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INTEGRALES DEFINIES. 205

ANALISE TRANSCENDANTE.

Recherches sur les intégrales définies ;

Par M. H. G. ScuMIDTEN.

o o Vi S Vo WL WL VL VL VL W)

TOUTE fonction se développant, en général , suivant les puissances
de la variable indépendante , on peut toujours mettre une fonction
quelconque F(7) sous la forme S.y.*, le signe S s’étendant i tous
les nombres entiers , depuis 2=o0 jusqua zx= oo, et y, étant
indépendant de 2. .

Cela posé, le probléme général de la sommation des suites re~-
vient a transformer la quantité S.y,s* de la maniére la plus propre
a Dévaluation de la fonction F(¢) ; et les différentes méihodes
qu'offre l'analise pour cet objet, soit par le calcul des dilférences
finics, soit par les substitutions employdes par Euler, se ramcnent
toutes aux fonctions génératrices.

Mais si, au lieu de transformer de diverses maniéres la série
qui équivaut & la fonction F(#), on se proposait d’en déduvire de
nouvelles , qui répondissent & certaines conditions , le probl¢me
serait essentiellement différent du premier; et les différentes mé-
thodes qui se présentent , dans cette partie de I'analise , se rattachent
presque toutes & la théorie des intdgrales définies, quoiqu'on voie
difficilement la liaison qui existe entre elles, C’est pourquoi je me
propese de présenter quelques recherches ou elles sont comprises

Tom. XII , n.° VII, 1.°% janeier 1822. 28
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comme des conséquences d’un seul principe que je vais d’abord
exposer dans toute sa généralité.

Soit U une fonction quelconque linéaire de U, c'est-3-dire
telle que w(U4V)=xw U4V, et pouvant par conséqnent ren-
fermer un nombre quelconque de différentiation et d'intégrations
par rapport a toutes les variables contenues dans U, on aura
v F(#)=S.y,g-#*, en supposant que le signe ¥y se rapporte uni-
quement a la quantité 2 ; faisant donc "=z, , on aura .¥(2)=S.y,z,.
L’on voit ainsi que chaque forme différente de Y7 meéne & une
valeur différente de z., et par conséquent de S.r,z,; mais, dans
Vimpossibilité de les parcourir toutes , il faut se borner & celles
qui se présentent naturellement les premiéres , et qui peuvent
servic de base 4 des recherches plus compliquées. -

La forme la plus simple que 'on puisse denner & 7, aprés celle
d’un simple produit , est-la forme différentielle. En supposant,

pour plus de généralité, t=U, et de plus U et U, des fonctions
quelconques de » , on aura

d d
o U F(U)=S8.y, ™ U U*=S y,z, «

Donnant, par exemple, 3 U et U, des formes de puissances ou
d’exponentielles , on aura z, de la forme (n-ma)u"+™ =1, ou
(a-bx)e+b2% ; et 'en en_peut déduire unc infinité d’autres séries ,
en continuant les mémes opérations si loin qu’on voudra. 8i ¥ avait la
forme d’une différence ou intégale aux différences finies , on ne
trouverait facilement des résultats élégans que lorsque U et U,
auraient la forme d’exponentiels ; mais ces opérations n’ayant d’ail-
leurs aucune difficulté, je vais m’occuper du cas ot ¥ a la forme
d’une intégrale ordinaire ; ce qui donne lieu 3 des conséquences
trés-variées et trés-remarquables. Mais, pour ne pas étre entrainé
en des recherches trop. cempliquées, je me bornerei 2 la compa~
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raison des séries A simple entrée, et c'est ce qu'on fait en ad-
mettant pour les quantités U/, et U des formes qui ne soient pas
plus générales que celle du binome, dont on sait que les fonctions
exponentielles et circulaires ne sont que des cas particuliers.

Dans cette supposition , le principe qui sert de base aux recher-
ches contenues dans ce mémoire se réduit au fond a celui que Eulera
employé le premier pour représenter, par des intégrales définies , la
série qui intégre une certaine espece d’ équations différentielles ; mais ,,
si on 'expose dans toute sa généralité, on voit s’y rattacher les résuliats
les plus généraux quo’on ait obtenu sur la théoric des intégrales
définies. Parmi les résultats que présente cette théorie , il faut bien
distinguer ceux qui comprennent une infinité de fonctions diffé-
rentes, assujetties seulement a une propriété commune , de ceux
qui , par leur nature , se bornent a une classe particuliére de
fonctions ; et, quoique ceux-ci soient presque tous trouvés par des
considérations particuliéres et par des artifices trés-divers , il faut
néanmoins qu’ils se déduisent , comme des corollaires , de ceux-la.

En effet, la méthode générale , dont nous allons exposer les
conséquences , consiste a former I'équation

JUF(U)du=Sy,f U, U*du=8y,z, ,

ol il s’agit de déterminer z,, pour les différentes formes de U,
et de U, la variable z étant prise entre des limites convenables.
D’abord, on peut laisser 3 F(U) et a y, une forme quelcongue,
ce qui donne une grande généralité a celles qui en résultent. Ainsi,
par exemple, si l'on substitue pour U, et U des exponentielles
imaginaires , on en déduira , par des considérations trés - simples
que nous exposerons plus bas, le théoréme de M. Fourier. Mais,
la plupart des recherches qu’on a faites sur Jes intégrales définies
dépendent de valeurs particuliéres de ¥, , parmi lesquelles on s’est
sur-tout attaché & discuter celles qui raménent en méme temps les
deux séries S.y, et S.y,z, & des fonctions quon a adoptées dans
la langue analitique. C'est ainsi, par exemple, que la supposition
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(__ax)x

- fait la premiére égale a Cos.z, et celle de U=u*,
1.2.3.,.0.%

- " )
U,=e=*" fait la seconde dgale a _‘/Z’.'.e""i . Cependant, il faut

encore, dans cette partie , remarquer des formes fondamentales ,
d’ot dépendent un grand nombre de formes secondaires plus ou
moins élégantes, telles sont, par exemple,

Cos.mu
f du , Jure="Cos.mu.du , etc.
n3~4-u?

qu'on a trouvées par la rédnction 2 des équations différentielles ,
par le passage du réel 4 I'imaginaire , etc. Nous aurons soin de
les exposer, comme des corollaires de la formule générale

SUFU du=S8y, fUU*du ;

et ne supposant pas U, et U des fonctions plus générales que le
binome , nous rappellerons seulement la formule connue

m==in

Jum du{1—aut P =um M (1—an") o

[fum=r (1 —au™)du ;

d’ot on tire, en supposantn, p et m—rn—1 positifs, et prenant

- 7 . - N n 1
lintégrale depuis u=o jusqua z= }/T ,

(m=—nY(m=—2n) « « « « « . . (M==rn}
me1dy/ {—qu® P = Marnmt/c_ it P
S e ey ey L A

Faisant d’abord U=u et U,=(1—az")’ , on aura
S (1—au"du=z,;

mais il est facile de voir , par la formule précédente, que cette
quantité doit, en général , dépendre d'un nombre » d’iniégrales
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difféventes. En effet, x étant un nombre entier, on peut toujours
lui donner la forme d’un multiple de » plus un nombre entier

moindre que 7, en supposant ce dernier nombre également entier,
ce qui donne les rélations suivantes :

rafy P, — 1(a4n) e oo o o [14-(r—1)n] L
Ju(1—au") du—a’[1+(}7+l)n]... . [I+(p+r)n]j(l au™¥du ,

bty om Py 2(a4n) i 24 (r—1)n] e nP
Sutti(1—au" Fdu= a,[2+(p+l)n]"“[z_i_(p_{_r)n]ﬁ:(x auFdu ,

- L] - . - - L] * - . ° L L4 . . - ?

.2n.3n
Thef=p — 1 7 pd n n cseve n__; np
Ju (1—au*du= pr (p . l)n/‘ (1—au"Fdu ;

d’ou l'on déduit

—qutyf = ! 1(+n) )\
Sl — oy E ) {y T nroron” T S Rmn H (o ”"‘"’"""gf““”” e

2(2-4n) . } y
+ g" F o St e e e le—audu

. - . . . e . . . . . LY ° - - . .

gﬁ’n_r-l- e J’zn—x-l-m ¥ ynest «---}/(‘—ﬂu";”a”"du ;

-~ b
et , dans le cas particulier ot g= — etp= o0, on aura .
B P

bﬂ nz

—but —bun
fdy.e u Fu)= §y0+ 3_3;;“ 1(1+n) F et ;f “du

n i
{y,+ Yn+r+2(2+ )an.i.;—l-‘..}[ue “du

b2 .n2

. . . . . . .

—bun
{J’n-x‘l’ y’-""“+ b‘ Y3n—1+' '§ u""'e “ du .
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Ces 7 suites infinies se réduisent A une seule, dans le cas od
la fonction F(z) ne contient que les puissances de %; car , en
faisant F(2)=f(")=8.0,t**, on aura

S—au)P i f(w")ydu=S8.r, f(1 —au" P uit "y

q(q-[—n).....‘.[q-{—(x—.[)n] _ p qd
. a1[7+(P+l)n]uu[4]+(p+x)n] /(l au ) uwtauv .

=S.r,

Pouvant répéter ces opérations tant de fois qu'on voudra, on
formera facilement I'équation

p" m ey

_/"'x—au‘") Tu" n m g =—

L 1 e o,
¢

43 -1
we(1—aut,) u, (1—out) ¢ u, HOTR/ wenltt du

0o

du,

T W

M 5 eenet o (2, 6) oo (R b ) o [Mad- (=1 )T oo [, (=1 5]
) a"% (M y=p 14e)eoee My tpyds)s o (Matp et 2 enn 00 -p ot )

" 2

Les qualités S My Mgy ey Prs Pz e étant des constantes
quelconques, assujetties a la seule condition de ne pas rendre les
intégrales infinies entre les limites assignées ; et chacune des quan-
ties T,, T, , ... ayant la forme

My =1

.
T,=f1=ad’,) ¢ u, du, ;

toutes ces intégrales étant prises d'ailleurs entre les limites o et

JR—
I
V-
On trouve facilement que cette formule donne, sous forme finie,,
Vintégrale de I’équation

A 4-Boxt d A,+B,x3 dn—1y +B 26
- = -+ - T e STTRNS S Ll y__‘xﬁ
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En effet, 'on trouve, par un procédé que j'ai exposé ailleurs

( Annales , tom. XI ) pour la valeur compléte de y , un nombre
n41 de séries, dont chacune présente un nombre de constantes
égal a celni des quantités 72, , M, yveey Prs Pas . Quant 3 la

fonction f\z*), on trouve que, pour ce cas, elle prend la forme
I

el les quantités ¢, , ¢, , ¢4 ,..... devant étre de simples

puissances d’ume constante .
Nous avons uniquement considéré le cas ou lintégrale

/?( 1—au"'F(u)du

se raméne 3 une scule série , pour des valeurs quelconques de
7, et nous allons maintenant discuter les simplifications que com-
portent des valeurs particuliéres de cette quantité. D’abord, il est
facile de voir que, lorsque n=1 , on n’aura jamais qu’une seule
série pour lintégrale propesée ; mais il est encore possible d’y
ramener le cas ou n=2. En effet, si 'on observe que l'intégrale

Si—aw*fuds

prxse depuis u_—-y_ ]usquéu—-l-V — est =0, on verra

que la valeur de
J(1—au*)f F(u)du

se réduit & la seule série

L3 gV, | =V
{y o+ St a,(3+2p)(5+2p)r4+-m}/\1 awydu, {u=+\/ -}

S8i Ton suppose a= L. p=o , ona la formule par laquellé
P

M. Laplace a présenté , sous forme finie, lintégrale de I'équation
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dz &zz . ’
— = ——, Pour les autres valeurs de n, il parait, en général ,
dy dx2 ’ -
impossible de ramener & une seule les n séries différentes ; c’est
3 A

pourquoi nous nous bornerons , pour le moment, aux cas ou
=1 ou 2.

Soit donc U=u*{1—au® et U,=u¥(1—au’, on aura, en sup-

posant « et y des nombres entiers,

Su?(1—au)F[u* 1 —au)f]du=

s 1.2. 3.0 () . { =13 }
.yx (I+3+I3x).mn[;—i:a\-*-y-fz;s-i-u)x]a?—t-dx-l-l ’ u=_§
d’onr
.. - _ 1.2.3-:{3/-*-&.?—) u=o0.
Su¥e=F(u*, =P ) du=_Sy, OAe) resi —

Si, par exemple , on a F(#j=¢, on aura

I T v R T A
it o G+28 o =fem e §

et si Pon fait F(£)==Cos.2,

X I 1
T o T Gy

b TY YT =f.e"‘w.COS.IIG—"ﬁ‘.d'I£’ 9

et ainsi de suite.
Si y n’était pas entier, il faudrait ramener Vintégrale fu¥+a=
(1-—au)3:+‘x A celle-ci

(v Hax) e (y41) V(1 —au\ Ry ;
o ¥ (yfax-d4-px4-1). 0y 04 p4-2) fuli—au) s

mais » étant différent pour les différens termes de la suite , il
faut
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Paut absolument supposer $=o, & moins que 'on ne veuille in-
troduire une transcendante irréductible dans chaque terme,

Faisant , par exemple,
=

_— 9
 L2.300e2x

en aura

Su¥(1—au)°Cos.cu.du=

(1) (r42)c2 (1) (r42) (A3 (v et } Yoo \3
;: 1.202(y442) (v 4043) | tebatp N (o445 Su'(1-au)’du

Ve
d’ot

Ju¥e™%Cos.cudu=

{ o+ (42) (v+1) (Y-H)
— ot

1.233 .234&4 cn-%fuye_sudu

(I__;_ Vi) (v+!)+([+_§ V= (r41 —
== que"‘;"du.( = '

U=o»

2

On fait aisément disparaitre les Imaginaires contenus dans cette
derniére expression, en observant que

(MWWJMMM§<+V_&”)m+x—wﬁ%ﬁng

Cos.x Cos.x

et faisant Tang.z = -; d’ ol

onp aura ainsi

Tom. XIL 29
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d’out l'intégrale connue

cou [ rbnsre. (Tang=<)]
| [ | 14 c‘(>t:: - Su¥e=ddu .
(+5

Si, au lieu de Coscu, on avait Sin.cz , on procéderait d'une

Su¥e= " Cos.cu.du=

maniére analogue. .
Faisant présentement U=u*1-=au*)? et U,f-:u"’(b-au‘)s, Pon
aura

SUFU)duz=S,y, fur+ee 1—au?)’+# ,
d’olt '
/u?e.. F(U”, e-—ﬁuz)du=5.rxfuy+aaxe-ux(3+6x)du . (::_:; :)

Supposant «=2 et y=2c, on trouve , pour le second membre

1.3.50 e [2(cFa) —1] . w2 fe=—— 0
Y- : de .
8.9 [2(d4-Bx)1cH*(I4-Bx)= /e d (t:—l—- oo)

Soient , par exemple, g=o, F(U)=Cos.z ; en observant que

Jetdi=y/7,

on trouve facilement

—Juz __} -
Je U Cosw.du=ce IV-};
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et, si les limites étaient 0 et oo, cette dernitre quantitdé se ré-
duirait 3 la moitié de sa valeur,

Mais ces recherches se continuant sans difficulté , par le prin-
cipe que nous avons posé , je passe aux fonctions circulaires 5 et
quoique ces derniéres fonctions puissent étre considérées comme
cas particuliers de celles que nous venons de discuter , elles exigent
néanmoins des modifications remarquables.

En effet, de la formule connue

s um=t (m—1)um=2

Q b(m~+-p) -—bz,(m-}-p)(m-{»-p-—x)

S (1bu) du= (14-bu)f

(=1 (m=—2)

b2 (m4-p) (m~-p—1

3 S (1 bu)du

en faisant
(1 +duy =P (1 —buy/ =0

2

(1duy =Y —(1—buy/ =3
2V =1

=@:P 3 y) ’

='4’(P ) u) ?

on tire

mem — e
Juro(p, uydu=¥(p+1 , u) u (m=—1)um=20( p4-1 , u)

b(m—+p) b2 (m—-p)(m--p—1)

{me=1) (1 ==2)

— me3 N
b2 (m=-p)(m~4-p=1) fll ‘P(P:u/d” ’

et, en continuant ces opérations jusqu’d ce que I'exposant de z
soit devenu =o0, on aura deux séries dont I'une contiendra la
fonction ¢ et Pautre la fonction ¥ ; et les limites qui les rendent
=o0 étant différentes , il sera impossible d’assigner denx limites
entre lesquelles tous les termes hors du signe d'intégration dispa=
raissent. En conséquence , si 'on e veut, dans le probléme qui
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mous occupe , que des séries 4 simple entrde , il faudra faire
m=17 ; cest-a-dire , ne prendre pour U, et U que des valeurs de
la forme (1+4uy/ 1) ; d’ou Pon peut toujours former des quan—
tités réelles, en réunissant deux séries ot les signes soient différens.
Faisant
U=(xhy =), UQckly S

on aura
: [ buy/ S0 F[(14buy/ =) E4 1-buy/ ZE)IF [(1-duy/ =52 Jdu=

(4buy/ =7 d+Bx+1 —( 1__5”‘/:)8+/s~+ :
2b(d4fat1) yf

S.y..

entre des limites quelconques ; et, & moins que celles-ci ne rendent
des termes infinis, on peut étendre’le signe S A tous les nombres
entiers , soit positifs , soit négatifs. 11 est facile d’ailleurs de ramener
cette derniére expression 3 une forme réelle , comme nous l'avons
déja fait plus haut. Cependant, ces formes ne menent & des ré-
sultats ¢élégans que lorsque les puissances se changent en exponen=-
tiels ; et , si lon fail
+u\ SmnunN

U=¢ V . U,=£’+ \/ N

on aura

—
——

I)]dw::

R GV E s (n=a)lp =T )
S.’yJ‘ e a du=S8.y, fCos.(x—n)u.du .

2

-~

. /[e-nu\/:; F(e+u\/—-";)+ e+nu\[:-'1F(e—-u\/

En assignant & z les limites o et =, on réduit la dernitre ex-
pression & =y, , si l'on suppose qu'ancune des valears de =z,
depuis — oo jusqu'a —- % , ne rend y, infini.

On a ainsi , pour la méme quantité y, deux transformations
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différentes, dont chacune a ses avantages ; nous allons présente-
ment les discuter , en commengant par la premicre, ou la valeur
de y, est expﬁmée par la fonction génératrice F(2). Supposons
celle-ci =f(#, ¢) ; on aura, en développant suivant les puissances
de # et ¢, la série 3 double entrée .

0,0t @y |k a0 |0
+tta,Ata, | +ta,, 4 e
e, ,+1a, , +t’a,’, “+

B SIPURIS SIS R AN = S

e

s8e

Maintenant , on peut faire ¢ égal & une puissance quelconque en-
tiere de 73 et, qﬁelle qu’elle soit, on est toujours en état d'ex-
primer , par une intégrale définie, le coeflicient d’une puissance
quelconque de 2 qui provienne de cette substitution pour . Faisant,

é - .
par exemple , =, d’olt le coeflicient de #* devient

an,o““hn-;., )1 +an+ 2,2 + .::.,. —_— _,2% j‘[e_nuv—l f<e+uv_.1 . e—u\/_ i )

e TV T TV V=R gy

depuis #=o0 jusqud w=w=. Soit , par exemple , £z, 0)=¢*"; on
trouve , par ceite formule, en faisant n=o0, la série
3 42 5 . 64
4+ +
(1.2)2  (1.2.3)2  (1.2.3.4)2 (1.2.3.4.5)*

Lg
"'l"u-.

1+-I;-+%+
1 1
l

— +6_uv:; N —1 +uv':;:
= /(e""l'u\,_x etV '+€ )du :
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L’introduction des imaginaires dans les intégrales comportant de
grandes difficultés , relativement & Iévaluation ; il est intéressant
de discuter le cas le plus étendu ou il serait possible de les faire
disparaitre ; c’est-3-dire , o les exponentiels imaginaires pourraient se
réduire en des cosinus ou sinus réels. On voit que cela ne pent

. \ )

avoir lieu que lorsque f(z,¢) a la forme [(z4-¢) ou ¢= T et
dans ce cas , on trouve pour le coefficient de 2"

T (6+nu\[:;'_l;_e—nu\/:-;)f(c-i-u\/:-_l_{_e—-u\/::;)du
2%
== i— J/ Cos.ruf(2Cos.u)du .

Soit , par exemple ,
£t40)= Aot A (140" A, (14 0) e vl

« g . . ‘
on aura, en multipliant par (z-¢), faisant p=— et prenant la

partie indépendante de # dans la supposition de m et n pairs ,
attendu que , pour qu’clle ne soit pas nulle, il faut qu’'unc partie
des nombres #, ntm , nt2m, n43m,.... soient pairs. On aura

n(n—-x).....( Z—-}-:) (n4m)eeen n 2m +1)
2 M- ( R

I1.200000 == Xoosser =

ainsi

(n==2m)..... (n—{»-zm -+ l)

2

n--a2m

A, +..= i /Cos nuf(2Cos.z)dz .

) QYT

Si T'on avait fait m=1 et #=0, on aurait eu



DEFINIES. s1g

At A, A S5 A n = = [T(2Cos.u)du

- Dans le cas particulier oa la fonction f(z,¢), que mnous ayons
considérée plus haut , a la forme ¥ {2;X (), en supposant

Y)=8.Am™ , ¢(#)=S8.Bp™
on aura

SAnBn ou  ABy+A.BAA,B, A B,

/

2 [TV TV T oV T 1V T, (o)

c’est le théoréme de Parseval.

Le cas le plus étendu ol les imaginaires disparaissent étant dé-
terminé par la condition f(p , t)=fp+7#), on a ici la condition

oty = o) HH )= (V)

de laquelle on déduit facilement que les fonctions f, ¢, ¥ doivent

avoir la forme esponenticlle. En effet , on a, dans ce cas, la
formule connue

1 2Cos,u

— e du= k(G PHED M EE) Ham ) e

que lon pourrait aussi déduire de la formule (a) en y faisant
f(2Cos.uj= g2Cosex,

Considérons présentement la seconde valeur de y,, savoir

X . u=0
X Sy.fCos(n—aYudu , (

u--za-

h . - . EAl
le signe S s’étendant i tous les nombres entiers, depuis o jusqua oo,
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D’abord, on peut donner 4 cette quantité une forme beaucoup
plus commode , en changeant les diffcrences Linies en des difféy
rentielles : c’est ce quon fait en supposant

x! n! )
—_ — — /2! — / — /Y «
T== , 0=, u=v'dz’ , y —(z'), y =£n’) }

et effacant ensuite les accens. On trouve ainsi

e

f(n)::-i_- Sdzfduf(z)Cos.(n—x)u-. ( = x:“;)

U= , x=

Observant de méme que

=8.y./ Cos.(n-t2)udu.; ( — )

u==
le sign; S s'étendant depuis o jusqu'a oo, dol
u=—o0 , x==0
o= /fdz/duf(x)Cos.(z+n)u , ( a=cn , w=c0 ).

en en tire les deux équations.
;:: £n) = ffdwduf(x) Cos.nuCos.xu,
-:- f(n)=[fdzduf(x)Sin.nuSin.zu ,

qui sont dues 3 M. Fourier. Parmi un grand nombre de conséx.
quences importantes quoffre ce beau théoréme, je vais rappeler
quelques-unes des formules les plus simples et les plus remarquables.
de la théorie des intégrales definies , que les géométres ont obtenues.
par d’antres voies,

Faisant, par exemple, fz)=e™**, on. trouve

wig



DEFINILES. 221

w w—ax aduCos.nu uduSin.nu u—o
— == -_ ————— ;_
a ¢ az~fud az4u? U= o

. - A
et on sait que ces formes servent de base & un grand nombre

d’autres, plus ou moins élégantes, telles que

fPCos.nu;QuSin.nu dz,

P, Q, M étant des fonctions quelconques rationnelles qui ne
contiennent que des puissances paires de z, et M n’ayant aucun
diviseur qui devienne zéro , pour des valeurs réelles positives de 7.
De méme, la fonction F(Cos.z) étant développable , suivant des
cosinus multiples , on fait dépendre de la méme forme l'intégrale

[ F(Cosa)du
 — M

et, dans le cas ot F(Cos.z) a'la forme TLog.(1+aCosz) ; on sait
’ \ 8
que cette intégrale se raméne a une forme finie,

Soit encore

—_ -

) ot F =0
f() = fe—"— s, ( )
dans ce cas, on aura.

2 x*-
— _—

— fe —r—5 dt =/ffdxdud:CosinuCos.zu.e.™

Intégrant’ par rapport 3 7, et faisant 2=y ,. on aura

‘/wffdudi’Cos.nu,g ”( +l)__ Vfdu@o« nu ;

Ao

dolt, comme Pon sait,
Tom. XII, 3o
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___\3._’3_ 4/ o ran
Je P= e Q= i/_f e .
2
Mais, une des conséquences les plus générales du théoréme de
M. Fourier , est celle par laquelle on fait dépendre une série

Sin. . )
S.y.F(z) d'une antre de la' forme S.yxc;r: nz. En effet , si I'on fait

P=y,4y,Cos.uty,Cos.2ut.....

on voit que
%ffF(x)Cos.:dexdu.—_—yoF(o:—l—y,F(l)+y‘,F(2)+ ety

or, nous avons vu que , par le thoréme de Parseval , on fait
dépendre cctte série des deux suivantes

,’0+y1t+}’ltz+'y; ts‘l' orgeees p
Fo)+F()HF@)E 4 v

mwais I'introduction des imaginaires rend, eu général, la preniiére
de ces deux méthodes préférable a la seconde, dans tous les- cas
ou la quantité P en est débarrassée ; comme , par exemple , lorsque
les quantités 4, ¥, ¥z - forment une suite de puissances.

Les recherches que je viens d’exposer me paraissent donner les
développemens néecessaires au principe général que jai présenté
au commencement de ce mémoire. On en déduit une infinité
d’autres , en répétant et combinant les différentes opérations qu’on

y trouve exposées , et sur-tout en différenuant et intégrant par
rapport a de nouvelles variables.



