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168 QUESTIONS
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QUESTIONS RESOLUES.

Démonstration des deuax théorémes de géomeéltrie €nonces
& la page 72 de ce volume ;

Par M. J, B. Durranpe , professeur de physique au
collége royal de Cahors.

AVRAAN A

THEOBEM E 1. De tous les systmes de diaméires conjugués
dune ellipse , les diaméires principaux sont ceux dont la somme
est un winimum ; e/ les diamélres conjugués égaux sont ceux dont
lz somme est un maximum.

Démonstration. Soient a , b les demi-diamétres principaux d'une
ellipse, # , ¥ deux demi-diamétres conjugués quelconques , et
Pangle que comprennent entre eux ces demi-diamétres ; on aura,
comme l'on sait (*),

z -ty =a’4o* ; xySiny=ab .

Ajoutant et retranchant successivement le double de la derniére
de ces deux équations au produit de la premitre par Sin.y, il
viendra , en divisant ensuite par Sin.y et extrayant la racine quarrée
des deux membres ,

(") Voyez le précédent article..
J. D. G.
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g / b
-‘L‘+}’= az+bz+ f_a__. x—y: Grefbrem i‘_’f__ .

Sin.g

Le dernier de ces résultats prouve qu'on ne sauroit avoir

20b

H4

2ab . .
a0 < ——, clest-d-dire , Siny <
Sin.y

17l &
ou encore

. (a=b)?

Sin.y < 1w ———
< (e—b)24-2ab ’

quantité essenticllement positive et moindre que P'unité, Ainsi , Sin.y
est nécessairement compris eantre les deux limites

2ab

a~'+b“ y

I et

il atteint la premicre lorsqu’on a #—y=g—5, c’est-2-dire , lorsque
les deux demi-diamétres covjugués &, y sont les demi-diameétres
principaux eux-méwes ; il atteint la seconde, lorsqu'on a 2=y,
c’est-a-dire , lorsque 2 et y sont les demi-diamétres conjugués
égaux. ‘
Or, 1] résulte évidemment de Vexpression de x4y , que cette
somme sera minimum dans le premier cas, et maximum dansle
second ; le théoréme se trouve donc ainsi complétement démontré,

THEOREME 1. De tous les systémes de diambires conjugués d’'une
ellipsoide, les diamétres principaux sont ceux dont la somme est un
minimum ; ef les diaméires conjugués égaux sont ccux dont la
somme est un maximum, ,

Démonstration. La déwonstration de ee théoréme se déduit bien
simplement du théoréme gni précede.

1l faut d’abord pour cela se rappeler que l'un quelconque des
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diamétres d’'une ellipsoide étant donné , il n’y a absolument de
determiné que le plan de ses deux conjugués, dans lequel , prenant
arbitrairement deux diamétres de la section , conjugués l'un A
Pautre, ils seront aussi conjugués au premier.

Cela posé, 1.° si l'on nie que les diamétres principaux de
Iellipsoide soient les diamétres conjugués dont la somme est minimum |
il faudra qu’on indique un autre systtme de diameétres conjugués
jouissant de cette propriété, et dans lequel deux au moins des trois
diamétres ne soient pas perpendiculaires 'un a lautre ; mais alors,
en conservant le troisiéme diamétre , et substituant & ces deux-ci
les diametres principaux de la section qui les contient, on aurait
un nouveau systéme dec diamétres conjugués , dont la somme serait
(Théor. I') moindre que la somme des premiers, qui conséquem-
ment ne saurait étre un minimum , comme on l’avait supposé.

2.° Si l'on nie que les diameétres conjugués égaux de l'ellipsoide
soient les diametres conjuguds dont la-somme est mazimum ,
il faudra qu'on indique un autre systtme de diamétres conjuguds
jouissant de cette propriété, et dans lequel deux au moins des trois
diamétres soient inégaux ; mais alors, cn conservant le troisi¢me dia-
métre , et substituant i ces deux-ci les diamétres conjuguds égaux
de lasection qui les contient, on aurait un nouveau systéme de diamétres
conjugués, dont lasomme serait ( T%éor.1) plus grande que la somme
«des premiers , qui conséquemment ne saurait étre un mazimum ,
comme on l'avait supposé (*).

(*) Puisque, comme on P'a vu dans le -précédent article, il existe dans
Pellipsoide une infinité de systémes de diamétres conjugués égaux, il y existe
donc aussi une infinité de systemes de diameétres conjuguds ayant une somme
maximum ; d’ol I'on voit quen traitant la seconde partie du théoréeme par le
calcul différentiel , on aurait un exemple du cas singulier dont s’est occupé
M. Francais, aux pages 132 et 197 du IIL® volume de ce recueil , et dans
lequel la théorie ordinaire est en défaut, attendn que le maximum ou le minimum
se trouve indéterminé.

J. D. G.
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Le sécond théoréme se trouve donc ainsi complétement démontré,
comme le premier (*)

(* Nous avons recu récemment de M. Tédenat , ancien recteur, correspondant
de l'académie royale des sciences , des démonstirations des mémes théoremes
qui rentrent pour le fend dans celles qu’on vient de lire, et qu’il suffit consé-
quemment de mentionner, J. D. G.



