
H. G. SCHMIDTEN
Analise transcendante. Recherches sur les intégrales définies
Annales de Mathématiques pures et appliquées, tome 12 (1821-1822), p. 205-222
<http://www.numdam.org/item?id=AMPA_1821-1822__12__205_0>

© Annales de Mathématiques pures et appliquées, 1821-1822, tous droits réservés.

L’accès aux archives de la revue « Annales de Mathématiques pures et appliquées » implique
l’accord avec les conditions générales d’utilisation (http://www.numdam.org/conditions). Toute
utilisation commerciale ou impression systématique est constitutive d’une infraction pénale.
Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

Article numérisé dans le cadre du programme
Numérisation de documents anciens mathématiques

http://www.numdam.org/

http://www.numdam.org/item?id=AMPA_1821-1822__12__205_0
http://www.numdam.org/conditions
http://www.numdam.org/
http://www.numdam.org/


205

ANALISE TRANSCENDANTE.

Recherches sur les intégrales définies ;

Par M. H. G. SCHMIDTEN.

INTÉGRALES DÉFINIES.

TOUTE fonction se développant , en général, suivant les puissances
de la variable indépendante , on peut toujours mettre une fonction
quelconque F(t) sous la forme S.03B3xtx, le signe S s’étendant à tous
les nombres entiers , depuis x=o jusqu’à x=~, et yx étant

indépendant de t. 
Cela posé, le problème général de la sommation des suites re-

vient à transformer la quantité S.03B3xtx de la manière la plus propre
à l’évaluation de la fonction F(t) ; et les différentes méthodes

qu’offre Fanatise pour cet objet , soit par le calcul des différences

finies , soit par les substitutions employées par Euler, se ramènent
toutes aux fonctions génératrices.

Mais si , au lieu de transformer de diverses manières la série

qui équivaut à la fonction F(t) , on se proposait d’en déduire de

nouvelles , qui répondissent à certaines conditions , le prolème
serait essentiellement différent du premier ; et les différentes mé-

thodes qui se présentent , dans cette partie de l’analise , se rattachent
presque toutes à la théorie des intégrales définies, quoiqu’on voie
difficilement la liaison qui existe entre elles. C’est pourquoi je me
propose de présenter quelques recherches où elles sont comprises
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206 INTÉGRALES
comme des conséquences d’un seul principe que je vais d’abord

exposer dans toute sa généralité.

Soit VU une fonction quelconque linéaire de U, c’est-à-.dire
telle que ~(U+V)=~U+~V, et pouvant par conséqnent ren-
fermer un nombre quelconque de différentiation et d’intégrations
par rapport à toutes les variables contenues dans U, on aura

~.F(t)=S.yx~.tx, en supposant que le signe V se rapporte uni-

quement à la quantité t ; faisant donc ~tx=zx, on aura ~.F(t)=S.yxzx.
L’on voit ainsi que chaque forme différente de V mène à une

valeur différente de zx, et par conséquent de S.yxzx; mais, dans
l’impossibilité de les parcourir toutes , il faut se borner à celles

qui se présentent naturellement les premières , et qui peuvent
servir de base à des recherches plus compliquées. -

La forme la plus simple que l’on puisse donner à ~, après celle
d’un simple produit , est la forme différentielle. En supposant? ,
pour plus de généralité, t=U, et de plus U et Ut des fonctions
quelconques de u , on aura

Donnant, par exemple, à U et UI des formes de puissances ou
d’exponentielles , on aura zx de la forme 1 , ou
(a+bx)c(c+bx)u; et l’on en peut déduire une infinité d’autres séries ,
en continuant les mêmes opérations si loin qu’on voudra. Si ~ avait la
forme d’une différence ou intégale aux. différentes finies , on ne

trouverait facilement des résultats élégans que lorsque U et UI
auraient la forme d’exponentiels ; mais ces opérations n’ayant d’ail-
leurs aucune difficulté , je vais m’occuper du cas où ~ a la forme
d’une intégrale ordinaire ; ce qui donne lieu à des conséquences
très-variées et très-remarquables. Mais , pour ne pas étre entraîné

en des recherches trop. compliquées, je me bornerei à la compa-
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raison des séries à simple entrée, et c’est ce qu’on fait en ad-
mettant pour les quantités UI et U des formes qui ne soient pas
plus générales que celle du binome , dont on sait que les fonctions

exponentielles et circulaires ne sont que des cas particuliers.
Dans cette supposition , le principe qui sert de base aux recher-

ches contenues dans ce mémoire se réduit au fond à celui que Euler a

employé le premier pour représenter , par des intégrales définies , la
série qui intègre une certaine espèce d’équations différentielles; mais ,,
si on l’expose dans toute sa généralité, on voit s’y rattacher les résultats
les plus généraux qu’on ait obtenu sur la théorie des intégrales
définies. Parmi les résultats que présente cette théorie , il faut bien

distinguer ceux qui comprennent une infinité de fonctions diffé-

rentes, assujetties seulement à une propriété commune , de ceux
qui , par leur nature , se bornent à une classe particulière de

fonctions ; et , quoique ceux-ci soient presque tous trouvés par des

considérations particulières et par des artifices très-divers, il faut

néanmoins qu’ils se déduisent , comrne des corollaires, de ceux-là.
En effet , la méthode générale , dont nous allons exposer les

conséquences, consiste à former l’équation

où il s’agit de déterminer zx, pour les différentes formes de U1
et de U, la variable zi étant prise entre des limites convenables.

D’abord, on peut laisser à F(U) et à yx une forme quelconque
ce qui donne une grande généralité à celles qui en résultent. Ainsi,
par exemple , si l’on substitue pour UI et U des exponentielles
imaginaires , on en déduira , par des considérations très - simples
que nous exposerons plus bas , le théorème de M. Fourier. Mais ,
la plupart des recherches qu’on a faites sur les intégrales définies
dépendent de valeurs particulières de r., parmi lesquelles on s’est
sur-tout attaché à discuter celles qui ramènent en même temps les
deux séries S.yx et S.yxzx à des fonctions qu’on a adoptées dans
la langue analitique. C’est ainsi, par exemple, que la supposition,
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yx= (2013ax)x I.2.3.....x fait la première égale à Cos.a , et celle de U=u2,

U1=c-ux fait la seconde égale à 03C9 2.e. Cependant, il faut

encore, dans cette partie, remarquer des formes fondamentales
d’où dépendent un grand nombre de formes secondaires plus ou
moins élégantes, telles sont, par exemple,

qu’on a trouvées par la réduction à des équations différentielles,
par le passage du réel à l’imaginaire, etc. Nous aurons soin de

les exposer, comme des corollaires de la formule générale

et ne supposant pas 1JI et U des fonctions plus générales que le

binome, nous rappellerons seulement la formule connue

d’où on tire, en supposant n, p et m2013rn2013I positifs , et prenant
il

l’intégrale depuis u=o jusqu’à u= V 1 a,

Faisant d’abord U=u et U1=(I-aun)p, on aura

mais il est facile de voir, par la formule précédente , que cette
quantité doit, en général , dépendre d’un nombre n d’intégrales



209DEFINIES.

différentes. En effet , vêtant un nombre entier, on peut toujours
lui donner la forme d’un multiple de n plus un nombre entier

moindre que n, en supposant ce dernier nombre également entier,
ce qui donne les relations suivantes ;

d’où l’on déduit

et, dans le cas particulier où a= p et p= ~, on aura
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Ces n suites infinies se réduisent à une seule , dans le cas où

la fonction F(t) ne contient que les puissances de txt; car, eu
faisant F(t)=f(tn)=S.vxtxn, on aura

Pouvant répéter ces opérations tant de fois qu’on voudra , on

formera facilement l’équation

Les qualités a, m1, m2, ....., p1, p2,..... étant des constantes

quelconques, assujetties à la seule condition de ne pas rendre les

intégrales infinies entre les limites assignées ; et chacune des quan-
tités y,, T2, ..... ayant la forme

toutes ces intégrales étant prises d’ailleurs entre les limites o et

r a
On trouve facilement que cette formule donne, sous forme finie,

l’intégrale de l’équation
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En effet, l’on trouve , par un procédé que j’ai exposé ailleurs

(Annales, tom. XI ) pour la valeur complète de y, un nombre
n+ 1 de séries, dont chacune présente un nombre de constantes

égal à celui des quantités M, m2,....., pI, p2, ..... Quant à la
fonction f(u3), on trouve que , pour ce cas, elle prend la forme

I I-u, les quantités v0, vI, v2,..... devant être de simples
puissances d’une constante 03B4.

Nous avons uniquement considéré le cas où l’intégrale

se ramène à une seule série, pour des valeurs quelconques de
n, et nous allons maintenant discuter les simplifications que com-
portent des valeurs particulières de cette quantité. D’abord, il est

facile de voir que , lorsque n=I, on n’aura jamais qu’une seule

série pour l’intégrale proposée ; mais il est encore possible d’y
ramener le cas où n = 2. En effet, si l’on observe que l’intégrale

prise depuis u=-ia jusqu’à u=+V I a est =o0, on verraprise d epuis u=-V I a jusqu’ à u=+V
a 

est =o, on verra

1 que la valeur de 

se réduit à la seule série

SI l’on suppose a=b p et p= o0 , on a la formule par laquelle
M. Laplace a présenté, sous forme finie, l’intégrale de l’équation
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dz dy 

= d2z dw2. Pour les autres valeurs de n, il paraît, en général,

impossible de ramener à une seule les n séries différentes; c’est

pourquoi nous nous bornerons, pour le moment, aux cas ou

n=1 ou 2.

Soit donc U=u03B1(I2013au)03B2 et UI=u03B3(1-au)03B4, on aura, en sup-
posant 03B1 et y des nombres entiers,

d’ou

Si, par exempte , on a F(t)=et, on aura

et si l’on fait F(t)=Cos.t,

et ainsi de suite.

Si y n’était pas entier, il faudrait ramener l’intégrale fu2+
(I2013au)03B4+03B2x à. celle-ci,

mais x étant différent pour les différens termes de la suite, il

faut
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tat1t absolument supposer 03B2=o, à moins que l’on ne veuille m-

trodmre une transcendante irréductible dans chaque terme.
Faisant, par exemple,

on aura

d’où

On fait aisément disparaître les imaginaires contenus dans cette

dernière expression, en observant que

et faisant Tang.x = c 03B4, d’où

ont aura ainsi

Tom. XII.
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d’où l’intégrale connue

Si, au lieu de Cos.cu, on avait Sin.cu, on procéderai d’une
manière analogue. 

Faisant présentement U=u03B1(I2013au2)03B2 et UI=u03B3(I2013au2)03B4, l’on
aura

d’où

Supposant 03B1=2 et 03B3=2c, on trouve , pour le second membre

Soient, par exemple, 03B2=o, F(U)=Cos.u; en observant que

on trouve facilement
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et , si les limites étaient o et ~, cette dernière quantité se ré-
duirait à la moitié de sa valeur.

Mais ces recherches se continuant çans difficulté, par le prin-
cipe que nous avons posé, je passe aux fonction3 circulaires; et,
quoique ces dernières fonctions puissent être considérées comme 
cas particuliers de celles que nous venons de discuter , elles exigent
néanmoins des modifications remarquables. 
En effet , de la formule connue

en faisant

on tire

et, en continuant ces opérations jusqu’à ce que l’exposant de u
soit devenu =o , on aura deux séries dont l’une contiendra la

fonction ~ et l’autre la fonction 03C8; et les limites qui les rendent

=o étant différentes, il sera impossible d’assigner deux limites

entre lesquelles tous les termes hors du signe d’intégration dispa-
raissent. Ell conséquence, si l’on De veut, dans le problème qui
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sous occupe, que des séries à simple entrée, il faudra faire
m=I; c’est-à-dire , ne prendre pour UI et !7qne des valeurs de
la forme (I±bu-1)p; d’où l’on peut toujours former des quan-
tités réelles, en réunissant deux séries où les signes soient différens.

Faisant 

on aura

entre des limites quelconques; et , à moins que celles-ci ne rendent

des termes infinis, on peut étendre le signe S a tous les nombres

entiers, soit positifs , soit négatifs. Il est facile d’ailleurs de ramener

cette dernière expression à une forme réelle, comme nous l’avons
déjà fait plus haut. Cependant, ces formes ne mènent a des ré-

sultats élégans que lorsque les puissances se changent en exponen-
tiels ; et , si l’on fait

on aura

En assignant à u les limites o et 03C9, on réduit la dernière ex-

pression à 03C9yn, si l’on suppose qu’aucune des valeurs de x ,

depuis 2013~ jusqu’à -1- ~, ne rend yx infini.
011 a ainsi, pour la même quantité ym deux transformations
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différentes, dont chacune a ses avantages ; nous allons présente-
ment les discuter, en commentant par la première, où la valeur 
de yn est exprimée par la fonction génératrice F(/). Supposons
celle-ci =f(t, v); on aura, en développant suivant les puissances
de t et v2 la série à double entrée 

Maintenant , on peut faire a égal à une puissance quelconque en-
tière de t ; et , quelle qu’elle soit , on est toujours en état d’ex-

primer , par une intégrale définie, le coefficient d’une puissance
quelconque de t qui provienne de cette substitution pour v. Faisant, 

par exemple , v=1, d’où le coefficient de tx devient
t

depuis u=o jusqu’à u=03C9. Soit, par exemple, f(t,v)=etev; on
trouve , par cette forrnule , en faisant n=o , la série

du.
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L’introduction des imaginaires dans les intégrales comportant de

grandes difficultés , relativement à l’évaluation ; il est intéressant
de discuter le cas le plus étendu où il serait possible de les faire

disparaître ; c’est-à-dire, où les exponentiels imaginaires pourraient se
réduire en des cosinus ou sinus réels. On voit que cela ne peut

avoir lieu que lorsque f(t, v a la forme f(t+v) où v=1 t; et,
dans ce cas , on trouve pour le coefficient de tn

Soit, par exemple,

on aura , en multipliant par (t+v)n, faisait v=l t et prenant ta

partie indépendante de t dans la supposition de m et n pairs,
attendu que, pour qu’elle ne soit pas nulle , il faut. qu’une partie
des nombres n, n+m, n+2m, n+3m . soient pairs. On aura
ainsi

Si Fou avait fait m=I et n=o, on aurait eu
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Dans le cas particulier où la fonction f(t, v) , que nous avons

considérée plus haut, a la forme 03C8(t) ~(u), en supposant

on aura

c’est le théorème de Parseval. 
Le cas le plus étendu où les imaginaires disparaissent étant dé-

terminé par la condition f(v, t)=f(v+t), on a ici la condition

de laquelle on déduit facilement que les fonctions f, ~, 03C8 doivent
avoir la forme exponentielle. En effet , on a , dans ce cas , .la

formule connue 

que l’on pourrait aussi déduire de la formule (a) en y faisant

f(2Cos.u)=e2Cos.u.
Considérons présentement la seconde valeur de yn, savoir

le signe S s’étendant à tous les nombres entiers 7 depuis o jusqu’à ~.
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D’abord, on peut donner a cette quantité une forme beaucoup
plus commode y en changeant les différences finies en des. diffé-
rentielles : c’est ce qu’on fait en supposant

et effaçant ensuite les accens. On trouve ainsi

Observant de même que

le signe S s’étendant depuis o jusque ~, d’où

on en tire les deux équations

qui sont - dues à M. Fourier. Parmi un grand nombre de consé-

quel1ces importantes qu’offre ce beau théorème, je vais rappeler
quelques-unes des formules les plus simples et les plus remarquables
de la thëorle des intégrales definies, que les géomètres ont obtenues
par d’antres voies.

Faisant, par exemple, f(x)=e-ax, on trouve 
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et l’on -sait que ces formes servent de base à un grand nombre

d’autres , plus ou moins élégantes , telles que

P, Q, M étant des fonctions quelconques rationnelles qui ne
contiennent que des puissances paires de u , et M n’ayant aucun

diviseur qui devienne zéro, pour des valeurs réelles positives de n.
De même, la fonction F(Cos.u) étant développable , suivant des

cosinus multiples, on fait dépendre de la même forme l’intégrale

et, dans le cas où F(Cos.u) a la forme Log.(I+aCos.u), on sait

que cette intégrale se ramène à une forme finie.

Soit encore

dans ce cas,, on aura.

Intégrant par rapport à jf, et faisant t2=v, on -aura

d’où, comme l’on sait, 
30Tom. XII.
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Mais, une des conséquences les plus générales du théoréme de
M. Fourier, est celle par laquelle on fait dépendre une série

S.yxF(x) d’une autre de la forme S.ySin. xCos. nx. En effet, si l’on fait

on voit que

or, nous avons vu que, par le thorème de Parseval , on fait

dépendre cette série des deux suivantes

mais l’introduation des imaginaires rend, eu général, la première
de ces deux méthodes préférable à la seconde, dans tous les cas

où la quantité P en est débarrassée ; comme , par exemple, lorsque
les quantités y0, y1, y2,..... forment une suite de puissances.

Les recherches que je viens d’exposer nie paraissent donner les

développemens nécessaires au principe général que j’ai présenté
au commencement de ce mémoire. On en déduit une infinité

d’aatres , en répétant et combinant les différentes opérations qu’on
y trouve exposées, et sur-tout en différentiant et intégrant par

rapport à de nouvelles variables.


