/C”,
BHC, crnee
5. Toute ligne peut étre considérée comme I’enveloppe d’une
infinité de systémes d’enveloppées différentes. L’équation générale de
celles-ci est arbitraire ; elle doit seulement renfermer un paramétre
variable,, et représenter une ligne tangente a la premiere en des
points qui varient de situation lorsqu’on fait varier ce paramétre.
6. Supposons présentement que l'on élimine ¢ entre ¢=o et

d d . d
3—2 da ﬁ; dy=o; en faisant, pour abréger ﬁ =p, le résuliat

sera une fonction de #, y et p. Représentons-la par ¢/=o0, et
<herchons quelles sont les lignes dont elle exprime les propriétcs.

Une ligne MM/M”.... (Fig.£) peut étre regardée comme repré-
sentée par I'dquation ¢/=o si, en substituant dans cette équation,
A la place de # et y, les coordonnées de I'un quelcenque M. de
ses points,, on en iire pour p la valeur du cocfficient de #£ dans
Téquation de la tangente MT en ce méme point. Or on peut tou-
jours , dams I'équation ¢=o0, donner a4 la constante ¢ une valcur
telle que la ligne représentée par celle équation passe par le point
M, et la valeur de p, tirde de &=o0, déterminera la direction de
la tangente & cette ligne AMB. Donc la ligne MM/MY..... doit étre
telle que si, par un quelconque de ses points ,.on fait passer une
des lignes représentées par ¢=o0, elle ait avec cette ligne une tan-
gente commune; donc elle doit étre ou l'un des cas particuliers
de ¢==0, ou l'une des enveloppes des lignes représentées par cette
derniére équation,

7. 1l s’agirait actuellement de déterminer I’équation des enveloppes
telles que MM/M......, sans étre obligé d’intégrer I'équation ¢’=o0.
pour cela il suffira (5) de trouver I'équation d’'une ligne qui soi
tangente & MM/M”....., et dont le point de contact prenne succes=-
sivement différentes positions , quand on fera varier un paramétre.

8. Les enveloppes cherchdes peuvent étre courbes ou droites ;
je considérerai d’abord les premiéres,
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Soit MT ( fig. 4 ) une tangente a I'enveloppante courbe MM/M”.... ;
1 je méne a toutes les enveloppées des tangentes QT , QL7 ...,
paralléles a cette premiére droite , la suite des points de contact
Q, Q, Q7,.... déterminera une courbe QQ/Q”... qui passera
par le point M. Je dis de plus qu’en ce point elle sera tangenta
3 MM’M”.... En effet, la position d’une tangente se détermine en
prenant la limite de la position d’'une corde dont P'une des extré-
mités s'approche indéfiniment. de l'autre , considérée comme fixe.
Or, si I'on considére la corde MQY , il est évident que l'extrémité
Q’ s’approchera indéfiniment du point M/, quand ce dernier s’ap-
prochera du point M, et qu’ils se confondront & la limite, puis-
qu'alors M/T’ sera paralltle & MT ; donc la limite de la corde MQ’
est la méme. que celle de la corde MM’ ; mais cette dernidre étant
corde de la courbe MM’M*... a pour limite la tangente MT ;
donc cette derniére.droite est aussi tangente a la courbe transversale
QQQ”.

Nous pouvons conclure de.Id que les enveloppes cherchées se
trouveront parmi les enveloppes des transversales QQ/Q* ..., dont
il faut présentement chercher. I'dquation générale.

Si l’équatioh ¢=o0 était donnée, en y mettant pour ¢ la valeur
qui convient & I'enveloppée A/M/B/, on trouverait les coordonndes’
du_point Q/ en résolvant simultanément les équations

de  do-
$=0, 4 '@‘P-':O )
aprés avoir mis pour p, dans la derniére, la tangente tabulaire
de l'angle que fait la droite Q'T’ avec 'axe des # ; et , poux
obtenir I’équation de la transversale QQ'Q”..., il faudrait éliminercen-~
tre les deux. mémes équations; mais (6) le résultat de cette élimina-
tion serait ¢/=o ; donc cette derni¢re équation , en y considérant

p comme une constante arbitraire, représentera les transversales
cherchées, '

%
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9. Je suppose présentement que lenveloppe MM/M”...., soit
une droite (fig.5) faisant avec l'axe des z un angle «. La trans-
versale représentée par l'équation. ¢’=0 se confondra avec cette
droite , lorsqu'on y fera p= Tang. «; de plus, MM/ étant la limite
des enveloppées-sera aussi lalimite des transversales. Donc les droites
enveloppes des lignes représentces par ¢=o seront des cas parti-
culiers de celles que représente I’équation ¢/=0, et se trouveront
parmi celles de ces lignes qui servent de limites aux autres , et
par conséquent la valeur de p qui leur correspond satisfera a la condi-
tion g% =0..

Mais il est. en général trés-diflicile de trouver les valeurs infinies
qui satisfont & une équation, parce qu’elles proviennent de” la dis-
parition des termes qui représentent les plus hautes. puissances de
Finconnue ; et par conséquent, pour avoir les valeurs qui corres-

pondent a des paralléles aux.y, il faudra faire p= z , dans. I’équa~
9

tion ¢/=o0, et si ¥/=o0, représente le résultat de cette substitution, on

. dy
cherchera les valeurs nulles que l'on peut tirer de d4( =o.
q

10. Nous pouvons donc conclure qu'a I'exception des fonctions
de z seul, toutes les solutions particuli¢res de I'équation ¢’=o0 s’obtien-
dront en éliminant p entre-

der-

¢'=o0 et -

dp o 5

ll

mais, comme les transversalés dont il a été question dans les n.°?
précédens peuvent avoir des enveloppes et des limites autres que
tes enve'!u;:pes des lignes représentees par l'équalinn ¢=o0, on peut,
en suivant cette m-thole, trouver des facteurs étrancers 3 la ques-
tion. 1u gédometiie semble n’offrir pour les recon itre aucun moyen
antre que |a veritication & posteriori; wmais voici quelques théoremes
que lenalyse n'avair pas, & ce que je crois, fait encore décourir,
dvw, Aild. 43
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et qui sont la conséquence immédiate des remarques faites ci-dessus

( 4’ 8’ 9’ )‘
1.° Lorsque la différentielle -g; est indépendante de z et de y,

les solutions particuliéres de I’équation différenticlle ¢/=o0 ne peuvent

représenter que des droites, et sont conséquemment décomposables
en facteurs de la forme y—mz—n=o.

2.° En ce cas, si p, p/, p/”, ... sont les valeurs de p tirdes

: , . de . N~
de 1’équation & =0 les solutions particulires correspondantes

seront

y—pE—n=0, §—p/'B—n'=0, Yy=p/Z—n"=0, G

et la question sera réduite & trouver les valéurs de n, n/, n/, .
3.° Lorsque I'équation ¢/=0 a des solutions particuliéres, fonctions

. d . o .
de y seul, I'équation Eg =o est satisfaite par p=o0; et,si l'on

substitue cette valeur dans le polynome ¢/, les solutions cherchées
seront les facteurs de la forme y—4#.

4.° Pour trouver les solutions particulidres fonctions de z seul ]
on indique ordinairement la régle suivante : « Remplacez, dans I'équa-

. N 1 . ’ ’
tion ¢'==0, p par 7’ et si ¥/ =o représente le résultat de cette

- . d¥
substitution, éliminez ¢ entre V=0, et —&I- =0 ; vous trouverez

» alors toutes les solutions fonctions de x scul, et en outre les
» solutions fonctions de z et y déja obtenues par la premitre
méthade ». Les principes établis ci-dessus fournissent le moyen d’abré-
ger ce calcul ;il est évident , eneffet, que toutes les fois que ¢'=0

. N . , . Ay
a des solutions particulitres , fonctions de # seul , I’équation — =o

est satisfaite par ¢g=0, et qu'on les obtiendra toutes en substituant

zéro au lieu de ¢ dans le polynome ¥/, et cherchant cnsuite ses
diviseurs de la forme z#—4£.



SURFACE ET VOLUME DE LA SPHERE. 343

= — |

GEOMETRIE ELEMENTAIRE.

Recherche , par un procédé nouveau, dela surface et
du volume de la sphére et de ses parties ;

Par M. GERGONNE,

IL y 2 plus de deux mille ans que , pour déterminer la surface
et le volume d’'une sphére, on est dans l'usage de la considérer
comme la limite du corps engendré par la révolution d’un demi-
poligone régulier d’'un nombre de c¢otés pair, tournant autour de la
diagonale qui en joint deux sommets opposés.

Mais on peut, tout aussi naturellement, considérer la sphére
comme la limite du corps qui serait terminé par une suite de fu-
seaux cylindriques circonscrits tous égaux entre enx et d’un rayon
égal au sien, se réunissant tous & ses deux poéles, et passant par
les cotés d’un poligone régulier quelconque, circonscrit & son équa-
teur: et c’est méme ainsi quon l'envisage dans la construction
des aérostats. Mais il n’est pas & notre connaissance qu’on ait ja-
mais tenté de parvenir par cette voie a la détermination de sa sur-
face et de son volume.

Nous ne prétendons pas que cette nouvelle maniére de parvenir
au but ait sur le procedé vulgaire des avantages bien décidés; mais
“nous croyons devoir observer 1°, quil n’est jamoais sans intéréu de
voir comment, en géométiie, des procédés trés-différens conduisent
exaclement au méme résuliat ; 2° que, si la méthode vulgaire a sur
celle-ci I'avaniage de ne décowposer la surface et le volume du



344 SURFACE ET VOLUME

corps dont la sphére est la limite qu'en parties terminées par des
lignes droites et des arcs de cercles senlement, par une sorte de
compensation, celle-ci ne décompose la surface et le volume de ce
méme corps qu'en parties égales, 3.° que cette nouvelle manicre
de procédé exige la détermination préalable de la surface et du
volume de certains corps que l'on rencontre souvent dans les arts
surface et volume qui , comme nous le verrors, sont exactement
quarrables , et cubables et qu’on peut étre bien aise d’avoir appris , che-
min faisant , & évaluer ; 4.° que la détermination de la surface et celle
du volume de la sphére qui, suivant le procédé ordinaire , dépen-
dent de deux théories distinctes , se rattachent, en suivant celui-ci,
A une seule et unique théorie ; 5.° qu'enfin quand bien méme la
comparaison entre les deux procédés ne ferait qu’offrir aux commen-
cans le sujet d’un utile exercice, ce serait encore un motif suffisant
pour ne point négliger la considération de cclui qui va faire le
sujet de cet article. ’

Il nous aurait sans doute éi¢ facile de revéiir ce qu'on va lire
des formes rigoureuses auxquelles M. LEGENDRE , & I'exemple d’Eu-
clide, a cru devoir assujettic ses Elémens de géométrie; mais pré-
cisément parce que cela est facile, nous avons cru, dansla vue
d'+bréger, devoir nous en dispenser, en nous appuyant simplement
sur la considération des limites; nous nous sommes méme bornés
a indiquer bri¢vement les points pour lesquels cette considération
est nécessaire, en abandonnant au lecteur le soin d’un facile rem-
plissage. On pourra, au surplus, suppléer 3 nos omissions par un
raisonnement dont on trouve le modcle 4 la page 183 du V.* vo-

lume du présent recueil, et qui nous parait le plus propre a em-
ployer en ces sortes de rencontres.

1. L.a détermination de la surface et celle du volume d'une
sphére se réduisent évidemment & ces deux points; 1.° détermi-
ner l'aire du quadrilatére curviligne compris entre deux méridiens
et deux paralléles quelconques & l'équateur ; 2.° déterminer le
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volume de la pyramide sphérique qui, ayant ce quadrilatére
pour base , a son sommet au centre de la sphére. On voit
en effet , 1.° qu'en supposant que les paralleles dont il sagit
passent par les deux poles , on obtiendra la surface du fu-
seau et le volame de l'englet sphérique compris entre les plans
de deux méridiens quelconques; d'ot il sera facile de conclure
la surface ‘et le volume de la sphére entiére ; 2.° qu’en supposant,
au contraire, que les deux méridiens entre lesquels le quadrilatére
se trouve compris sont distans 'un de 'autre d’une circonférence
entiére,, on obtiendra la surface de la z6ne sphérique comprise entre
les plans de deux paralléles quelconques et le volume du corps
terminé par cette zéne et par deux surfaces coniques droites qui, ayant
mémes bases qu’elle, auraient leur sommet commun au centre de
la sphére; d’our il sera facile de conclure la surface de la calotte
et le volume du secteur sphérique, ct par suite lasurface et le vo~
lume de la sphére entiére.

Il y a méme un évident avantage a procéder ainsi; car, sil'on
déterminait d’entrée la surface et le volume de la sphére entidre,
on serait obligé ensuite de faire de nouveaux frais pour parvenir 3
I'expression de la surface et du volume de ses diverses parties.

2. Considérons donc le quadrilatére compris entre deux méridiens
et deux paralléles; les arcs de ces paralléles interceptés entre les
méridiens étant des arcs semblables , on pourra leur circonscrive, a
Pan et & l'autre, des portions de polygones réguliers d'un méme
nombre de cotés, dont les cotés homologues seront parallcles et
distans du centre de la sphére d’une quantité égale 4 son rayon.
On pourra donc concevoir-que , par ces mémes ¢61és homologues ,
on ait fait passer une suite de surfaces de cylindres droits circonscrits
a la sphére, lesquelles se couperont consécutivement , suivant des
courbes planes , situées dans les plans des méridiens conduits par
les sommets homologues des deux polygones. En faisant donc abs-
iraction des parties de ces surfaces cylindriques qui excedent leurs
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intersections consécutives , ainsi que de celles qui sont au-dela des
plans des deux paralléles, on obtiendra une surface toute com-
posée de portions de surfaces cylindriques de méme rayon, et de
méme que les arcs des deux paralléles sont limites des portions.
de polygones circonscrits , la surface de notre quadrilatére curviligne:
sera la limite. de cette surface composée de surfaces cylindriques.

En outre , si 'on imagine deux pyramides qui, ayant leur sommet
commun au centre de la sphére , aient pour bases ces deux mémes
surfaces, celle qui aura pour base le quadrilatére faisant partie de
la surface de la sphére,sera la limite de celle dont la base sera.
composée de parties cylindriques.

Notre probléme se trouve donc réduit & évaluer la surface de
cette derniére base; ainsi que le volume de la pyramide qui lui
répond , et a examiner ensuite ce que deviennent I'une et lautre
a la limite, Mais cette surface sc trouve composée de parties éga-
les entre elles, en nombre pareil a celui des cotés des deux por-
tions de polygones; et la pyramide qui lui répond peut aussi étre
décomposée en un pareil nombre de pyramides égales, ayant ces
parties pour bases ; de sorte que tout se-réduit & déterminer I'aire
de la base et le volume de I'une quelconque de ees pyramides et
4 les multiplier par le nombre des cétés des deux portions de polygones,

Chacune de ces pyramides partielles fait partie d’un onglet cylin-
drique d’un rayon €gal & celui de lasphére , lequel se trouve borné,,
d’une part par la surface convexe: du. cylindre dont il fait lui-méme
partie , et par les plans de deux meéridiens, c’est-a-dire , par deux
plans passant par un méme point de I'axe du eylindre , et ayant
leur commune section perpendiculaire & cet axe , et conséquem-
ment dirigée suivant un de ses diamétres. La pyramide partielle
est détachée de l'onglet par deux plans passant par 'axe du cylin-
dre, et coupant conséquemment sa surface convexe suivant deux
parall¢cles & ce méme axe.

3. Concevons donc que, sur l'axe d’'un cylindre droit, on ait
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pris un point arbitraire, par lequel on ai: conduit un d'amétre,
qu’on ait fait passer deux plans par ce diamndtre et deux autres plins
par l'axe du cylindre ; ces quatre plans dc¢tacheronmt de ce corps
une pyramide quadrangulaire & base convexe, et otre probléme
se trouvera reduit a déterminer l'aire de la base et le volume de
cette pyramide.

Or si, par le méme diamdtre , on conduit un plan perpendi-
culaire a 'axe du cylindre, et donnant conséquemment une scction
circulaire, notre pyramide et sa base se trouveront la somme ou
la différence de deux autres dans lesquelles ce plan circulaire serait
un des quatre plans qui les limiteraient ; de sorte que le probléme
se réduit a déterminer I’aire de la base et le volume de la pyramide
pour le cas seulement od un des deux plans qui ne passent pas
par l'axe du cylindre est perpendiculaire 4 cet axe.

Soient ( fig. 6 ) C le point pris arbitrairement sur Paxe du cy=
lindre, AB le diamétre arbitraire mené par ce point, AFB celut
des deux plans qui, passant par ce point , est perpendiculaire
I'axe du cylindre AF/B,l'aatre plan passant par ce diamétre, et
enfin CDD’ et CEE/ les deux plans passant par I'axe; la pyramide
dont il s’agit aura pour base le trapéze convexe DD’/E’E et son
sommet au point G, et il s’agira d’évaluer laire de la base et
le volume de cette pyramide.

Concevons qu’ayant circonscrit & I’arc de cercle DE une portion
de polygone régulier quelconque , on la considére comme le pé-
rimctre de la base d’une portion de surface prismique droite ayant
méme axe que le cylindre et terminée par sa rencontre avec les
trois plans DCD/, D/C’E/, E/CE , et qu’on fasse de cette surface
la base d’une pyramide ayant également son sommet en C; on
congoit que la pyramide cylindrique sera la limite de la pyramide
prismique , et que la base de la premiére sera la limite de la
base de la seconde. Tout se réduit donc a asssigner l'aire de la
basc et le volume de la seconde, et d’examiner ce que deviennent

)

June et l'autre & la lumite.
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Mais si, par ’axe du cylindre et par les sommets de la portion de
polygone circonscrite & 'arc DE on congoit des plans, ces plans
diviseront la pyramide prismique en plusieurs pyrawmides ordinaires
a bases trapézes ; et il est clair que, pourvu qu’'on sache assigner
Yaire de la base et le volume de l’'une quelconque d’entre elles,
c'en sera assez pour pouvoir assigner 'aire de la base etle volume
de la pyramide prismique totale qui en est- la- somme.

4. Soit donc le trapeze DD/E/E (fig. 7) la base de I'une de ces
pyramides partielles ; de mani¢re que DF soit un des c6tés. de la
portion- de polygone régulier dont il vient d’étre question ; son mi-
Jiecu M sera son point. de contact avec l’arc de cercle ; et cette base
touchera la surface du cylindre suvivant la droite MM/ parallele &
DD/ et EE’. Abaissons sur le diameétre- AB les perpendiculaires
DD/, EE#, MM/ abaissonsaussi DG perpendiculaire entre les
deux premicres de ces. droites ; menons M/M/ et le rayon CM,
menons enfin. un autre rayon CF, perpendiculaire a2 AB;la droite
FE/ paralléele & Taxe du cylindre ainsi ‘que la droite €F/.

Les triangles rectangles CFF/ et MMM/ sont semblables comme
ayant les c6tés.paralléles chacun achacun; et les triangles rectangles
CMM” et EDG le sont également, comme ayant les c4tés perpen-
diculaires chacun a chacun; de sorte.qu’on a les deux proportions,

MM’/:MM” .. FF*.FC,.

MM/ :DG :: MC: DE ;.

multipliant- ces proportions par ordre, en supprimant les facteurs

communs, observant que MC=FC , et remplagant DG par son
égal. DVE, il viendra

MM/:D”E/ . : FF/ . DE;.
d’oir

DEX
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DE XXMM’ =FF/<XD/E",

mais le premier de ces deux produits exprime Paire du trapize
DD/E’E.; donc le second Pexprime dgalement; c'est-a-dire que ce
trapéze est équivalent & un rectangle qui, ayant pour hauteur la
plus grande largeur FF/ de la sarface convexe de longlet cylin-
drique , aurait ponr base la projection de la hauteur DE de ce
trapéze sur le diameétre AB..

Quant au volume de la pyramide qui, ayaat ee trapéze pour
base , &4 son sommet au point C, en remarquant que CM=CF en
est la hauteur, on en conclura que ce volume a pour expression
Paire du rectangle dont il vient d’étre gquestion , multipliée par le
tiers. du rayon du cylindre.

On conclura facilement de la (3) 1* que la base de la pyramide
prismique circonscrite & la pyramide eylindrique dont la base est
le quadriletére DD/E’E (fig. 6 ) est équivalente a un rectangle qui
ayant pour hauteur la plus grande largeur FF/ de la surface con-
vexe de I'onglet, aurait pour base la projectien sur le diamétre
AB de la portion de polygone régulier circonserite a I'arc DE;
2° que conséquemment le volume de cette méme pyramide pris—
mique est le produit de la multiplication de l'aire de ce méme
rectangle par le tiers du rayon du cylindre.

5. En passant donc de 13 & la limite, om reconnaitra 1° que
le trap2ze cylindrique DD/E/E lui-méme est équivalent 3 un rectan-
gle qui, ayant pour hauteur la plus grande largeur FF/ de la
surface convexe de 'onglet cylindrique, aurait pour base la projec-
tion de Parc DE sur le diamétre AB; 2° que le volume de Ia
pyramide cylindrique qui aurait ce trapéze pour base et son som-
met en C est le produit de la multiplication de l'aire de ce méme
yectangle , par le- tiers da rayon du cylindre.

Si Ton fait présentement attention 3 ee que nous avons dit

dom. XIIL. 49
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ci-dessus (3), on verra que les mémes choses doivent encore avoir
licu , lors méme qu'aucune des deux faces planes de Tonglet
n’est perpendiculaire & I'axe du cylindre ; pourvu que son aréte
rectiligne , intersection des plans de ces deux faces, continue d’étre
perpendiculaire 3 D'axe du cylindre , c'est-a-dire, d'en é&tre un
diamétre. )
Il résulte de 13 1° que pour diviser la surface convexe d'un
onglet cylindrique , dont l'aréte rectiligne est un diaméwre du_ cy-
lindre , en parties qui aient entre elles des rapports donnés, il suffit
de diviser son aréte recti\igne‘ ‘en parties qui aient entre elles les

mémes rapports , et de conduire ensuite , par les points de division,
des plans perpendiculaires a cette aréte ; 2°. que pour diviser son
volome en parties qui aient entre elles des rapports donnéds, il
faut, aprés avoir, par ce qui vient d'dire dit, partagé sa surface
convexe en parties ayant entre elles ces mémes rapports, conduire
des plans par I'axe et par les lignes de division. Tl est digne de
gemarque que toutes ces opérations puissent étre lexécutées . par
une géométrie rigoureuse. '
On voit aussi 1°. que la surface convexe totale de l'onglet cy-
Jdindrigne dont l'aréte rectiligne est un diamétre du cylindre est
£équivalente a celle d’'un rectangle qui, ayant pour base ce méme
diamétre, aurait pour hauteur la plns grande I'argeur de cette sur-
face; 2°. que lc velume total de I'onglet est les deux tiers de
celui du prisme triangulaire circonscrit (*). Cette surface convexe
et ce volume sont donc rigoureusement quarrable et cubable ; et
il est fort remarquable que ce soit la face convexe de l'on-
glet, dont le développement est terminé par des courbes trans-
cendantes , qui jouisse de cette propriété a I'exclusion des faces pla-
nes quisont terminées par des courbes algébriques fort simples.

("} Bezout avait déja déduit cette derniére proposition du calcul intégral;

mais seulemeat pour le cas o I'une des deux faces planes de Ll'onglet est
perpendiculaire & I'axe du cylindre. (Poyez som cours)
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6. Soient présememen; , sur un hd{misphére APB ( Fg 3 )', denx
petits cercles paralleéles’ & celui qui seit de base 3 l'hvn:isphére'; et
concevons qu’ils soient conpés tous trois en M, M/, N~ p‘nr un méme
méridien. Par ces points d'intersection menors des tangentes i ces
trois cercles , prenons arbitrairement, sur la prehﬁém MD=ME, par
Faxe C/P et parles points D et E, faisons paster des plans qui
détermineront sur les dcux autres tangentes des parties M/D/=M'E”
et M”/D/”"=M*E/. Les trois droites DE, D/E/, D”E/ appartien~-
dront ainsi 4 la surface d'un méme cylindre circonscrit a la sphére,
et la portion DDVE’E de cette surface sera (5) équivalente 4 un
rectangle ayant pour hauteur D”/E/ et ponr base la distance CC/
entre les centres des deux petits cercles; et cela soit que ces pelits
cercles appartiennent 3 un méme hémisphére ou qu'ils se trouvent
situés dans les deux hémisphéres opposés ; et, quant 4 la pyramide
qui , ayant cette méme surfage poar base, aura son sommet an centre de
I’hémisphére , son volume aura pour expressionle produit de la multi-
plication de l'aire du rectangle dont il vient d’étre question par le tiers du.
rayon du cylindre ou , ce qui revient au méme, de celui de la sphcre.
Si nous revenons présentement A notre quadrilatére sphérique-
considéré ci-dessus (2) et compris entre deux méridiens et deux
paralléles quelconques , nous verrons que, d’aprés ce qui précede,

I'assemblage de portions de surfaces cylindrigne dont il est la li-
mite est équivalent 3 un rectangle qui ayant pour hauteur la lon.

gueur de la portion de polygone régulier circonscrite a I'équateur,,
de telle sorte que ses cOtés soient paralléles & ceux des portions
de polygones réguliers circonscrites aux deux arcs de paralleles qui-
terminent le quadrilatére, et pour hauteur la distance entre les:
centres de ces deux paralléles; et que le volume de la pyramide qui,.
ayant cet assemblage de portion de surfaces cylindriques pour basc ,,
4 son sommet an centre de la sphére , estle produit de l'aire de ce:
méme rectangle par le tiers du rayon de cette sphére..

7. En passant denc de 1a 3 la limite , on.reconnaitra.1°. que;,
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pour obtenirl’aire du quadrilatére sphérique comprisentre deux méridiend
et deux paralléles quelconques, il faut multiplier I'arc de 'équateur com=
pris entre les deux méridiens par la distance entre les centres des
deux paralléles; 2°. que, pour obtenir le volume dela pyramide
sphérique qui, ayant ce méme quadrilatére pour base, ason som-
met au centre de la sphére, il faut muliiplier l'aire de sa base par
le tiers du rayon de la sphére,

Et dela on conclurasans difficulté 1°. que 'aire du fuseau sphérique
est lz produit de la multiplication de I'arc de I'équateur gn’il inter-
cepte par le diamétre de la sphére, 2°. que I'aire d’une z6ne sphérique
A bases paralléles est le produit de la multiplication de la circon-
férence d'un grand cercle par la distance entre les eentres de ses
deux bases, 3°. que l'aire d’une calette sphérique est le produit
de la multiplication de la circonférence d'nn grand cercle par la fléche
de cette calotte; 4°. qu’enfin I'aire de la surface sphérique entitre est
le produit de la circonférence d’un grand cercle par son diamétre.

Et de 13 résultera encore que le volume soit d’un onglet sphé-
rique , soit du corps terminé par une zone et par deux surfaces conis
ques de mémes bases qu’elle , ayant leur sommet commun au centre
de la sphére, soit d’un secteur sphérique, soit enfin de la sphére
eatitre, est le produit de la multiplication de I'zire du fuseau, de
la zdane, de la calotte ou la surface sphérique entiére qui le termine
par le tiers du rayon de la sphére.
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]
QUESTIONS RESOLUES.

Solution des trois problémes d’'analise transeendante
énoncés a la page 247 du présent volume;

Par M. QuERRET , chef d'institution , & St-Malo.

O T W e W W s N N

LProsriue. Assigner la somme finie de chacune des irois
suites infinies que voici :

o @Cosx a3Cos.3x | a%Cos.52 a7Cos.g2

l . : — 3 5 — | 7 +ot o

R 1 Cos3x | 1.3 Cos5z , 1.3.5 Cosge
2% Cosat 2o ——+ =t o —

s
2T

30 Cos.xCos.y  Cos.axCos.2y |, Cos.3xCos.3y  Cos.4xCosfy
' 3 - a + 3 T 4

Solution. Nous allons déduire la sommation de chacune de ces
trois suites du théoréme que nous avons établi 3 la page 107 de
ce volume , et que nous rappelons en ces termes:

Si I'on représente par f(¢) la somme de la suite infinie

A+-Aat+A,a* 44,6844 00 ;

dans laquelle 4,, 4,, 4, ,... sont supposés représenter des coeffi-
gicus numcriques; les sommes des deux séries
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At A.0Cos.2} 4,0*Cos.2z 4 A,a*Cos.3z4 A 0\ Cosfrtui
A.+A4,aSin, 244 ,éa’Sinlzz-l—d*,ﬁ’fSin..%ﬁx-l—A ka?S'in.é‘x+...;

seront respectivement

f[2(Cos.z+y/ ::;Smx)]—i—f [a’ Cos 2~/ "--";Si'r_!.x)]’ )

2
e
fla(Cos.z+ 1/ 3Sin) ] —f[2(Cos #—y/ =i Sin.a)T:
& ) ) ) .. 3V__"—,?,- e - 0

_ €ela. posé, on. a

o, a3 ab al ay B R o
—_— T o —— — e— 02000 Arc (Tangﬁ zﬂ) ’;
I, 3. 5. 7- 9 ‘ )

donc 1.% la somme de. la série.

aCos.x, 23Cos.3x- + a’Cos.5r - alCos.72-

s

sera.

Arc [Téhg.~=~a(-—ﬂc‘)s,z'-lqv‘./.__..'}'Sin;x)] t~l-§;&rc‘[ Témg.-:a( Cos.z— v/ =1Sin )i

5

Soient. M le‘p.rgrréieri de ces arcs et N le~se‘c.o.nd4,: on: aura,, pour
o (oo MAN ;
la. somme de-la. séiie -—E— et de. p,lusa,
, Tang.M=a(Cos.zy/ =:Sinz)),

. :'Bangﬂ:g((]osa:——;{ —1Sinx); -
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oY
)

Tang.M+4Tang.N=24aCos.» ,’

Tang.MTang.N=a";
d’olx encore
1—Tang. MTang N=1—a";
doac o ,
. Tang.M4-TangN 2aCos.®
Tan“'(M-*_ N/- 1=Tang. MTang.IN T d
donc , .
24Cos.x\
M+N=Arc(Tang.= - ‘f) ;

——a

donc enfin

M+N= EArc(Tang.: 2aCos.x>

2 J—ga

qui sera conséquemment la somme finie demandée de la premxére
des trois séries infinies proposées.

Si I'on suppose a=1, ona

+N x x
——— = — Ar¢(Tang. =0 )= — %
= 2 Ar(Tang =)= T ;

donc, comme on le savait déja,

Cos.3x  Cos.5x  Cos.ne

3+5 7

k-
— =Co0s.z~
4

+n:-

4

quel que soit .

En second lieu



356 QUESTIONS

1 al 1.3 a% 1.3.5 ar .
e e T e =Are(Sin.=q):
a+t a 3 + 2.4 5 + 2.46 7 + ( %

ainsi qu'il est aisé de s’en assurer , en intdgrant par les séries la
fonction différentielle

de
T =dAr(Sin=a);

donc, la somme de la série

1 Cos3z 1.3 Cos.5z | 1.3.5. Cospr =
52§ = = —— —— - +"':
Cos.z+- a - 3 2.4 5 ' 2.6 7

sera

Arc(Sin.=Cos.z-+4/ =;Sin.z)4Arc/Sin.=Cos.2—/ = Sin.z)
i N - '2’ . -

Soient P le premier de ces arcs. et Q le. second; la somme cher-
glie sera donc '

P4+Q
2
a
et I'on aura: ; 7
Sin.P=Cos.z41/ =iSin.z,. e

Sin.@=Cos.z—y/ = Sin.z ’

don »
€os.P=y/ =2\ Sin.xCos.x,.
Cos.Q=1/ Fay=:Sin.xCos.x,.
done ’

€Cos.P
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Cos.PCos.Q=28in.zCos.x 3
on a dailleurs
Sin. PSin.Q=r;

donc
Cos.(P=+Q)=Cos.PCos.Q—Sin.PSin.Q=28in.2 Cos.x —r i

donc aussi
P~ Q=Arc(Cos.=2Sin.zCos.z—1),

et par suite

—_ = %Arc(Cos.:zSi‘n.xCos.x—x);

qui est conséquemment la somme finie demandée de la seconde des
trois séries infinies proposées.
Si T'on suppose z=o0, on a

P4Q

2

I
== Arc.(Cos.=m—1)=1=

i
donc, comme on le savait déja,

11 13 1 135 1 1359 ¢
a 3 ' 24 5 2467 2468 g

-+...:

Quant & la troisiéme série, on peut la mettre sous cette forme

Cos.(x4y) Cos.2(x+4-y) 4 Cos.3(x4y) Cosé(x-i—y)

1 - 2 " 3 + ?

Cos.(x—y) Cos.2(x—y) | Cos.3(x—y) Cos4 2 —y)
+ - L PO B ;—y + ..

£y

TO”L MI]. 50
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Or on a, (pag, 114 du présent volume )

N

Cos.x Cos.2x Cos.3x Cos.4x

— —— -+ AR +.=Log.24L0g.Cos.iz; -

c’est-3-dire

Cos.x Cos.2x Cos.3x _ Cos.bx

—

e > 3 4—1

w.=Log.2Cos 17 ;

en changeant donc, four & tour z en z-+y et z—y, il viendra

Cos.(xty) _Cos 2(x4y) + Cos.3(x4y) _ Cos.4(x+y)+

— - 3 i «=Log 2Cos.2(z+y)

Cos.(x—y)_ Cos.2(x—y) + Cos.3§x—y) __.Cos./;(x—_y) e L05-2 Cos = (x__y_ )
I 2 4

donc, en prenant la demi-somme

Cos.xCos.y 'Cos.szos.zy Cos.3xCos.3y S
1 - 2 + 3 '

—n==3{Log.2Co0s.5(2=y)-+Log.2Cos.:(z+v)}

ou encore

Los.xCos.y Cos.szos.zy+Cos.3xCos.3y
—_ > —

a : we=tLog 4Cos. 5 (x—y) Cos.2(xy)
mais

| 2Cos.;(#—y) Cos.;(z~+y) =Cos.z 4Cos.y

d’ola

4Cos 2 (x——y)Cos.E(x;-{-y) =2(Cos.2+Cos.y)

donc enfin, la somme finie de la troisitme des suites infinies pro-
Porsées est

¥
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1Log.(2Cos.z42Cos.y).

Si, au lieu de prendre la demi-somme des deux séries ci-dessus;
on prend leur demi-différence, on aura

Sin.xSin.y Sin.2xSin.ay -+ Sin.3xSin.3y

asso

1 2 3

- gZLog.:Cos.%(x-—r)'—'LOBJCOS5(‘"".7)} ;

Qu encore
Sin.xSiny _Sin.szin.zy + Sin.3x':Sin 3y —-Q-...=§Log. Cos.?(x__y)‘ ‘
1 2 o 3 Cos.z(x+4y)
Or, ,
Cos.;(x—y) __ aCos.j(x—y)Cos.i(x4y) _ Cosx+4Cosy
Cos.;{a4y) - 2Cos.23(x4y) - 14+Cos.(x4y) ’
done enfin
Sin.xSin.y zSin.axSin.ay+ Sin.3xSin.3y =1, Cos.x4-Cos.y
1 2 3 T g.1-}Cos.(m+y) *

Si, dans ce résultat et dans le précédent, on fait y==z, ils de-
viendront

Cos.2x  Cos.22x Cos.232  Cos.2fx

—— + 3 i = -:TLog.4Cos.x,‘

Sin2x  Sin.2ax | Cos23x  Cos.24x

— + 3

b 8 2

b ¢ 2Cos.x
+ccu = - Log. —_—— e
4 2 14 Cos.2x

En résumé, si nous faisons abstraction des divers résultats parti-
‘culiers auxquels nous sommes parvenus, et qui n’avaient pas é1é
demandés, nous aurons
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Cos.y aCos.x a3Cos3x a5Cos bx
o, *Arc(Tang.= 2 = _ ——}
1 > ( g 1—a? 1 3 5 . >

. . . 1 Cos3x 1.3 Cos 5
2°. ;Arc.8in.=12Sin.2Cos.z—1)=Cos 2+ —- —— % 5 4.4

. Cos.xCos. Cos.2xCos. Cos.3xCos.3
3.° ;Log.2/Cus.z4Cos.y)= o“; oy 20 2 2 x‘d 4

L T

résultats qu’au surplus on peut présentement vérifier d'un grand
nombre de maniéres diverses.

= e

QUESTIONS PROPOSEES.
Problémes de Géomeéltrie.

1L DETERMINER la surface convexe et le volume de l'onglet co~
nique détaché d’un cdne droit du c6té de sa base par un plan
passant par le centre de cette base.

"~ L Soit menée, sur un plan, une ligne droite d’une longueur
dgale & celle de la moitié de I'un des méridiens d’une sphére, pris.
d'un péle a lautre; et concevons que, par chacun des points de
cette droite on lui éléve une perpendiculaire égale en longueur au
paralléle passant par le point correspondant du demi-méridien ; de
maniére que toutes ces perpendiculaires aient lears milieux sur la
premitre droite. Les extrémités de ces perpendiculaires se trouveront
sur une certaine courbe fermée, ayant évidemment un centre et
deux diamétres principaux.

On propose de déterminer la nature de cette courbe, et d’en évae
luer la surface 2
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nee—

ANALISE TRANSCENDANTE.

Essai sur la sommation dune classe trés - génerale
de séries ;

Par M. Querrer , chef d'institution & St-Malo.

P A T T o A A s e A

n. PAR les premiers principes de la théorie des fonctions circulaires;

on a

2Cos.2Cos.u= Cos.(¢4-u)+4Cos.(1—u) ;
d'olt, en multipliant par 2Cos.s,
4Cos.tCos.uCos.p=2Cos.(#+4#)Cos.p F 2Cos.(¢~z)Cos.p ;

Mais si, dans la premiére équation , on change successivement 2
en #u et en #—uz et u en ¢, il viendra

2GCos.(t-}-u)Cos p=Cos.(t4u--¢)}Cos./14-u ~o);
2Cos.(7—u)Cos.o=Cos.(¢—u-}-0)+Cos.(t—u—r) ;
‘ee qui donnera, en substituant dans la seconde équation ,
4Cos.2Cos.uCos.p=Cos.(2-+ u~v)+-Cos.(z4u—r)
~+Cos.[t—utv)

4 Cos.(t etz my)
Tom. XIII, n.® XI1, 1.°% Juin 18a3. 5%
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En mulipliant de nouyeau celle-ci par 2Cos.z, il viendra
8Cos.zCos.uCos.¢Cos.z = 2Cos.(¢ Fu++) Cos.z~+2Cos.(¢-+u—vCos.z ;
~-2Cos. ({ —u++,Cos.z

2Co0s.(¢— u—#)Cos.z

mais, par la premicre équation,
2Cds.(t+u'+v)Cos 2=Cos.(¢4u4v4a)+Cos. t4utv—1) ;
2Cos.(t4u—r)Cos.x =Cos.(¢-zsv4-2)+Cos.(t-Hu—vr—2z) ,
2Cosi(t—u-4-v)Cos.z = Cos.(t—u—p+2)+Cos.(t—u+v —2) ,
2Cos.(t—u—¢)Cos.z = Cos.(¢—u—v-2) + Cos. t—t—vy—2) ;
substituant donc ces valeurs dans i’éqluat';o‘n précédente, elle deviendra
8C05.1C05.uC05.¢ Co8.8=Cs.(¢t +u {-v4 ) - C 3. (4t v 1) - Cos. (t=f-mipmmsc) 5
| | }cos.<t+u-v+sc‘)+cos.(t—u+v-x)

}Cos. (t—u4-v-4-x)4Cos. (t=u—p--x)

=} Cos. (tmmtpmmp=—2x)

et on pourrait ainsi pousser le procédé si loin qu'on voudrait.

2. Si présentement on fait s égal a 4z dans la premiére,
t~4u-v dansla seconde, a t4-u-v+4-2 dans la troisieme, et qu'en
outre on fasse z=s dans 1’équation Cos.d=Co5.z, on aura’

Pour un arc , Cosit=Cos s ,

Pour deux , 2Cos.zCos.u = Cos.s-}- : Cos.(s—2¢) ,

-4 ; Cos.(s—2u2)
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Pour trois ; 4003.1005.2:(308.?:Cos.s+-Cbs.<s~2t) ,

~Cos.(s—2u)
~-Cos.(s—2¢)

Pour qualre, 8C‘os.tCos.uCés.vCoS-x—“—:COSiH-COS-(S—”H' # Cos.[s=ma(ttu)) ;
+Cos.(s=~2u)-4- 1 Cos. [s==2(t-4)]
~+Cos. (sm2¢)+ ; Cos.[smm2 (4 ¢)] -
-Cos.(s=2x); Cos.[s=2(t4-a)] .

3 Cos.[s—2(uta))
3 Cos.[s~=2(vx)]

et ainsi de suite.

3. Si, dans [es résultats auxquels nous venons de parvenir , on
change respectivement #, u, ¢, x en fw—’, tw—u, L a—p ) 1—x,
il viendra

Pour un arc , Sin.z=-}Sin.s ,

Pour deux , :zSin.tSin.u:-—Cos.s—!—’;Cos.(s_.;gt) R |
=+ Cos.(s—2u)

Pour trois , 4Sin.lSin.uS'm.V=-—Sin.;-}—Sin.(s‘f—-zt) ;

=+ Sin.(s—24)

. -j—Sin.(;-—zg)'
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Pour quatee, 88iasSinuSin.eBin.xm=4Cos.s=Cos.(s=2t )+ £ Cos.li=2(t} 1)) 4
#=Cos.(s—2u)-} $Cos [s==2(t-4-)]
—Cos.(s—2¢)4 Cos.[s—2(u+)}
#=Cos.(s—2x)4 1Cos.[s—2(t4 x)]
o} 2Cos.[s==2(u$x)]

o~} 7Cos.[s7=2(v4-x)]
et ainsi de suite. .

4. Pour écrire ces formules sous une forme plus bridve et pouvoir
en généraliser I'expression , adoptons les notations que woici : 7,
¥, ¢, Z,... étant des quantités en nombre quelconque , et ¥ la
caractéristique d’une fonction quelconque ; nous poserohs

EF()=F()4+F @)+ T ) +Fl2) 4.
EF ¢, u)=F(, 0)+F(t, o)+F(u, o)+ F(t, £)+ F(u, 2)+F(, 2) 4
SF(¢, u, 0)=F(t,u, o)+ F{,u, 2)+F(, v, 2)+F(@, v, 2)+u

o . . L] - . . Y . » . o . » - . 'Y . . -

On voit d’sprds cela que, 51 les quantités 2, ¥, £, Zy.0e0en
sont au nombre de 2z, )

n
=F(8) aura — termes ;
n ne——x .
ZF(z , u) aura  ~—. termes,
2
. n =i n-—2
¥, u,v) aura ~—.——.—— termes,
1 2 3
n n=—1 n—2 n—3
2F(¢,u,v,x) aura —- iy termes ,
X 2

- P -
» . . . - Y - Py . - » . . ° . . [ a -
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On voit assez, d'aprés cela, ce que signifieront
= Sins—as) , B Sin.[s—2(+0)], = Sinfs—a(but)], i

Cos.(smm22) , ZCos.[s—2(42)], 2Cos.[s—n(1+u+p>] -

el toutes les autres expressions analogues.
5. Au moyen de ces notations , les résultats auxquels moug
sommes parvenus ci-dessus (2 , 3) pourront.étre écrits comme il suit ;

Pour un arc, Cos.z=Cos.s ,

Pour deux, 2Cos.zCos.u=Cos.s4 ;=Cos.[s—2/] ,

Pour trois,, 4Cos.zCos.uCos.p==Cosis~}-=Cos.[s—21] ;

Pour quatre, 8Cos.zCos,uCos.pCos.2=Cos.s4-=Cos.[s=27]
o ZCos.[s—2(¢4-u)] -

Pour un arc , Sinf=-Sin.s ;

Pour deux , 28in.2Sin.y===Cos.s4: ZCos s—27] ,

Pour trois , 48in.Sin.uSin.y = =Sin.s4-28in.[s—27] ;

Pour guatre , 8SinsSin.uSinsSin.z=-4-Coss—=Cos.[s—2/]

=+ > ZCos.[s—2(t4u)]

6. La loi de ces divers résultats devenant ainsi manifeste , nous
pourrons, en la géneralisant , parvenir aux trois lemmes que voici:

t,u, %, T,e.e.,. étant des arcs ¢n nombre quelconque 2 ;
¢t leur somme s,
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LEMME I
On a, quel que soft n ;.
2n=1 Cos.tCos.uCos.vCoé.x.....-—-'Cos.s"—{-ZCos,[s--zi]
+=Cos.[s—2(r+u)]4+5Cos [s—2(t+ue)]+ o

Ia:suite devant étre poussée i autant de termes qu'on pourra le
faire, sans que le nombre des arcs 7, #, ¢ ,u.., dont le double
de la somme se trouve retranché & s, excéde la moitié du nombre
n, et le dernier terme devant étre réduit a sa moiiié, lorsque
7 est un nombre . pair, -

EEMME IL
Lorsque 7 est un nombre pair, on a -
—+2"='Sin.zSin.2Sin.¢Sin.x.....= Cos.s—=Cos [s=—27]
= Cos.[s —2(14u)]—ZC08.[ s 2{tdu49) ] Hei0e

le signe supérieur ou le signe inférieur devant étre pris , suivant
que 2 est de la formie 42 ou de la forme 4i-f-2 , la série devant
sarréter aw terme dans lequel le nombre des arcs 2, w, #,...,
dont le double de la somme est retranché & s, scra précisément
égal 3 la niwoitié de 7, et ce dernier terme devant étre réduit a sa
moiti¢ seulement,

LEMME 1IILI
Lorsque n est un mombre impair, on a
~E2" 1 Sin.tSin.uSineSin.z......=Sin.s = ZSin.[s—27]

+3Z5in.[s—2(t4-u)]—ZSin.[s—2(tFu4)] T
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e signe supéricur ou le signe inférieur devant étre pris suivant
que n est de la forme 4itr ou de la forme 4i4+3, et la série
devant étre poussée a autant de termes quon pourra le faire sans
que le nombre des ares £, z, ¢ ,u.. , dont le double de la somme
se trouve retranché 4 s, excéde la moitié du nombre 7z,
7. Si présentement nous supposons tous les arcs 7, u, ¢, o
égaux entre cux et au premier, ce qui donnera s=zf, nous de-

duirons , comme corollaires de ces trois lemmes , les formules
connues que voici:

Corollaire 1.

On a, quel que soitle nombre entier positif 2}
n n NI ‘
2"=1,Cos = Cos.ut4- ~— Cos.(n—2)t—-— Cos.(n—4)z

«

2 3

-+ -T;z- . Cos.(ne6)4-reues

,série qu’il faudra pousser aussi loin qu’on pourra le faire, sans
admettre d’arcs négatifs , et i il ne faudra prendre seulement que
la moiti¢ du dernier terme, si 2 est un nombre pair.

Coroltaire 11.

Lorsque 7 est un nombre pair, on a

L n R pe—1
izrs—l.sm.‘nl_—;cos,n[—-I—COS.(IZ-—-'Z)I‘-i— —I-- " GOS».(IZ—-I‘)‘l

. n—1 ﬁ_;f Cos.(7—6)t4 cene

1 2

le signe supérieur ou le signe inférieur devant étre pris, suivant
que 2 sera de la forme 4/ ou @e la forme 4i4-2, et la série
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devant étre poussée aussi loin qu'on pourra le faire sans y admettre
d’arcs négatifs, en réduisant son dernier terme a sa moitié seulement..

Corollaire 111.

Lorsque » est un nombre impair, on a
. . . n . . n Ne==y ., N
+2"1Sine=Sinnz—~ - Sin(—2)2} — - — Sin(n—4)z

n Nne=l n-—2
— i —— Sin.(z—4) 2z} e
LI 22 Sin (e ke
le signe supériear ou. le signe inférienr devant étre pris , svivant
que 2 sera de la forme 4141 ou de la forme 443, et la série:
devant étre poussée aussi loin qu'on pourra le faire sans y admettre:
d’arcs négatifs..
8. Soit
fla]=Ad,a¥A,0"+A,0°+A a s

une série infinie que I'on sache sommer , et dans.laquelle 4 , 4,
4, ... sontdes coefficiens numériques ; on aura les-deux remarques

suivantes :.
Remargue E

La somme finie de la série infinie

A,aCos.244,0°Cos.214A ;a°Cos. 3144 a¥Cos.ft 4.t

est

f[a(Cos.t4/ =7Sind) 142l Cos.t—/ =3Sin.0] .

2

Remarque 11

La somme de la. série infinid.
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4,aSind4-A4,a*Sin. 2244, 0’Sin .31+ 4 43Sin. f1 40500

‘est

Ta(Cos.t4y/ =18in.2"] —f[2{Cos.t—/ Z7Sin 7)]

LN =1l

En effet, 1.° snivant la définition de f[2], les sommes des deux séries

4,a/Cos.t41/ ZiSint)+4,a"(Cos.t-1/ =iSin.ty 4 A, 4 (Cos.t4y/ T3Sin.1Y eus

4,a(Cos.t—y/ =iSins)4A ,a*(Cosit—y/ =Sin.z)*~4A ;2% Cos.t—y/ —1Sint)’+-....
ou de leurs équivalentes

A,a(Cos.t4y) 3Sint A ,a4(Cosiaty/ =Sin 2844, a%Cos. 34y Z38in31) 4 .;

A,a(Cos.temy/ =1Sin.t)+ A4 ,a*(Cos.2¢-1/ = Sin.22) 44 ;a*(Cos.31— y/ =18in.37)+- ...

sont respectivement
f[zCosu+/=18Sinz)] ,  f[a(Cos.t—y/=:Sin.t)] ,

donc la demi~somme de ces deux séries et le quotient de leur denri-
différence par y/ =i, lesquelles ne sont autre chose que les deux
séries proposées , doivent-avoir respectivement pour sommes la demi-
somme de leurs sommes respectives et le quotient de la demi-
différence de ces mémes sommes.par ' =y, ainsi que nous l'avons
annoncé..

g. Soient respeectivement F[z], F/[] les fonctions auxquelles

se réduisent
f[a(Cos.t-}/ =1Sims)]+f[a(€Cos.t—y/ =:iSin.?)] ,

f[a(Cos.t+ 1/ =:1Sin 2)]—f[a{Cos.t—/ =1Sin.2)]

V= e

Tom. XIII, 52
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lorsqu'on les a débarrassées des imaginaires qu'elles contiennent,
au aura les théordmes suivans:
THEORLEME 1.
La somme de la série infinie
A,aCo05.:Co5.uC08.9. .. o v 44 ,08*C05.20C05.2uC08.2P .02 4 30

"l"d-,03005-31005.311005.3"-. ceseca e + coco e 00

dans laquelle on suppose les arcs £, #, ¢,.... au nombre de »
et leur somme s, a pour expression finie

:—,; gF [s]FZF[s—zt]JrEF[s—- 2(t+u) |4 EF [s—2(t}ute)t. }

en observant, par rapport & la limitation dc eette série, ce quia

déja été dit ( Lemme 1),
THEOREME 11

Si 7 est un nombre pair , la somme de la séric infinie
A,aSinSinuSing. . .ve. .. 44,4 Sin.2/8in.248in 20. 4o raee
4 A4,a’Sin38i0.3uSindp coiie i e eui,
% pour expression finie

=+ -:;;gF[s}-EF[s-—-zt}+2F[s—n(teI—u);]—-zF[s—z(z+u+y)]+,,,,,z ;

en observant, pour le signe et la limitatien de cette série , ce
qui a ¢€té prescrit ( Lemme 11 ),



PES SUITES: 391
THEOREME IIL
8i' n est un nombre impair, la somme de la série infinie
A,a8in.28in.uSin e .ovses . +A4,2*Sin.28in.2uSinap, .., ...
=4 ,4%S1n.3t8in.3uSin3p e voe o Fr e enen
a. pour expression finie-

i :I;' F/[5]_2F/[S-2t]+EF/[S—z(i'Fu)]?ZF?[S-—z(I{-u-}-y)]+ "'“z .

en observant , peur le signe et la limitation de cette série, ce qui
a éé dit ((Lemme I1II).

Il nous suffira de démontrer le premier de ces deux théorémes
pour faire voir de quelle maniére doivent se démontrer les deux
qui le suivent.

Par le Lemme I', on-a successivement:
2"=1Cos.tCos.uCosy.....=Cos.s4=Cos.[s—2:]+ZCos.[s—2(¢-4u)]+.%
‘2“;"Cos.thos.2uCos.2v-...=Cos.2s+§:Cos.2[s-zt]+ECos.z[s-2(1+a)]+...'
2*~1C05.3¢C0s:3uC0s.3¢.0.= Cos.35+=Cos.3[s-2/]+2Cos.3[s-2(ttu)] .o

- - - - . - -
e o~ ° [ . . 3 - ® . . . ° . °-

En prenant la somme des produits respectifs- de ces équations par
24,6, 24,0*, 24,4a%,....., l]a somme des premiers- membres sera
la suite infinie proposée’ multipliée par 2"; quant 2 la somme des
seconds membres. elle sera composée de cette suite de s¢ries infinies

que voici
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2(A,0Cos.s4-4,a*Cos 2544 ,2°Cos.354.....)
+22{ 4,aCos[smm2t] 44 ,a*Cos.2[s—27]+A ;a*Cos.3[s—27]14....}
2= 4 ,aCos[;s-z( t+u)]¥ A, a*Cos2[s-2(¢4u) 1+ A a*Cos3[s-2(t4u)]+..}
Or, d'aprés la définition de la fonction F et ta. Remarque I, la

N ] F(S) ’
somme de la premidre série est — et les sommes des autres sé-
2

ries, sous le signe =, sont successivement

Fls=—2t] Fyeme2(t4u)] 3

9 ,b'.i.w:o

2 2

en les ajoutant donc et divisant ensuite par 27, on obtiendra la
somme annoncée de la série proposée.
On démontrera les deux autres théorémes, a V'aide des Lemmes 11
et I11, comme nous avons démontré celui-la 3 Taide du Lemme 1.
10. En supposant, dans nos trois théorémes, que les arcs 7,
#, ©,.... deviennent égaux entre eux et au premier , ce qui .
donne s=pn¢, on en conclut les trois corollaires que voici :

Lorollaire L
Quel que soit le nombre entier positif z, la somme de la série
infinie
A aCos"t4A ,a*Cos."at+ A4 ;a*Cos." 3t 4.
a pour expression finie
: n— " ,
;I-,; %F[ﬂi]-l- "f F(2—2)!]+ -’:-—;" Fl(n—4) 14 cmn. } 3

£n observant les limitations prescrites (7, Corollaire 1).
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~Corollaire 11,

Si n est un nombre pair, la somme de la série infinie

A.aSin"t4+A4,a*Sin 2144, 235103t eeereen

a pour expression finie

+ 2 {F (a1 — P2 s + 2 I B s}

en observant , pour le choix du signe et pour le nombre des
lermes , ce qui a été prescrit (7, Corollaire 11).

Corollaire III.

8i 7 est un nombre impair, la somme de la série infinie

A, aSint4-A4,a7Sin 204 A, 6’ Sin" 3144 (a*Sin* 24 arenee

a pour expression finie
+ 2P na]— T F(rmt)r]d =R F [ (amg)e]— o 3
e - o z]—...0 3

en observant, pour le: choix du signe et-le nombre des termes da
développement , ce qui a été prescrit (7, Corollgire 111 ).

Remarque générale.

11. Comme toutes les sérigs que nous avons considérées ( 8
9, 10) sont dépourvaues de leur premier ferme , il faudra avoir
soin, lorsque le contraire arrivera, d’ajouter ce premier terme &
Ja somme doanée par ce qui précéde
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APPLICATION 1.
12, On sait que

a a3 a3 a%. ‘..
g -, — b " . 9
e*=1-+ 1 + 1‘.z+ 1,2.3'.+ 1.3.3.4:+ e 2
d’olr .
[ a? a3 a4
L ] —— e— 6aseo.. 3
€ b + 1.2 + 1.2.3 + 1‘2.3.4.,—*- !

de sorte gqu’on a ici

fla] =efomr1 ;.

“donc , 1.* la somme de la série

aCos.i+a}Cos.2t a3Cos.3¢- a4Qos.4t
' La 123 234,

+ [ ] TT- 39
sera ( Remarque 1.)
{ ?a(c 0s.t4\/ :'iSin.t)i_ . ; + {:«ea (C Os.t—-\(:Sin.{.);_ . i .

2

4

ou bien.

‘ | —2Sio. —Sin.t
aCos.t. e 1451 t+g V ! "
]

—1 =~eacoat‘.Co‘s._ (aSinud)-1:

.
de sorte.qu'en. ajoutant 1 de- part et d'autre, on a

Cos.t . aCost _ a2Cos.2f- 3Cos.3t 4Qos.4¢-
e .Cos.(aSin.2) =1+ +a‘ i a¢Cos.4 -

- L2 123 12.3.4,

2.° La. somme de-la série

"@Sint  a'Sinizt | a3Sin3¥  @4Sin4t -

+ 12.3.4 Few

.. ar 33,3

sera (He}narque ).
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e a(Cos-’t+y1TSin.t9_ 1t ea(Con.t-—\]""—“xsin.t)- ;

3y =y
‘ou ‘bien
., =\ =iaSint  ==\/"TaSin.t :
»éacos't.e - = aCos. Sin.(2Sin.z)

de sorte qu'on aura

aCos £ aSin £ + aiSin.af = a3Sin.3¢ . @tSin.f

Sin (aSin.s)= 1.2 133 1234 o ()

13. D’aprés cela, on aura ici

Flt]=z{e €% Cos. (@Sin)—1}, F/[f]= 220 Sm.(aSm £

substituant donc ces valeurs dans les formules ci-dessus (9 y 10)4
nous aurons , par le Théoréme I, guel que soitn,

6Gos.tCos.uCos.v... ,~03Co8,2¢Gos.2uCos.2¢... @3Cos5.3tC05.3uCo%.3v...

o+ 1 + 3.2 + 1.3 +
pr— ;;_!—_(; {e aCoss .Cos[aSin.s]4Ze aGos. (= :t).Cos.[dSin.’(s;Q;D]
+ z:eaCos.(s-zi—-zu). Cos‘o[dS{n,{s—-—g{—.zy}l_‘.m‘} :

par le Théoréme Il, pour n pair,

(*) Nous ne connaissions pas encore le Cours d’anclise de M. CAUCHY , ok
la premiére de ces deux séries se trouve sommée , lorsque nous en avons donng
la somme , & la page 107 du préseat volume.
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aS’n.fSin.uSin.v..:+a=5in.2tSin.2uSin.zo...+a3Sin,3tSin.3uSin.3¢..:+

1 2 3

1 aCos.s . : aCos.(s
::j_-*;:_l..{g .Cos.[aSins]—Ze

-Zt)Cos.[aSin.(s-zt)]

aCos.(s—2

. 2

=) Gos.[aSin.(smmat = 2u) = } 5

par le Théoréme 111, pour » impair,

Sin.tSin.uSine... i+ a*Sin.2#Sin 2uSin.2¢ a3Sin.3¢8in.3uSin.3v...

3‘ +I.i.‘

4

= ("% Sin.[aSin.s]— 26" Sia. [aSin.(s—2/)]

a1

Cos.(s==2t==21) Sin

2’

par le Corollaire I, quel que soit z ,

[aSin.(se—2tm=20)]—.0.} ;.

P« aCos.nt a2Cos.not a3Cos.n3t aiCos,"4t
14 . - -
I 1.2 1.2.3 1.2.3.4

s

T Cos.nt . . aC —2 . ,
=0 €os.[aSin n2] 4 :i-e on(e 2)t.Cos.[faSm.(n—-2~)t},

-+ ._l'f_ = eacos'(n—“t.ﬁns. [aSin.(n—=4)t]4se. b 5

2

par le Corollaire 1I, pour n pair,

aSin,Mt a28in" 32 a3Sin. "3t a’fSIn."ﬂ'+
L 1.2 . 2.3 o n23 .
1 aCos.nt . n aCos.(n=1)t .
=k { .Cos.[aSm.nt]—-—; e & ).Cos.[aSm.(n.-z)t]
H— \

n n—1 aCos.(n
:.t- —_——
x 2

ﬂW.Cos.[aSin.(n-@t].+.....,.} H

et
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et par le Corollaire 111 , pour 2 impair ,

aSin.*t a*Siu."at a3Sin.n3¢ atSin. ¢
A\ —
1 1.2 1.2.3 1.2.3.4 D
b4 aCos.nt . . n  aCos,(n==2) .. = |
=t—1c .Sin.[aSinnt]— — e Sin.[aSin.(2—2)7]
2= 1

n n=—t aCos.(n—4)t _. .
4+ ——e Sin.[aSindn—4)t]dnee ¢ 3
1 2

14. Si, par exemple, ou suppose n=3, les premiére, deuxitme,
quatritme et cinquiéme formules deviendront, en ayant toujours
égard aux limitations prescrites pour les seconds membres ,

g0 aCos.tCos uLa2Cos.2tCos.u . a3Cos.3tCos.3u , @4Cos.4tCos.4u
R ;
! H : 1.2 ' 1.2.3 ! 1.2.3.4

ares

aCos.(t==u)
e

Il

+ ;{evas.(t-l-u) .Cos.[aSin.(t4-2)]+ .Cos.[aSin.(z-u)]} .

aSin.tSin.u a2Sin.2tSin.2u a3Sin.3tSin.3u | a4Sin.4tSin.fu

P o -
- 1 + + -+ 1.23.4 s

1.2 1.2.3

8aCos.(t+u) 2Cos.(t—

|

—z{ u).Cos.[aSin.(i—u)] 3

Cos.[aSin.(t+4-u)]—e

B, aCos.2t = a2Cos.22t = a3Cos.23¢t . ¢ aCos.at .
3.° 41 + 4 +..z+ie .Cos.[aSin.2z)+¢3 .,
.8 1.2 1.2.3
_ aSinat | a2Sinsat | a3Sin.23t .. aCos.2t :
4° 1 - + — =i {e .Cos.(aSin.2t)—c} :
I 2 2,

Ces deux derniéres formules avaient déji é1é données par M. Stein , .
la page 112 du présent volume.

15. Si l'on suppose =3 , les premiére, troisitme , quatri¢me
et sixieme formules deviendront

Tom, XIII. 53.

]
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aCos.tCos.uCos.¢

a2Cos 2tCos.2uCos.2¢

ATION

a3Cos.3tCos.3uCos 3y

1.° 1}

I

(

aCos.(t4-u—y)
e

+
+

+eaC03.(9+t-u)

LY

eaCos.(u-l—w-t)

aSin,tSin.uSin.v a2Sin.2tSin

8aCos.(t+u+V)

+lu

.-

1.2 1.2.3

.Cos.[aSin.(t4u-+)]
.Cos.[aSin.(t+u—r)]
Cos.[aSin(z~4-p—12)]

Cos.[aSin.Spt-t—u)]

.2uSin.2¢ 23Sin.3tSin3uSin. 3¢

1

eacos‘(¢+u+‘)).$in.[aSin.(t+ u-tv)]

eaCos,(t-'}-u—v)

aCos.(u4-y==i)

—

aCos.3¢t

1.2

-

aCos.(y-t—=u)
e

a2Cos.32t

1.2.3

Sin.[aSin.(¢+u—v)] ’

Sin.[aSin (u4-v—12)]

Sin.[aSin.(¢41—u)] -—,

a3Cos.33t

o 2y

1,2

aCos, 3t
e

{

aSin.3¢

4.°

.Cos.(aSin.37) + 3e

a?Sin32t

LT RS )

1.2.3

aCos.t

Cos.(aSin.2)} .

a3Sin.33t

I 1.2

aCos, 3¢
e

T
=—-{
<

et ains} de suite.

everinne

1.2.3

.Sin.(aSin.3t)~—-3eacos'i.Sin.(aSin.I)} .
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APPLICATION 1].

16. On sait qu’en faisant usage des logarithmes naturels on a

a a al at a’
g(1fa)=—— —F— —_— — - —
Log.(14-a)= — P 7T
de sorte qu'ici
fla]l=Log.(14a) .
done, 1.° la somme de la série
aCos.t a2Cos.2f 23Cos.3¢ aiCos.4#
S— — =
L 2 3 4 doro ¢

sera ( Remarque I')

Log.f1~4-a(Cos.t41/=3Sin.2)} +Log.§ 1+g(Cos.t-—]/:','Sin.1) j
2

H

ou- bien
Log.{(1+aCos.t)+\[:aSin.t}{(r-f—aCos.t)—\[:'aSin.t}_Log.{(I-]-aCos.t)’-FaﬁSin.’f}
2. - 2 '
ou enfin
Log.(1+4-2aCos.t-a2)

e ————
=Log.y/ 1¥zaCosifas ;

2

2,2 ]la somme de la série

aSin.¢ a2Sin, 2t a3Sin.3¢ aiSingft . _

1 2 3 4,

sera ( Remarque 11).
Log.{ 1+4-a(Cos.z+/=18Sin.2) } —Log.{ 14-a(Cos.z—1/ = Sin.1) }

2Vt

vE

o bien-
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(1+4-aCos.t)4+V—1aSint
21/ =1 "8 (1qraCost)—\—iaSint

En vertu de la formule connue

Log. fq— g p+q <p+q <P+4) L z

cette somme devient

aSin.t ,( aSin.t > 4t ( aSin.t \5
1-4aCosd 14-aCos.t 1+aCos.t> e
gest-a-dire,

Are (Tang.,_. -:i‘;:s) )

17. D’aprés cela, on aura ici

aSin.t
1-aCos.t

F[s]=2Log.y/ 1426Cosiitar , F/[t]=2Arc (Tang e

substituant donc ces valeurs dans les formules ci-dessus {9, 10) 5
nous aurons , par le Théoréme 1, quel que soit »,

aCo0s5.tCos.uCos ¢... 02C0s.21Co5.2uCo5.2¢0... ~ a3C0s.3tCos.3uCos.3¢...

P— —gretaave®

I 2 . 3

=4 — ELOg ‘\/1+2aCos 5+az+2L0 - 14-2aCos.(s—2t)4e?

zll—— 3

+2L08-\/I+2aCos.(s—2t—2u)+az+‘m..} .
par le Théoréme 1I, pour n pair,

aSin.tSin.uSin.v... a2Sin.2tSin.2uSin.2¢... 23Sin.3:Sin.3uSin.3v...

3 - 2 + 3 e
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LI R )
=i.2-—-"—l f LOg-v/l-i-zaCOS.S—i-a?-—zLOg.‘/l+2aCOs.(s__2l)+a.

~+=Log ‘/l+2aCos.(s—2t-—zu)+a2~—...,..} .
par le Théoréme 111, pour n impair ,

aSin.tSin.uSine...  @2Sin.2tSin.2uSin.2¢... a3Sin.31Sin.3uSin.3¢..7

——

1 S 3 ';..

Sin.s ~ e
=t {Arc [Tan" =27 —ZArc[Tang: __"S_”‘_S’..i.]

-— gn—1 °'-‘x+aC03.s 14-aCo5.(s==2t)

aSin.(s—2t—au) }
143 Cos. (s==2tmm2u) eyt

4= Arc [Tang.:

par le Corollaire I , quel que soit z,

aCos."t a?Cos."2¢ a3Cos."3¢ aiCos.mjt

—— ol

E 2 3 4

X

= +zn’l

—_— 1
{Log.';/ 1+2aCos.nt+a=+-; Log-\/ 1-4-2aCos, (n—2)t4-a3

n Ne=3

+

LOg-\/ 1+2aCos.(n—-4)t+q=+----. } .

2
par le Corollaire 1I, pour n pair,

aBin "¢ a2Sin.nat a38in."3¢ 24Sin."ft
W— —— 1]

¢ 2 3 4

=+ & {Log.y/ TFastmmrtei— T Log./ Tacentma)is

71—

-+ .r;‘... ! Log.V1+2aCos‘(n—4)i+a"—")-- } .

a2

par le "Corollgire 1II; pour n impair,
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aSin. ¢ 23Sin."a¢ a3Sin.23¢t aiSinn4t
ety J— +

| 2 3 4

1 aSin.nt n aSin.(n=—=1)t
=+ Are Tang.=2——— |— - Arc| Tang=——r——=|+...
— 2"} O 1 4-aCos.nt 1 14aCos.(n=2)t
18. Si, par exemple , on suppose n=2, les premiére , deuxiéme,
quatritme et cinquieéme formules deviendront , en ayant toujours
égard aux limitations prescrites pour les seconds membres,

aCos.tCos.u a>Cos.2tCes.a2u a3Cos.3tCos.3u

I .0 3 Teeup

I, 2

= { Log.y/ x+zaCos.(t+li)+d=+LOg.\/ 1~4-2aCos. (i—u)-4a2 } .

>

aSin.tSin,z a2Sin.2tSin.2u a3Sin,3#Sin 3u

2.° —_— 4

1, 2 3.

* 0000

= — ;{ Log.\/ T42aCos.t+u)Fa>—L0g.{/ TF 2aCos,Gfu)fas}

aCos.2t a2Cos.23¢ - a3Cos.23¢t a4Cos.248
0 — Pe— LRI
3. ; .+t 7 Fois.

=-1{ Los. ‘/ 1+deos.zt+»a’+L03‘(I+”)*} ..

aSin.2¢ a>Sin.22¢ a38in.23¢ atSin,24¢
4. —_ + —_ o

£ 2 3 4‘

T EiLog- \/&-{-zaﬁos.at-{-;;é—[;og.( 1-a)} ..

-

1g. Si l'on suppose n=3, les premidre, troisitme , quatritme.
et sixi¢éme formules donneront

aCos.tCos.uCos.v a>Cos.2tCos.2uCos.2¢ 23C0s.3¢Cos.3uCos.3¢

o - _— 404,

I.

— +-

4 2 2 e 3.
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B 1 Log-‘/'t+2dCos.(t+u+-v)+a= ]

+ -l-LOg.‘/‘x+zaCos.(t+u—V)+a’

LI
AT
°

+L08- V 1+4-2aCos.(udv—t)+a*

+'Log \/ 14-2aCos.(v4t=—u)-{-a*

2Sin.tSin.uSin.e a28Sin,2tSin,2uSin.2¢  @3Sin.3:Sin 3uSin.3¢

[

2.9

1 2 3

aSin,.(i4-u~v)
14-aCos.t+u4v) J
aSin.(i4-u=—v)
1-4-aCos.(t4u~—yp) |
aSin.(ud-o=—=t)
1-4aCos. (u~4v=—t) |

aSin.(v4-t=u) ]
14-a(Cosi-t—u) | J

Arc [Tang. =

—Arc [Tan g =

fi
;!-?

—Arc [Tang.:

i —Arc [Tang.::

Cos.3¢t 2”Cos.32¢ a3Cos.33¢t a+Cos. 34t
3 .0 'a T— — o —‘
1 2 + 3 4 + oo

= +~§§Log.|/1+2acos‘3t+az+3Log.V:+zaCos itat.

4 aSin.3¢ a2Sin.3af 238in,33¢ a4Sin.34t

1 2 3 4

. _ aSin. 3¢ . aSin.t
T § Are (Tang. - 1+aCos.3t>_3Arc(Tang' - l+aCos.t)§ :

20. Nous ne pousserons pas plus loin , pour le moment, ces

applications qui n’ont, comme lon voit, rien de bien difficile,
et qui conduisent a des résultats trés-remarquables. Il nous sufs
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fisait d'établir les principes généraux et de montrer la marche du

calcul. Mais, dans un supplément au présent mémoire, nous nous
occuperons de la construction des formules générales servant a
sommer les séries infinies de la forme

A,8C05.%1Cos.fuC05. puuren. 44 ,0*C0s.%21Co0s.22uCos.¥2p...00
A4 ,a°C05.%31C05.*3uC05.7 3p.0.ct o
‘A, aSin#tSin AuSin.p v tA4 ,6*Sin #2510 2u8in.Y 20 e rin.
+A4,a%Sin.*3:8in.23uSin. Y30, .o trrunene.

lorsqu’on sait sommer la série. infinie

Aot 4,844,834, 04+ A4 05 ne (F)

(" Presque en méme temps que ce qu'on vient-de lire nous est parvenu,
nous avons recu de M. Sturm de Genkve , sur la sommation de diverses classes
de séries , un travail qui, sans &re aussi élendu que celui de M. Querret,

offre néanmoins quelques résultats curieux , et (ue nous ferons prochainements
connaitre,

I DG,

ANALISE.
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ANALISE ALGEBRIQUE.
Résolution de I'équation generale du qualriéme degré;

Par M. GERGONNE.

- - ——— g,

ON a singuliérement multiplié les méthodes de résolution des
équations du troisi¢cme et du quatritme degrés, etle plussouvent
sans qu’on puisse supposer d’autre but aux auteurs de ces méthodes
que celui de faire autrement que leurs dévanciers. En voici encore
une , particuliére au quatritme degré, qui nous parait n’étre pas
connue , et qui , outre qu'elle est fort simple , et qu’elle n’est
point dépourvue d'une certaine élégance, est du petit nombre de
celles qui montrent bien 4 quoi se réduit finalement la difficulté

du probléme de la résolution générale des équations.

Soit Y'équation générale du quatriéme degré , sans second terme,
2t prit-gz--r=o , (1)

dont les racines inconnues soient représentées par @, &, ¢, &3
de mani¢re qu’on ait

a4-b--c4-d=o0 ,
ob4-ac+-betad+bd+-cd=—4p
abe+-abd+-acd+-bed=—gq

¢bcd=~r , |
Hom. XIII, 54

 (3)
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Formons une ¢quation du troisitme degré dont les racines soient

ab+-cd ac+bd , adt-be ;

14

en désignant par y linconnue de cette équation , elle sera

(y—ab—-cd (y —ac—bd)(y—ad—bc)=o0 ,

ou bien

73—(ab+tcd) | y t(abtcdyactbd) | y=—~(abd-cd)(act-bd)(ad-}-bc)==0 , (3)
—(ac4bd) ~(ac+-bd)(ad+4-bc)
—(ad+bc) | ~(ad4-be)(abd-cd)-

ou en développant et ayant égard aux -relations (2)
Y eyt —ihry—=(g—hpr)=o . () (4)

Lorsqu’on sait résoudre les équations du -troisi¢me degré , om
‘peut regarder comme connue les trois racines de I'équation (4).
Représentons-les par 4, B, €; nous aurons

«¢*) En effet , d'abord le coefficient du second terme de l'dquation (3) est
immn:é liatement égal & ==p ; le développement de celui du troisitme revient 2

(a-4-b-fc4-d) (abet-acdt-bed)=fabed

gui se réduit & —4r ; enfin le dernier terme peut étre écrit ainsi-:

mabed(a+4-b4-c4-d)*—(abe}-abd+acd-4-bed) 4 fabed (@b-facd-ad-Fhet-bd+cd)

qoi revient 4 —g2-4-4pr.

On pourrait , au surplus , parvenir encore & I'équation (4), quoique par un

calcul moins symétrique, en éliminant a, b, ¢, d entre les égaations (2)
ot la suivante ;

ys=abtcd o
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ab4-cd=A
ac+bd=B , }(5)
ad+be=0C ,

équations qui, en y joignant une quelconque des équations (2),
devront donner les valeurs des racines inconnues e, 6, ¢, d.

D’abord’, en prenant lcur somme, on a

prenant ensuite leurs sommes deux a deux et ayant égard a 1'équa-
tion (6),il vient, en vertu de la premicre des équations (2},

A-B—p—C=ab-cd-ac+bd=(a4-d) (b4-0)=—(af-d) == (b=c)" ,
BA-C=p—d=acbd+ad-be=(a4b)cHd)=—(aHb) =—(c+d)? ,
C-A=p—B=0d~+-bc4-ab+cd=(ac) (b-4-d)===(a4c)1=—(b4-4d)*;

ce qui donne

at+d=+yT= , atb=*tya=p, ete=tVvi=,
brte=T0VC=p , ctd=Zyd-p, b+d=3vBp,

En prenant le produit des équations de la premiére ligne, il vient .

o¥(atbokdyt(abokabdtacdtbodi=-g =y Tep <ty <ty T 3

il faudra donc choisir les signes des radicaux de celte premiére
ligne de telle sorte que leur produit soit de signe contraire a g,
Prenant ensuite la somme de ces mémes équations, on aura
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2a4(ebtstd)=za=ty A= VBV C=p ;

de sorte que si g est positif dans I'équation , on aura

x

I

H—v d—p—VB—p—V C—p},

z=H ey T+y B+ T

= {+V d=—VB=p+v T} ,

a= {4y d=p+V/ B—p—y/ Tp} -

tandis que si , au contraire , ¢ est négatif dans I'équation , ses
qiiatre racines seront

=34V a5+ BV TS,

z=1}—y d5—V B5—V T} »

r= EE‘VA—P‘*'VB—P“‘-\/C—P% ’

a={—y/ T -V F=p+v =5} -

Nous .avons pu ramener la résolution de I'équation du quatrieme
degré A celle d’une équation du troisiéme , parce qu'il existe une
fonction mon symétrique ad~+cd de quatre quantités @, 4, ¢, @
qui , par les diverses permutations qu'on y peut faire des lettres
les unes avec les autres, n’est susceptible que de trois formes

’ P
différentes seulement; et on aurait pu également parvenir au but
pu €3 P
* en employant des fonctions de la forme (¢+42)(c+&) qui jouissent
de la méme propriété.

Le probiéme général de la résolution des équations de tous les

degrés tiendrait done . d'aprés cela, & trouver, pour chaque degré

i

n, uae fouction non symétrique de m letires @, 4, ¢, ... & qui,
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par les diverses permutations qu’on y pourrait faire de ces lettres
entre elles, ne prendrait qu'uon nombre de formes différentes in--
férieur a m ; et il ne parait guére que ce probléme soit possible ,
lorsque le nombre m est plus grand que quatre.

— I —— _———
—— m————————————

QUESTIONS REKSOLUES.

Note sur les deux problémes traités aux pages 145
et 289 du present volume ;

Par M. QueERRET , chef d'institution , & St-Malo.

s s s A . Mt e ot

LE probléeme de M. Dubois-Aimé , dont M. de St-Laurent a
rectifié la solution a la page 145 du présent volume, avait déja
¢té 'objet des recherches de plusieurs illustres géométres. On trouve
dans les Mémoires de l'académie des sciences de Paris, pour 1732
sous la date du 16 janvier, un mémoire de Bouguer sur ce sujet.
Ce géometre donne a la courbe dont il s’agit le nom de Ligne de
poursuiie ; parce que c'est la courbe que décrirait un vaisseau qui
en poursulvrait un autre en mouvement, en se dirigeant constain-
ment sur lui, Prenant pour axe des z celui qu’a choisi M. de
St-Laurent pour axe des y, et vice versd , nommant r la vitesse
constante du vaisseau poursuivant, et m celle du vaisseau pour-
suivi, 1l parvient 2 I'équation

m n-}-m m ne—rm
n - + n + — mn
n n n n
] mm— ] 2 o a a
3(2+m) 9 zgn_.m) y + nlew m? ?
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@ représentant la méme ligne que dans le mémoire-de M. de-
St-Laurent.

Si, daps I'équation de Bouguer on met # pour y ety pour z;:

. . g 2 . .
et qu'aprés avoir changé m en r* on multiplic par = il viendra

L) ("m0 -2

ou bien

(=l (G = (27

qui est exactement I'équation (15) de M. de St-Tzaurent (¥).

Mais la valeur de s donnée par l'équation (10) , laquelle est-
en géndral suscepuible d’'un double s’gne, nous parait devoir étre
prise avec un signe different de celui qui a été admis par M. de
St-Laurent , pour exprimer rdellement la route parcourue par le.
chien depuis son départ; il faut , en effet, que s croisse positi+
vement 2 mesure que x devient plus petit, ce qui exige qu’on éciive.

()=l = =l G

Maupertuis reprit le, méme probléme quelques jours aprés Bou--
guer, ct en donna unc solution plus courte. Il enseigna de. plus
le moyen de former I'équation différentielle du second ordre de
la courbe cherchée, lorsque le vaisseau poursuivi, au lieu de dé--

(*) Nous avaus négligé de noter, au commencement du mémoire de M. de -
St-Laurent, que lPéquaiion de M. Dubois-Aymé est a tel point défectuense
quelle ne .saurait &iye rendue homogéne par aucune détermination de a. .

J.D. G..
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crice une ligne droite , décrit une courbe quelconque, toujours
d’un mouvement uniforme. Le mémoire de Bouyuer renfernie
-quelques applications, et fait connaitre , en outre , diverses pro-
‘priétés curicuses de la courbe dont il s’agit. L'auteur prouve , 2

priori, que la courbe est rectifiable., ce ui résulie également de
l'analise de M. de St-Laurent.

Quant au probléme traité a la page 28g, il se raméne trés<
facilement a celui-la, au moyen des considérations suivantes.

Le plan d’une courbe rapportée 4 deux axes rectangulaires étant
‘supposé .glisser, d'un mouvement rectiligne et uniforme , sur un
autre plan fixe , sur lequel deux axes rectangulaires sont aussi
tracés , de maniére que les axes des y coincident constamment,
et un point-étant supposé se mouvoir d'un mouvement uniforme
sur la courbe mobile; si, pour unc méme abscisse £ , on repré-
sente par ¥ lordonnée du point mobile rapporté aux axes fixes,
;par ¥’ Pordonnée du méme point rapporté aux axes mobiles, par
k le nombre de fois que la vitesse du plan contient celle du point
mobile, et par s l'arc de -courbe parcouru par ce point depuis
Torigine des temps, la courbe quil aura tracé sur le plan fixe
aura pour équation

y—ks=y’ ou y=y'~+ks

En effet, pendant que le point mobile aura parcourn l'arc s sur
sa courbe , I'axe des z mobile se sera avancé parallélement &
lui.méme d'une quantité ks, d’od il résulte qu'il faudra dimirver
Vordonnée y de cette méme quantité pour retrouver lautre ox-
donnée y’.

1l suit de la que, toutes les fois que l'arc s sera exprimable en
fonction de z seulement, en substituant sa valeur ainsi que celle
de y’, dans l'équation ci-dessus , on aura immédiatement lor-
donnée de la courbe cherchée. Dans ’bypothése contraire, om



392 QUESTIONS
pourra , tout au moins , parvenir & I’équation différentielle ds
cette courbe.

L'application de cette remarque au probléme dont il s'agit est
manifeste, Soient , comme on I’a supposé , & la vitesse du chien,
g celle de son maitre, et % celle du courant; et soit posé, pour
abréger , g~A=nk. Au lieu de supposer l'eau courante, on pourra
la supposer stagnante , en admettant que le canal et le terrain
sur lequel il est situé sont transportés dans le sens de sa direction
avec la vitesse %, sur un plan fixe, et que le maitre marche sur
ce terrain mouvant avec une vitesse g—A ou nk ; de sorte que
le rapport de la vitesse du maitre 4 celle de son chien sera encore
n, comme dans le premier probleme, auquel\ se rapporteront aussi
les circonstances du mouvement du chien sur le plan mobile ,
puisque ce mouvement aura lieu dans une eau stagnante par rapport

' J . h
a ce plan. Nous aurons donc ici r= < & ¢t en outre nous avons

trouvé ci-dessus , pour le premier probléme ,.
y=2{=(2 PRI )"“..,]} :
{n—x[( > —-l]_n—l [( ]; ;

Substituant donc ces valeurs dans I’équation-

k
y=y'= 75 ou kysky+ths;

'4

1l viendra

LR HED I EE - TE e

ul. est exactement ’éguation (19) du second probléme (*).
q q 9 p »

(*) Nous recevons & l'instant un travail de M. Tédenat , recteur honoraire ,
sorrespondant de Vacadémie royale des. sciences , dont I'objet est également
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Addition & la solution donnée & la page 353 du
présent volume 5

Par M. Querrer , chef d'institution 3 St-Malo.

QUELQUES géométres pouvant objecter, contre la maniére dont
nous avons semmé les deux premiéres suites de la.page 353, qu'il
n’est peut-8tre pas permis de traiter les lignes trigonométriques
des arcs imaginaires comme celles des ares réels, nous nous em-
pressons de remplacer le procédé dont nous avons fait usage en
cet endroit par un autre quinous parait & I'abri de toute objection.

1.° Pour sommer la suite

aCos.x2  a3Coslx a5CosSx  alCos.’x

— e oo

1 3 5. 7.

nous considérerons que

da e a3 ab al
. =—.—-.—+_.._.__+ eres
- 14a? 1 3 5 7

d’on il suit que

de ramener le second probléme au premier , et qui conséquemment rentre &
peu prés dans ce qu'on vient de lire. -
Nous saisirons cette occasion d’observer qu' la fin de la 5. ligne de la page 292 ,
d Tang.z dx . d.Tang.z dx
—2———, il fautlirex ce—
dt dt’ dw de ¢

Tom. X111, 55

au lieu de «
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=) s

changeant done , tour 4 tour , @ en afCos.z4{/=:Sin.z) et
aCos.x—y/=1Sin.z) , on aura , au moyen de notre théoréme géné-
ral, pour la somme de la suile preposée,

. g ad.(Cos.x4\/—=1Sin.x) + ad.(Cos.x—y/—=7Sin x) .
® 14-a2(Cos.2x~4V—Sin,2x) 1+a*(Cos.2x~—\/=1Sin.2x )

ou, en exécutant les différentiations,

f ( —Sin.x-4-\—=7Cos.x Sin.x-}-y/—7Cos.x }

{(14-a2Cos. zx)-f-\[—xa‘Sm.zx (14-a2Cos.2x) ~V/ “1a2Sin.2x

ou bien
2adxSifx
. 2(ar—a?)adxSin.x _ T iar
(1—a*)*44a*Cos 2 * 1+ (2aCos 2
1—a?

Cos.
= Z Arc. (Tang.:m ki x) ’

1—al’

comme nous l'avions déja trouvé.

2. Pour sommer la suite

i

Cos.x 1 Cos3x 1.3 Cos.5x 1.35 Cos.yx
Yot s

w5

nous considérerons que

- d:; a 1 a3 1.3 ab 1.3.5 a7
J.i—az—r+;3—+ﬂ_? 2.4.6-7+"“

d’ot il suit que
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f(a)= \/ — ;

changeant donc, tour 4 tour , @ en Cos.z+y/=Sin.z et Cos.w
—y/=1Sin.z , on aura , au moyen de notre théoréme général,
pour la somme de la suite proposée ,

Vv 1—Cos.ax—\/_;Sin.2x / 1=—Gos.2x4 \/_1Sin.2x

lg dx(=—Sin.x4)=7Cos.x) f dx(Sin x§-\J= Cos.x)
L) - V }

ou encore

: i ‘/28m = (\/Sm.x—\(_;Cos x4/ Sin, x+\/—;Cosx)§

ou bien
1dx .
- ‘/m"/l-i-Sm.x 'y

Or, soit {/Shx=#, on aura

+dxCos.x 2dxe dt

v Sinx =ds ’ V Sin.x = V 1—t4 i

~ done

ds

Tde
—_— \/SE'G \/l+S’m.x= -_ "_“‘/ — ‘/x+tz: \/TZ: AI'C(COS.._t)

donc enfin la somme de la série proposée sera
Arc¢(Cos.= {/ Sinz)= 1 Arc(Sin. = 28in.xCos.z~1) ;

comme nous l'avions également trouvé.
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QUESTIONS PROPOSLES.
Problémes de Géomeélrie.

1. ON sait que , dans tout tétraddre, I'aire de chacune des faces
est la somme des produits des aires des trois autres par les cosinus
tabulaires des angles qu’elles font avec celles-la; ce qui donne entre
les aires des quatre faces d'un tétraédre et ses six angles triedres
quatre équations entre lesquelles on peut éliminer les aires des
faces , qui n’y entrent que par leurs rapports.

Il y a donc une relation nécessaire entre les cosinus tabulaires
des six angles di¢dres d’un tétraédre, et conséquemment il doit
aussi exister umne relation entre ces angles eux-mémes.

On propose d'assigner cette relation,

IL. Quelle est, sur une surface courbe donnée, la courbe dont.
la courbure est constante en tous ses points ?

FIN DU TREIZIEME VOLUME.
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4o2 CORRECTIONS ET ADDITIONS.

ERRATA

Pour le treiziéme volume des Annales,

\
- -

PAGE 6, ligne 7, en remontant, == changez tous les d¢ en dx.
Page 7 , ligne 14, aprés le mot discontinue , supprimez une des deux virgules.
Page 39, ligne g9, en remontant, = cete courbe ; lisez : cette courbe.
Pag.119, en baut, valeur de p, = les radicaux cubes ne doivent affecter que

Co(z*472),

Ligne 5, = 4 5 lisez :

x

Page 152, ligne 14, —(% )n; lisez : (-:—)n.

Page 161, ligne 5 , — (f)? H lz'sez:( f)%.
a a

Page 271, ligne 5, aprés le mot termes, mettez une virgule,
Ligne 4, en remontant , = @, ; lisez : @y.
Ligne 3, en remontant , == transportes aprés le mot si, la virgule
qui le précede.
Page 274, ligne 8, —f,_,(3) ; lisez : £,().
Ligne 4, en remontant , — f,(a) ; lisez : f,(a).
Page 276, ligne 2 , — aprés (7) , placez vne virgule.
Ligne 10, au dénominateur , — (n—1) ; lisez : (n=—1)!.
Ligne 3, gu dénominateur , — aprés lemot, cité, placez une virgule.

Ve
i

Page 285, ligne 8, =— aprés le mot exemple , placez une virgule.

Page 287, ligne 4, aprées le mot respectives , placez une virgule.

Page 292, ligne 5, == changez le second d¢ en dx.

Page 304 , ligne 5, en remontant, = ce plan; lisez : le méme plan.
Page 314, ligne 8, en remontant , — au dénominateur de y2 ; lisez : ab4-cd.

ERRATA pour les Planches.
Planche 1V, en haut, == pag. 333; lisez : pag. 333—361.

Fig. 7, les paralléles & FF/ | partant des points D, M, E, doivent
respeclivement porter & leur parlie supérieure les letires D/, M/, E/

Wty
[






