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GEOMETRIE ELEMENTAIRE.

Sur lUéquivalence des tétraédres de méme base et de
méme hauteur ;.

Par M. GERGOXNNE.

T S, W s e U . s . Nt

IL n'est pas étonnant que, lorsqu'on rencontre en géométrie des
incommensurables et des lignes et surfaces courbes dont nous n’avons
proprement qu’une idée négative , on soit contraint , pour en
démontrer les propriétés , de recourir & la réduction & I’absurde;
mais celui qui étudie la géométrie en philosophe a lieu d’étre assez
surpris quon n’ait d’autre ressource que cette forme de raisonne-
ment , soit pour démontrer 1’équivalence des téiraédres de méme
base et de méme hauteur, soit pour obtenir directement 'expres-
sion du volume d'un tétratdre , sur-tout lorsqu’il voit avec quelle
facilité on démontre , dans la géoméirie plane , la propriété ana-
logue pour le triangle.
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M. Legendre, en suivant le mode de décomposition indiqué par
Euclide , est parvenu directement, d’'une manitre fort élégante, A
Pexpression du volume du tétraédre , de laquelle il a pu conclure
ensuite que les tétraédres de méme base ou seulement de bases
équivalentes et de méme hauteur sont équivalens ; mais comme ,
dans la géométrie plane, on s'occupe de la comparaison des sur~
faces avant de chercher & en déterminer 1'étendue; il m’a semblé
un peu plus méthodique de suivre une marche analogue dans la
géométrie des corps. Voici, en conséquence , de quelle maniére je
démontre depuis long-temps , dans mes cours , que deux tétracdres
de bases équivalentes et de méme hauteur sont équivalens.

Soient M , N les deux tctraddres dont il s'agit. Si l'on nie
qu’ils soient équivalens, il faudra nécessairement admettre qu’il y
en a un qui est plus grand que l'autre ; supposons donc qu’on
admette que ce soit M, de telle sorte qu'on ait

M>N, . (1)
on pourra toujours admettre que, parmi lous les tétraddres sem-
blables & N et plus grands que lui’, (il y en a un équivalent a
M, soit N/ ce tétracdre, de maniére qu'on ait

M=N'; (2)
N et N’ seront donc deux tétraédres semblables , que I'on pourra
faire coincider par le sommet et'les trois arétes de l'un de angles
triedres de leurs bases, auqnel cas , leurs faces opposées a ces
angles se trouveront paralléles. ‘

Soit divisée la hsuteur de N en un assez grand nombre de
parties égales pour qu'en menant, par les points de division, des
plans paralleles a la base,et construisant, sur les seclions resultantes
comme bases, une suite de prismes triangulaires circonserits, a la
maniére de M. Lacroix, ces prismes soient tous renfermés dans
&/, ce qui est toujours possible; et soit Pla somme de ces prismes ;
10us aurons donc

PN, 3)
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Soient circonscrits 3 M un pareil nombre de prismes triangulaires
de méme hauteur; il est aisé de voir que chaque prisme cir-
conscrit & M sera équivalent au prisme de méme rang circonscrit
2 N; dou il suit que la somme des prismes circonscrits & M sera
équivalente 4 la somme des prismes circonscrits & IV , et pourra
comme elle étre représentée par P.

Mais, parce qu’ils sont circonscrits a J/, on devrait avoir

M<P, | (4)
qui, combinée avec (3), donnerait, & plus forte raison ,
ML N (5)

ce qui contredit I'’hypothese (2) ; cette hypothése est done absurde;
deux tétraédres de bases équivalentes et de méme hauteur sont
donc équivalens.

Je n’aurais point parlé de cette démonstration, a laquelle je n’ai
jamais songé i attacher aucune sorte d'importance , si je n’avais
eu 3 mentionner une autre démonstration de la méme proposition
qui m’a été récemment adressée par M. Querret, chef d’institution
a Saint-Malo. Voici comment procede M. Querret :

Soit toujours supposé , comme ci-dessus,

M>N ; (l)
leur différence, si petite qu'on la suppose, pourra toujours étre
considérée comme équivalente 3 un certain prisme triangulaire ayant
méme base que M et une hauteur convenable.

Soit divisée la hauteur commune des deux tétraédres en parties
égales plus petites que la hautenr de ce prisme triangulaire ; soient
conduits, par les points de division, des plans paralléles aux bases
et soient construits entre ces plans des prismes triangulaires circonscrits
"3 M dont nous désignerons lasomme par P, et des prismes inscrits a N
dont nous désignerons la somme par Q; nous aurons conséquemment

P>M , (2) Q<N ; 3)
d’eus
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P—eQ>M—N ; (4
or, il est connu que P—() est équivalent au premier des prismes
circonscrits & M, lequel a été pris plus petit que M—N; de sorte
quon devrait avoir, d’un autre cété,
PeQ<M~N ; (5)

ce qui contredit I'inégalité (4), et prouve ainsi que I'inégalité (1)
ne saurait étre admise.




