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NN A

RIEN’ ne semble plus propre & rabattre Torgueil de I'homme;
a lui inspirer une juste défiance de lui-méme , et & lni montrer ¥
quel point sont resserrées les bornes de son intelligence; rien ne
peut mieux lui faire sentir combien ce qu’il appelle sa raison est
encore enveloppé de nuages et de téntbres que la divergence des
opinions des plus grands philosophes , ou du moins de ceux qui sont
universellement tenus pour tels, je ne dirai pas sur telle doctrine’,
particuliérement relative 2 telle ou telle branche de nos connaissances;,.
mais sur ces doctrines premiéres qui semblent devoir étre- le fonw-
dement commun de tout savoir humain.
Tom. 1X,n.° 1, 1.°% juillet 1818.. %



2 THEORIE

Cette divergence d’opinions, indice irrécusable de I'imperfection
de nos lumiéces, ne se montre er auctne part d’une maniére plus
frappante qu'en ce qui concerne les définitions. Les géometres de
tous les temps y ont attaché le plus grand prix et la plus haute
importance : Platon regardait, dit-on , celui qui savait bien définir,
comme participant de lintelligence divine ; et Pascal n’a pas hésité
a regarder Uimpossibilité o nous sommes de tout définir, comme la
source unique de lincertitude de nos connaissances.

Locke a professé une doctrine & peu prés pareille , touchant les
définitions ; et cependant, une secte philosophique , sortie de son
école , a voulu, dans ces derniers temps , les frapper d’'une sorte de
proscription, les a signalées, non seulement comme tout-a-faitinutiles ,
mais méme comme d’un usage extrémement dangereux ; et beaucoup
de gens aujourd’hui ont adopté et professent hautement cette doctrine.

Cc n'est pas tout encore : parmi les philosophes qui ont admis
la nécessité ou du moins l'utilité des definitions , les uns, comme
Aristote et toute son école, ont prescrit de définir par le genre
et la différence ; tandis qu’'au contraire, d’antres, comme Locke,
ont prétendu que cette maniére de définir n’était pas toujours né-
cessaire ni méme toujours possible. Enfin, tandis qu’Aristote distingue
des définitions de choses , sujettes i étre contestées , et qui doivent
conséquemment étre appuyE’es d’'une démonstration , et des définitions
de noms , qui doivent étre admises comme des axiomes , et placées au
méme rang qu’eux dans la pratique du raisonnement ; d’autres philoso-
phes, comme Pascal, Hobbes et Locke, semblent n'en avoir reconnu
que de la derniére sorte; et d’Alembert, prenant un parti mitoyen, ad-
met des définitions qui, dit-il , sont un peu; moins que des définitions de
choses , mais cependant un peu plus que de simples définitions de noms.

Il y aurait sans doute beaucoup d’orgueil a prétendre dire encore
aujourd’hui quelque chose de neuf sur un sujet tant et si long-temps
débattu; mais, de méme que le rapporteur dans une affaire conten-
tieuse peut souvent , avec des lumitres d’ailleurs trés - bornées,
résumer et balancer les opinions, de maniére & répandre plus de



DE LA DEFINITION. 3
jour sur la discussion, et & lui donner une issue favorable, il peut
également n’¢tre pas sans intérét et sans utilité quun homme de
bonne foi examine & quoi l'on peut raisonnablement sen tenir A
Iégard des opinions diverses auxquelles la théorie des définitions
a donné naissance ; et c’est parce qu’il nous parait qu'un éloigne-
ment bien décidé pour ce qui ressemble 2 l'esprit de secte et de
parti, est la qualité la plus désirable de la part de celui qui voudra
remplir cette tdche , que nous hasardons de lentreprendre.

I. En examinant de quelle maniére toutes les langues connues
sont constituces , on apergoit d’abord qu’elles renferment toutes égale~
ment et principalement deux sortes de mots, dont les uns désignent
des objets individuels , tandis que les autres sont les signes de
diverses collections d’objets , plus ou moins nombreux , se ressemblant
les uns aux autres par quelques points dont la considération exclusive
a conduit 4 en faire autant de groupes distincts. Ainsi, par exemple, le
mot Newton est le nom d’un seul individu, tandis que celui de Géomeétre
est, au contraire,, le nom commun i une multitude d’hommes
différens de pays , de caractére, etc.; mais se ressemblant du moins
en ce pont qu'ils cultivent tous ou ont tous cultivé , dans le cours
de leur vie, les sciences exactes d’'une maniére spéciale.

11 serait assez difficile de décider si les noms individuels sont plus
ou moins nombreux que les noms collectifs. Mais ce qu'on peut’
remarquer c’est que, tandis qu'il n'y a qu'une petite portion des
noms individuels qui soient en usage dans chaque localité , les noms
communs , au contraire , sont presque fous a l'usage de tout le
monde, Ainsi, par exemple, les noms des rues et des places d’une’
ville, ceux des individus dent elle est peuplée , qui sont d’ordinaire
trés-familiers aux gens qui habitent depuis long-temps, sont inconnus
de presque tous ceux qui n’y font point leur résidence ; tandis que les
mots homme , oiseau , poisson , etc., sont également sans cesse
dans la bouche de tout le monde.

Nous avons dit presque tous, parce que les termes d’arts et de
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sciences , quoigqn'ils soient, pour la plupart, des noms communs ;
ne sont guéres familiers qu'd ceux par qui ces arts et ces sciences
sont cultivés, '

Ainsi, bien que les noms individuels soient extrémement nombreux;;
ils sont, a I'égard de chacun de nous en particulier , comme s’ils
étaicnt en petit nombre , attendu que chacun de nous n’en a besoin,
pour son usage, que d’un nombre assez limité ; et voild comnment,"
daus le langage , on emploie incomparablement plus de noms communs
que de noms propres, quoiqu’il puisse trés-bien se faire que les
derniers soient beaucoup plus nombreux que les premiers. Quoi qu'il
en soit, on sent qu'il existe et qu’il existera toujours une multi-
tude innombrable d’'objets dépourvus de noms individuels ; qu’il
serait d’autant plus diflicile de les nommer tous qu’il est impossible
de les tous connaitre; et qu'on sera d’autant moins sollicité a le
faire qu’on n’en pourrait retirer aucun avantage réel. Ainsi, tandis
quc les étoiles du ciel , du moins celles que nous pouvons aper-
cevoir , ont toutes regu des noms, il est trés-probable que les arbres
de nos foréts et les animaux qui les habitent ne seront jamais honorés
d'une pareille distinction.

De méme qu’on a inventé des mots pour désigner collectivement
des objets qui se ressemblaient 3 certains égards , on en a inventé
également pour nommer des collections de groupes ayant aussi entre
enx quelques points de ressemblance ; on'en a invenlé encore pour
réunir, par des propriétés communes , plusieurs de ces collections
de groupes, et ainsi de suite; jusque-la qu'on est enfin’ parvenu,’
d’abstraction en abstraction, & un mot unique comprenant univer-
sellement dans sa signification tous les objets de nos pensées: c’est
le mot étre dans notre langue. "

Les premiers inventeurs de langues, c’est-i-dire, les premiéres
réunions d’hommes, ont donc fait par instinct ce que postérieure~
ment les naturalistes ont fait par un dessein réfléchi, c'est-i-dire
que, pour éluder la difficulté, ou , pour mieux dire, l'impossibilité
d'imposer des noms i tous les objets qui affectaient ou pouvaient
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affecter Yenrs sens, ou occuper leurs pensdes, ils se sont bornés &
former des classes , des ordres , des genres , des espéces , des
variétés , etc. Mais on congoit trés-bien qu’entre leur travail et celui
des naturalistes , il doit y avoir la méme différence qui existe entre
des habitations informes baties 3 la hate, dans la seule vue de
satisfaire au premier besoin, et de superbes palais, élevés d’aprés
des plans dressés a 'avance et long-temps mdédités. Si donc le travail
des naturalistes est loin d’étre parfait ; si chaque jour on se trouve
obligé d'y apporter quelques modifications , d’y remplir des lacunes,
d'en fairc disparaitre des doubles emplois et d'y réparer de graves
omissions ; 3 combien plus forte raison les classifications entreprises
par les premiers inventeurs des langues doivent-elles laisser a désirer.
C’est seulement dans un état de civilisation trés-avancé qu’on pourrait
tenter de reprendre un pareil travail avec tout le soin que semble exiger
son importance ; mais alors méme , il laisserait toujours quelque
chose a Darbitraire ; et son exécution serait inévitablement subor—
donnée i la tournure d’esprit et 3 la manitre de voir et de sentir
de celui qui aurait le courage de s’en charger. Si d’ailleurs, comme
on ne saurait en disconvenir , la langue que nous avons apprise
dans notré enfance est l'instrument dont nous nous servons pour
peaser ; il est naturel d'en conclure que le travail grossier des pre—
iniers inventeurs des langues ne serait pas sans quelque influence
sur ce travail plus perfectionné. ,

Nous venons de voir comment un premier genre d’abstraction
avait donné naissance 3 un grand nombre de mots de nos langues :
nous allons voir un autre genre d’abstraction contribuer encore &
les enrichir,

Les objets de nos pensées ne sont réellement pour nous.que des
collections de propriétés par lesquelles nous avons prise sur eux. Que
le sujet dans lequel nous concevons ces propriétés puisse en étre
totalement dépouillé sans perdre toute existence réelle, ou, qu'an
contraire , ce soit I’ensemble méme de ces propriétés qui en constitue
P'existence ; Cest 14 ce que nous devons probablement consentig



6 THEORIE
a toujours ignorer, et ce qu'au surplus il nous importe assez peu .
de savoir.

Mais tandis que, d'un objet & un autre, quelques-unes de ces
propriétés sont différentes , il en est d’autres , au contraire , qui
sont constamment les mémes dans plusieurs objets , trés-différens:
d’ailleurs , sous d’autres rapports; et c’est ce qui nous a conduit
a détacher ces proprictés des objets dans lesquels elles résident,
pour en faire le sujet particulier de nos pensées , et & leur imposer
des noms ; et c’est ainsi, par excmple, que ce sont introduits dans -
le langage les mots qui représentent les couleurs, les odeurs, les
saveurs , etc. Ces mots ne désignent ni des individus , ni des collec~
tions d’individus ; mais seulement la maniére commune dont nous
affectent, sous un point de vue particulier , certaines classes d’in-
dividus.

Mais , parce que, dans l'origine, on avait représenté les choses
par des mots; on a été bientdt conduit & supposer que tous les mots
devaient exprimer des choses , ayant une existence réelle et indé-
pendante ; ainsi, par exemple , on sest figuré qu'il existait une
rondeur tout-a-fait indépendante des objets en quion remarque cette
qualité , et P'on a sérieusement demandé , par exemple, ce que
devenait la rondeur d’'une boule de cire lorsque cette boule était
applatie. Clest cette réalité , attribuée faussement & de pures con-
ceptions de notre esprit, qui a donné naissance 3 tant de vaines dis--
putes et fait dire tant de sottises dans les écoles.

Au surplus, ce second genre d’abstraction n’est pas aussi diffé-
rent du premier qu’on pourrait étre d’abord tenté de le croire ; et
il est évident, par exemple, qu'en créant le mot blanc ou blancheur ,
on n’a fait autre chose que réunir dans une méme classe tous les
objets dans lesquels cette couleur se manifeste. '

On a donc créé des mots dont les uns désignaient de simples individus,
les autres des collections d’individus, et d’autres enfin des propriétés ou
maniéres d’¢tre communes 4 plusieurs individus; et ces mots sont ce
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qu’on appelle des zoms en termes de grammaire. On les a distingués en
noms substantifs et en noms adjectifs ; mais cette distinction est née
de la supposition de l'existence dans chaque objet d'un soutien ou
support des qualités par lesquelles cet objet se manifeste ; et,
comme cette supposition ne saurait étre appuyée d'aucupe preuve,
il s’ensuit qu'on ne doit raisonnablement considérer la distinction
des noms en noms substantifs et en noms adjectifs , que comme une
distinction purement grammaticale.

Les noms tant substantifs qu’adjectifs ne spnt pas les seuls dont
on ait besoin dans les langues , et il est ndcessaire d'y irtroduire
encore des mots qui marquent les relations que les choses ont entre
elles ; tels sont les mots égalité, inégalité, antérisrité , postériorité,
dessus , dessous , dedans , dehors, et une multitude d’autres, dont
on pourrait grammaticalement faire plusieurs classes , mais que,
philosophiquement parlant, on peut comprendre dans une seule. Si
Von y joint le verbe substantif, c’est-3-dire, le verbe é/re ou son
¢quivalent dans les idiomes étrangers & notre langue, on aura la
collection & peu prés compléte des mots strictement nécessaires a
toutes les langues , et qui se retrouvent & peu prés dans toutes.

Pour qui a peu de besoins et peu de pensées, la langue peut
impunément étre extrémement bornée; mais , & mesure que les
besoins se multiplient, que les relations se compliquent, que les
pensées se combinent, le besoin de mots nouveaux se fait sentir
de plus en plus; et, ce qu'on parait n'avoir pas assez remarqué ,
c’est que ces mots n’agissent simplement que comme abréviation ;
et qu’ils remplissent exactement le méme office que remplissent en
algebre les symboles par lesquels, dans la vue de simplifier les
calculs et leurs résultats , on représente des fonctions que lon
prévoit devoir se reproduire fréquemment.

On peut remarquer, en effet, que, de méme qu'en chimie, le
mixte le plus composé ne peut offrir qu'une combinaison soit des
¢élémens communs a tous les corps , soit d’autres mixtes plus simples,
formés eux-mémes de la réunion de quelques-uns de ces €élémens;
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les idées qu'une science embrasse , les propositions dont elles se
composent , ne sauraient €galement contenir que les idées et pro-
positions élémentaires que l'étude de la science suppese déja acquises ,
ou d’autres idées et propositions formées déja de la combinaison de
quelques-unes de celles-ci.

Si donc on n’avait recours 3 quelques moyens d’abréviation, il
est aisé de sentir qu'd mesurc qu'on pénctrerait plus avant dams
quelque science que ce soit, qu’ad mesure que les propositions s’¢loi-
gueraient davantage des notions premitres d’ol on les aurait derivées;
elles se compliqueraient de plus en plus; et ce serait i un obstacle
assez grave pour arréter bientét la marche de lesprit humain dans
ses recherches , et rendre ainsi le progrés des sciences tout-a-fait
impossible. On ne peut, en effet, saisir nettement le sens d’une
proposition qu’autant que les idées dont elle se compose et les rapports
qu'elle annonce exister entre elles , sont simultanément présens
2 la pensée ; et comme, d'un autre c6té, notre esprit n’a pas la
faculté d’embrasser 4 la fois , d’une maniére distincte, un grand
nombre d’objets, il est nécessaire d'en conclure qu'une proposition
qui renferme explicitement dans son énoncé, une multitude d’idées
et de rapports divers, est, par 13 méme, une proposition. tout-3-fait
inintelligible.

Prenons, par exemple, cette proposition trés-élémentaire de géo-
mitrie : Dans un demi-cercle , la perpendiculaire abaissée d'um
pcint quelconque de la circonférence sur le diamétre est moyenne
proporiionnelle entre les deux segmens de ce diaméire ; et supposons
que, dans la vue de nous rapprocher du langage vulgaire , mous
voulions Oter de cette proposition les mots circonférence , diamétre,
perpendiculaire et moyenne proportionnnelle , il faudrait Fénoncer
ainsi : Une courbe plane ayant tous ses pornts également distans
d'un méme point; si, ayant mené par ce point une droite ter-
minée de part et d'autre & la courbe, on méne, par un autre
point quelconque de cette courbe , une droite faisant des angles
dgauva avec celle-ld , et terminde & sa rencontre avec elle , le

' . quarré-



DE LA DEFINITION, 9
guarré construil sur ceite derniére droite sera équivalent au rectangle
construit sur les deux parties qu'elle déiermine sur la premiére.
Voila , certes , déja une proposition d’'une passable longucur; mais,
qu'on essaie d’en faire disparaitre encore les mots: angle , quarré,
rectangle, équivalent, et on verra qu’il deviendra tout-a-fait im-
possible, non seulement de la comprendre , mais méme de I'énoncer
nettement ; et cependant il ne s’agit ici que d’une proposition tout-
a-fait élémentaire ; que serait-ce donc s'il était question de quelque

théoréme de mécanique , tel, par exemple, que celui des vitesses-

virtuelles ou de' la: conservation des forces vives:

C’est donc bien & tort que l'on reproche aux savans de ne point
parler la langue vulgaire, et d’en créer une exclusivement destinée
a leur usage; c’est au fond leur reprocher de s'occuper d’autres

objets que ceux dont s'occupe le vulgaire,, ou d’envisager les objets:

sous d’autres rapports. Ce n’est point volontairement, c’est tout-a
fait par contrainte qu’ils créent des-mots nouveaux, & mesure qu'ils
pénttrent plus avant dans leurs recherches; peut-étre méme pourrait-

on leur reprocher, au contraire , de ne pas user assez largement.

de cette faculté ; il y a apparence qu’alors beaucoup de parties des
sciences deviendraient d’'une étude plus facile; précisément parce
que les propositions dont ces parties se composent deviendraient
d’un énoncé plus brief (*).

Cest en imitant exactement ce que font les algébristes lorsqu'ils

-

calculent que l'on pourra parvenir & €éluder cet inconvénient des:

longues phrases. A mesure qu’ils s’apergoivent que leurs résultats
se compliquent , ils ont soin de- désigner par un caractére unique

(*; C’est, par exemple , une chose tout-a-fait inconvenante qu’on n’ait pas -

encore de nom pour désigner et la droite qui divise un angle en deux parties
égales et la perpendiculaire sur le milien d’une droite. Le mot projection peut
aussi rendre plus courtes, et conséquemment plus claires, beaucoup de propo-
sitions de géométrié ; et cependant il n’y a guére que M. Erancear qui ait
songé jusquici & lintroduire dans les élémens.

1om. 1X. 2
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chacune des combinaisons de lettres qui s’y trouvent répétdes plud
sieurs fois ; ils operent ensuite sur les nouveaux symboles qu’ils ont
ainsi institués comme ils l'avaient fait sur les premiers ; et, sileurs
formules se compliquent de nouveau , ils les simplifient encore par
un semblable procédé , et parviennent enfin, par I'application répétée
du méme artifice, & un dernier résultat dont la simplicité n’a, pour
ainsi dire , d’autres limites que celles qu'il leur plait de lui assigner.
A la vérité , ce résultat final renferme autre chose que les élémens
primitifs de la question & laquelle il se rapporte, et peut méme
e renfermer aucun de ces élémens; mais il n’en est pas pour cela
moins intelligible , puisque les symboles dont il se compose repré-
sentent des combinaisons connues soit de ces élémens, soit d’autres
symboles intermédiaires, qui en sont eux-mémes des combinaisons

abselument déterminées, C'est ainsi, par exemple , que si I'on a
la formule

()T a DA 45
=

9’
(4a’)—V (a2 14624 (145)
en y faisant

ViFE=d; TE=B,
elle devient

__ A\AE4-Br
T A—aB+4B
qui devient elle-méme
m
A= o
N

en posant 3 la fois
AbyTBEHB=M , A/ T5HB=N.

C’est encore ainsi que continuellement , dansle calcul , on remplace
les séries '
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Si donc on ne veut pas que les propositions se compliquent de-
plus en plus, & mesure qu'on avance dans les sciences, il faut
pareillement créer des-mots nouveaux pour désigner les combinaisons
d’idées, rapports. ou vues de 'esprit dont on prévoit que la consi-
dération pourra s'offrir fréquemment, et que , sans cet artifice , on
ne pourrait exprimer que par de longues phrases. Il est donc vrai
de dire qu'en créant ou en perfectionnant une science on se trouve
indvitablement conduit A créer ou a perfectionner une langue; et
il est encore vrai de dire que, de méme qu’en algibre, un choix
heureax de notations rend les calculs beaucoup plus faciles & suivre
et & exéenter, la bonne composition de la langue d'une science,
quoiqu’elle ne constitue pas seule la'science , est singulierement propre
en faciliter I'étude et & en hater les progrds.

En ayant donc lattention , toutes les fois du moins que le besoin
ou l'utilité s’en fera sentir, de remplacer une collection de mots:
par un mot unique équivalent , il arrivera que les propositions placées
aux derniéres limites des sciences ne seront pas plus compliquées
que les propositions élémentaires desquelles elles auront été déduites ;
et, bien qu'elles svient formées de mots différens de ceux qu’on
avait employ¢s dans V'énoncé de celles-ci, elles n’en seront pas pour
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«cela moins intelligibles , puisque le sens de chacun des mots dans
lesquels elles seront exprimées pourra toujours étre indiqué & 1'aide
d’autres mots dont la signification précise aura €été antérieurement
fixée.

On pourrait objecter ici qu'en remplacant ainsi une collection
.de mots par un mot unique, lesprit n'en sera pas moins obligé
de porter son attention sur la totalité des idées dont on l'aura
constitué le symbole , et qu'ainsi on n’évitera qu'en apparence
Tinconvénient des longues phrases et I'obscurité qu’elles entrainent.
Mais, outre qu'une expérience constante montre assez tcut lavan-
tage que nous retirons de ces sortes d’abréviations , soit dans le
discours , soit lorsqu’en nous-mémes nous nous aidons des mots pour
penser , .on peut observer .que, lorsqu’une idée est exprimée par
un grand nombre de mots, nous ne pouvons la saisir nettement
et la distinguer sirement de toute autre idée dont 1’expression aurait
des points nombreux de ressemblance avec la sienne, qu’autant que
notre attentiotn se porte successivement, et méme a plusieurs reprises ,
sur tous les mots qui I'expriment ; tandis qu'au contraire , en rem-
plagant une collection de mots par un mot unique , dés-lors que
nous nous sommes une fois rendue bien familiére la signification de
ce mot, il peint nettement-d notre esprit la collection d’idées qu'il
est destiné a rappeler. On se convaincra au surplus, d'une maniére
tout-a-fait frappante , de I'exactitude de ces réflexions, en réllé-
chissant & I'embarras extréme .olt nous nous trouverions si les noms
des nombres n’étaient point inventés , et si nous étions forcés de
les suppléer par I'énonciation distincte de toutes les unités que
ges nombres renferment, A

Ce ne peut donc étre, au plus, que les premitres fois qu'un
mot nouveay vient s'offrir & nous, que nous sommes obligés de
nous rappeler, d'une maniére explicite , toutes les idées qu’il ex~
prime ; aussi éprouvons-nous que c’est alors seulement que son usage
nous cause quelque embarras ; mais cet embarras disparait bientét
par effet de l'habitude ; et nous ne tardons pas 3 troyver, am
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eontraire ; un trés-grand secours dans l'usage de cette méme ex-
pression dont , au premier abord, nous avions 4 peinc entrevu
Putilité. Clest ainsi, en particulier, que toute la science du calcul
repose sur la puissance des mots, c’est-i-dire, sur l'emploi des
dénominations des diverses collections d’unités. On doit ajouter encore
qu’assez souvent on peut raisonner sur les mots sans quil soit
besoin de s’enquérir de leur signification, tout comme en algébre
on exécute des calculs, sans songer aucunement & ce que repré-
sentent les symboles sur lesquels on opére.

Mais eomme enfia les mots ne sont au fond que de vains sons,
tout-a-fait insignifians par eux-mémes, et ne pouvant devenir les
signes de nos pensées qu’en vertu d’une convention ; et comme
d’ailleurs il est impossible soit d’en faire un emplei convenable ,
soit de comps:ndre l'usage qu'en font ceux qui nous parlent, sans
dtre au courant de cette convention, il est d’'une nécessité rigoureuse ,
toutes les fois qu’on introduit des mots nouveaux dans le langage ,
d’en circonscrire nettement le scns; et e’est 13 ce qu'on appelle
les définir. Ainsi, faire une définition , c’est proprement et unique-
ment annoncer que l'on convient d’exprimer 4 l'avenir, par un
mot unique , choisi arbitrairement , une collection didées que,
sans le secours de ce mot , on serait obligé d’exprimer par
le moyen de plusicurs autres, et conséquemment d’'une manicre
moins bri¢ve. Ainsi, par exemple , lorsqu'on dit : jappelle nombre
premier un nombre entier qui n’a d’autres diviseurs que lui-méme
et I'unité ; jappelle diaméire d'un cercle une ligne droite qui,
passant par son centre , se termine , de part et d'autre, 4 sa circon-
férence , on fait des définitions. La définition ne fait donc autre chose
qu’établir une identité de sens entre deux expressions d’'une méme
collection d’idées dont la plus simple est nouvelle et arbitraire,
tandis que lautre , plus composée , est énoncée en mots dont le
sens se trouve déji fixé, soit par I'usage, soit par une convention
antérieure. Demander donc si I'on doit définir les mots, c’est de-
mander i peu prés s'il faut parler A la maniére des perroquets , sans



74 THEORIE
attacher aveune idée nectte aux mots qu’on prononce ; c’est demander
s'il est permis d'introduire un nouveau symbole dans un calcul
algébrique sans faire connaitre quelle est la fonction des quantités
ddjd connues que ce symbole représente.

D’aprés I'idée que nous venons de donner des définitions , il sem=—
blerait qu’elles dussent étre tout-a-fait arbitraires; on les a néan-
moins assujetties & des régles parmi lesquelles, au surplus, deux
seulement paraissent d’obligation rigoureuse , mais qui pourtant
sont toutes bonnes & observer ; voici en peu de mots & quoi elles se:
réduisent :

1. La définition doit renfermer un mot et ne doit renfermer
gu'un seul mot dont la signification n’ait pas été antérieuremens:
déterminée. M est clair, en effet, qu’une définition qui ne renfer—
merait dans son énoncé que des mots connus ne serait point pro-
prement une définition , puisqu’elle ne fixerait le sens d’aucun mot..
Elle ne pourrait étre considérée que comme un théoréeme, lequel.
aurait besoin d’étre prouvé.. D’un autre coté , une definition qui
présenterait dans son énoncé plusieurs mots dont la siguification ne.
serait pas antérieurement connue ne meériterait pas davantage le nom
de définition , puisqu’elle ne pourrait, au plus , qu’établic une
relation entre les idées que ces mots expriment, sans fixer propre—
ment le sens d’aucun d’eux. Le premier cas revient a celui ot
Ion donnerait , en algebre, la valeur d'une quantité connue en
fonction d’autres quantités également connues ; le second revient.
3 celui ol l'on exprimerait une quantité inconnue en fonction d'une
ou de plusieurs autres quantités tout aussi-inconnues qu'elle (*).

(» Il est pourtant des définitions qui, bien que régulieres, sembleraient, au:
premier abord 5 pécher contre la derniére partie de cette régle : ce sont celles
qui ont pour objet des mots composés , tels, par exemple, que ceux-ci ;
sciences exactes , chimie végétale , anatomie comparée , géoméirie descriptive 4.
etc., mais ici chacun de ces mots composés doit €étre considéré comme n’en
formant qu’un seal, '

Il convicnt aussi d’observer que souvent I'arrangement des mots simples dans-
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La définition ne devant renfermer dans son énoncé qu'un seul
mot nouveau , on sent d’aprés cela qu'il ne saurait étre permis de
definir un mot 3 l'aide soit de ce mot lui-méme , soit de quelqu'un
de ses dérivés ou composés. Cela reviendrait 2 vouloir, en algebre,
donner la valeur d’une inconnue, soit au moyen de cette inconnue,
soit a I'aide de quelqu’une de ses fonctions. Celui qui, par exemple ,
definirait I'astronomie , la science de l'astronome pécherait évidem-
demrment contre ce pricepte.

On donne aussi communément comme régle des définitions, de
me point employer le méme mot a désigner deux idées ou deux
collections d'idées différentes ; mais cette régle , bien importante
sans doute, se trouve implicitement comprise dans la premiére. Si
quelqu'un , en effet , par deux définitions distinctes , se permet
d’attacher successivement au méme mot des idées différentes, ricn
n'empéchera d’admettre la premiére de ces définitions, et dés-lors
la seconde , ne renfermant plus aucun mot dont le sens ne soit
déjd antérieurement fixé , cessera par 12 méme d'étre proprement
une déhnition. Ce sera donc un théoréme dont on pourra demander
la démonstration. Clest ainsi qu’en algébre , si 'on donne deux
valeurs d’un symbole nouveau , en fonction de quantités toutes
connues , on pourra fort bien admettre 'une d'elles ; mais il faudra
ensuite prouver que l'autre coincide avec celle-la.

Toutefois , 4 raison de la répugnance, peu fondée sans doute;
que nous avons i forger des mots nouveaux , aussi souvent que
nous en éprouvons le besoin ou lutilité , cette régle , malgré son
¢vidente importance , n'est point prise trés a la rigueur dans la
pratique ; et on mne rencontre que trop souvent, dans le langage,
des mots qui sont pris, tantét sous une acception et tantét sous

le mot romposé influe sur la signification de celui-ci ; et clest ainsi, par

exemple , quun outeur pouyre peut fort bien ne pas éire un pauire
muleur. -
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une aulre : tels sont, par exemple , les mots ellipse et hyperbolé
que les rhétoriciens emploient sous une acception trés-différente de
celle qu'ils ont regus en géométrie.

L'inconvénient n'est point trés - grave encore , lorsque’, comme
dans cet exemple, les mots dont on fait double emploi ont, dans
les deux cas , des significations totalement différentes. 1l n’arrive
13, en effet, que ce qui arrive en.algebre, lorque, dans deux questions
indépendantes , on se permet de faire usage des mémes lettres pour
représenter des élemens divers ; mais il n’en est plus. ainsi, lorsque
les diverses acceptions d’'un méme mot se trouvent avoir entre-elles
une. certaine analogie , et sur-tout lorsque c’est dans.une méme
science qu’elles sont adoptées-; c'est , par. exemple, ce qui arrive
en géométrie pour les mots axe, pdle, tangente , projection , etc, .
On sc trouve alors & peu prés dans le méme cas ol serait un
analiste qui, dans une méme question, représenterait , par un méme
symbole, plusieurs élémens distincts. On ne saurait donc alors user.
de trop de précaution pour éviter 1'équivoque. Ce qu’on’ peut faire -
de mieux pour y parvenir, c’est d'ajouter., dans les différens cas,
au mot qu'on se propose d’employer 4 plusieurs- usages , des déter-
minatifs formant avec lui des mots. composés dissemblables. Clest
b peu prés. de la méme maniére que , lorsque dans une méme
question d’algébre on juge-convenable de représenter plusieurs élé-
mens . par une méme lettre , on a soin d’affecter cette lettre de
divers accens ou.de divers indices., dont la combinaison avec elle
en forme autant de caractéres différens.. _

II.. La. définition doit renfermer tout. ce qu'il faut pour bien
Jeaer le. sens du mot défini -: 1l convient quelle ne: renferme rien
au-dele de ce. qui est nécessaire pour remplir cette destination.
La premitre partie de cette régle est évidemment de rigueur; car
T'on sent fort bjen qu’en la négligeant on ne ferait point une défi-
nition , puisqu’on ne fixerait l¢ sens d’aucun mot. C’est, par exemple , .
ce.qui arriverait si, voulant définir la sphére , on se bornait a dire
gue c'est une surface courbe. Quant a la seconde partie de la

méme
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méme rdgle , quoiqu’elle ue soit pas d'observation rigoureuse , il est
néaninoins trés-bon de s’y conformer ; attendu qu’en toutes choses,
tout ce qui ne concourt pas nécessairement au but qu'on se pro-
pose est par la-meéme superflu. Ainsi , par cxemple, ce serait dchinir
la spkére d’une maniére inconvenante que de dire que c’est une
surface dont tous les points sont également distans d’un méme point
et dont toutes les sections par des plans sout des cercles, puisque
la premiere de ces propriétés suffit pour distinguer la sphére de
toute autre surface , et que la seconde y est implicitcment contenue,

Le defaut de cette attention pourrait méme rendre une definit'on
tout-a-fait vicieuse , en y comprenant quelque auvtre proposition
coutraire & la nature de l'objet defini; et c’est ce qui arriverait ,
par exemple, pour la definition que nous venons de citer , si la
sphére €lait de nature & ne pas avoir toutes ses sections circulaires.
Dans tous les cas, une définition qui renfermera au-dela de ce qui
lui est nécessaire , contiendra par la méme implicitement quelque
théoréme et perdra ainsi la précieuse prérogutive de se faire recevoir sans
contestation.

La plupart des auteurs de logique prescrivent de definir par e
genreet la différence ; c’est-a-dire , qu’ils veulent que , considérant
Vobjet & définir comme espéce , on énonce le genre dont cetle
espéce fait partie et le caraciére qui distingue cette espéce de toutes
les autres du méme genre. Cette méthode serait trés-bonne a suivre
généralement , si nous possédions une classification exacte et compléte
des objets de nos connaissauces; mais, jusqu'a ce que nous en scyons
la, ce serait se tourmenter en pure perte que de vouloir constam=
ment s’assujettir A ce précepte.

Une chose trés-essenticlle a4 remarquer , c’est que le but d’une
définition n’est point, en général, de nous donner une connaissance
complete de l'objet que désigne le mot défini, mais seulement de
nous mettre en etat de le distinguer nettement de tout ce qui n’est
pas lui. Ainsi, par exemple, quelque définition qu'on adopte pour
le mot végital ou pour le mot or, jamais nous ne pourrons nous

dom. 1X,. . 3
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flatter @’y comprendre toutes les propriétés de ces deux sortes d'éires;
puisque nous mne saurions méme nous flatter de les toutes connaitie
mais il suffit que les dcfinitions que 'on donnera de ces deux mots
nous mettent en état de distinguer ce qui est or ou veégélal de ce
qui ne lest pas. )

1l est, au contraire , certains objets de nos pensées qu'| se trouvent
tellement renfermés dans leur définition qu'il est impossible d’en
rien dire q i n'y soit implicitement compris ; c'est, en particulier,
le cas de tous les objets que 'on considére dans les sciences exactes ,
et c’est ainsi, par exemple, qu'on sait tout da cercle , ou du moins
qu'il est possibie de tout en savoir , lorsqu'on en sait la défini-
tion. On pourrait appeler ces sortes de définitions des définitions
complétes , en appelant, par oppusition , définitions incomplétes ,
celles qui, suffisantes pour faire discerner un ubjet de tout autre ,’
ne le sont pas néanmmnoins pour le faire:complétement connaitre.

WL Il convient d’imposer des noms & toutes les collections d'idées
et aux seules colleciions d'idées que I'on prévoit devoir se reproduire
Jréquemment dans le discours. Qu congoit, en effet, qu'en négli-
geant cetle double précaution, on sexposerait tantot a rendre la
langue extrémement prolixe , et tantéta la surcharger d'un grand
nombre de mots , sans aucun avantage réel. On a fort bien fait,
par exemple , de donner des noms aux nombres sur lesquels on
optre , dans la multiplication et dans la division, et on ferait peut-
étre bien, pour les mémes raisons, d’en donner aussi aux nembres
que l'on considere dans I'addition et la soustraction ; mais on ferait
également bien sans doute de debarrasser lastronomie d'une multi-
tude de locutions non moins barbares pour la plupart qu’elles sont
superflues, et qui n’ont d’autre effct que de rendre la science d’un
abord plus apre ct plus rebutant,

IV. Il convient de définir tous les mots et les seuls mois sur
la signification desquels on n'est point généralement daccord. En
effer , les definitions etant destinées d faire connaitre le sens des

mols , sont par la-méme inutiles, toutcs les fois que ce sens se
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wrouve fixé sans equivoque ; tandis qu'au contraire Pomission d’une
definition & I'égard des mots dont le sens n’est point fixé d'une
maniére uniforrme et invariable , ne peut que rendre vagues et
équivoques les propositions dans lesquelles ces mots sont employés.

Aussi voit-on que la plupart des disputes, lorsqu'on vieat a les
examiner de prés, se réduisent & de simples disputes de mots , dans
lesquelles au fond les deux parties sont d’accord et ne différent que
par les diverses aceeptions qu'ils attachent aux mémes mots, et
desquelles il vésulte que telles propoesitions qui paraissent ¢videntes
3 'un paraissent au contraire & l'autre d’une fausseté manifeste.

On demande, por exemple, sur les banes des écoles , si Fame
pense toujours 5 et ceux qui soutiennent laffirmative en donnent
poar raison que l'dme est une substance essenticllement pensante
il est clair, en effet, que, si 'on admet une telle déBnition de
Vame , I'dme ne peut cesser de penser sans cesser d’étre une &mec;
mais, par cette definition, on ne fait , 3 ce qu’il nous parait, que
deplacer la question ; elle se réduit alors , en effet, a cele-ci:
avons nous constamment une ime dans tous les instans dec notre
vie ¥

De méme encore , les physiciens et les chimistes disputeraient
moins sur les pﬁ)priétés essentieiles de la matiére, s'ils prenaient la
peine de faire attention que le nombre et la nature de ces pro=
priétés sont tout-4-fait subordonnés 4 la définition qu’on voudra adoptcer
du mot matiére. Si, par exemple, on appelle mati¢re tout ce qui
est capable d'affecter nossens, on ne pourra contester la matérialité
de la cause de la chaleur, de celles de la lumiére et de celles
des phénoménes magnétiques et électriques , quand méme l'impon-
dérabilité de ces divers agens serait aussi bien prouvée qu'elle est
peu. Que si, au contraire, on appelle simplement mati¢re toute
portion d’étendue impénetrable, la question de la matérialiié du
calorique de la lumiére , de I’electricité et du magnétisme se réduvira
3 examiner si'ces étres jouissent ou ne jouissent pas de I'étendue et
de limpénétrabilité..



a6 THEORIE ,

Non seulement on ne doit pas définir tous les mots , mais il est
méme des mots que l'on tenterait vainement de définir; et cette
impossibilité résulte’ de la nature méme de la chose. Puisqu’en cffet,
definir un mot, c’est en expliquer le sens, & l'aide d’autres mots
dont la signification a déji été antérieurement fixée ; on sent qu'on
ne pourrait tenter de définir tous les mots , sans tomber dans un
cercle vicieux inévitable (*). Les mots qu’on ne saurait définir sont
priscipalement ceux qui expriment des idées simples , soit physiques ,
comme il arrive pour les noms des couleurs , des odeurs, des
saveurs, des sons, ete., soit métaphysiques, comme il arrive pour
les noms des passions, affections ou faculté de I'dme , pour les
prépositions, pour les mots élendue , durée , ressemblance, dfférence
etc. On ne saurait non plus définir les noms des individus, attendua
que les qualités qui les constituent tels sont presque innombrables
et nous sont le plus souvent inconnues pour la plupart. Enfin, i
est presque impossible de définir les mots qui expriment des no-
tions abstraites trés-compliquées et trés-fugitives , tels que ceux de
gloire , de justice, de veriu, de bonkeur.

Mais, dira-t-on, s'il est impossible de déhnir tous les mots, comment
donc parviendra-t-on 4 eonnaitre la signiﬁcétion des mots non sus=
ceptibles d’¢tre définis ¥ Nous répondrons que, s'il sagit de mots
qui expriment des idées sensibles, on parviendra & en faire com=
prendre le sens , en produisant la sensation & laquelle ils répondent ,
en méme temps qu’on les prononcera. Mais , il est encore certaines
précautions dclicates sans lesquelles les tentatives de cette sorte
d'enscignement pourraient devenir tout-a-fait infructueuses. 8i, par

(") Pascal regarde P'impossibilité absolue olr nous nous trouvons de définir.

tous les mots comme une imperfection de nos méthodes ; mais , si l'on ne

doit sppeler imperfection dans un objet que P’absence d'une qualité qui pourrait
§'y trouver , nous ne saurions sur ce point partager l'opinion de lauteur des
Pensées,
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exemple , dans Ja vue de faire connaitre & un enfant en bas 4ge
la signification du mot rouge , on et simultanément sous ses-yeux
des Cérises , des Fraises, des Grosedles, des Framboises , etc.,
il sera fort & craindre qu’il ne prenne le change et n’attache au
mot rouge le sens que nous attachons au mot fruit. 1l faudra done
choisic de preference des objets tout-a-fait disparates d'ailleurs, et
n’ayant , poor ainsi dire , d’autres proprictés communes que celle
que désigne le mot dout il sagit de faire connaitre la signilication. -
Ainsi, par exemple , dans le cas actucl , on fera convenablement
de prendre pour objet d'experience une feur , un fruit, dn ein ct
un morceau d'étgffe. Si, - an surplus, on n’a pas sous la main ces
divers cbjets, el que leurs noms soient déja connus de cclai & qui
on s’adresse, il suflira de les lui rappeler. Ainsi, par exemple, en
lui disant successivement

Le sang est rouge ,
Une pivoine est rouge ,
Une fraise est rouge ,
L’écarlate est rouge

Etc. , etc. , etc. s

3l y a tout licu de croire qu’il se formera une idée nctte de la
signification du mot rouge.

La ressource que nous venons d’indiquer, comme propre a faires
connaitre la signification des mots qui, exprimant des idées sen-
sibles , ne sont point susceptibles de définition , ne saurait evidemment
étre employée vis-2-vis des étres privds de l'orgave anquel
ces idées sont relatives; et voila pourquoi, par exemple, pour les
aveugles de naissance , les noms des couleurs ne seront éternellement

que de vains sons, auxquels il nous sera i jamais impossible de
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leur faire atlacher les idées que ces sons réveillent en nouns. L’homme
doué d'un sens de plus serait exactement dans la méme situation
A notre égard.

Si un mot exprime une idée simple intellectuelle , tel que les
mots désirer, craindre , se ressouvenir , ete., ou une idée de re-
lation , telle que les mots dessus , dessous, dedans, dehors, ete.;
ce ne sera guéres que , par-une observation attentive et long-temps
prolongde , des diverses circonstances dans lesquelles ce mot est em-
ployé par ceux qui en connaissent bien la valeur, que I'on peurra
parvenir & en découvrir I'exacte signification , et se mettre soi-méme
en état d’en faire un emploi convenable.

On voit par la, pour le dire en passant, de quelle importance
il peut ¢tre de placer prés des enfans en bas dge des personnes
intelligentes qui saclient leur faire acquéric de bonne heure une
connaissance exacte de leur langue , cennaissance au défaut de
laquelle ils ne pourraicnt retirer que des fruits tardifs et souvent
trés-imparfaits de I'éducation dn monde, bien autrement impurtante
que celle quon regoit dans les colléges.

Le moyen que nous venons dindiquer comme propre i aequérir
Yintelligence de mots qui expriment des idees simples intellectuelles ,.
peut étre généralement employé & la recherche de la signification
de tous les mots d’une langue ; et dés qu’on en connait un certain
nombre , des lectures choisies et la fréquentation des gens qui parlent
bien, suffisent pour acqueérir peu a peu lintelligence de tous les
autres, C’est , en effet, de cette maniére que les enfans en bas
dge, le peuple et méme les gens lettrés parviennent , sans le se~
eours des définitions et des vocabulaires, & apprendre peu 3 peu
leur langue , et c’est encore de la méme maniére que nous apprenons
souvent les langues etrangeéres par le seul séjour dans les pays o
elles sont généralement en usage. On congoit fort bien, en effet,
que, si une phrase contient un seul mot dont la signification nous
soit inconnue , l’énoncé de cette phrase pourra souvent suffire pour

aous en revéler la valeur, Si, par exemple , on dit & quelqu’um
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qui connait bien les mots triangie et quad:ilatére , mais qui n'a
jamais entendu prononcer le mot diagonale , que chucune des devz
diagonales d'un quadrilatére le diwise en deux triangles, |l concevra
sur-le-champ ce que c'est qu'une diagonale , et le concevra dlautant
mieux que cest ici la seule ligne qui paisse diviser le quadrilawre
en triangles.

Ces sortes de phrases, qui donnent ainsi lintellizence de 'un
des mots dont elles se composent, au moyen de la signification
connue des autres, pourraient etre appelles définitions implicites ,
par opposition aux definitions ordinaires qu’on appellerait difinitions
explicites 5 et 'on voit qu’il y aurait entre les unes et les autres
la méme difference qui esiste entre les équations résolues et les équa-
tions non résclues. On congoit aussi que , de méme que deux équations
entie deux inconnues les déterminent 'une et l'autre , deux phrases
qui contiennent deux mots nouveaux , combinés avec des mots connus,
pcuvent souvent en déterminer le sens; et on peut en dire autant
d'un plus grand nombre de mots nouveaux combinés avec des mots
connus, dans un pareil nombre de phrases ; mais il y aici & exécuter
une sorte d’elimination qui peut devenir d’autant plus pénible que
le nombre des mots dont il s’agit est lui-méme plus considérable.

Quoi qu'il "en soit , ces considérations semblent trés-propres a ex-
pliquer comment un ouvrage qui, & une premiére lecture , nous
avait semblé obscur , & raison d’un grand nombre de mots qu:e
Yauteur y avait employés sans les définir, et qui ne nous étaient
pont familiers , nous devient ensuite, par des lectures réitérees, de
plus en plus intelligible , et nous le devient au point de pouvni'r
definir nous-mémes ces mémes mots qui, au premier abord , nous
avaient causé tant d’embarras. Les mémes cons'derations expliguent

aussi fort bien comment la connaissance une fois acquise d un cer-

tain nombre de mots d'une langue étrangire , nous conduit peu i
peu, par la seule fréquentation de ceux qui la parlent et la lecture
des dcrivains qu’elle possede , sans le secours d’aucun dictionnaire

ou moyen auxiliaire quelconque, 4 la parfaite intelligence de tous
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les mots de cette Jangne. C'est 13, en particulier, un moyen dont
on pourrait profiter avec avantage pour l'enseignement des langues:
mortes dans nos écoles. Un de ses fruits les plus précieux serait
d’excrcer perpétuellement le jugement pour lequel , en général, on
fait si peu dans nos gothiques systémes d’éducation.

« Parce qu'il y a des mots qu'on peut définir, dit Condillac,
» on a voulu les definir tous » (*); mais, parce qu’il y a des mots
qu'on ne saurait definir, Condillac en a conclu qu’il n'en fallait
définir aucun, ce qui n’est guére plus sensé, 1l cite pour exemple
le mot #riangle, et pretend que , pour faire comprendre la signi-
fication de ce mot, on n'a rien de mieux 4 faire que de montrer
Pobjet qu’il designe ; mais , qui ne voit que le mot triangle ,
comme la plupart des mots de nos langues, n'exprime pas un étre.
unique et individuel, mais une infinité de figures , différentes de
forme et de grandeur ; de sorte que quelqu’'un qui en aurait vu
mille, serait bien loin de les connaitre toutes ; tandis  qu’elles sont.
toutes comprises dans la définition qu’on en donne, et qu’elles ne
peuvent toutes se trouver que la. Il n’est pas méme rare de ren-
contrer des gens étrangers 4 la géomélrie qui, par ignorance de
T'exacte definition du mot triangle , se persuadent que, pour qu’une
figure mérite cette dénomination , il est nécessaire que deux de ses
cOtés soient égaux, que le troisitme soit horizontal et que le sommet
opposé soit tourné vers le haut; il en est méme quelques-uvs qui,
outre ces conditions , exigent de plus I'égalité des trois cotés (**)..
Toutes ces méprises sont une conséquence toute naturelle du défaut
de definition.. ’

Mais il y a plus, et il est absolument impossible qu’on nous
montre un seul triangle tel que ceux que la géométrie consideére:

(") Logique , Il.® partie, chap. VL

(**) Clest dans ce sens qu’on entend souvent dire , dans la société , que Paris,.
Bordeaux et Lyon forment presque un triangle,
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et que désigne leur définition commune. On sait, en effet, qu’clle
suppose et qu’elle est méme obligée de supposer que la surface
du triangle est rigoureusement plane , et que ses limites sont des
lignes sans largeur ni dpaisseur, et exactement droites; or, ce n'est
certainement pas avec nes instrumens grossicrs et nos moyens im-
parfaits d'apercevoir que nous réaliserons de semblables conceptions-
de notre esprit. Il est donc rigoureusement vrai de dire qu'd pro-
prement parler , nous n’avons jamais vua ni ne saurions jamais voir
de véritables triangles ; et que ces figures , purement iddales, ne
nous sont uniquement connues que par lear définition,

« Pour découvrir les propriétés d’ume chose, poursuit Coendillac,
» il faut la voir. » Cela est faux ; et it y a méme des cas o
la vue de la chose ne saurait suppléer & la définitien. Nous n’en.
donnerons pour exemple que e ChAil/ogone, que 'on pourrait con--
templer long-temps sans étre seulement bien certain du nombre de ses:
¢otés ; tandis qu’on en découvre trés-facilement toutes les propriétds.
sur sa simple définition..

Condillac veut qu’on remplace les définitions par des analises ;.
mais , ou ces analiscs ne détermineront pas le sens précis des mots ,
auquel cas elles seront insuffisantes , ou bien elles le détermineront,.
et alors elles seront de véritables définitions, quelque dénomination
qu’on prétende d’ailleurs leur donner, Les définitions sont, & quel-
ques égards , une sorte de synthése, puisqu’elles composent plu-:
sicurs idécs en une seule ; puisqu’elles fondent plusieurs sym-
boles dans un symbole unique ; mais, en admettant méme qu’on:
puisse y trouver quelque chose d’analitique, faut-il donc appeler
indistinctement et uniquement analises toutes les opérations de notre:
esprit? Et , parce que tous les étres qui affectent nos sens sont
des corps, croirait-on faire une utile révolution dans la physique ;.
eroirait-on en rendre la langue plus claire et I'étude plus facile .
en ne désignant que par cette seule dénomination tous les objets.
matériels dont elle s'occupe ?

Condillac reproche enfin aux logiciens I'usage ot ils sont de ranges:

om,. 1X, 4
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les définitions dans la elasse des principes; et il se fonde sur ce que
ce sont les sensations et non les définitions qui sont les principes
de toutes nos connaissances; mais, c'est ici évidemment une trés-
mauvaise chicane ; il en est, en effet, du mot principe comme de.
tant d’autres qui sont pris tant6t sous une acception et tantét sous.
une autre. 1l est bien vrai que le mot principe, pris dans le sens
le plus étroit, veut dire commencement ,. source , origine ; et , sous
ce point de vue, nous accorderons, tant.qu'on voudra, que nos
sensations sont le principe commun de toutes nos connaissances ’
mais on se sert aussi trés-fréquemment du méme mot pour désigner
une maxime certaine sur laquelle on peut sappuyer en toute
confiance , et qu'on peut prendre pour base dans ses recherches ;.
et c’est ainsi- qu'on donne souvent le nom de principe & une pro-
position qui résulte - elle-méme d'un grand nombre d’autres. Cette
derniére acception du mot principe n'est pas, au surplus , aussi
étrangére A la premiére qu'on pourrait étre d’abord porté a le croire.
On voit , en effet, que, si éloignée que soit une proposition des
notions premi¢res d’ou elle tire son -origine ; elle peut , dés-lors
quelle est. vraie , donner naissance 3 un grand nombre de consé-
quences , dont. elle devient, & son tour, la source et l'origine com-
mune , c'est-a-dire, le principe ; et c’est ainsi que , dans la nature,
tout est, tour & tour, effet et cause,

Lors donc qu'on.dit que les définitions sont des principes , on
veut seulement faire entendre par Ia que, ne pouvant_é‘tre refusées ,
elyles doivent &tre employédes dans le raisonnement, comme autant
de propositions incontestables ; et cette .assertion ne. présente rien
qui ne soit d’une parfaite exactitude. On pourrait encore dire , au
surplus, que les définitions sont des principes , en ce sens. qu’avant
de parcourir la série des. propositions dont une science se compose,
il est nécessaire de s’enquérir d’abord soigneusement de la signifi-.
cation des termes dans lesquels ces propositjons sont énoncées.

On voit qu'ici nous regardons les définitions comme tout-a-fait.
libres et arbitraires.; car.ce west .qu'en ._le,s;‘consbidéxaqtfaix;si ‘qu’on,
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ne saurait les contester. Cela vient de ce que nous ne corsidérons
que des définitions de noms et que nous rejetons tout-a-fait I'emploi
des définitions de ckoses. Si nous avons bien compris ce qu'ont
écrit les logiciens sur ce sujet, il parait que cette derniére sorte
de deéfinition ne difféere uniquement de la premiére qu’eu ce que
celui qui I'énonce ne prétend pas fixer le sens du mot défini ; mais
que , prenant ce mot suivant l'acception générale, il prétend sim-
plement expliquer quelle est cette acception. Il suppose donc que
ce mot est entendu de la méme maniére par tout le monde; et,
s'il en est ainsi, il rentre dés-lors dans la classe des mots qu’il
est superflu de définir

Nous ne voyons guéres qu’un cas ol les définitions ne soicnt
peint libres , et c’est celui ol se trouvent ceux qui rédigent les
vocabulaires des langues. Leur tiche est, en effet, de nous expli-
‘quer, non pas le sens qu'il leur plait d’attacher aux mots , mais
bien celui que 'usage général y attache. lls se constituent donc,
en quelque sorte, les interprétes du public; ct il faut conséquems-
ment qu'ils en soient des interprétes fideles. Mais la tiche qu’ils
s'imposent est d’autant plus délicate et difficile que souvent on n’est
point trés-généralement d’accord sur la signification d’un grand nombre
de mots, et que quelquefois méme cette signifiation varie avec lcs
temps et les licux.

En résumé ; la distinction des définitions en définitions de noms
et en definitions de choses parait pouvoir étre réduite 3 dire qu'une
définition doit étre admise sans contestation ou bien peut étre re-
fusée, suivant qu'elle commence par ces mots : j'appelle., ou par
ceux-ci : on appelle.

V. Il convient de ne pas détourner les mots, par des défini-
tions , de la signification que lusage général leur a atiribué. On
sent , en effet, que , sans cette précaution, ceux a qui l'on par-
lerait , ou pour qui 'en écrirait, perdant bientét de vue la nouvelle
acception donnée aux mots , seraient tot ou tard entrainés i les
entendre dans l'acception vulgaire , ce qui dénaturerait tolalement
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le sens.du discours , et pourrait méme le rendre tout-i-fait inine
telligible. C'est pourtant 14 ce que font fréquemment les écrivains
en métaphysique ; et nous ne voudrions pas méme répondre que,
maitrisés eux-mémes par d’anciennes habitudes, il ne leur arrive pas
quelquefois d’employer le méme mot tantét dans le sens vulgaire et
tant6t sous l'aceeption nouvelle qu'il leur a plu d'y attacher ; voild
probablement ce qui rend la plupart de leurs ouvrages d’une lecture
si difficile et si rebutante.

‘On sent que ce serait une égale inconvenance de donner, par
une definition , une dénomination nouvelle & une collection d'idées
a .laqué]le Pusage général aurait ddéja affecté une autre dénomination.
C'est pourtant la ce que ne se permettent que trop souvent des
dcrivains qui se persuadent et cherchent a persuader 4 leurs lecteurs
qu'ils ont des idées nouvelles, par cela seul qu'ils expriment en
termes nouveaux des idées quelquefois fort communes et fort tri-
yiales, si méme elles ne sont tout-a-fait fausses.

Aux régles diverses que nous venons d'indiquer , touchant les défini-
tions , quelques logiciens ajoutent celle de n’employer, autant qu'il est
possible, dans la d¢finition, que des idées positives; et, en général, ectte
régle est fort bonnea observer. Cependant, comme il est beaucoup d'eb- -
jets desquels nous savons beaucoup moins ce qu'ils sont que ce qu'ils
me sont pas, on ne doit faire aucune difficulté de s'écarter de ce .
précepte , toutes les fois qu’il en peut résulter quelque avantage
-sous le rapport de 1a clarté et de la brieveté. 11 nous parait, pac
exemple , que M. Legendre a trés-nettement défini la ligne courbe,
en disant que c’est une ligne qui n’est ni droite ni composée de
fignes droites.

On donne aussi pour régle des définitions que , dans le discours,
la definition puisse toujours étre substituée au mot défini, sans que
le sens en soit aucunement altéré. Mais il nous parait que c’est moins -
1d une rigle des définitions , qu'une régle sur I'emploi des mots. Si,
en effet , quelqu'un, aprés avoir défini un mot , I'emploie sous
une acception différente de celle qu'il lui aura.lui-méme assignéea
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il -aura torl sans doute ; mais sa délinition n’en sera pas pour cela
moins admissible : c’est son langage et mon cette dcfinition qu'il
devra réformer.

Mais il est un objet que les écrivains méme qui ont traité le
plus au long des définitions ont totalement passé sous silence : c’est
ce qui concerne le choix des mots. La raison en est sans doute
que ces écrivains , uniquement littérateurs, pour la plupart, ont
pensé quil n’y avait plus de mots & créer. Mais, puisque le progrés
toujours croissant des sciences oblige chaque jour d’y introduire
des mots nouveaux ; puisque quelques.unes ont senti le besoin de
réformer entiérement leur langue : et puisque , si ce besvin n’a pas
€ié aussi impérieusement senti pour d’autres sciences, il n'en est
peut-étre pas pour cela moins réel, il convient, avant de terminer |
de nous arréter un moment sur ce sujet.

En principe , il est rigoureusement yrai de dire que ricn n'est
plus indifférent en soi que le choix des signes que nous destinons
a exprimer nos pensées ; et que tout ce qu'on peut raisonnablement
exiger d'eux est qu’ils ne soient ni trop longs ni d’une pronon-
ciation trop difficile ¢t trop peu analogue i la conformation de nos
organes et aux habitudes qu’ils ont contractées. 11 semblerait donc
qu’en se conformant d’ailleurs' & ces indications du bon sens, il
devrait étre permis de choisir , d’une manidre tout-i-fait arbitraire ,
les. signes nouveaux dont de nouvelles idées peuvent réclamer l'usage.
La vérité -est pourtant que , dans nos langues modernes, il n’existe
pas un seul mot qui, si I'on peut s’exprimer ainsi, ait été formé
de toutes piéces; pas un seul quine soit dérivé d’'une maniére plus
ou moins directe des langues auxquelles les nétres ont succédé;
et dont les mots ont été sans doute dérivés de la méme maniére
de ceux de quelque auntre langue plus ancienne. Il est méme trés—
vrai de dire que l'opinion est aujourd’hui tellement formée , ou, pour
mieux dire, égarée , sur ce point, qu'un écrivain qui, ayant &
exprimer quelque idée nouvelle, y attacherait un signe tout-i-fait
nouveau , et gui me serait dérivé d’aucune langue cornue, serait
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stir. d'indisposer contre lui une muliitude de gens qui jamais ne consen~
tiraient & faire usage d’un mot ainsi créé,

Cest I'habitude constante ol nous sommes de dériver ainsi les
mots des langues plus modernes de ceux des langues qui le sont
moins qui a donné naissance 3 la science des Etymologies ,  la-
quelle , faute de I'avoir envisagde sous son véritable point de vue,
on a peut-étre attaché beaucoup trop d’importance. On a voulu ,
en particulier, en faire une sorte de supplément aux définitions ;
et des gens plus érudits que judicieux n’ont pas méme paru trés-
éloignéds de croire que I'on ne pouvait bien posséder une science sans
connaitre les langues d’ou elle a emprunté les termes qui lui sont
propres (*).

Nous conviendrons trés-volontiers: que c’est une recherche 2 Ia
fois curieuse et utile que celle de la filiation , des mutations et

(* C’est, par exemple, une opinion trés-répandue que celle de l'utilité de
Iétade de la langue grecque , comme préliminaire de celle de la-médecine ; et
on en donne pour raison le grand nombre des mots que cette seience a em-
pruntés i la langue d’Hypocrate ; mais, outre qu'une centaine d’origines grecqucs
au plus serait peut-étre suffisante pour la parfaite intelligence de tous les mols
employés en médecine , et pourrait &tre bien connue en moins d’une semaine;
ne pourrait-on pas suppléer méme & la copnaissance de ces origines par des
définitions précises ? Si I'on considére que presque tous les bons ouvrages grecs
et latins sur la médecine ont été traduits dans nos langues; et qu’ici le mérite
du style est d’une importance assez mince, on verra que tout le fruit qu'un
médecin peut se promettre de I'élude des langues mortes se réduit ou i pouveir
lire dans ces langues quelques ouvrages insignifians , qui n'ont pas para dignes
des honneurs de la traduction, et que les écrits des modernes ont laissés bien
loin derriere eux ; ou bien 4 savoir déhiter , en présence des femmes qui en-
tourent le lit .d’'un malade, quelques aphorismes qu’ils entendent & peine ; mais
A Taide desquels ils se donnent une sorte d'importance aux yeux des sots. L’étude
des langues vivantes leur serait d’un tout autre secours : elle les meltrait en
possession des progrés que I'art de guerir fait journellement dans I'Europe entiere.
Mais ceci we ferait point i'affaire des pédans de colléges qui, pour la plu~
.part , sont tent-i-fait dtrangers & ces langues.
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altérations progressives des divers signes auxquels les hommes ont
eu suceessivement recours, pour noter et communiquer.leur pensées.
Quoiqu’il paraisse que les grecs , nos maitres et nos meodeles dans
tous les genres de littérature , se soient assez peu souciés de ce
genre de savoir (*); nous accorderons sans peine qu’il peut n'étre
pas tout-a-fait sans. fruits dans I'étude méme des langues modernes.
La recherche des étymologies peut fournir d'ailleurs des lumitres
trés-précieuses sur les temps éloignés de nous, en servant d’appui
et quelquefois méme de supplément a I'histoire des peuples, en
nous faisant, pour ainsi dire, assister aux premiéres combinaisons
d’idées qu’ils ont formées, en développant & nos yeux le tableau
graduel du progrés de leur intelligence , et en nous révélant le

(") On entend chaque jour répéter qu’hors de I’étude du lalin et du gree
il ne saurait y avoir de salut pour les littérateurs ; et l'on a raison, si l'on
convient de n’appeler littérateurs que ceux & qui ces langues sont familieres ;
car, comme nous l'avons déja observé plus haut, les définitions sont tont-a-
fait libres. Mais si, au contraire , on pense qu'un homme peut mériter le titre
d'écrivain , par cela seul qu’il écrit sa propre langue avec pureté et élégance ;
on ne verra plus aussi clairement que I’étude de quelque autre langue soit néces~
saire pour parvenir & ce but. Les Grecs n’étudiaient nniquement que leur langue 4
et ils nous ont laiss¢, en tous genres , des chefs-d'ceuvres que nous avouons
ne: pouvoir atteindre. Les Romains du siecle d’Auguste , outre leur langue , cul-
tivaient la littérature des Grecs ; et nous sommes d’accord qu’ils ne sont pas
parvenus & les égaler ; enfin, nous joignons 4 I'étude de notre propre langue celle de
la littérature des Grecs et des Romains; et nous nous avouons humblement in-
férieurs aux uns et aux autres. On pent dire sans doute de trés-bonnes choses
en faveur de I’élude du grec et du latin, comme moyen de parvenir 4 bien
écrire dans les langues modernes ; mais il faut du moins convenir que le succes
de cette pratique n'est point prouvée par le fait; apparemment parce que ses
avantages se trouvent plus que compensés par le pen de loisir qu'elle nous
laisse pour cultiver notre propre langue ; sur-tout d’aprés le parti qu'on a pris,
dans presque toutes nos écoles , de rendre 3 dessein I'étude des langues an=-
cienmes longue et difficile ; ce qui ne fait pas pourtant que la plupart -des .
jeunes-gens qui en sortent.y soient pour cela beaucoup plus habiles
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secret de leurs diverses migrations. Mais, 13 parait devoir se bormer
Je domaine de la science étymologique ; et chercher i I'étendre plus.
loin , ce serait vouloir compliquer I'étude des sciences de difficultés.
qui' ne lui seraient pas moins inutiles qu'étrangéres. Ne serait-il pas.
absurde , en effet, d’attacher nécessairement le succeés dans I'étude
d'une science au plus ou moins d’intelligence des langues d’ou ik
a pld 2 ses inventeurs de tirer les mots qu'on y emploie; et n'en
zésulferait-il pas cette conséquence tout-a-fait insoutenable, qu’une:
science qui n’aurait emprunté ses expressions i aucune langue connue:
ne pourrait étre enseignée ni apprise ?* Pense-t-on-,. par. exemple-,.
que celui qui- étudie I'arithmétique aura une idée beaucoup  plus.
exacte de- la science du calcul , lorsqu’on lui aura révélé que:
le nom de cette science vient du mot laiin. Caleulus ? Ne sera-t-il:
pas fondé & demander ensuite d’out vient & son tour ce dernier mot,.
et pourquoi les Romains 'employaient: de préférence i tout: autre,
pour désigner les petites pierres ou jetons dont ils se servaient pour-
~compter ? Et, de question-en question, I'étymologiste ne se trou-
verait-il' pas bientét réduit au silence, ou.ce qui est peut-étre pis.,.
ne ‘serait-il pas entrainé . chercher son refuge dans les savantes:
réveries débitées par Court-de-Gebelin et quelques autres sur la pré-
tendue langue primitive ¥
En vain- les défenseurs des étymologies diront-ils qu'én formant
nos mots de portions de mots prises dans d'autres langues, nous
obtenons I'avantage de montrer., dans leur contexture ,leur. véritable
signification, et les relations qui. les. lient entre eux ; on pourrait:
taujours leur objecter , avec fondement, qu'outre qu'on atteindrait:
2 peu. prés le méme but avec des mots formés- de- toutes pieces,
en- supposant les: avantages dé cette pratique aussi réel’ qu'ils le:
supposent , ce ne serait jamais qu’une- trés-faible portion de la société-
gni en pourraijt: recueillic les fruits; Ie nombre des hommes versés.
dans la connaissance des langues savantes devant toujours étre ine
comparablement moindre que le nombre de ceux & qui ces langues.
sont tout-a-fait étrangéres, Mais la vérité est- que, loin que le re<
courss
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cours aux étymologies soit un moyen infaillible de découviir la
véritable signification des mots ; il n’est propre, au coutraire ,. qu'a
nous induire fréquemment en erreur ; attendu qu'il est bien peu
d’étymologies précises, bien peu sur lesqueiles on puisse compter
avec quelque certitude 5 et que, parmi celles-ci, il en est une foule
qui s’écartent notamment de la signification que l'usage géneral a
attachée aux mots, ou qui méme sout tout-a-fait opposdes a cette
signification (*).

Ce n’est donc point par des étymologies, trés-souvent ignorées ,,
fréquemnient incertaines et quelquelois trompeuses , mais sculcment
par des définitions exactes, que 'on doit chercher & s’instruire de la vé-
ritable signification des mots en usage dans les sciences et sur-tout dans
lcs sciences de raisonnement. Nous sommes loin , toutefois, de blamer
l'usage ot sont les savans de tirer des langues mortes les mots dont ils
ont besoin pour désigner des objets nouveaux. Il est plus simple et
plus naturel , en effet, de faire rentrer dans la circulation des mots
déja existans, connus du moins des hommes lettréds de tous les
pays, appartenant & des langues & l'abri de toutes vicissitudes , et
pouvant ainsi s’introduire sans altezation sensible duns tous les idio.nes
modernes , que‘d’en forger de tout-a-fait nouveaux quine pourraient
offrir les mémes avantages (**); mais il ne faut point attacher a
cette pratique plus d’importance qu’elle n’en ofire reellement.

(*) A combien de bévues ne serait point exposé, par exemple, un citoyen
de lancienne Bome , bien versé dans la langue d’Atlhenes, qui, se trouvant
tout-a-coup au milicu de nous , voudrait prendre uniquement I’étymologie pour

guide et pour interpréle. Nos balances seraient a ses yeux des barométres ;
il ne verrait dans nos géoméires que des arpenteurs , dans nos chimistes
que des fondeurs , dans nos barons que des goujats; il traiterait de lucifers
les jeunes clercs qui , dans nos églises , portent des flambeaux allumés , et
Rrendrait sans doute nos Chanoines de St-Denis pour des Prétres de Bac hus,

(**) A condition toutefois que, si la langue dans laquelle on les introduit
n’admet pas de cas, on les rendra indéclina.les; ainsi que ’a fait M. Lacroix
pour les mots maximum et minimum , et M. Biot pour le mot erratum.

dom. IX. 5
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Ce n’est point 13, en effet, ce qui constitue la perfection ‘des
langues. Une langue sera toujours bien faite, si une abondante sim-
plicit¢ et une rigoureuse analogie ont précédé a sa formation ; c’est-a-
dire, sises mots radicaux , quelle qu’en puisse étre d’ailleurs ’origine,,
sont trés-courts , et offrent, dahs leur plus ou moins grande res-
semblance , le tableau fidtle du plus ou du moins d’analogie entre
les idées simples qu’ils sont destinés & rappeler; si de plus elle a
‘des mots propres i exprimer , sans périphrases , toutes les idées,
tous les rapports , toutes les vues de Desprit qui sont de nature
4 se représenter fréquemment; et si enfin , ces mots offrent, dans
leur contexture , une sorte de tableau raccourci des diverses_collections
d'idées simples dont ils sont les signes."Mais on ne doit pas perdre
dec vue que, quelques désirables que puissent étre pour les langues
ces diverses qualités, les raisonnemens faits dans une langue , quel-
que imparfaite qu’elle soit d’ailleurs, pourront toujours étre rigoureux,
si tous les mots dont la signification pourrait laisser quelques nuages
dans Desprit peuvent y étre nettement définis 3 I'aide de ceux dont,
au contraire, la signification ne présente aucune sorte d’équivoque.
C’est ainsi, qu’en algtbre, bien qu'un mauvais choix de notations
puisse rendre les calculs plus pénibles , il ne saurait toutefois altérer
la rigueur de leurs résultats.

On sent assez , d’aprés tout ce qui préctde, ce que I'on doit
penser de Vexcessive délicatesse de quelques érudits qui jugent un
mot mal fait, et le frappent de -proscription, par cela seul qu'il
est composé de parties dérivées de diverses langues; du latin et .du
grec, par exemple. Il est évident qu'il ne peut .y avoir i cela aucune
sorte d'inconvénient, et que méme on ne doit pas faire difficulté
d’en user ainsi, si I'on pense que le mot rendra mieux I'idée qu’il
doit rappeler , ou si seylement il en devient plus .aisé & prononcer
‘Qu ‘plus agréable i I'oreille. Nous n’hésitertons .pas méme i conseiller
.de forger des mots arbitrairement , sans les dériver d’aucune langue,
tontes les fois que cette dérivation pourrait induire en erreur sur
Jeur véritable sens , si nous mne pensions qu’il est convenable de
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‘toujours se plier aux usages établis, lors méme que ces usages ne
peuvent étre justifiés aux yeux de la raison.

Nous n’ajouterons plus qu'une réflexion : c'est que, comme on
ne peut avancer dans la recherche de la verité qu'en créant des
.mots nouveaux , 3 mesure que de nouvelles combinaisons d'idées
‘viennent s'offrir 4 la pensée , -il est nécessaire , 'pour que les sciences
ne demeurent pas stationnaires , d’en rendre sans cesse la langue
de plus en plus riche. Cette remarque s’applique principalement
aux sciences exactes que ‘nous avons sur-tout en voe ici. En par-
courant leur histoire on a bientét lieu de s’apercevoir, en eflet,
que les symboles et les locutions qui y ont été successivement in-
troduits n’ont guére moins contribué i leur avancement que les m¢-
ditations des hommes de génie qui se sont dévoués a-leur culture (*);
et rien ne parait plus propre & mettre en évidence la toute:puissante
influence des signes sur les idées. On peut donc prévoir que ceux
qui sont destinds & en reculer de nouveau les limites, ne parviendront
surement & leur but qu’autant qu’ils continueront d'user & eet égard
de la liberté -la plus entiére.

(") Que ne devons-nous pas, par exemple, a I'usage du mot fonction , pris
dans le sens que les géometres y attachent aujourdhui?
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QUESTIONS PROPOSEES.

Théoréme danalise.

oIT X=0 une équation en x du degré m dont la dérivée soit
X’=03; et soit Y=o l'équation du degré m—1, résultant de I'éhi-
mination de x entre les deux équations X=y et X/'=0;

1.° m étant pair, si X=o0 n’a pas de racines égales, elle aura
042, 4, 6 ,........m racines imaginaires , suivaut que Y=o aura

m m m m m .
-, —+1, —+2,...... — 1 — permanences de signes.
2 % T 2 T 2 7 2

2.° m étant impair, si X=o n’a pas de racines égales, elle aura
0,2,4,6,......(m—1) racines imaginaires, suivant que ¥'=0 aura

me—1 m—1 me—1 m—1 m—1
, 1, — T2 .. 4 permanences de
2 2 - 2 - 2 — 2
signes. '

3.° Enfin, si Y=o a, 4 commencer par le terme tout connu
T, 2,3 ,...... termes nuls consecutifs, X=o0 aura une racine
double , deux doubles ou une triple , trois doubles ou une qua-

draple, etc. (*).

(™ Ce théoreme est extrait d’'un ouvrage que M. Bérard vient de mettre aw
jour sur la résolution des équations numeériquesa
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L

ANALISE ALGEBRIQUE.
Theorie generale des fractions continues ;

Par M. Brer , professeur 3 la faculté des sciences de

Grenoble , Chevalier de I'Ordre royal de la Légion
d’honneur.

(a2 Mo Zla Vo "L S o Vo ¥

LE probléme du développement d’une fraction ordinaire en fraction
continue , se réduit évidemment & la résolution de l’équation

B 5 b )
— s - ‘g
A s+ ;‘,+i’: ¥4 (

a’ — L - -
a’” +-aol‘a00'

dans laquelle nous supposons que 4, B sont deux nombres entiers
poéitifs donnés , tels quon ait A> B, et o4 2, o/, a”, a", ...,
b, 8, 08", b",... sont des nombres entiers indéterminés, positifs
ou négatifs ; on peut toujours supposer, au surplus , que &, 4/,
a’ , a' , ... sont positifs.

Posons successivement

B cC ¥ D
— / —— — Vi o —— b//; w2
Z_‘ a+é' 12 BT o _l_b_ o T @ — | 2] ( )
o ;,7 +"" a a’/’+-n' “ a’ll +wr

il viendra ainsi
Tom. 1X,n° II, 1,°* godt 1818,

e
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B b C 4 D o
— 7 C —_——e— _ D —_—— — E .03
A a_‘_.....B’ B a:+_6.’ C a”+"ﬁ’ ()

c'est-a-dire ,

s

C=Ab —Ba

D=RB) —Ca’ ,

E=Ci/—Da" , @

I

et la question se trouvera réduite 3 satisfaire en nombres entiersta
cette suite d’équations , dans laquelle il est évident qu'on pourra
prendre & la fois arbitrairement les dénominateurs a, a/, @, ...
et les numérateurs &, 4, b/ ,.... des fractions intégrantes.

Or, si on prend constamment 6<a, b/ <d", b/ <La" yuu, la

fraction continue se terminera nécessairement ; en effet, on aura d’abord
. 2 b
b L s . )
= <1; et, comme on aura aussi — <1 , il s'ensuit qu'on aura
a T .

o
a-]-—;,— >a=—1; donc, on aura
LA .
¢ +— Sgm1’
a
. b .
mais ~— est au plus l'unité; donc, on aura
b
— b 1.
<

a
al!

On aura, par la méme raisen,

b ¥
74— <1

all

done
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/

5 I

o +—
et, par suite,
b 14
- P </
al =t — '
a!

d'old on conclura, comme ci-dessus,

b
— i <l
— z °
g + a’ +L

a’

En continuant ainsi, de proche en proche , on parviendra & se eon-
vaincre que les portions de développement

] b "
_— ' —_— /" —_—
,a+a/ I a+a” J—— a@ a]y..l___.
P S a = ... P

sont toutes moindres que I'unité.

Il est pourtant un cas qui fait exception : c’est celui ol I'on
aurait précisément b=a—r , V=—(a'—1) , b/=—(a/'—1) ,
b/'=~a'!!—1) , c'est-a-dire le cas ol la fraction continue serait

e—1
al—1

G = ——

al

@/ =y
a1

gl —— .

a =~

et ol , prolongée a I'infini, elle tendrait sans cesse vers I'unité : dans
tout autre cas , elle sera constamment plus petife.

En appliquant présentement ce que nous venons de démontrer
3 la suite des équations (2) , cn voit que, si 'on a constamment,
abstraction faite des signes ,
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b<a, ¥<a', b'La’, ¥ILa" ,.u

on aura aussi constamment , abstraction faite des signes,

B c D
Z <t <, <10
c'est-a-dire,

Bgd, CLB, DLC, ELD, ... ;

les nombres 4, B, C, D ,...... seront donc continuellement dé-
croissans ; et, comme ils sont tous entiers , il faudra enfin que
Pun d’eux soit nul ; ce qui prouve que la fraction continue se
terminera. :

Donc, si une fraction continue, dans laquelle les dénominateurs
des fractions intégrantes sont constamment plus grands que leurs
numeérateurs,, ne se termine pas, elle ne pourra étre le dévelop-
pement d’une fraction finie , et sera conséquemment le développement
d’un incommensurable.

Tout ce que nous venons de dire a encore lieu lors méme que
les numérateurs des fractions intégrantes sont d’abord plus grauds
que leurs dénominateurs , pourvu qu’ensuite ils deviennent plus
petits qu’eux et demeurent constamment tels ; il arrive seulement,
alors que la suite des nombres 4, B, €, D ,.... est d'abord
divergente ; mais elle devient ensuite convergente et doit consé-
quemment se terminer & zéro, comme dans le premier cas.

Posons présentement

B b b B b b B - b b
—_=- — 2 — — y —— > w— 1000 880
A a+a,+m: . A a +a’ e . Al a+_a, o , ’
sees ~ 99c0 - 'B', 1T -—
-t " -+ pu R = +- par B »:_’, 1%

wll
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En réduisant la premiére de ces fractions continues en fraction
orinaire, on trouvera une expression de cette forme

B Pe40Q

A4 " Mp4Na’
/

BI
on passera de li A la valeur de T ', en'y changeant « en «-- % ,

ce qui donnera

: o
Pﬁ+Q(¢+‘J) _ (PHQ0w4Q8
metN(ot 2 ) ~ (MetNayw g

B
Z;:

c’est-a-dire ,

B _ Bu/4-Qp Q#'4Bux
A T Ad4Ng T Netdo ?
et 'on aura de méme

B Bp'! 4 Bla/t

AR TEY
d’olt

B/'=Bp/!4-B'o" , All=Ap/ A’ ;
Eliminant «” entre ces deux équations , il viendra
A'B/'—B/ Al == AB'—B AN ;
on aura donc, en général,
A'B/—B/ A7 ="tbb /! ... 88'8/ ;

le signe plus oule signe moins aura lieu, suivant que le nombré
des fractions intégrantes est impair ou pair, en les supposant du
moins toutes positives.

Si nous prenons la différence entre deux fractions convergentes
consécutives , nous aurons , abstraction faite des signes,
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B B ABI—BA" Y.
A T Aadr T A}

mais nous avens trouvé ci-dessus

A=A -Ara
posant done
’_‘4 /5”
=z B =
A" - s

ce qui donnera néeessairement ¢/ <1,
on -aura

:4;7=A/“//(1+a/f> 5
et 'on aurait semblablement
A'=A(144) §

d’oli on conclurait, en multipliant,

A=A ol 1 ol)

on aura donc généralement

A" =00/g" s s/ & 14-0) (1 4-07) 14-0"") or. (1 0 (10" ) (1 40") 3

0, 0, 0" ..o, o, o étant des quantitds positives , plus petites
que Vunité. N ‘
On aura donc ainsi

:A’A/f=A’aa’a”...;m/-.’/(1 Fo)ador) (1ol 1 o) (1) (1447) 5

et “par conséquent

5 v b g g g
By B T _'"‘—"—"\--..:,.:;..:”

At AT 4 Gy Aoy 1o e (1w 1 A1) T
et comme on les a indgalités,

— — —
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b<la, b <a , b/'<gal ;o pla, B/<s , B,

. . . By B . .

il s'ensuit que la différence — — — devient de plus en plus petite,
Al A

) , . .

a mesure qu’on s’avance dans la série des fractions convergentes,

puisque d’ailleurs le dénominateur 4’ croit trés-rapidement.

3/

4 . ’ - ‘B
Cherchons présentement la différence entre la fraction - ¢ la

fraction continue

b
x:;—- b_ b
/ —
a —+ a’ +‘,+: e o
« +-7 g
o —

y ¢étant quelconque , mais plus grand que g”. 1l viendra

. B By4-Bg! B (BA'—AB)g"
X e T e e = IS ——————————————
A Aly4-Ap! At A (Adly4-Ag") !

on aura pareillement

T e e —— D e - .

A Aytdpr A A dydpn ’

divisant ces deux équations l'une par l'autre, on trouve

B
= By
B Ay’

O e

B .
or, on a, par hypothdse, 4> 4, y> ¢/ ; donc z~— = est moindre que
B . . . . .
z——, et I’on voit de plus qu’ils sont des signes contraires ; ainsi

o B B . s d
silon a 2< —, on aura > — ct pice versd ; ainsi , dans tous
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les cas, la wvaleur exacte de x se trouvera comprise entre deux

. B B
fractions convergentes consécutives quelconques < oo mais plus

voisine de la seconde que de la premiére ; puis donc que, comme

nous lavons vu ci-dessus , la différence entre ces deux fractions

décroit rapidement, & mesure qu'on savance dans la séric des frac~

, il s’ensuit qu’elles s’approchent aussi trés-rapi-
dement de la véritable valenr de # dont elles différent alternati-

vement par excés et par défaut , ce qui justifie pleinement leur
dénomination,

tions convergentes

Ce qui précéde, suppose , & la vérité, que toutes les fractions
intégrantes sont positives ; mais, dans le cas contraire , il est toujours
facile de transformer la fraction continue en une autre qui n’en
renferme que de telles; on a, en effet

a-—-———'(a—l)+

>
‘+r-‘a
a-—-q— K —-(a—l)+—
T P—‘I—'!+ S B

w1

pl—ql/
q r .
e——_ 9 _(a—1)+ -9
. pl -——— " p_q'—-l + - "
P P/_q/._l + - q
pl—g".
et ainsi de suite,

On conclut de cette transformation que Ia nouvelle fraction continue
remplira, a la fois, la condition de ne renfermer que des fractions
intégrantes positives et celle de la convergence , si I'on a

9 <p =g =1, P >2q 41,
9/ <p _q -1, dod pl >29/ ~+r >
q//<p//,_.q//__l , p//> 2q//+1 N

A‘-a..cots

1

-r
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Il suffira méme, quelles que soient d’ailleurs les premieres fractions
intégrantes, ue ces conditions soient remplies, a partir de 'une
quelconque d’entre elles ; d'ott Ton voit qu’en particulier la conver-
gence vers une valeur fixe aura toujours licu , lorsque les numérateurs
g5 ¢, gy, €tant égaux et d’une grandeur quelconque, les
dénominateurs p , #’, p//, .. croilront constamment, quelque len-
tement que ce soit, a parlir de l'en quelconque.

Voyons présentement comment on pourra procéder, d’une manitre
réguliére , au développement en fraction coutinue d’une fonction quel-
conque de z. On pourrait bien supposcr que la fonction dont il
s'agit a d'abord été dcveloppée en série ascendante ; mais, pour plus
de généralité nous la supposerons développée en fraction, ayant de
pareilles séries pour ses deux termes; ¢’est-a-dire que nous supposerons

__ B+ B'a4-B/x24 B w30
r= At Al A 22 A T i

alors , en posant successivement

/ /22, ’
i+j/x+j{/x +“" = £ + C+Clx+cllx2+‘00:b
Fdrrdleto,. 4 x'B—}-B’x-{-B’/x“-}-...w ?
-y , .
g‘*’g/”"’gjx te € 4 DA-Dix-DV z2e...
FhetBw e BT e e ?
D4-D/x~4-D" 22, .. _ 2 EhElad- Tk,
CH-CladeClixrues  C +

Y Dy Dap D

et ainsi de suite, on aura

+—ET +l-¢n‘
Et Pon conclura les valeurs de €, D, E, F,..... des valeurs
connues de A, A/, A" y...... B . B, B”,..c.... au moyen des

formules
Tom. IX. 7
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C=BA'—A4B’ , C'=BA"—AB" , C""=BA"— AR

g otoqee

D=CB'—BC' , D’=CB"—BC" , D"=€B/'"—BC" ...
E=DC'—CD' , E'= DC//;—CD” , E'=DC"—CD'" , ...

e & & & B 3 et s g t B S e e e s e s 03 e e % e 8 o s s 0 o)t

que l'on conclut des équations ci-dessus, en y chassant les déno-
minateurs, et exprimant ensuite qu'elles sont identiques.

Si les deux termes de la fraction valeur de y, au lien de procéder
suivant les puissances de ', procédaient suivant celles de 2", il ne
s'agirait que d'y traiter 2" ainsi que nous venons de traiter & dans
le développement général ; et si une puissance de x se trouvait étre
facteur soit du numérateur soit du dénominateur , on la ferait préala~
blement passer soit comme diviseur soit comme multiplicateur de y,
ce qui ramenerait la question au premier cas.

Pour premier exemple, prenons la fonction

* al a5 x7 + x9
Sin.x —l—!o-— gi- -5-!-""' -—!- -—!' —,teie
Tang.x= = 7 2

Cos.x

-

x2 xh xﬁ xs
,1- .?"— + ZT'- — -6'{- + .gi- Vegen

nous ¢écrirons d'abord

x3 ah a6 x8
Tangw T3 T E T TR g e

X

- £ xt 6 x8
‘“ womerm — —— —
2l + FART + 8

i haanal TYTTY
traitant alors #* comme &, dans le second membre, il viendra

1 X X ¢
—— ] = o W /o= —— 1 p— 1] == ——
A=1, d=—, dmk T, Amh | AT

B=1, B/=w

1 R { 1 ¥ .
o //=+— " pe—— /”/—""+_ wiee
508 5 8 0 B gt ’
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2

4 6 8
C=_§.! , C/=+:5-! s (;//;-_; , C///=+§!_ -

2.8 ho12 6.16
D—+ 3'5!, —-F ) .D/~+'3T9!-, s
E=+28_+8, — 4.12.64 .

315091 35090 T
e 2.8.48.128

T 3l T

Nous avons donc finalement

A=+41, B=+41, C=—;, D=4, E=+4 -, F=~ '

— _— .
4718 33395375 2°*y

puis donc qu’on doit avoir

Tang.x B
:-2+Cx= D2
—_— x
* B + = Ex2 F 2
C + S X
E ..
on aura
Tang.x _ X i
= 5 I
X I - 3 3 - -
b +:——7 a7 X x a
—-—;+ . __.n;vfnsx
ﬁ _1 —e
a7TE T ae

ce qui donne, en amenant successivement les numeérateurs a étre
entiers négatifs , et en multipliant ensuite par z*

X2 2
zTangar=—__ =«

— x2

- 7 — — x2

résultat dont la loi est manifeste; et qui, quel que soit-z, satis—
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fera & la condilion de convergence , pourva quon le pousse assez
loin.

Si l'on transforme cette expression en une autre dont tous les
termes soient positifs , d'apres les formules trouvées ci-dessus, on
obtiendra

Tang.x

) 4
S x2
i 1 2
Py ] +—- x 1 23

r —
4—x2+ 1+ 6—x2+-m

X

d’ou il suit que , pourvu que l'on prenne 2*<2—2* ou 2<1,
cette fraction continue convergera, i partic de lorigine, vers la
Tang.x

véritable valeur de ; dans tout autre cas, elle finira toujours

par étre convergente , pourva qu'on la prolonge suffisamment.

- = .
Soit x= ik nous aurons Tang.z=1, et notre formule deviendra

T T T
, = 0 ' - » _n
v uw'oana — <1, soit done, s'il est possible, = = —,
Nous savons qu’o 4<1 td 1 est possible 7= m
. m
et n étant deux nombres entiers premiers entre eux, tels que

n<m ; il viendra, en substituant,

n n?
— I e— — na N
m i ~ — ” ns
IR e—— n?
{ 9 —
11m3== i,

or , cette équation est sbsurde ; car son 'second membre est unea
fraction continue qui, ne se terminant pas et étant convergente ,
en la prolongeant suffisamment, dait avoir une valeur incommen=
surable, tandis que son premier membre est une fraction rationnelle 5
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] . .
il est donc absurde de supposer que " est égal a une pareille
fraction, = est donc incommensurable

Prenons, pour second exemple, la fonction

=144 +5,+ + +

nous aurons ici

A= 1, A= o, d'= o, A=

0, AM=0 , ..

1 1 1
B= 1,0/'= 1, B/= - B= =, BlilM=

—— 3 cotce
31 A
b ¢ X
=1, O'=— '27 Ct = — ,{;*"//-.____4_....1;T yonsre
1 3
D= — "L r;_—__..._. Dt = —_——
) 4 2
— —_— [ -—
E=— g Br=— g

Nous aurons done finalement

J— 1 — ¥ e 3
A=1, B=1, C=w—1, D=~ , Em=—gp

33 ) — T43 § e

cc qui dennera, en substituant

x

«
xE ==
i

x
i

résultat dont la loi est wanifeste
On o, daprés cela
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1
—— ) 4
S+-_ 1 .
7+ L

P

ee qui prouve que le nombre e est incommensurable.

On pourrait étendre eette théorie & d’autres exemples , non moins
intéressans ; mais , comme ccs applications me présentent aucune:
difficulté , nous terminerons par observer que, lorsque les numé-
rateurs b, & , 8" , i B, B/, £”,.... sONt sUPPOsés égaux a Vunité,
les résultats auxquels nous sommes parvenus se simplifient d'une
mani¢re notable. C’est ainsi, par exemple, que I'équation

A B/ —BI A1 = BB B .. 68 e
devient
. A'B/'—B/ A" =41 ;

alors aussi les fractions convergentes se trouvent toutes réduites i

. “ops 1 .
leurs moindres termes , et la dxfference:i—— entre deux fractions con-

' deuti B B
vergentes consécutives —- , —-,
qu'on avance dans la suite que forment ces fractions; on peut aussi
remarquer que le quotient

diminue de plus en plus, & mesure

B
=7 a4
B Ay’
=

est toujours moindre que Funité, puisquon a, 4 la fois, y>1 et
A’>Ad , dou il suit que les conditions de la convergence de la
fraction continue se trouvent nécessairement remplies. Si la fraction
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continue a quelques fractions intégrantes négatives, en la transfor-
mant en une aulre qai ne présente plus cette circonstance, les conclu-
sions seront encore les mémes. Enfin, il est facile , dans le cas
quc nous examinons , de démontrer ce beau théoréme, savoir : que
chaque fraction convergente approche tlus de la valeur totale de la
fraction continue que ne pourrait le faire toute autre fraction, exprimée
par de plus petits nombres. Nous ne faisons que rappeler cette pro-
priété , pour montrer comment elle se rattache & la théoric nouvelle
et plus générale des [ractions continues que nous avons essayé de
présenter dans ce mémoire.

GEOMETRIE.

Recherches sur le parallélogramme et sur le
parallelipipéde ; -

Par M. GERGCONNE.

[0 Ta Sia Sl Sl Vla Vo Vi Vo 1 %

ON a continuellement besoin , soit en géométrie soit en mécanique ;
de déterminer, en fonction des trois arétes qui concourent e¢n un
méme sommet d’un parallélipipede et des angles que ces arétes forment
deux & deux, soit la diagonale du parallélipipede, soit les angles
que forme cette diagonale avec ces trois mémes arétes, soit enfin
le volume de ce parallélipipéde. Le moyen que I'on emploie commus
nément, pour parvenir a ces divers résultats, consiste principalement
dans Ja résolution d’'un certain triangle sphérique; ce qui est, 3
la fois , compliqué et peu symétrique. Nous allons faire voir que
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Pon peat parvenir au but d'une manitre incomparablement plus
simple et plus élégante, a l'aide du seul principe des projections ;
mais afin d’introduire & cette recherche par une recherche analogue,
mais beaucoup plus facile , nous résoudrons d’abord les questions
du méme genre , relativement au parallélogramme.

L. soient 4, B les deux cétds d’'un méme angle d’un parallélo~
gramme quelconque ; et soit A la diagonale qui joint le sommet
~ de cet angle au sommet opposé; soient, en outre,

Ang (4, B)=c , Ang(4,d)=z, Ang(B,A)=y .

On peut parvenir d'une extrémité & autre de la diagonale A,
en cheminant extérieurement sur deux cétés consécutifs , égaux et
paralléles & 4, B; d'on il suit que la projection de la diagonale A
sur une droite quelconque est égale 4 la somme des projections des cotés
A, B sur la méme droite. Projetant done successivement ccite
diagonale sur les directions méme des cotés 4, B, nous aurons.

ACos.x=A-+}BCos.c ,

(1)
ACosy=B4ACos.c ;

mais, d’'un autre c6té, en projetant sur la diagonale A les deux
cotés par- lesquels on chemine dec I'une a I'autre de ses extrémitds ,,
on aura :

A=ACos.z+BCos.y ; (2)

multipliant cette derniére équation par A , et remplagant ensuite
ACos.z , ACos.y par les valeurs que donnent les équations (1),
il viendra, en extrayant la racine quarrée ,

A:—'—\/ A24-B2~424BCos.c -« (3)

les équations (r) donneront ensuite
Cos.z
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Cos.z= i-(A—i—BCos.c) , Cosy= i—(B-J]—ACos.c) ; (4)

formules dans lesquelles il faudra mettre pour A la valeur que
nous venons de trouver. Telles sont, en particulier , les formules
qu’il faut employer pour détermincr lintensité et la direction de
la résultante de deux puissances , données elles-mémes d'intensité et
de direction.

On conclut encore de l&

BSin.c ASin.s

Sinwr= N Sin')’:T d )
et, par suite,
BSin.¢ ASin.e
Tang 2= m ’ Tang.y—B_*_ACDM i ®)

Des équations (1) on tire

Cosx=—=Cos.yCos.c Cos.y—Cos.xCos.c
B=A. ; (7)

’

A=A

1—Cos.%¢ 1~=Cos,2¢

Substituant ces valeurs dans I'équation (2), il viendra, en divisant
par A, chassant le dénominateur et transposant,

1—Cos.?¢c —Cos.*x—Cos.*y+2Cos.cCos.2Cos.y =0 ; ©)

équation de relation entre les trois angles que forment deux % deux,
sur un méme plan, trois droites partant d’'un méme point, et par
eonséquent trois droites quelconques. C'est aussi la rclation entre
les distances de trois points d’un arc de cercle , pris deux & deux,
et de laquelle on déduirait, au besoin, la relation entre les dis~
tances de trois points d’une droite , pris deux a deux, en sup-
posant le rayon du cercle infini, aprés avoir préalablement trans~
formé les cosinus en sinus, et chassé les radicaux,

Tom. I1X. 8
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Si, de cette derniére équation, on tire la valeur de Cos.c pour
Ja substituer dans les équations (7) , on aura les formules nécessaires

pour décomposer une puissance A cen deux autres 4., B de di-
rections donndes,

Par ie sommet de l'angle (4, B), imaginons une perpendiculaire
indefinie a la diagonale A. Si l'on congoit un triangle dont cette
diagonale soit la hauteur et dont la base soit la somme des pro-
jections des cotés A4, B sur la perpendiculaire 5 il est aisé de voir
que ce triangle sera équivalent au purailelogramme. En représentant
donc par P laire de ce dernier, et remarquant que la somme des

projections de 4, B est 4Sin.2+BSin.y , on aura
P=; A(ASin.z-{-ESin.y) ;

formule qui, en y mettant pour Sin.z, Siny leurs valeurs (5)
deviendra

P=ADBSin.c 3

dott il serait facile de déduire Iexpression de Vaire d’un triangle
en fonction de scs trois cotés,

II. Soient A4, B, C les trois arétes d’'un méme angle d'un
parallélipipede quelconqgne ; et soit A la diagonale qui joint le sommet

de cet angle au sommet opposé; soient en outre
Apg. (B, C)=a, Ang(C,Ad)=b, Ang/d,B)=c,
Ang/A, H=x , Ang/A, DB =y, Ang/A,CO)=z.

On peut parvenir d’'une extrimité a 'autre de la diagonale A, en
cheminant estérieurement sur trois arétes consécutives , égales et
paralleles 3 4, B, C; dolil suit que la projection de la diagonale
A sur une droite quelcongue est égale ¥ la somme des projections
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des trois arétes 4, B, C sur la méme droite. Projetant donc sue-
ceseivement cette diagonale sur les directions mcmes des trois arétes
#, B, C, nous aurons

ACos.z= A+BCos.c+-CCos.b
ACosy=B-+CCos.a+ACos.c , (1)
LCos.z= O+ ACos.b+BCos.a ,

mais, d’'un autre c6té, en projetant sur la diagonale A les trois

arétes par lesquelles on chemine de I'une & Tautre de ses extrémités,
on a

A= _ACos,x+DLCos.y+CCos.z ; (2)

multipliant cette dernidre équnation par A , et remplacant ensuite
ACos.z , ACos.y , ACos.z par les valeurs que donnent les équa-
tions (1), il viendra, en extrayant la racine quarrée , ’

A=\ A4 b+ 4-CFabiCosatrCaCosbtzablose « 3
Lees équations (1) donneront eusuite
1
Cos.x = -;(A'-}-BCOS c+CCos.0)

<
Cos.y= -2 (B+CCos.aA4Cosc) , § (4)

COS.Z =

b
3 (C+A4Cos.b+BCos.a) ;
formnles dans lesquelles il fandra mettre pour A la valeur que
nous venons de trouver, Telles sont, en particalier, les formules
quil faut employer pour détcrminer I'intensité et la direction de i@
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résultante de trois puissances données elles-mémes d'intensité et de
direction, -

On conclat encore de [A

1

1
Sinz= —A— \/B2+Cﬁ--i-zBC'('.'lm.a—(BCos.c—CCt:»s.lz)z >

. 1
Sm.y= 3 V/ C:q-cd*4-2C.ACosb=—(CCos.a—ACos.c)* , > (5)

. I
Sin.z= Y \/A2-{-1:5z-ti-zAB(]os.c—(A(]os.bw---]:i(los.a)JI 5

et par suite

Tang.x= V/ B:4-C2~2BCCos.a—(BCos.c— CCos.b)>
. A~4BCos.c+CCos.b ?

_ V/ Co4A24-2C.ACo5.b—(CCos.a—ACos.c)?
Tangy = B4CCos.a4A4Cos.c ? ; (6)

Tana Z= V’A2+Bz+2ABCOS.C—P(ACQS_b_—BCOS.a)a
° C4-ACos.b+4BCos.a *

Des équations (1) on tire

A""A (1-Cos.2a) Cos.x-(Cos.c-Cos.aCos.b) Cos.y-(Cos.b-Cos.c Cos.a)Cos.z )
- 1—Cos.2¢~—C0s.26—Cos.2c~42C05.2Co5.6Cos.c

B=A (1-Cos.26)Cos.y- (Cos.a-Cos.6Cos.¢)Cos.z-(Cos.c-Cos.alos.b)Cos.x ()
- 1—Cos.2a—Cos.2b—Cos.2¢--2C0s.aCos.b Cos.c > 7

C=A (1=Cos.2¢)Cos.z-(Cos.5-Cos.cCos.a) Cos.x~(Cos.a-Cos.bCos.c)Cos.y
- 1—Cos.2a=—C05.26—Cos.2c4-2C0s.aCos.b Cos.c

substituant ces valeurs dans I’équation (2), il viendra, en divisant
par A, chassant le dénominateur et transposant
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1—C0s.2a—Cos.25—Cos.*c+42Cos.aCos.bCos.c

~+(1—Cos.*a)Cos.*x~4-2(Cos.a—Cos.5Cos.c) Cos.yCos. z )

I
o

—(1=Cos.20)Cos.>y~42{Cos.5 =Cos.cCos.a)Cos.zCos. &

~{(1—Cos.2¢)Cos.”z-2(Cos.c—Co05.0C05.0) Cos.xCos.y ) !

équation de relation entre les six angles que forment , deux 4 deux,
dans l’espace , quatre droites qui partent d’'un méme point, et
conséquemment quatre droites quelconques (*).

Cest aussi la relation entre les six distances de quatre points
d’une sphere , pris deux a deux, et de laquelle on déduirait , au
besoin , la relation entre les six distances deux 4 deux de quatre
points d’un plan, en supposant le rayon de la sphére infini, apres
avoir préalablement transformé les cosinus en sinus et chassé les
radicaux.

Les formules (7, 8) présentent tout ce qui est nécessaire pour
décomposer une puissance A en trois autres de directions donndes.

Par le sommet de I'angle (A4, B, €), imaginons un plan indéfini,
perpendiculaire & la diagonale A. Si I'on congoit une pyramide
hexagonale dont la base soit la somme des projections de trois faces
de l'angle (A4, B, C) sur ce plan; il est aisé de voir que cette
pyramide sera équivalente au parallélipipede.

Il n’est pas moins facile de se convaincre que la base de Ia
pyramide sera un hexagone symétrique; c’est-a-dire, un hexagone
ayant ses cOtés opposés égaux et paralltles, et se trouvant consé-
quemment composé de trois parallélogrammes , lesquels seront les
projections , sur notre plan, des trois faces de l'angle (4, B, C);

(* Voyez le mémoire de M, Carnot sur la Relation entre cing points dans
Pespace , page 37.
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infais les projections sur le méme plan des trois arétes de cet
angle sont ASin.x, BSiny, CSin.z; dou il suit (1), qu’en désignant
par «, g, v les projections des angles @, 4, ¢ sur ce plan, laire
de la base de la pyramide sera

BCSin.ySin.zSin.atC ASin.zSin.2Sin.s~44BSin.2Sin.ySin y §

de sorte quen désignant par P le volume du parallelipipede,
on aura

P=:A(BCSin.ySin.zSin.a4C ASin.zSin.aS8in.e+ A BSin 28in.ySin.y) 5

tout se réduit donc 4 déterminer les angles «, 8, 5.

Or, ces angles sont évidlemment la mesure des angles diedres
que formeraient deux & deux les plans que l'on conduirait par la
diagonale A et par chacune des trois arétes A4, B, C; en consi-

dérant donc successivement les trois angles triedres dont les arétes
sont

et dont les angles plans, respectivement opposés , sont
a,2z2,¥%; b, , z; €,y ,x;

nous aurens , par les principes fondamentaux de la trigonométrie

sphérique ,
Sin.ySin.zCos.2=Cos.g—Cos.yCos.z ,
Sin.zSin.xCos p=Cos5.5—Cos.zCos.x 4

Sin.zSin.yCos = Cos.c—Cos.a Cos.y ;

d'olt, en passant aux sinus,
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SinySin.zSine=1/7 —Cos.?a—Cos.2y=—Cos.2z42C0s.aCos yCos .z »

Sin.zSin.xSEn.;sz \/ 1-—C0s.26—Caos.:z—Cos.2642C0s.0Cos.2Cos.x

Sin.zSin j’Sin.yZ \/1—Cos.-‘c-—-Uos.=x-—Cos.'-‘_y-—j—::Coa.cCos.xCos.y H

mais, en mettant dans les seconds membres de ces équations pour
Cos.x, Cos.y, Cos.z, leurs valeurs (4), ils deviennent respectivement

A
'Z- \/I—Cos.za-—Cos.zb—Cos.%-}-zCos.aCos.bCos.c 5

B
Y V/ 1=Cos.2a—Cos.2b —Cos.2c2C05.aCos.bCos.c 5

C
’Z v/ 1=Cos.2a—Cos.2b==Cos.*c42Co0s.aCos.6Cos.c 3

donc enfin, en substituant dans la valeur de P, il viendra

P = ABC/ 1=Cos.>amCos.2b=Cos.¢4-2C05.0C03.5Cos,c «

Dot il scrait facile de conclure le volume d’un téiratdre , en
fonction de ses six ardtes (*).

(" Au moment ot je termine ceci, je m’apercois qu'h la page 253 da VI
voleme de ce rvecpeil , M, Bérard est parvenu, par la méme voie que moi,
a I'dquation de relation entre les six angles que forment deux a deux qualre
droites dans Lespace; mais , cet estimable géométre n’a pas songeé & déduire de
gces formules la diagonale du parallélipipede , ce qui n'était pourtunt pas lo
point le plus difficile.
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n

ANALISE ALGEBRIQUE.

De la détermination du nombre des racines imaginaires
des équations numeriques (*) ;

Par un ABONNE.

(o Vo Via Vig Vi, Vio Vo Vi Mo )

NOUS nous proposons d’offrir ici, pour la détermination du nombre
des racines imaginaires des équations, une méthode a laquelle on
pourra peut-étre reprocher sa prolixité , dans les degrés un peu
élevés ; mais qui néanmoins, dans I'espéce d’'indigence ol nous nous
trouvons & cet égard, nous parait ne devoir pas étre tout-a-fait
dédaignée , et qui peut dailleurs recevoir divers perfectionnemens.
dés qu’elle sera bien connue. _

Pour rendre nos développemens plus facilement intelligibles, nous
procéderons d’abord successivement des degrés les moins élevés a
ceux qui le sont davantage. Nous présenterons ensuite Pexposé

général de la méthode.

(® Ce quon va lire présente des points nombreux de ressemblance avec le
contenu du VL® chapitre d’un ouvrage que M. BERARD vient de meltre au
jour , sur la Résolution des équations numérigues ; mais, Touvrage de M. Bérard
n’étanl point encore en circulation, lorsque ce mémoire nous est parvenu, il
est impossible que son auleur en ait eu connaissance, On trouve d’ailleurs des
premiers germes de la théorie qui va dtre exposée , dans un mémoire du méme.
auteur, inséré & la page 22 du VIIL® volume de ce recueil.

' J. D. G.
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1. Soit d'abord l'équation du premier degré
axt-b=o ; (X=0)

on sait que a étant positif , sa rarine unique , toujours réelle, est
positive , négative ou nulle, suivant que —b est lui-méme posizif,
négatif ou nul.

2. Soit I'équation du second degré
ax*+bx+c=o , (X=0)

dans laquelle nous pouvons toujours supposer, et nous supposons
en effet @ positif.
Considérons la parabole ayant pour éguation

ax*~t-bat-c=y ; (X=y)

il est clair que la recherche des racines de la proposée se réduit
3 la recherche des abscisses des intersections de cette parabole avec
Taxe des x; ces racinés seront donc rdelles et inégales , égales ou
imaginaires , suivant que les intersections de la courbe avec l'axe
des # seront au nombre de deux , se confondront en une seule
ou n’existeront pas.

Et comme les branches extrémes de la parabole se prolongent
du c6té des y positives, on peut dire que la proposée aura ses deux
racines réelles et inégales , égales ou imaginaires , suivant gne le
sommet de la courbe aura son ordonnée ndgative, nulle ou positive.
Tout se réduit donc & obtenir I'ordonnée de ce sommet.

‘1 . d ST
Au sommet de la parabole on’ doit avoir %:o; c’est-a-dire,
X
2ax4b=o0 ; (X’=o0)

c’est donc 1a I’équation qui donne I'abscisse du sommet de la courbe;

Tom. 1X. 9
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on aura donc ’équation qui donne son ordonnée, en éliminant x
entre celle-ci et I'équation X=y; ce qui donnera

day+(F—4ad)=o () ; (Y=0)

d’ol 'on conclura (1) que I'égnation X=o0 a ses deux racines réelles

et indgales , égales ou imaginaires , suivant que b*—4ac est posit'if,
nul ou négatif.

3. Soit Péquation du troisidme degré
azx*4-ba*tcat-d=o , (X=o0)

dans laquelle nous supposons tonjours @ positif.

Considérons la courbe parabolique ayant pour équation
e’ t+bxcat+d=y ; (X=y)

il est claic que la recherche des racines de la proposée se réduit
a la recherche des abscisses des intersections de cette courbe avec
Paxe des x; ces racines scront donc toutes trois réelles ou inégales,
ou bien deux d’entre elles seront égales , ou eufin il y en aura
deux d’imaginaires , suivant que la courbe aura avec l'axe des x
trois intersections distinctes , ou que deux de ces intersections se
confondront en une seule, ou enfin que la courbe ne coupera l'axe

des z qu’en un seul point. 1l pourrait aussi arriver que les trois

™ I est claic que tont se véduit & éliminer x entre X=—o et X'=o, sauf
4 changer ensuite, dans le résultat, ¢ en c=y ; or, si lon prend la diffé-
rence des produits de X par 2 et de X’ par x, il vient dw--2c==0 ; donc,

tout se réduit & éliminer d'aliord x entre les deux équations 2ax-fb==o0 et

bx-toc==o0, ce qui doune bi=—jac=o0 , et 4 changer ensuite ¢ en ¢—y. On

obtient ainsi b~=ja(c—y)==0, qui est en efict I'équation du texte,
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intersections se conlondissent en une seule , auquel cas la proposce
aurait ses trois racines dgales.

Or, sauf les cas d’exception , sur lesquels nous reviendrons tout-
a-I'heure , la courbe aura généralement deux sommets ; et, en sup-
posant, pour fixer Jes idees, que l'angle des coordonmnées positives
soit pris au dessus de l'axe des #, suppos¢ horizontal , et a droite
de l’axc des y, supposé vertical , voici quel sera son cours : de
ses deux branches extrémes et infinies, celle de gauche se prolon-
gera en bas et & gauche , tandis que celle de droite se prolon-
gera en haut et a droite; et, quant & ses sommets , le plus a
gauche aura sa convexité tournde vers le haut , tandis que le plus
4 droite aura la sienne tournée vers le bas.

Or, de la il est aisé de conclure, 1.° que la proposée ne pourra.
avoir ses trois racines réelles qu'autaut que l'axe des x se trouvera
compris entre les tangentes aux deux sommets; 2.° qu’el}g aura
deux racines égales, lorsque l'axe des x se confondra avec l'une
ou l'autre de ces tangentes; 3.° qu'enfin elle aura deux racines ima-
ginaires , si l'axe des & est au-dessus]ou au-dessous de ces deux
tangentes.

Cela revient évidemment 4 dire, 1.° que la proposée ne pourra
avoir ses trois racines réelles et inégales qu’autant que les ordonnées
des deux sommets seront de signes contraires ; 2.° que deux de
ses racines seront égales, si 'une queleconque de ces ordonnées est
nulle ; 3.° qu'enfin elle aura dcux racines imaginaires, sices deux
ordonnées ont un méme signe quelconque,

Tout se réduit donc, comme l'on voit, & déterminer les ordonnées
des deux sommets , ou seulement & pouvoir en assigner les signes ;

. . dy .
or, aux sommets de la courbe, on doit avoir Fj_:o; c’est-a-dire,
x

3az*4-2lz—4-c=o0 ; (X’=0)

c'est donc 1d I’équation qui doit donner les abscisses des sommets ;
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on aura donc I’equation qui donne leurs ordonnées , en ¢liminant
z entre celle-ci et I'équation X=y; ce qui donnera (*)

(") Pour exécuter facilement cette élimination , et obtenir I'dquation finale telle
qu on la voit dans le texte , on remarquera , en premler lieu , que tout se
réduit 4 éliminer x entre les deux équations X==o, X'==o , pourvu que , dans
le résultat , on chang ge d en d-—y

Or, si de l’equatlon X=o, mullipliée par 3, on retranche I'équation X'==0,
multipliée par « , il viendra

ba22cx4-3d=0 ;
tout se réduit donc & climiner x entre cette derniére équation et I'équation

3gx2t-2ba4-c=o0 ,

.

et & changer ensuite d en d—y dans le résultat.
Le résultat de cette élimination étant

(be—gad)2==4(b2==3ac) (c2==3bd)=0 , (D=0)
il s’ensuit que l'équation finale en y doit étre
{oc—9ga(d—y) } 2—4 (b2 —3ac) { c2=3b(d=y) }=0 ; (Y=0)

équation qu’il s’agirait de développer et d’ordonner.
Mais il est clair quon aura les coefliciens de ses différens termes, da dernier
. dY |, d:Y
au premier, en posant y==o dans Y, il d__f; ;or,ona
ay /‘ ,
T = 18a{be—qald—y) } — 12b(*b—3ac)

X —
;— =814,
dy2
ce qui, en faisant y==o , donne les trois coefficiens du texte.

Cela revient, au surplus, & dire que DI'équation finale en y est

,d:D
2

S +5 a2 3 r+D=o .
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81a*y*+-6{3a be—gad)—2b b*—3ac)}y
F{(be—gad,*— 4> ~—3ac)(c*—35d,} =0, (¥Y'=0)

La proposée aura donc ses trois racines réelles et inégales, deux
racines ¢gales , ou enfin deux racines imaginaires, suivant que
cette dernicre aura ou ses deux racines de signes contraires ou I'une
d’clles nulle ou toutes les deux de mémes signes; c’est-a-dire ,

suivant que son dernier terme

(be—9ad)*—4(b*—3ac)(c*—3bd) ; (D)
. \
produit de ces deux racines , sera négatif , nul ou positif.
Passons présentement aux cas particuliers. Nous avons supposé
que la courbe parabolique X=y avait deux sommets réels et dis-
tincts , ce qui suppose que 'équation X’=o0 a ses deux racines réelles
et inégales ou, en d’autres termes, gu'on a (2)

b*—3ac>o ;

mais , ces deux sommets pourraicnt fort bien se confondre en un
seul ; ou bicn ils pourraient étre tous deux imaginaires, et c’est
ce qui arriverait si cette’ méme fonction &*—4ac était nulle ou
négative.

Dsns le premier cas, la courbe n’aurait qu'une seule tangente
paralltle & Vaxe des x; dans le second, elle n’en aurait aucun ;
dans P'un et l'autre elle ne pourrait évidemment couper I'axe des
x en plus d’'un point , et conséquemment I'équation proposée devrait
avoir deux racines imaginaires.

Or , lorsque &*—3ac est nul, la fopction (D) qui se rédu’t alors
Y (bc—gad)® est essenticllement positive ; il n’y a donc rien de
changé alors au principe que pous avons établi ci-dessus,

Passons au second cas , c’est-a-dire, & celui ou I’équation X/'=o
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a ses deux racines imaginaires , ou, ce qui revient au méme, 2
celui ou 4*—3ac est négatif ; si nous résolvons la fonction (D)

égalée A =zéro , comme équation du second degré en d , nous
trouverons

d= —b(2b2~qgac) = z\](b2—3ac)3 ;

27a?

racines essenticllement imaginaires , lorsque 2*—3ac est négalif;
donc , dans cette hypothése, quelque valeur que I'on donne a &
dans la fonction (D)) , on obtiendra toujours des résultats de mémes
signes ; ils seront donc constamment positifs , puisqu’ils sont tels
lorsqu’on fait, en particulier, d==0. Ainsi, dans ce cas encore , nous
n’avons rien & changer & nos conclusions. )

Il est un dernier cas qui a échappé & notre analise : c’est celul
ou les deux sommets se confondant en un seul, c’est a-dire , celui
ot la courbe n’ayant qu'une seule tangente paralléle & I'axe des =,
cette tangente est 'axe des z lui-méme. Il est évident qu'alors la
proposée doit avoir ses trois racines égales; il faut donc que son
premier membre soit un cube parfait, ou du moins soit susceptible
de le devenir au moyen d’'un maultiplicateur convenable ; soit A ce
multiplicateur, la proposée devra équivaloir &

(2y/2a+ y/3d) =0 ;

c’est-a-dire ,

A {ax3+3x“;/ﬁ 432y eatd)=o0 ;

on devra donc avoir
d'od

“et, “par suite,
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be=gad ;

on aura donc, & la fois,

b*—3ac=o0 , bc—qad=o, c*—3bd=o0,

la fonction (D) sera donc nulle , comme dans le cas de deux
racines égales sculement ; mais , de plus, I'équation Y=o qui,
dans ce cas, nec perdait,que son dcrnier terme, perdra aussi celui
qui le précede.

Ainsi , en résumé, et quels que puissent étre d'ailleurs les cas
particuliers qui auront lieu, 1.° si I’équation ¥'=o0 a une variation
et une permanence, l'équation X=o0 aura ses trois racines réelles
et indgales; 2.° si cette équation n’a que des permanences, la pro-
posée aura deux racines imaginaires 3 3.° si cette équation est dépour-
vuc de son dernicr terme, la proposée aura deux racines égales; 4.°
enfin, la pfopose’e aura ses trois racines égales, si I'équation Y=o
est privée a la fois de ses deux derniers termes.

Il n’aura pas sans doute échappé au lecteur que la fonction (D)
se compose de la méme manitre des coefficiens qui, dans la pro-
posée , se trouvent étre également éloignés des extrémes. On congoit
que cela ne saurait étre autrement , puisqu'en changeant dans Ia

, 1 . _—
proposce x en = cctle équation ne fait sxmplement que se renverser;

et que les racines de la nouvelle équation doivent étre réelles ou
imaginaires , égales ou indgales, suivant que celles de la proposée
le sont elles- mémes. C’est principalement pour laisser apercevoir
ccite circonstance que nous avons donné un coeflicient au premier
terme de la proposée ; nous en avons d'ailleurs recueilli I'avantage
de n’avoir a considérer que des fonctions homogénes,

4. Soit Yéquation du gquatriéme degré
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aatt-ba’+cz*+dz+e=o . (X==0)

Soicnt posées les deux équations
ait4-ba’tcx*A-date=y , & =y
4aa’4-3ba*+2cx4-d=o0 ; (X'=0)

dont 1a dernitre n’est autre chose que la dérivée de la proposée.
En éliminant 2 entre elles, et posant, pour abréger,

be—6ad=A , 3L*—~8ac=DB , bd—16ae=C ,

cd—G6be=E , 3d*—8ce=D , 4c’—qgbd=F ,

pn obtiendra
4096a%y’—16{ 484*C—8al2c¢B4-30.4)4-9b*B }'y‘
48§60 C*~(20B+3bA) C—4a(BD+2AE)+2(2cA*+ 34 BE)~cBF ) y

—{C*—2(BD+24E)C+4(A*D+E*B—BDF} =o. (*) (¥=0)

(*) Pour parvenir simplement & cette équation , éliminez d’abord x entre
les deux équations ‘ A

bax34-3bxr42cx4-d=o
bx34-2cx24-3d4-4e—0 ;
en représentant par E=f(e)==0 I’équation resultante I'équation cherchée sera

. GE
6d€3 J+;d‘ay+—y+E_

Cette
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Cette équation est encore , comme ci-dessus , celle qui donne
les ordonnées des sommets de la courbe parabolique , lesquels sont
ici, en général,, au nombre de trois : I'intermédiaire a sa convexité
tournée vers le haut : les deux extrémes ont la leur tournée vers
le bas; et les dcux branches infinies de la courbe se prolongert
en haut, celle de droite vers la droite , et celle de gauche vers
la gauche.

En supposant donc ces trois sommets réels et distincts , on voit,
1.° que la proposée ne pourra avoir ses quatre racines réelles qu’au-
tant que 'axe des x se trouvera compris entre la tangente au
sommet intermédiaire et celle au sommet extréme dont la tangente
est la plus voisine de celle-la ; 2.° que la proposée aura deux
racines réelles inégales et deux autres égales , si I'axe des & est
tangent soit au sommet intermédiaire soit a celui des deux extrémes
qui est le plus élevé ; 3.° qu'elle aura deux couples de racines
égales , si l'axe des x est & la fois tangent aux deux sommeis
extrémes ; 4.° qu’elle aura deux racines réelles inégales et deux racines
imaginaires , si l'axe des & se trouve compris entre les tangentes
aux deux sommets extrémes; 5.° qu’elle aura deux racines égales
et deux racines imaginaires, si 'axe des x est langent au sommet
extréme le moins élevé ; 6.° qu’enfin ses quatre racines seront ima=
ginaires si 'axe des « tombe au-dessous de cette derniére fangente.

Tout cela revient évidemment a dire, 1.° que l'équation X=o
ne pourra avoir ses quatre racines réelles et inégales qu’autant que
I'équation ¥'=o0 aura une racine positive et deux racines négatives;
2.° que l'équation X=o aura deux racines réelles inégales et deux
racines imaginaires , si I'équation ¥'=o0 a deux racines positives et une
négative ou trois racines négatives ; 3.® que l’équation Xs=o aura
enfin ses quatre racines imaginaires , si les racines de I'équation
Y=o0 sont toutes trois positives ; 4.° qu’en particulier , I'équation
X=o0 aura ou deux racines égales ou deux couples de racines
égales , suivant que l'équation ¥'=o0 sera dépourvue de son dernicr

ou de ses deux derniers termes; et que, dans le premier cas,
Tom. 1X. o
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ses deux autres racines ne seront réelles qu'autant que les racines
restantes de I'équation Y=o ne seront pas toutes deux positives.
Le dernier terme d’'une équation du troisitme degré, pris avec
un signe contraire étant le produit de toutes ses racines, il s’en-
suit que, quand le dernier terme de I'équation Y=o sera positif,
I'équation X=o0 aura deux racines réelles et deux racines imaginaires,
et que, quand il sera négatif, les racines de I'équation X=o seront
outes quatre réelles ou toutes quatre imaginaires ; mais , par la reégle

de Descartes , 'équation ¥'=o0 sera, dans le premier cas, de l'une
des trois formes

o ey’ 4yy—e=o0 ,
«y’+-py*—yy—s=o0 ,
wy —py*—yy—3=0 ;

tandis que , dans le second , elle ne pourra étre que de la forme

’

wyd—py*4yy—p=o0 ;

ainsi ces deux cas seront toujours faciles & discerner I'un de l'autre.
Si nous* en venions présentement a discuter les cas particuliers
dans lesquels deux de nos trois sommets deviennent imaginaires,
ou dans.lesquels ces trois sommets se réduisent a4 deux ou & un
seul , circonstances qui sont indiquées par les équations ¥Y'=o0 ou
/=0, qui ont alors deux racines imaginaires, ou bien deux ou
trois racines égales , nous nous convaincrions que ces cas particuliers
ne nécessitent aucun changement dans nos conclusions géncrales
relatives au nombre des racines tant réelles qu’imaginaires de la
proposée. Il pourrait seulement se faire alors que cectte équation
elit trois ou méme quatre racines égales, ce qu'on reconnaitrait au
nombre des termes de la droite de I'équation ¥'==0 qui s’évanouiraient.

5. Soit, en génédral , I'équation quelconque.
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az-bamt dpg™t e . FprHg=0 ; (X=0)
et soit
ay™ tdegy ™ 2ty y ™ e e wy =0 , (¥Y=0)

l'équat'ion qu’on obtient en éliminant z entre la dérivée
max™ ' ={m—1)ba™" 2 4~(m—2)ca™" }4=.....~}p=o0, (X’=0)
de la proposée et I'équation

ax™-ba™ ™ A o Fprd-g=y. (*) (X=y)

Cela posé, soient ¥ et P respectivement le nombre des variations
et le nombre des permanences de 1’équation Y=o, ce qui donnera
V4+P=m—1x. Si la proposée X=0 est de degré impair, le nombre
de ses racines imaginaires sera

i(V?P) ;

et si, au contraire, elle est d'un degré pair, le nombre de ses
racines imaginaires sera

(*) 11 est patent , par tout ce qui précede, que P’équation Y=o ne doit pas
excéder le (m=—1)me degré : cela résulte aussi de la théorie de D’¢limination,
Bezout a démontré, en effet, que si l'on a deux équations en x et y dans
lesquelles les Jplus hautes puissances de x soient respectivement p-4-p’ ,
¢4’ et celles de y seulement p, ¢, l'équation finale en y n’excéderait pas le
degré (p4p")(g44¢)—p'y’. Or, nous avons ici p4p'=m , g4g¢'=m=—1 y.P=! .
g=o d'ou p'=m=1 , g'=m—1; donc le degré de I'équation en y doit étre
au plus

M (M )M )2 =M1
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=P+, ()

Nous avons construit des formules générales pour les quatre pre-
miers degrés, et on pourrait également en construire pour les autres ;

mais il sera peut-étre plus court d’opérer immédiatement, dans la
pratique , sur les équations numériques.

QUESTIONS PROPOSEES.

Problémes de Géométrie.

I PAPLTAGER Vaire d’un triangle sphérique en trois parties équivalentes,

par - des arcs de grands- cercles joignant  un point de son intérieur
4 sés trois sommets-?

II. Partager I'aire d’'un triangle sphérique en. trois parties équi-

valentes , par des arcs de grands cercles abaissés sur ses cotés d'un
point de son intérieur ?

(*) Clest & cela que revient, au fond, le théoreme de M. Bérard dont
nous avons demandé la démonstration 4 la page 36 de ce volume

: théoréme
.que ce géométre admet come un fait analitique.

J. D. G,
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GEOMETRIE TRANSCENDANTE.

Memoire sur les développantes successives d'une méme
courbe quelconque ;

Par un ANCIEN ELEVE DE L’ECOLE POLYTECHNIQUE.

[a e S Via Tia Vi Via Ve Vi Vo ¥

NOUS nous proposons ici de ddémontrer quelques théordémes reletifs
aux développantes successives des courbes quelconques, continues
ou discontinues. Quelques-uns des objets qui vont nous occuper ont
déja été traité par L'Hopital , Bernouilli, Euler , et récemment par
M. Poinsot. Mais, comme il peut n’étre pas sans intérét de montrer
comment on parvient au méme but par des routes diverses
nous reprendrons de nouveau les questions traitées par ces illustres
géometres, pcur en former un tout avec ce qui nous apparticnt en
propre dans ce mémoire. Le lecteur y trouvera d'ailleurs P'avantage
de n’avcir pas besoin de recourir & d'autres écrits pour entendre

complétement celui-ci.

THEORLHE 1. 8 lon forme lo développante d'un arc de
courbe quelconque , puisla développante de celte développante, puis
la développante de cette derniére courde , et ainsi de suite ; en
Jaisant commencer ces développantes consécutives & une méme ex-
trémité de la courbe primitive 5 on obtiendra ainsi une suite d’arcs
de courbes partant d'un méme point , alternativement normales et
tangentes en ce point & la courbe primitive , et ayant conséquemment
pour tangenies ¢l normales communes en ce méme point deux droiles
Indéfinies perpendiculaires Pune & Fautre.

Tom, 1X, n.° 111, 1.°* septembre 1818, 1z
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Or, 1.° en prenant avec des signes contraires les arcs qui vont

dans des directions opposées , la somme infinie des arcs tangens
a8 larc primitif est égale & la projection de Parc donné sur se
tangenie ¢ Pextrémité opposée & celle de laquelle partent toutes
les dév-loppantes. .
. 2.° En prenant également avec des signes contraires les arcs
qui vont dans des directions opposées , la somme infinie des déve~
loppantes normales & la courbe primitive sera égale & la projection
de Larc donné sur sa normale & ['extrémité opposée & celle de
laguelle parient toutes les développanies. .

Soit AB, ( fig. 1 ) un arc de courbe quelconque, dont AX et
AY soient la tangente et la normale a lextrémité A, et dont BB,
et B.I soient la fangente et la normale a l'autre extrémité B,. Soient
de plus B A/, ByA” les projections de l'arc sur ces deux dernieres
droites. )

Soient AB,, AB,, AB,, AB,,.... une séric d'arcs, tels que
chacun soit la développante de celui qui le précede immédiatement.
Il s’agit de démontrer, 1.° que

AB,—AB,+4-AB, —ABst e =B, A/

2.° que -

AB,—AB,--AB,—AB, ... =B A% .

On doit remarquer que le théoréme ne suppose pas nécessairement
que larc primitif AB, soit soumis a une loi dnalitique ; de maniére
qu'on peut méme lui substituer une portion de polygone quelconque,
rectiligne , curviligne ou mixtiligne.

M. Poinsot a déja remarqué la vérité du théortme, dans le cas
ou l'arc primitif est un arc de cercle; il s'agit de faire voir quil
a lieu également, lorsque I'arc primitif est une ligne quelconque.

Démonstration. Soit pris sur I'arc primitif AB, , & partir de son
extrémité A, une partic variable AM,=S8, ; soit M,M, la tangente
correspondante , terminée en M, a la développante AB, de AB, ;
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soit fait AM, =8, ; soit M,M, la tangente 4 AB, en M, , termiuvée
en M, 4 sa dével-ppante AB,; soit fait AM,=S, , ¢t ainsi de
suite. Soit enfin ¢ Iangle variable que fait la tangente M M, en
M,, avec la tangente AX en A. Soient de plus pris AX , AY
pour les axes des ccordonndes.

Cela posé, les choses étant d’ailleurs ( fig. 2) comme nous les
avons suprosées (£g. 1 ); concevons que l'arc AM,=S§, augmente
de la q antit¢ R M =dS, ; larc AM,=S, augmentera de la
quantité M, 3/, =dJ&, ; et on aura angle M, M/, M/, =de. De plus,
Vare: M, M/, pouvant étre considéré comme une ligne droite , le
triangle M,M/,M,,, rectangle en M’,, donnera

MM/, =M/ M, Cos. M’ M/, =M/, M,Sin.M,M/ M/, ;
c’est-a-dire ,

dS,=(8,+dS,)Sin.do ;

ou simplement

dSl‘—:Sod(P H
d’ol

S,:=/8.de ;

Iintégrale devant s'évanouir en méme temps que ¢.
Draprés cela, il est clair qu'on devra avoir

S,.=/8.de ,
S,=/25,d¢* ;

S,=/38,d¢* ,

R A ]

S,=/"S.do" .

Si lon developpe ces intégrales au moyen de I'intégration par parties ;
en se rappelant qu’elles doivent s’évanouir en méme temps que ¢, on aura
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Sy=0S,—/fedS° ,

S.= ;:j.s —Z - fodSet f—— ds,

¢3
§;=3 S /dS+ sz dS js‘dso,

¢r Ql-—l ) ¢ ¢Il—l — ¢n
S,,— _,—SO“"'( —x)‘.f¢d50+.”.”i-l—'-f(::r)—i dSo_,I_/';-!dSo-

La série infinie des arcs de rangs pairs , pris avec leurs signes , est

So—S8. 4S5, —Sst e

Si Ton y substitue pour §,, §,, §,, .. les valeurs ci-dessus , il

viendra, en réunissant ce qui multiplie chaque intégrale,

§o—8, 48, — 8ot e
(I—-"{-*-%?;?-‘” (St G5 G5 )

+(3—-5§ - ></—d5 ~/ £ 454/ 45 .. );

1

c’est-a-dire ,

+(f—dS f d50+f" ds,— ....)sm:p ;
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ou, en faisant tout passer sous le méme signe d’intégration, ce
qui est permis , puisque les limites sont les mémes,

So—S,4+S,—~Ss+-...=Cos ¢/d5,Cos.e+8in.¢/dS,Sin.o .

Or, fd5,Cos.0 et fdS,Sin.¢ sont les projections de la courhe pri-
mitive sur les tangente et normale au point A ; enreprésentant donc
respectivement ces projections par z et y, on aura

So—8,+5,—Si+....=2Cos.o~+ySin.0 ,
et on trouverait pareillement

$—8,+S5,—S,+....=2Sin.p—ySin.e .

Or, ce sont précisément 1 les formules au moyen desquelles on
passe d’un systéme rectangulaire & un autre systtme rectangulaire
formant un angle ¢ avec le premier , d’ot il suit que ces deux
séries ne sont autre chose que les projections de 'arc AM, sur
la tangente et sur la normale & son autre extrémité M,, ainsi que
I'énonce le théoréme.

Les développemens de §,, §,, §,,..., dolt nous avons conclu
ce théoréme, ne supposent aucunement que la relation entre les deux
variables §, et ¢, puisse étre exprimée par une fonction analitique,
unique et continue; ils ne sont fondés , en effet , que sur le principe
d’intégration par partics , lequel a tonjours lieu quel que puisse étre
le genre de dépendance entre S, et ¢. 1l faut seulement observer
que , dans les séries

SD—SZ+S4_SS+ esrene
§—8,4+85,—S, 4.,

les ares 8, 8., §,,... doivent se mesurer en prenant négative—
ment les portions de développantes qui répondraient 3 des décroisse=
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mers de l'angle ¢, cest-a-dire, & des mouvemens de la tangente.
inverses de son mouvement primitif,

Avant de passer a d’autres propositions qu'on peut conclure du
précédent théoréme, nous ferons remarquer que les arcs de dévelop—
pantes consécutifs , correspondant & un angle donné ¢ , doivent
nécessairement ddcroitre sans ccsse , de manicre 3 devenir enfin
moindres que toute longueur donnée; du moius tant que lare pri-
milif n’est pas infini; car, puisque chacune des séries

So—8: 4S5, =S+ =8c=—/28do* -/ 4S8 (dobm—ue
8§18 48 ;=S = /S dr— )38 do? 4/ 380 d g5 —ne 3

se décompose en d’autres dont la sommation ne dépend que de
celles de Sin.p, de Cos.p et des intégrales fdS,.Cos.e, Jd§,.Sin.e,
lesquelles s'obtiennent toujours, quel que soit ¢, lorsque S, n’est
pas infini 3 il s'ensuit que ces séries en S, , S;, §, ,.er.0.. sOnt
toujours convergentes , et qu’ainsi les arcs dont on vient de parler
finissent par s’approcher indéfiniment de zéro.

On parviendrait a la méme conclusion, en formant la somme

SoFSitS 4S8 48 F = e?fe=?dS,

cette intégrale devant, en effet , étre finie , tant que §, le sera
lui-méme , on est certain que la série dont elle exprime la valeur
est convergente , et qu’ainsi les longucurs des développemens successifs,
faits dans le méme sens, finissent par décroitre indéfiniment.

THEOREME 11. S: l'on forme la développante d’un arc de courbe

quelconque , puis la développante de cette développante , puis la
développante de celte derniére courbe , et ainsi de suite, en alternant
constamment la direction du mouvement de la tangente; ¢’est-d=
dire, en faisant commencer chaque développante au point o finit
celle qui la précéde immédiatement ; ces dépeloppantes se trouperont
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toutes comprises entre la tangente & lune des extrémitis de I'arc
primitif et la normale & son autre eatrémité, Cela posé,

1.° 87 les deux droites indéfinies qui comprennent toutes ces
courbes sont convergentes, auguel cas les deéveloppantcs ‘auront des
longucurs sans cesse décroissantes ; ces développantes tendront aussi
sans cesse & devenir des épicycloides intérieurs ;

2.° 8¢ ces droites sont paralléles , les développantes tendront
sans cesse @ devenir des cycloides ;

3.° Enfin, si ces mémes droites sont divergentes, les dévelop-
pantes tendront sans cesse & devenir des épicycloides extérieures.

Soient A,A,, AA,, A,A,,..... une suite indélinie d’arcs de
courbes (fig. 3), dont le premier est quelconque et dont chacun
est la développante de celui quile précede immédiatement ; de telle
sorte que le premier développement se fasse de A, vers A, , le
second de A, vers A, , le troisitme de A; vers A, , et ainsi de
suite. Les points A, , A, , A, ,.... se trouveront tous sur la normale
a la courbe primitive au point A, , laquelle est rencontrée en I
par la normale 4 son autre extrémité A, ; et les points A,, A, ,
A, ... seront tous situés sur la tangente menée & la courbe pri-
mitive , par cette derniére extrémité, laquelle se trouve coupde en
G par la tangente & son autre extrémité A,.

Soit fait 'angle A TA,=#;les deux droites A,A A, ..., AGALA,
seront convergentes, paralleles ou divergentes, suivant que l'angle
@ sera aigu, droit ou obtus. Il s’agit donc de démontrer que les
développantes consécutives tendront a devenir des épicycloides in-
téricurs dans le premier cas , des cycloides dans le second et des
épicycloides extérieures dans le troisi¢me.

Ici encore , comme dans le précédent théoréme , I'arc primiuf
peut n'étre point assujetti 4 la loi de continuité ; ce peut étre méme
une portion de polygone quelconque , rectiligne , curviligne ou
mixtiligne,

Soient A,M,=S,, AM,=S,; A,M,=S,, A,M,=§8,,.....,

. , . . ,
une suite d'arcs variables consécutifs et correspondans , dévelop-
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pans les uns des autres; et soit ¢ l'angle que fait la tangente
MM, au point M, avec la tangente A,G au point A,.
 Soient enfin =gy, =iy =, ;.. les longueurs totales des dévelop-
pantes A A, AN, , AA, ...

Nous aurons d'abord , comme dans le précédent théoréme,

S,=/8,de ,
Pintégrale s’évanouissant avec ¢. On aurait de méme
S,=/M.A,.de ;
mais M,A,=A,A,—AM,==5,; donc
S, =/(2,—=8,)d¢=2,0—/S do .

Ces valeurs de S, , S, indiquent , en géndral , comment on peut
passer d’une développante i la suivante; et Fon voit qu'on peut poser
cette suite d’équations

S, =/S.,d¢ , §,=0¢=,—/5.d¢ ,

S,=/8,d¢ , S,=9=,—/§,de ,

S§=f54d¢ ) S6=¢2$_f55d¢ F)

Si I'on fait les substitutions, on trouvera
S!=/Sod¢ ’ SZ =¢21~fzsnd¢z ’

2 3
§,=2 28040 ; §,=0%,— T2 4 /v5 det
: 0 L ¢’ $ .
Ss='2'!'2;"' Z{ 2 +/38,d9, SB=¢25~'§2;"‘"_5}: 2—/8,def ;

g!bnonnnnun-u-q- @« o @ * & * o+ & o g & @ ® ® s e @ o o o
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La loi de ses développemens se trouve st ifisamument établie , fpar les
équations méme qui ont servi i les obtenir : on passe d'un arc
de numéro pair au suivant, en intégrant a partir de ¢=o0 ; ctd:
ce dernier a l'arc de numéro pair qui vient aprés , en retranchant
une integrale scmblable du terme correspondant de la suite 9=,
=, 0=, , ..

Commme les développantes de numéros impairs =, , Z, =2,
entrent seules avec lesintégrales successives /' §od¢, 28,de:, f48,d¢+,....
dans les expressions de tons ces arcs , nous allons examiner seu-
lement comment varient ces développantes. Comme « n’est autre
chose que la valeur de ¢ quirépond & larc AA,=Z; il s’ensuit
qu’on doit avoir

2, =/8.d¢,

2= %j' Z—/f385,d¢ ,

*? wt
== T, — T E A0

® © o s o o ® o o s 8 o s & . o v 6 8 @ o @

@? wh
—_—

22"_*-‘ - ;Tzzn-—-:'— 4

@b an
zz"“‘ 3 +6—!21n... ,""«ni(—;;)—i z+/1*lsod¢zu+x

Pour avoir le développement du terme général =,,4, , aprés quon
en a éliminé tous ceux =,, ., 2, ,.. = qui le préctdent,
soient multiplides ces ¢quations, excepté la derniére , par des coefli-
Ciens @5,y @ane—yz s @opeg rwoly, 0, , €t formons-en la somme,
en égalant A zéro les quantités qui multiplient Z,,_; 5 20y,
=, —s s 33, =, ; DOUS aurons ainsi

Ez.n+ l:azn/SOd¢‘azn-2/350d¢3+azu-4/550d¢5_"‘ij’"+lS°d¢m+l

. y 7 .y
les coefficiens @, , @4, @y.00... a,, Cétant déterminés par les
équations

Tom. 1X, 12
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&3
=77
&2 P13
g, =—a,— = ,
47 07 o
@2 ) P
a¢= ';,.'174-*7;! P i
. . . . . . . . L] [ ] LN 3 . . . . . . L ] ’
@ [t @b ) a2l=2 __ 2R
Oy == Gppes——Conest——Cyn_ g —ere. T a .
2n o1 Zan-z2 A 2n-4 g1 “an-6""" — an-2)! 2~ m!

Comme tous ces cocfliciens contiendront des termes homogénes en #;

nous ferons ,,=4,,%*";lesnouveaux coefliciens 4, , 4, , As o A 20,
se trouveront ainsi donnés par les équations

I
Az::_"'a

2.

A2 t
o 4—;—1 ’

Ai A2 z
A= —7+tg

e & o o 8 o o & & e e s o & o 0+ g

Azn=2 Azn=4 Azn=-6 A,

A1"= — ) + —ete

1
+ T —
2! 4! 6! — (2n—2)! -+ en)!

L’inspection de I'équation qui donne le coefficient 4,,", en fonction
des précédens suffit pour faire voir que lesnombres 4, , 4, , 4s, w4y,

sont les coefficiens du développement de ; car , en posant

Cos.x
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@]
w

1=(1—-—-—+—‘—“'—‘+ )( 14 A, 04 Azt Aea ...

le terme général du produit, égalé 4 zéro, donnera pour A,, |
valeur précédente.

- ’ I
Les cocfliciens du développement de S peuvent s’obtenir d’une
0s.x

maniére qui en fait connaitre la loi; il suffit de multiplier Cos.z
par le produit indefivi

-GG e

g ddsignant le quart du cercle , ou Z=. Ce produit étant convergent
pour #<g, on peut poser, dans cette limite de z ,

w b A ot b d 2k dat oA 5

mais, & cause de la convergence da produit qui donne le cosinus,
on peut appliquer, & la fraction précédente, la décomposition en
fractions simples , et poser , en vertu de ce que Coszx est une
fonction paire ,

-

T R

m représentant un nombre impair quelconque.- On déterminera Bn

et

(%)
par la valeur que prendra c 797 pour a=mgq. En différentiant
05.%

les deux termes on a -
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faisant x=mq , on a, suivant que m-—1 est divisible par deux
seulement ou par quatre ,

) B,=—"+ —

ainsi

= H O Ry i

On obtiendra donc le terme général de c !
(W)

en dév t toutes
) éveloppan

ces fractions en progression, et en réunissant les coefficicns de 2?# dans
les progressions. 1l viendra ainsi

2 I I I I I I
A __‘ — ¥ mm— _""§ .
g lg* 3 (39)‘"+ 56 7 (g9 '

) 1 . e
ou bien, en mettant — en facteur commun , ct muliipliant de
p :

part et d’autre par @

1 4
Ap=a,, = —< ) 32n+x +5zn+x _‘7.zu+x +""§; (*)

(*) On peut déduire assez simplement de ceci la sommation de la série

I

I 1
I— onya T an41 T L 2n-4-1% l rerer 3
3 5
/

car on a

2 b 1 1
Azn =q7-ll‘rl il—' Jant + Banrv T 7::n~x +-§ H

or, on peut oblenir A3, , soit par les €quations successives
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et telle est 'expression generaie des cocfficiens ¢, , 8, 4 @6, 0 @4, qui,
comme on I'a vu, donnent lavaleur de la developpante 2, ; suvoir

B =0, fSede-a 4, 2Sd07ta,, _, 38, ded—t /2T S der Y

Pour appliquer cette formule & la démonstration du théoréme
éuoncé , nous prendrons d’abord le cas le plus simple, c'est-d-dire,
celui od langle #=g; il est visible qu’alors @, tendra vers la

. 2 @ 7
limite constante —q—, puisqu’alors (;—) sera l'unité, et que la scrie
numérigne qui entre dans expression de @,, converge trés-prompte-
ment vers Punité. Lt , comme les premiers coefliciens @, , o, ,
ag,... Wallectent queles intégrales /2"~ §,de2n— 1, [2r=3§ de?"—3 ..,
qui, comme on I'a démontré , décroissent indéfiniment ; il en résulte
que, pour 2 trés-grand, on aura sensiblement

2= { /S, do— f350d¢*+j550d¢‘-—......€ .

I
Az:—" ?
2
1 1
A4=-2—!'Az '-Z!‘,
Ag=— A
6= 5174 z+6, ’

d2n.Sée.x

Soit par —a Y faisani x==<o ; en sorte qu'on a
1 1 1 Y s 21 J27, (Secr—'o)
1 —_—.r.e—T7 dzn

1= R - qan - 7:,,«1—1 +9;u+x
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La série formde par ces intégrales a été trouvée ( Théor. 1) égale
3 la projection de la courbe primitive sur la derniére normale
AL Dans le cas ou «=g¢g , cette projection devient la distance

entre deux paralleles qui comprennent les développanties. En la
désignant par D, on a, a la limite,

2D
D= —

q ?
ainsi , les longueurs des développantes finissent par éire constantes’
L’équation de ces courbes limites est, d’apres cela, facilea obtenir,
puisque la relation entre les arcs et les angles ¢ est donnée , pour
les développantes de numéros pairs, par )

2

02”——[
2!

San =¢22n-—x'—'

.¢¢ _ .
EZII-—;+ Z‘!‘Eznhq‘_.“.—}h zl+f21150d¢lu .

— (2n-1)!
On a démontré que les intégrales /2"§,d¢>", dont toutes les origines
étaient =0 , décroissaient indéfiniment ; ce dernier teime disparaitra

donc 4 la limite. De plus ,les arcs Z20—5 | Z2n3 L, ne s’ccartant

. 2D ) . 1
sensiblement de — que lorsqu’ils portent sur la portion négligeable
g

de la série : on peut derire, pour z infini,
2D ro ¢ ¥ et 2D .
Szn':—;-(" —_——t = — ;‘——l—-....)»‘: 7 Sin.g .
4 4° .

Cette relation appartient 4 la cycloide dont la Jongueur totale est
r 4D . , .
-é- ou —, et dont le demi-grand axe est D. Il résulte d'ailleurs
q w
du mode de génération des développantes de numdéros impairs qu’elles
seront aussi des cycloides égales; c'est d’ailleurs ce que I'on trouverait
directement, par I'expression de §,,. ,.
Reprenons présentement le cas géncral, ol l'angle », formé par
les normales extrémes, est quelconque. Oun a vu qu'une dévelop-

pante de numéro impair quelconque était donnée par la formule
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IR YRNY X SO KT B KON teey Jh e
et qu'on avait généralement
Py & \2n 1 I 1
o= (5wt dm |

Pour n trés-grand, la série se réduit & I'unité, et lon a , a la limite

2 & 2n
02,,:—(—-) ’
9 g

on peut donc, en vertu de la convergence de la série
SSodo—/8,de*+/38,dp>—..... ,
poser , pour 7z infini

fiem () s (Yrsion (2 Yrsaven}

Ezll-“'l

On conclut de la ‘que le rapport

de deux développantes
22/1-{-!

2

q .

. o . o . Y .

successives d'ordre impair est, a la limite, égal & —— ;maiscomme
’ o 2

on a, pour un arc variable, correspondant a I'angle ¢,

¢2n-‘—!

Szn =¢22n-x""'3_! 2“"—§+"" t zl:fzusod¢zn )

(2n=1)!

2
o S ¢ @\, FY _ 280.%

@
. ' o - . ) — -
En faisant, dans cette équation, ¢ =«, on aural’arc total 2, , = 7 Zn—id

on peut donc écrire
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s,,,:z,,,.sin.("’i>.

Telle est donc I'dquation de la courbe vers laquelle tendent les
développantes d'ordre pair. On trouverait , scit en intégrant cetie
équation, soit en prenant directement la formule qui donne §,,4 1>

@ . (=a—0)q
Sm-i-l =21n+x {l'—'cos' ({>§o Ou'E zr1+|“Szn+}=zzxx+|-Sln'—T—

Cette équation, comparée avec la précédente, qui donne §,,; fait
voir que la courbe limite est telle que sa développante est une
courbe semblable , mais dans une position inverse. Le rapport de

grandeur des arcs correspondans, dans 'un & ¢ et dansl'autre & @—¢, est
Zan _ ¢ ’

2 1ngn »
On peut faire voir assez simplement , par des considérations géo-
métriques, que Pépicycloide est la courbe qui jouit de cette pro-

. . . . . ¢q
priété , et qui a pour équation S=ESm.< :—) .

Concevons , en effet , une épicycloide AB ( fig. 4) décrite parla
demi-révolution d’un cercle dont le rayon est r sur /2 ; et proposons-
nous de trouver le centre de courbure pour un point M de cette
courbe. On sait que la normale au point M passe par le point de
contact P des deux cercles ; il ne reste donc, pour connaitre le rayon

de courbure, qu'd chercher e point d'intersection de deux normales
consécutives.

Soient AOP=p et APM=u«. Si lc rayon OP .tourne de dg, la
normale MN tournera de dg-+-de; or, il est facile de voir que

R
BR=2ar , dou da= —dp;
2r

Fangle des deux normales consécutives sera donc
ds
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R
dp+—’:-d,e ou da. +2r.
2

ar

Le point P s'est déplacé , dans le sens du cercle fise AH, de

Bdﬁ 3 POUF a\'Oil‘ ce dép]acemcnt, mesuré perpendiculaircment 21 ]a

normale, on le multipliera par Sin.«, ou par ﬂ’; ce qui fera dg. R .MP.
ar ar

Or, a la limite , ce méme déplacement est égal 3 PN, multiplié

par l'angle des deux normales; on a donc

PN.dg E.+_2j—_-,d/3 I_l. .MP .
ar 2r
d’ou
MP __ B-ar
NPT T

Il est facile de conclure du rapport constant des deux lignes
MP, PN que, si on décrit , au-dessous du cercle générateur , un
autre cercle, dont le diamétre soit & celui du premier dans le rapport
o c’est-a-dire , dans le rapport des distances au centre O, le
point N de la développde se trouvera toujours sur ce cercle; et
comme I'arc QN sera toujours égal & QC, le point N décrira
une nouvelle épicycloide semblable, mais réduite, dans le rapport

R
R+-ar
propriété identific Iépicycloide avec la courbe limite de notre théo-
réme ; car, en ddsignant par § Iarc AN, et par ¢ Vangle décrit
par la normale ou la tangente, on aura

. On peut aisément se convaincre , d’aprés cela, que cetle

AN=8§=MN=Qq5Sin « ;

mais QS=CB, et CB est précisément la courbe totale ANC; en
lappelant donc %, on a
Tom. IX. 13
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S=Z=S8in.« ;

I'angle ¢, dont la tangente MN a tourné , est précisément e-ts ou
B--2r

%3 on a donc

R
=a. tar, dolt «=———0.

Si # est I'angle total formé par les tangentes extrémes ; comme «

. . ’
qui lui correspond = — =g, on aura
2

. R R
7= Rgar”’? Bar

on a donc, en substituant,

d’'ott l'en conclut, pour I'équation de l’épicyclo'x;de ,
S=s8in. £ ;

équation qui est précisément celle de la courbe vers laquelle tendent
les développantes successives. Et, comme les considérations précé-
dentes s'appliquent aux épycicloides intérieures , pourvu qu'on prenne

da et da de signes contraires; on voit facilement que leurs équations
seront de méme

S==z5in. 22 .
L J

Pangle o étant alors plus petit que g. Le théoréme se trouve done
ainsi complétement démontré,

Paris, le 13 de juillet 1818,



CADRANS SOLAIRES. ot

GNOMONIQUE.

Sur la méthode universelle , pour (racer toules sorles
de cadrans solaires a toutes latitudes

Par M. FraNc@®EUR , professeur d la faculté des sciences
de Paris.

LoV % %a Vo Vo Vo Vi, W V]

Au Rédacteur des Annales ;
MONSIEUR ,

LE but du petit mémoire de Gnomonique que j'ai eu I'honneur
de vous adresser il y a quelque temps, et que vous avez eu la
bonté d’insérer 2 la page 233 de votre VIIL® volume , était de
donner des moyens faciles de tracer, a toutes latitudes, des cadrans
horizontaux. Les échelles dont jai indiqué la construction résolvent
la question avec une telle facilité, que le dessinateur le moins ins-
truit peut former aisément un de ces cadrans. J'ai termind par exposer
un moyen de calcul, pour réduire au tracé d'un cadran horizontal
Zoutes sortes de cadrans plans. lies éclaircissemens qui m’ont étd
demandés , sur ce dernier probléme, m’ont convaincu qu'en cherchant
a étre bref, je ne m'étais pas fait suffisamment comprendre : cest
ce qui me détermine a revenir ici de noaveau sur le méme sujet,
dans la vue de lui donner un peu plus de developpement.
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Tout cadran est censé construit au centre du globe : 'axe de
la terre est le style dont Iombre se porte d’heure en heure sur
diverses lignes tracées d’avance , et qui sont les intersections du
plan du cadran avec une suite de plans conduits par 'axe de la
terre. Cest lorsque le soleil atteint celui de ces plans qui est le
méridien d’un licu qu'on y compte midi, et que Pombre du style
s¢ projette sur la meridienne du cadran ; si le soleil est & 15° de
ce plan, il est 11% ou 1* dans le méme lieu, suivant que lastre
est a droite ou 4 gauche du mdéridien. ( Voyez la 2,m® édition de
r Ura/zé?rap/zic B

Ces faits établis , passons & la résolution du probléme, en commen-
gant par le cas ou le plan proposé décline, sans inclinaison.

Soient (fig. 5) Z le zénith d'un lieu, P le pole, O le centre
du monde , OP I'axe , AZPI le méridien céleste, ABGICD 1'horizon ,
BZVC un plan vertical donné, sur lequel on se propose de tracer
un cadran solaire, GOD , perpendiculaire sur BC determinera évi-
demment en D le zénith du lieu ol le plan horizontal est paralléle.
4 cclui BZC du cadran, L’azimuth du plan BZG est 'angle AOB
quil fait avec le méridien ; et, & cause de I'angle droit BOD , Pangle
DOA est complément de I'azimuth, c'est-a-dire la déclinaison DZA =4
du plan proposé. Clest, en d’autres termes, I'angle que [ait notre
cadran avec le premicer vertical, passant par les points est et ovest.

Désignons par / et L les latitudes des licux Z et D; joignons
D au pole, par un arc de grand cercle, et nous aurons un triangle
sphérique ZDP, qui a pour élémens ZP=qo°~/, DP=xgo°+4-L,
ZD=g0° , DZP=180°—d , ZPD = A—a, différence des longitudes.

Il sagit de trouver L et A. Les équations connues de la trigo-
nométrie sphérique donnent (Voyez l’Uranograpb/e, équations 17
et 20, pag. 383 et 387 ).

Cos.DP = CosZD.Cos,ZP+Sin.2ZD.SinZP.Cos,Z ,
SinZPCot ZD = Cos.ZP.Cos Z+5inZ.Cot ZPD ,

ce qui revient 3
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Sin.L=Cos.2Cos.d , Cot (A= »)=8inJCot.d .

Ces deux équations trés-simples serviront 3 trouver sur le globe
la situation du liew D, par sa longitude A et sa latitude L. Il
ne s’agira donc que de ddcrire un cadran horizontal, pour ce licu
D, & Faide de nos échelles. Mais il y aura ici deux précautions
a prendre.

1.° Le style devra étre dirigé parallelement & I'axe OP; et
Vombre de OF devra indiquer les heures. La méridienne sera donc
la projection de OF sur le plan BZC du cadran; projection quon
nomme soustylaire ; 2.° une fois les lignes horaires du cadran ho-
rizontal tracées, il faudra en changer les dénominations, attendu
que les licux Z et D comptent une heure de plus ou de moins
I'un que lautre pour chaque 15° de différence en longitude ; ainsi,
par exemple, la ligne de X heures deviendra celle de XI ou de
1X, ¢'il y a précisément 15° de différence, d I'est ou a ouest.

On ne peut done appliquer nos échelles & ce tracé, sans avoir
d’abord placé le style parallélement & I'axe du monde. Il y a, pour
y parvenir , divers moyens , que nous avons exposés dans I'ouvrage
d¢ja cité 1 on peut, au reste, y parvenir par le calcul que voici.
Le plan DOP cst le méridien du point D, puisqu'il passe par ce
point et par le pole; si donc V est Vintersection des arcs PD et
ZGC+ ce point V sera 'un des points de la soustylaire~-méridienne,
et il ne s'agira conséquemment que d'en fixer la position, Or, lg
triangle sphérique PVZ, rectangle en V, a pour élémens

IP=qo°—!, Z=qg8%°—d, V=qgo°;

2

Vangle ZV , formé par la soustylaire et la méridienne sera dong
donné par la formule

Tang.ZV =Cot./Sin.d :
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Ainsi , aprés avoir tracé la verticale CM ( fig. 6) sur le plan
declinunt proposé, ponr représenter la ligne de midi: en un point
quelconque G de cette droite, pris pour centre , on fera l'angle
MCS ¢gal a la valeur trouvee de ZV ; CS scra le soustylaire ,
au-dessus de laquelle, dans un plan SCT, perpendiculaire a celui
du cadran, devra étre élevé le siyle CT, formant sur CS langle
SCT=L. Sur CS comme méridienne, et sa perpendiculaire CO,
comme ligne de VI heures, on tracera, a l'aide des echelles, un
cadran horizontal, pour la latitude Li; ce sera le cadran demandé,
du moins aprés y avoir changé les dénominations des lignes horaires
ainsi qu'il a été dit ci-dessus.

Supposons, par exemple , que la latitude du lieu étant 48°.12/,
la déclinaison du plan soit 10°.12/; on fera le calcul que voici:

Log. Cot./ =9.9513876

Log. Sin.d =g.2481811

et ————

Log.TangZV=9.1995687

Donc ZV=8°59/50” ( sensiblement g° ) ; on fera donc I'angle
MCS=g°; & droite ou & gauche de CM, suivant que le plan dé-
clinera 4 ouest ou i lest. CS sera la soustylaire , ou la méridienne
d’un cadran horizontal, pour le lieu dont les longitnde et latitude
A, L sont données ainsi qu'il suit.

Los.Cos. /= ¢ .8238213 Log.Sin. /=q.8724337
Log.Cos.d= 9 .9930814 Log.Cot.d=0.7449003
i O —————— ——————

LogSin.L= g .8169027  Log.Cot.(A—»)=0.6173340

L=40°.59".50" A== 13/"_.34’.10” N
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On fixera le style dans un plan perpendiculaire au.cadran, ct élevé
au-dessus de CS; l'angle SCT, formé par ce style , devra Ctre
de 41° Sur langle droit SCO, en prenant CS pour meridienre,
on déerira un cadran horizontal pour cette latitude de 41°, ct le
cadran demandé sera tracé. Mais, apres avoir marqué les lignes ho-
raires , il faudra reculer toutes leurs d¢nominations de lintervalle
A—»x , réduit_en temps, savoir 54™. La ligne CS, qui était méri-
dicnne , deviendra ainsi la ligne horaire de 54™, avant ou aprés
midi, et ainsi des autres.

Au surplus, comme cette maniére de procéder aurait I'inconvé-
nient de donner souvent des heures que Ion n’a pas coutume d’in-
diquer sur les cadrans , il sera plus convenable de tracer sur le
cadran considéré comme horizontal des lignes horaires telles qu'en
changeant les dénominations , ainsi qu'il vient d’étre dit, elles se
trouvent étre celles des heures et de leurs divisions d’usage.

Venons présentement aux cadrans inclinés,

Faisons tourner le plan vertical BZC ( fig. 5) autour de sa section
BC avec T'horizon , pour lui donner une position oblique ; I'azimuth
ne changera pas ; et, la droite OD éupposée mobile , demeurant
constamment perpendiculaire & notre plan, le point D déerira le
cercle vertical DZ. Supposons que le mouvement angulaire du plan
BZC soit tel que, quand il sera fixé dans sa mnouvelle situation ,
le point D se trouve situé en Z/ ( fig. 8); ce point Z/ sera ainsi
le zénith da lieu pour lequel notre cadran incliné serait horizontal.
Dans cet état de choses , l'angle Z/ZA sera toujours la déclinaison ;
en outre, ZO, Z/O scront perpendiculaires 'un & 1'horizon ADI
et l'autre au cadran incliné ; de sorte que l'angle ZOZ/ de ces
deux droites sera celui des deux plans, ou l'inclinaison 7 du cadran;
ainsi , ZOZ/= ArcZZ/=i. Le triangle sphérique Z/ZP aura, d’aprés
cela , pour élémens ZP=qo°—/ , Z/P=qo°—L , ZPZ/'=A-»,
27/=i, ZVZP =180°—d ; en conséquence, les équations qui noug
ont déji servi, dans le premier cas, deviendront, pour celui-ci,
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Sin.L=Cos.zSin./—Sin.;Cos./Cos.d }

Cos./Cot./=Sin.dCot.(A—»)—Sin./Cos.d ;

ce sont précisément les équations de la page 243 du tome VIIL®,
desquelles il faudrait tirer les valeurs de L et A—a, pour en faire
le méme usage que préccdemment ; mais il est préférable de résoudre
notre triangle sphérique , & T'aide des procédés quirendent les for-
mules finales propres au calcul par logarithmes ( Voyez Uranographie,

pag. 386 ); il vient ainsi

Tang,¢=Cos.dTang.7 ,

Cos.7Sin. (I~=¢)
Cos.¢ i

Sin.L=

Sin.¢ Tang.d
Tang.(Am=n)= “Cosd—ey

L’angle auxiliaire ¢ est donné par la premiére équation ; on trouve
L par la seconde, et A par la troisitme. L’usage de ces grandeurs
est le méme que ci-dessus; mais il est ndcessaire , avant tout, de
donner au style la situation convenable.

Soient Z le zénith (fig. 7)), Ple pole, ZPV le méridien, VE
le plan incliné du cadran; soient les arcs ZI, PO perpendiculaires
3 ce plan. Il est visible que l'angle Z en est 'azimuth =go°—d,
que DI en est inclinaison 7 ; le point D est supposé sur la ligne
de plus grande pente , V sur la méridienne, O sur la projection
de l'axe, c’est-a-dire, sur la soustylaire ; I'arc PO est T'angle Z
du style avec le cadran. Il s’agit donc, en premier lieu, de résoudre
le triangle sphérique rectangle ZVD, ot I'on connait ZD=go°—7
et Z=go°~d; on calcule le cété VD, qui est I'angle formé par
la méridienne ct la ligne de plus grande pente ; ou calcule aussi
Vangle V; et I'on a, de cette maniére,

Tang.
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Tdﬂg’-Vl_)= Cot.dCos.7 , CosV =Sin.iCos.d .

Ensuite, dans le triang'e rectangle VPO, on calcule VO, connaiss 'nt
Vangle V et le coé PO=L; ce qui donne

S§in.VO=Tang LCotl.V.

Ces trois valeurs remplissent le but proposé.

En effet, apees avoir tracé sur le plan incliné AC (fig. g) une
horizontale AB et sa perpendiculiire EF , ligne de plus (1znde
pente; on mesurcta les ang'es & et 7; savoir, langle 7 que firne
ET avec sa projection sur le plan horizontal , et Pangle OAB que
forme AB avec une méridicnne horizentale AO ; ce qui donncra
d=00°—O0AB. Ces valeurs introduites dans ncs équations ( Consultez
les fig. 7, 8) font connai're,

1.° L et A—»x; ]

2.° L'angle VD que fait EF avec la méridienne F(XII); ce
qui détermine la positien de cette derniére ligne ;

3.9 L’angle V, qui sert ensuite & trouver VO, angle que f{ut
la méridienne avec la soustylaire , et qu'on formera en GF (X1 ,
a droite ou 4 gauche de F\ XI1I), suivant le coté ot le cadran décline,

Cela fait, sur FG , comme méridienne , et sa perpendiculaire
FR comme ligne de VI heures , d'un cadran horizontal , pour ’a
latitude L, on décrira ce cadran, a Vaide des échelles. Le proposé
sera ainsi tracé , sauf i changer les dénominations des lignes horaires,
3 raison de 15° par heure de la difference A—a des longitudes
réduites en temps, ainsi qu’il a été expliqué ci-dessus.

Je pense, Monsieur, et vous pensercz sans doute comme mci,
que ces développemens ne sont pas sans utilité , et qi'ils complctent
ce qu’on peut dire sur cette matiére.

Agréez , etc. :
Paris , le 16 de juillet 1818.

Tom. 1X, 14
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QUESTIONS RESOLUES.

Solution du probléme de dynamique proposé & la
page 72 du VIILE volume de ce recueil ;

Par M. TEpEnar, correspondant de l'académie royale des
sciences (*).

[a Za ¥ Vo VT ¥, VL S X VL V)

P ROBLEME. Donner la théorie des petites oscillations d'un
corps pesant terminé dans sa partie inférieure par une surface
courbe , et posé sur un plan horizontal ?

 Solution. La théorie demandée est implicitement cxposée dans
la Mécanique analitigue ( 11.° partie , section VL), et il ne peut
étre question ici que d’en faire ’application au cas particulier que pré-
sente la question proposde.

Soit un corps queclconque, terminé par une surface courbe, un
segment de sphére ou d’ellipsoide , par cxemple, posé sur un plan
horizontal AB ( fig. 10 ), et le touchant en P.Soit G le centre
de gravité de ce corps; pour qu'il soit en équilibre, il sera néces-

(" La solution publide & la page 298 du VIILe volume n'avait ‘pas encore
paru lorsque celle-ci nous est parvenue.

J. D, G,
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saire et suffisant que la droite GP soit perpendiculaire au plan AB,
et conséquemment verticale ; et, si I'équilibre est stable, le centre
de gravité G sera, comme lon sait, le plus bas possible, ou, en
d’autres termes , sa distance au plan sera un minimum.

Si Pon change la position du corps sur le plan, de telle sorte
que la perpendiculaire ¢levée a ce plan, par son nouveau point
de contact P/ ne contienne plus son centre de gravité; il cessera
dés-lors d’¢tre en équilibre , ¢t pourra prendre , en général, les
raouvemens que voici : 1,° il pourra avoir un mouvement de rotation
autour de la verticale menée par le point de contact variable P’ ;
2.2 il pourra glisser sur le plan, par un mouvement de translation,
commun & toutes ses parties , vers A ou B; 3.° enfin, sile corps
est libre, son centre de gravité descendra suivant une verticale. Il
s'agit donc de déterminer ces trois sortes de mouvemens.

Lorsqu’un systtme quelconque de corps en mouvement s'écarte
trés-peu de la position d’équilibre, les équations diffcrentielles qui
expriment le rapport des forces accélératrices sont toujours intégrables;
et 'on peut alors déterminer rigoureusement les oscillations et les
autres sortes de mouvemens. C’est pour cette raison e nous Sup-=
poserous , dans tout ce qui va suivre, que le corps s'ecarte trés-pcu
de la position d’équilibre.

Pour fixer I'attention, par une figure trés-simple, nous supposerons
une demi-sphére dont les trois axes , p:«Ssant par le centre C, soient
@, b, c. Les coordonnées d'une molécule quelconque, rapportee &
ces trois axes seront z, ¥, z. Nous aurons donc & determiner les
oscillations de cette demi-sphere par rapport aux trois axes @ , &, ¢.

La méthode qui détermine les oscillations pour chaque axe en
particulier étant toujours la méme , quel que soit l'axe que l'on
considére , nous ne nous occuperons que de I'un d'eux seulemwent,
ou plutot , pour plus de simplicité , nous ne prendrons quun demi-
cercle , dont I'axe vertical passe par le centre G et par le cenire
de gravit¢ G ; ce sera celui des y : l'axe horizontal sera cclui

des x.
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1l importe ici de distinguer deux systémes d’axes ; un immobile
sur le plan EPF; lautre mobile avec le corps, et prenant la po-
sition E/P/F/, lorsque le point de contact primitif passe de P en
P/, Toutes les quantités qui varieront par le mouvement du corps
se rapporteront aux axes fixes: celles qui dépendront de la figure
de ce corps se rapporteront aux axes mobiles, Dans la position d’équi~
libre , les deux systémes se confondront,

Nous avons dit plus haut que le mouvement d’oscillation se faisait
autour du point de contact P ; mais il est visible que I'zngle FCP/
formé par la rencontre des rayons de courbure CP, CP/ étant égal
3 BPB’, rien n’empéche que nous ne considérions le corps, dans
ses petits mouvemens , comme oscillant autour du point P.

Cela posé, soit une molécule quelconque dm , située en o, dans
la position ~d’équilibre; soit menée la perpendiculaire o sur CP,
et soit l'angle 7Zco représentd par «. Dans la nouvelle position E/P/E/
du corps EPF, cette molécule passera de o cn of duquel nous
supposons une nouvelle perpendiculaire o/Z/ sur CP. Soit ¢ l'angle
0Co’ déerit par la molécule autour du point C; angle qui est évi-
demment le méme que Bi'B/=PCP’/; on aura l'angle iCo/=a?;
si donc l'on fait Co==Co/=r , on aura , pour les coordonnées
o=z, C'=y ,

=rSin.(2+9) , y==rCos.(«-}-¢) .

Les fo m,;gég\érales du mouvement donnent , pour lamolécule o,

S dxy
") )ﬂ&l (Ti?;_o a\y+dm——ax'~o.

En développant #, ¥, suivant les puissances de ¢, en s'arréfant
aux termes du second ordre , on a

y=rCos.4~14Sin.6~ >r¢>Cos.« ;

g



RESOLUES. 101

2=7Sin.a—479Cos.a— Zr¢*Sin.e ;

d'odt
dy — do
- =—r{Sin.«-}-?Cos. « 5
dx
= (Cos.am— q;Sm.u)
dzy d2¢
Et? —-—--——rCOS.u -d—[:- N
d2x d2e
P =7 Sin.e o

et par suite

En conséquence , I'équation générale deviendra, en divisant par 3¢,
’dm — +gdm(r5m.a+r¢Cos ) .

Pour qu'elle convienne A toutes les molécules du corps, il faut
aff cter tous ses termes du signe d'intégration , et intégrer en re-
gardant 7, « et dm comme variables; c’est~a-dire, en prenant
Vintégrale par rapport aux axes mohiles qui oscillent avec le corps
dont il s’agit. On écrira donc

Jridm. ?i;;f +-g/rdm(Sin.e--4Cos.a) =0

Nous pouvons remarquer actuellement que , puisque 7Sine=z,
on doit avoir
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JamrSine=fzdm ;

or, fxdm est Pexpression de la somme des momens ou du moment
de la résultante des [orces paralleles & I'axe des y, pris par rapport
3 un plan passant par le centre de gravité; ce moment est donc
nul, au moyen de quoi l'équation ci-dessus se réduit a

Jrdm . :j% ~+g¢/rdmCos.«=0 .

or , puisque rCos.«=y, on doit avoir
JSdm.rCos.a=fydm ;

mais fydm est le moment de la résultante des forces paralléles &
Paxe des 2 ; il doit donc étre égal a m.CG=m(CP—GP); si done
nous représentons par R le rayon de courbure et par g la distance
du centre de gravité G au plan AB, nous aurons

 fimrCos.e=m(R—g) 5
en posant done

gm(B—g=B et frdm=4,

Yéquation, exprimant le mouvement de rotation , deviendra
2 9

d&¢ B
W T g0 (=)

Dans cette équation , la quantité 4, qui est le moment d'inertie,
Sera toujours posilive ; mais la quantité B sera positive, négative ol
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nulle, suivant qu'on aura B>p, R=p ou R<s. Si, comme nous
I'avons d’abord supposs , le corps oscillant est un scgment de
spheére homogene , c’est évidemment le premier cas qui aura licu;
alors I'intégrale de I'équation (1) sera

_rras B _
¢——IX01H.(1‘V—A— If),

K, & étant deux constantes arbitraires.

Si B eat été négatif, lintégration aurait présenté # hors du signe
sinus ; d’ou Von voit que, dans ce cas, ? doit croitre indéliniment
avec le temps. Les oscillations ne sauraient donc alors étre trés-
petites, comme on le suppose dans I'énoncé du probléme.

On voit, par ce détail, que, lorsque le centre de courbare du
point de contact est au-dessus du centre de gravité, les oscillations
ont lieu ; mais si, au contraire, il était au-dessous, le corps, une
fois dcarté de sa position d'équilibre, culbuterait tout-a-fait,

*On trouve un exemple des deux cas dans une ellipse qui, ayant
son plan vertical , se trouve appuyé sur une droite horizontale ;
elle ne peut étre en équilibre qu’autant qu’elle pose sur I'vn de
ses sommels; mais, en I’écartant un peu de I’équilibre , elle tendra
4 reprendre sa situation primitive ou A s’en écarter, au contraire,,
de plus en plus, suivant que ce sommet appariiendra & l'extrémité
du petit axe ou & Dextrémité du grand.

Pour savoir done si un corps, d’abord mis en équilibre sur un
plan, puis , déplacé d’une petite quantité , doit revenir dans sa
premiére situation ou s'en écarter de plus en plus, il suffit d’exa<
miner si le centre de courbure du point de contact est plus ou

moins €levé que le centre de graviid (¥)

(*) Clest aussi la conclusion & laquelle en est parveau dans l'article de la
peae 94p du VIII® volume de ce recueil,
. J. D, G,
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Léquation (1), muliipliée par d¢, donne, en intégrant,

B
—r=C .
(5 )x5r=e;

d'ou on diduit o
' d
di= d

- B
c=2L g
]/ -

équation séparée qui, intdgrée de nouveau, fera connaitre la durée
de chaque oscillation.

N

On a déja dit que le centre de gravité G descendait dans une
droite verticale ; et il est visible que la force avec laquelle il sap-
proche du plan n’est pas la pesanteur toute enticre , puisqu’une -
partie de cette pesanteur est détruite par la résistance du point de
contact. I.e centre de gravité ne s’approche du plan horizontal qu’en
vertu du mouvement de rotation. Or, la pesanteur en un point

quelconque O décomposée donne, pour le mouvement de rolation

gSin.¢ qui , décomposée de nouveau , suivant le sens vertical et

suivant le sens horizontal , donne, pour ses deux composantes,

gSn2yp , 8Sin.pCos.¢ <

Puisque le centre de gravité n’a point de mouvement horizontal
effectif , on aura pour la force accélératrice , dans le sens vertical ,

ds ,
-—:-’- =gSin.¢;

wultipliant par

dy=-—rSin.¢ ;

intégrant et détcrminax_xt convenablement Ja constante, on aura
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:.< %}.’. )’zgr(Sin.W-}-}Cos."?;Cos.Q ;

ce qui donnera, pour la vitesse verticale ;

= V 2gr (Sin.2¢-}-3 Cos.2@,Cos.p .

Quant A la force accélératrice, comme le corps n’a pas de mouvement
effectif dans ce sens, c'est une preuve que le centre de gravité avance
autant dans un sens, par le mouvement progressif, qu’il recule (ans
I'autre par le mouvement de rotation ; et , comme le premier de
ces mouvemens est le méme pour toutes les molécules du corps,
il s’ensuit que , pour chaque molécule, on a, pour la force accé~
lératrice horizontale,

dax .
o =gSin.¢Cos.¢ ;

multipliant par dx=RdeCos.¢ et intégrant, on a
. dx \2 3
: (E) =R’gCos.’?-C’ :

Il est d’ailleurs évident que le mouvement progressif s'exécutera
dans un sens opposé a celui du mouvement de rotation.

D’aprés le principe de la conservation des forces vives, on doit
avoir , pour un point quelconque

dyr4-dx?
2dz? =5y »

ee qui est conforme aux valeurs trouvées pour dy*, dz3,
Tom, IX, 15
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‘Dans tout ce qui préceéde , on a supposé le plan parfaitement
poli et exempt de frottement; on pourra donc determiner toutes
les circonstances du mouvement d’un corps pesant qui fait de petites
escillations sur un plan horizontal ol on le suppose situé.

La méme théorie pourrait servir & déterminer le mouvement dun
pareil corps qui aurait regu une impulsion quelconque ; mais on
tomberait dans des calculs trés-compliqués et les équations dernieres
ne seraient pas intégrables. On ne’ pourrait donc determiner le
mouvement que par approximation.

Solution du probléme proposé & la” page 200 du VIIL*
" yolume de ce recueéil ;

Par M. Tepenat , correspondant de Yacadémie royale
des sciences.

[a S VB Vi Via V1o Ve Ve Vo ¥

PHOBLEME. Donner o théorie du mouvement d'une échelle ,
posant , par son extrémilé inférieure, sur un pavé horizontal , et

appuyant , par son exirémilé supericure, conire un mur serlical ,
en ayant égard au froitement ?

7 Solution. Suit une ligne pesante AB (fig. 11) représentant unz
échelle, appuyée par son extrémité B sur une ligne horizontale
CB, et par son extrémité A sur la verticale CA. A moins que AB
ve fut dans une sitaation horizontale cu dans une situation verticale ,
elle glisserait nécessairement sans l'effet du frottement qui a lieu
en B et en A, Pour estimer cet effet, aux deux lignes CA, CB
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substituons-en deux autres CA’, CB/, perpendiculaires entre elles,
comime les premiéres ; et faisant avec elles un angle g tel que la
partie de l'effort de la gravité perdue, & raison de sa décomposition
dans le sens des deux nouveaux axes CA/, CB/, soit équivalente

a l'effet du frottement dans le sens des premiers CA, CB. L’angle
ACA/ BCB/=s, est ce qu'on appelle , pour cectte raison, l'angle
du frottement.

Supposons tout le poids de la verge , que nous représenterons
. _par gm , réuni en son centre de gravité O que, pour plus de géné-
ralité, nous supposcrons différent de son milieu. Soient OB/=gq
OA’=p ct Vangle A/NC=¢, d'ou A/B'C'=¢/=¢5.

L’effort de la pesanteur en O peut étre décomposé en deux autres
agissant en A/, B/, lesquels sont respectivement

a b
gm-a+b’ gm.a-i-b.

Ce dernier, décomposé paralltlement 3 B/C et A’C, donnera pour

ses composantes

b
8m -—;_—;Sm,e, gam -—_—*_-b'COS,B.

Ce dernier effort , perpendiculaire 3 la ligne ou plan CB’; est
détruit par la résistance de ce plan ; et on en pourra dire autant
de leffort exercé en A’. Cela posé :

L’équation générale de I'équilibre ( Voyez la Memmque ana-
Utique)

- Yoy+Xszx=o0

donnera , en faisant A’C=u, B/C=z;
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a b Q° —
57T Cos.‘s.asu—l—gm.;—_‘-_—b Sin.pgz=o0 ;

mais
u=(a-}2)Sin.¢’ ,z ={a+2)Cos.¢’ ;
partant
su=(a~+b)Cos.(o-+8)2¢' ,
3z2=(a+8)Sin.(o-+£)3¢ ;
done

aCos.pCos.(p-8)=08in.£Sin.(P4-8) ;

ce qui donne

-g- =Tang.sTang.($+¢) »

comme on l'a trouvé, par une méthode tout-d-fait différente, i ta’
page 199 du préeédent volume,

Pour appliquer au mouvement de l’échelle la formule générale

de I'équilibre , il suffit d’ajouter aux termes ci-dessus les deux suivans
dy  dw . . .
= o exprimant les forces accélératrices des deux extrémités

de I'échelle, dans le sens des axes CA, CB, c’est-d-dire, en n’ayant’
d’abord aucon égard a Peffet du frottement,

Si I'on fait, dans cette hypothése,

a / M
gm . m=g 2, COSOﬁ;I H Sln"a=° ;

en aura
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ds» dzx
E%-g')”"‘ - dF=o0:

oun
dzy dax
— ne 2/ —_—— Si —=0.
(dzz g )Cos.4p - Sin.?=o0. (A)

Mais, laligne AB=g-}-5==r dtant constante » I'équation de condition
donnera, dans un instant quelconque

(r—dyP{z+d'z) =0 ,

ou
dzy dzz
Y a0

Cette équation , combinée avec I'équation (A), donne

dz dax/
-d—;-): :g/Cos.’¢ —dt—fz-—g’Sin.?COS.‘P '

Ainsi, la force accélératrice des deux points extrémes sera variable;
ils parcourront respectivement les deux droites CA, CB. Le milieu
de AB décrira un arc de cercle dont le diaméire sera égal i cette
méme droite. Les autres points décriront des arcs d’ellipses qui
auront lenr grand axe suivant CB, pour la moitié inférieure, et
suivant CA pour la moitié supérieare.

Si l'on veut connaitre les vitesses des points extrémes , on les-
trouvera en intégrant les équations suivantes

d=
dy .d_‘Z: =g/C05.’¢'rd¢c05.¢=g/rd¢00503¢ 9
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dz %’t‘; =—g’rd$Cos.¢Sin.¢ .
La premiére donne
(-%{- "=k &7 (3-4-Cos.9)Sin.e ;

et on tirc de la seconde

dx \\2 g'r
z — — k2 Sin.30 -
z (dt;) k 3 Sin.’¢ ;

ce qui s’accorde avec le principe des forces vives

ds \2
(—d-t-> =C—2gy .

Pour avoir égard au frottement , il suffit de rapporter le mou-
vement aux axes CA/, CB/. Conservons les deux lettres y, x,
pour les deux axes CA, CB, et prenons‘ u, z pour CGA’, CB/;
en posant, pour abréger, .

vim

. 6 !
gm-m—g”,

nous aurons

d2z ) . dz
(Et: --g’Cos.;e.)Cos.?”_——'(-—&t—ff +g’-’Sin.ﬁ)Sin.<P’=o H
nais

¥ _ =
Cos.z ’ 2= Cos.g ’

U=

s . F’ Y .
donc, I’équation, ramenée aux premiers axes , deviendra
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dzy s
(:ﬂ: —8'Cos ’/3) CC’S-(‘?+ﬁ)—<§£+g”Sin.pCos.ﬁ)Sin.¢+p) =0.

faisant , pour abréger,
g'Cosrg=¢ , g”Sin.pCos.e=¢ ,
et conservant l'angle ¢/, on aura
dzy d2x .
(Ti?z' ~g)Cos.¢’—(Ez- —z’)Sm.cp':o .
Cette équation a la méme forme que I’équation (A) déji traitde:

elle donnera

d: .
atzl: £Cos.*¢/—2/Sin.¢/Cos.9 |

d2x . .
e ¢/Sin.*¢/—:Sin.¢'Cos.¢/ .

On dé(éu-it de Ja premicre
d 2 . ’o
.:.[ a{-) =k— —ﬁ; (z+Cos.’¢’)Sm.¢’+-—i— Sinl¢/,
et de la seconde

d 2 . / .
;( -f =L/ 4 —i—- Sin3#/4- -—;—— (2==Sin.?¢")Cos.¢’ .

En [aisant g==0 , ces deux derniéres formules deviennent celles qu’on
a déji trouvées ci-dessus; lorsqu'on n’a pas égard au frottement,
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On ddterminera dailleurs les constantes %, %/ par les conditions

d dx
qu'au commencement du mouvement on a -Et =o0, -é- =0.
- t

2

On doit avoir aussi, au commencement du mouvément &

d22 . .
3 =0 Cette derniére condition donne

S =0y

i;. =Tang.tTang.(4-}p) ;
on
a Tang.2g—15%

Taﬂg.¢ = (a+b)Tan__g-:s s

comme cela doit étre; parce que, lorsque l'angle ¢ est tel, I'effet
du frottement détruit 'effort de la pesanteur, ou la {oice aceile-

ratrice , comme on l'a vu ci-dessus et en lendroit d¢ja cité de
ce recueil.

E Les diverses positions que prend dans son mouvement la ligne
pesante AB, se coupent consécutivement en une suite de points
formant une courbe continue, donton peut étre-eurieux de connaitre
Pequation.

Soient AB, A’B/ (‘fig. 12 ) deux positions consécutives infiniment
voisines de la droite mobile, dont M soit le point d'intersection; ce
point sera 'un de ceux de la courbe cherchee. Faiscns AB=a,
Tangle CBA=¢, et désignons respcctivement par &, y les perpen-
diculaires MP , MQ abaissées du point M sur les droites CA, CB

prises pour axes des coordonnées; nous aurons

T AB=MA4MB= *_ . ¥ .
. a_AB_MA+EIB ™ Cos.p + Sing ’

¢est-d-dire ,

#Sin.p4yCos.g=aSin.¢Cos ¢ .
Or
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Or, au point d'intersection N, I'équation doit convenir également
aux deux droites AB, A/B’; il faut donc qu’elle soit indépendante
de I'angle ¢, et qu’elle ne soit composée que des seules quantités
a4, z, y qui sont communes aux deux positions; il faut donc que
Zz et y demeurent constans tandis que ¢ varie, c’est-i-dire , que la
différenticlle de I'équation ci-dessus, prise par rapport & ¢ seulement,
doit avoir lieu en méme temps qu'elle. Cette différentielle étant’

2Cos.p—ySin.p=a(Cos.*¢p—Sin.*p) ;
il ne sagit plus que d’éliminer ¢ entre elle et I'équation primitive,

Pour y parvenir, regardons x , y comme les deux inconnues

de ces équations ; nous en tirerons aisément

2=aCose ,  y=aSinle;

done .

x \2 -
Cos.’:p:( —:— )' , Sin2p= (%’-)T ;

donc enfin I'équation de la courbe cherchée est

(2p(Efer 0

" Clest précisément la courbe de la page 376 du VIILE velume de ce
recueil, si ce n’est que la droile mobile qui y était représentée par 2¢ Dest
ici par a.

Si l'on compare cette équation avec celle que nous avons trouvée & la page 288
du V.° volume de ce recueil, et quon pourrait metire sous cetle forme

(:J4(zr=

Tom. 1X, 16
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Il est facile de s’assurer que cette courbe ( fig. 13) a quatre
points de rebroussement situés sur les deux axes & des distances de

lorigine égales & a; et quelle est symétrique non seulement par

on en ponrra conclure que la courbe dont il s'agit est , par rapport a la déve-
loppee de Dellipse ce que le cercle est lui-méme par rapport a lellipse. On
ne saurait pourlant en conclure que cette courbe soit la développée d'un cercle,
puisqu’une telle développée se réduit & un point.

. s . . A
Mais on est conduit & soupconner que celte méme courbe pourrait bien étre

la développée d'une ellipse dont les deux axes, infinis l'un et lautre , auraient
néanmoins une différence finie,

Pour vérifier ce soupcon prenons l'équatiom.

(=)=

de la développée de Dellipse 5 équation dans laquelle a , & sont les deux demi-
axes ; soit fait

a=—bh=¢ , d’ott b=a—c et g3=—hr==2a0—0* ;

Péquation{ deviendra ainsi

eu encore

lorsqu'on suppose a infini,
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rapport a ces axes, mais encore par rapport aux deux droites qui
divisent en deux parties égales les angles des coordonnées. On en
concevra facilement la raison en remarquant ( fig. 13 ) que, théo-
riquement parlant, les droites CA, CB devant étre considérées comme
s’étendant indéfiniment de part et d’autre du point C, le mouvement
des extrémités A et B de la droite mobile AB n’est pas borné a
ce point; mais que l'extrémité B peut passer & gauche et I'extrémité
A au-dessous suivant les prolongemens de CB et CA.

1l est d’ailleurs dvident que la courbe est & la fois circonscrite
A toutes les ellipses décrites par les points de AB ; et, en partieulier ,”

au cercle décrit par son milieu.



16 QUESTIONS PROPOSEERS,

QUESTIONS PROPOSEES.
Theéorémes de Géomeéltrie.

1. UN point P étant pris arbitrairement dans l'intérieur d’an triangle
rectiligne ABC et A/, B/, C/ étant les points ol ses cotés sont
respectivement rencontrés par les prolongemens des droites menées
respectivement & ce point P des sommets A, B, G ; on doit avoir

PA/ PB/ PC/

—_ ~— =1
AA/ BB/ cv
IL. Un point P étant pris arbitrairement dans Iintérieur d'un
tétraedre ABCD, et A/, B/, C/, D/ éuant les points ou les pro-
longemens des droites menées 3 ce point P respectivement des sommets
A, B, G, D, rencontrent les faces opposées , on doit avoir

PA’ . PR P& | PD
T teooTon =t
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ASTRONOMIE.

Calcul de l'éclipse de soleil du 7 de septembre 1820 ,
pour 26 des principales villes de [I'Europe;

Par M. Kramr, professeur doyen de la faculté des sciences
de Strasbourg , correspondant de Yacadémie royale des
sciences , Chevalier de 1'0Ordre royal de la Légion
dhonneur.

[a o Jla Vg ie Vi Via Vo Vi Vo ¥

AVERTISSEMENT DU REDACTEUR DES ANNALES.

M. le professeur KRAMP , qui a adress<, il a quelque temps , & I'académie
royale des sciences, un mémoire de plus de 100 pages in-4.¢, contenant le calcul
des circonstances de l'éclipse de soleil du 7 de septembre 1820, pour 26 des
principales villes de I’Europe , ayant bien voulu nous confier la minute de ce
mémoire , nous en avons extrait les principaux résultats que nous ayons consignés
dans le tableau suivant.

Dans ce tableau , les villes se trouvent classées suivant 'importance plus cu
moins grande dme éclipse doit y avoir; et les époques y sont exprimées em
temps solaire vrai du méridien de Paris. En leur ajoutant donc les longitudes
en temps, telles qu’elles se trouvent dans le méme tableau , on obtiendra lcs
époques telles qu'elles doivent étre comptées dans chaque ville en parliculier.

D’aprés les calculs de M. Kramp, la seule de ces villes poar laqueiie
Péclipse doive étre annulaire est celle de Strasbourg. On trouvera le calcul déa.i s
pour cette ville 4 la page 342 du VIIL.e volume du présent recucil.

Tom, I1X,n° 1V, 1.°F octobre 1818. 27
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B — A —
NMoms Longitudes | Commenc.' | Epoque
Latitudes de la ol
des en temps de a pius
boréales. grande

Villes. de Paris. I'éclipse. |
phase.
X o ! " k. m. s. | he me s h. m, s
'Slrasbonrg. e« o] 48. 34 56| 4 0. 21. 36 | o. 47. 5| 2.13. 13
Gotha. . .. ... | 50. 56. 8| 4 o0.33. 35| 0. 42. 2| 2 11 42
Rome: . . ... 41. 53. 54 | 4 0. 40. 32 | 1. 9. 20| 2. 32. 33
Prague. . . ... 50. 5. 19 |4 o. 48. 20 | 0. 53. 25 | 2. 15. 41
Berlin. . ... .. 52. 31. 45 | =4 o. 44. 8 | o. 47. 4o | 2. 15, o
Palerme.« . . .. | 38. 6. 44|~ 0. 44 ~7 | 1. 17. 54 | 2. 46. 26
Bremen. . . . .. 53. 4.38 |4 o. 25 51 |0 41. 9|2 6.3
Milan. . . .... | 45. 28. 2| 4 o. 27. 26 | o. 55. 50 | 2. 25. 13
Ofen... .. ... | 47. 29. 44 | =+ 1. 6. 49 | I 4. 8 | 2. 29. 52
Vienne. . . .. .| 48 r2. 4o'| 4 o. 56. 10 | 0. 59. 35 | 2. 23. 19
Copenhague. . . . | 55. 41 4 | 4 o. 4o 59 | o. 4% 25 | 2. 2.3}
Greenwich. . . .| 51. 28. 4o | — 0. 9. 21 | 0. 33. 21 | 1. 58,13
Edimbourg. . .. | 55. 57. 57 | — 0. 22. 2 | o. 23. 2| 1. 48. 5o
Paris.e o o . . . . 48. 50. 14 | = 0. 0. 0 | o. 4o. 31 | 2. 10. 58
Warsovie. . . . . | 52. 14. 28 | + 1. 14, 50 | 0. 57. 6| 2. 16.§
Stockholm. . . . . | 5g. 20. 31 | =4 1.7 2. 53} o. 41. 18] 2. o 0
Konigsberg. « . . | 54 42. 12 | =4 1. 12, 36 | 0. 51. 51 | 2. 14 4
Montpellier. . . . | 43. 36. 16 | =+ o. 6. 10 | o. 54. 36 | 2. 22 4
Wilna, o o o oo | 54 41 2] 4 1.31. 49 | 0. 96. 53 | 2. 18, 24
Brest. . o vo.| 48. 23. 14 | — 0. 27. 16 | 0. 32. 53 | 1. 58. 21
Wardhuus. . . .| 70. 22. 36 | = 1. 55. 7 | 0. 33. 35 | 1. 45. 3
Pétersbourg. . . . | 59. 56. 23 | 4 1. 31, 54| 0. 51.34 ]2 7.18
Moscow. « o « v o | 55. 45 45 | == 2. 20. b1 | 5. 5. 42 ) 2. 18. 19
Madrid. . . ... 40. 24- 57 | — 0. 24. 10 | 0. 50. 26 } 2. 21, 0
Cadix. « .+ +o.|36.32. 0| — 0.34. 31 | 0. 57. 18 1 2. 29, 30
Lisbonne. o « « o | 38 42. 18 | == 0. 45, 51 | 0. 43. 48 | 2. 18. 71
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Fin Moindre Nombre Epoque Epoque

de distance de de Ia du passage
I'éclipse. des centres. |  doigts. conjonction. par l'écliptique,
k. m. s ror d. h. m. s, h. m. s.
3. 36. 37 0. 99 Annulaire. 2. 14. 51 2. 25. 17
3. 30. 56 1. 27 10. 59 2. Q. 2 2. 17. 4
3. 54. 4 1. 48 10. 52 2. 33. 45 2. 45. 4o
3, 36. 3o 1. 53 10. 49 2. 19. 18 2. 4. 11
3. J0. 46 1. 9% 10. 49 2. 13. 33 2. 29. 43
4 2. 04 1. 59 10, 47 2. 43, 51 3. 2. 51
3. 27,13 2. 5 10. 45 2. 7. 22 2. 3. 46
3. 44. 25 2. 17 10. 40 2. 22, 47 2. 36. o
3. 43. 49 2. 23 10. 38 2. 29. 4 2. 5. 26
3. 4t 17 2. 35 10, 34 2. 25. ¢ 2. 7. 58
3. 23. 20 2. 37 10. 33 2. 6. 29 1. 45. 17
3. 24. 51 3. 1 10. 24 1. 40. 12 2. 29. 36
3.13. o 3. 6 10, 22 1. 47. 51 2. 17. 15
3. 33, 29 3. 14 10. 19 2. 7. 8 2, 35. 56
3. 33. 43 3. 46 10, 7 2. 200 44 1. 41. 16
3.17. 8 3. 47 10, 6 2. 3. 53 1. 20, 53
3. 28, 34 3. 52 1o. 4 2. 15. 13 1. 32, 37
3. 45. 13 4. 5 10. o 3. 6.16 2. 57. 23
3.29. 9 4. 5o 0. 53 2. 18. 33 1. 23. O
3. 20. 28 5. 38 9. 24 1. 57. 34 2. 53. 13
2. 57. 5 6. 4 g. 15 1. 49. 21 0. 24. 24
3,18, 32 6. 50 8. 58 2. 10. 36 0. 54. 34
3. 27. 40 7. 10 8. 50 2., 22, 15 0. 54. 37
3. 45 11 8. 6 8. 29 2. 12. 36 3. 2g9. 29
3. 5o0. 26 10. 44 7. 29 2. 14. 56 3. 54. 26
3. 41, 42 11. 18 7. 17 2. 4. 36 3. 5. 9
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Calcul de T cclipse de soleil du 7 de septembre 1820 ,
pour Strasbourg et Montpellier ;

>

Par M. Bexiamixy Vavrz.
fa 2 Vo Vi VI W VI, W Vo WLV

Au Rédacteur des Annales;

MONSIEUR ,

CONFOBMI«‘.MENT ala promeysse que je vous en avais faite et qu’une
petite absence m’a empéché de réaliser plutét, jai I'honneur de
vous adresser mon calcul de I'éclipse de soleil du 7 de septembre

1820. Permettez-moi d'y joindre les courtes observations que voici
sur le calcul de la méme éclipse pour les mémes lieux , donné
par M. le professeur Kramp , 4 la page 331 de vetre VIIL®
volume,

1.° La parallaxe solaire (pag. 331), cotée avec cinq décimales
doit étre purement fictive, L'on s’accorde & peine sur la premiére
décimale ; et , trés-certainement, il n’y a pas deux astronomes d’accord
sur la seconde.

2.° La quantité B (pag. 332) a été obtenue en employant la

tangente de la parallaxe, tandis que c’était de son sinus qu’il fallait
faire usage; cela donne

B=63,7827 , Log.B=1.8047029.
3..
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3.° Il y a 6/ d’erreur ( méme page ) sur la longitude dn celil
le 7 a

» . . . 3 M A .
midi ; suivant la connaissance des temps clle doit “@ire
16.4°. 427477, Catte erreur , introduite dans les determinations

subsequertes les a rendues fautives.

4.° il y a, je crois, sur les longitudes lunaires ( pag. 334 Y,
des erreurs en plus, savoir: de 6/ a4 deux heures; de 2/ & trois
heures; de 17/ a quaire heares. Il y a aussi sur la latitude lunziie
4 trois heures une erreur de 1/ également en plus.

5.° II n'a point été tenu compte ( pag. 338) de l'aplatissement

de la terre , dans la détermination de X, ¥, Z. On a dailleurs
employé simplement la parallaxe équatoriale de la lune, qui pourtant
aurait dd éire diminude de 5 a 6/, pour les deux villes dont il

2, M
sagit,

6.° Pour trouver p, ¢ (méme page ), on a considéré x comme
infiviment petit par rapport & A ; et il est trés-vrai, en effet, que
Verreur de cette supposition affecte & peine les dixieémes des secondes.
Mais , pour compléter I'exposition théorique de la méihode, il
aurait fallu justifier cette supposition:

7.° Enfin , on a tout-a-fait oublié l'augmentation du diamétre
de Ia lune qui, dans ce cas, s’éleve toutefois a 20”.

Jespere que toutes ces remargques cxphqueront sufﬁsamment les

différences suivantes, peu considérables d’ailleurs , que j’ai trouvées

entre les résultats de mes calculs et ceux des calculs de M. Kramp.

1.° Les valeurs de ¢ ( pag. 340 ) scraient fautives de 11 & 147,
et celles de 7 de 7 a 107, -

2.° Les distances des centres { page 341 ) seraient fautives de
)

15 4 177, Celles de une heure est cotée 1750 ; mais la marche

des différences indique que ce doit éire 16957, Cette erreur de

plume parait provenir d’une autre, commise sur ¢, noté 1570”

au lieu de 1510”. Malheureusement c’est cette premiére quantité

qui a servi & calculer le commencement de léclipse qui, par cc a
méme se trouve en erreur de 1™.40°%, 4 peu pres.

3.° En ayant égard & cette correclion , et 2jcutant la différence

@5

Tom. 1X, e
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des méridiens en temps , afin de i1édu're les temps au méridien du
licu; les déterminations que j’ai obtenues seraient plus fortes de 6° sur
le commencement , de 37° sur le milieu et de 45° sur la fin de
de I'éclipse, ainsi que vous le verrez dans le tableau ci-joint.

4* Les résultats précédens sont relatifs & Montpellier ; ceux de
Strasbourg présentent & peu prés les mémes différences , en corrigeant
toutefois 'heure du commencement, qui parait devoir étre o*.47™35"%
Mais ce pourrait étre une faute d’impression.

5.° L’heure de la plus grande phase différerait bien de 3™ d- meS
déterminations, mais l'erreur se découvre & la simple inspection du
tableau ( pag. 345); car la marche des différences indique visible~
ment que cette plus grande phase doit avoir lieu aprés 2k.15™ et
non avant, comme le donne linterpolation, ol il faut, au reste,
dans la valeur de B, remplacer 202 par 702,

7.° La moindre largeur de V'anneau ( pag. 346 ) est 1478

Mais il faut en retrancher pour 'augm. du diam. . . 84

e ]

6//4
» o o o N
est absorbé par l'aplatissement et les autres erreurs que j’ai signalées.

Je borne la , Monsieur , ces obscrvations , que vous trouverez
peut-étre assez minutieuses. Quelques secondes de plus ou de moins
semblent en effet une vétille; mais vous voyez cependant qu'en
résultat on finit par atteindre jusqu’aux minutes. Au surplus, le
désir de remonter 4 la source de mon défaut d’accord avec Pestimabla
doyen de Strasbourg , en me poussant plus avant dans ses calculs
que je n'en avais le dessein, m’a procuré en méme temps sur les
miens une nouvelle séeurité qui pourtant, je Vavoue, pourrait bien
n’étre que simplement relative.

Etle surpluss . o o v v s v v v o v

Agréez, etc.

Nismes , le 13 de scptembre 1818,
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PREMIER TABLEAU.

Résultats communs aux deux villes de Montpellier et de Strasbourg.

Temps vrai de Paris,

1k, 0™, of,

2h, o™. o'.

3k, o™, o°.

40 om. of,

[164°.47'.38",6

164°.50% 41,4

164".52/.30",2

Long, & . ..... e oo o | 164%.45%127,8

Long, € «uvevnnnnos|165.09.44,1 | 164 4711 ,3 | 165 .16.38 ,4 | 165 .46. 5 ,5

Latite €2 , o o v o s s s« 0 47 .24 52 0 4442 4 o.42. 0,5 0.39.18 ,7

Parall, horisont. ((—0© )=z 0.53.39 ,7 0 .53.39 ,6 0.53.39 ,5 0.53 .39 ,4
166. 0.0 166 . 2 .15 166 + 4.30

165 .57.45

Ascension dro. @ , . . ., .

T

Aplatissement de la terre =5
Domi-diamétre du soleil ==0015.5448 .
Paiall. de long,‘ ::H::a-{-aZCOt.((C-N)Sin.l”+a3[cot.3(<['—'N)—;—]Sinﬂt”—l-....n

Sin.=SinASin (C~=N)

= Cos.aSin. 1" *
Parall, de latit., ==n=g! 4a/*Tang,(v-}»)8in.1"~4-a"3[Tang.s(x-A) == - 1Sin 2 1/rurcni ;
a4/ (2" =) Tang eSin. 1/4a"Aa"— - »=a? Tangx)Sin. 41/ 4-a/3(Tang e )Sin214
8in,#Cos,hC 08 (x4=2)
—

Cos.xSin. 47

¢"=8inal0aklot.1” ; Tang.w=TanghCos.(CN+3M)Séc 3T o

4=
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‘

DevxiEME TABLEAU.
Résultals particuliers & la ville de Montpellier.

Latitude corrigée = 43°.257.467 .
8

Longitude en degrés = -+-1°.32.30” ; Longit. en temps =6™.10

3k 6™, acs, | 4 B

Temps vrai. 1h, 67, 10°. \ b, 6m. 109, \ 3

Asc. dr.mil. daciel]1820.30".15"

197°:32/.30" | 212034, 457
Long. du nonag..

161 .21.59 173 .59 . 6 187 fs+ 12
Haut. du nonag.. | 49 .57 .3 4%« 7 .50 33 . 925
Parall. de long o. 2 7 ,‘3 —0 . g 2

Parall. de lat. . . o .34

22 6 o 38.27,7 0 .42.12 .8
Long. app. C . 164 .19.51 6 {164 .41 . 8 ,81165. 3.45,8" 165
Laln app. C.. . 0.3. 1,6 0.61: 7{=—0.0.12,3,
Long ((E—®) —0 .25.21,2|=—0. 6 29 8| 0.13 41,
Dist. des centres 0.28.30,2{ 0,9.0,9 0.13.41,
Demi-diam. ¢ . 0.14.51,91 o0.14.50,8] o0.14.49,:

\ Temps vrai. Long. (¢=0) | Latit. ¢

Dist. des cent.| Demi-diam.

Com.t -ok.5gm. 8

R 30.46",8 30.46”,8
0 .59 10| — 27%.20/,2 xi' 49,6 | “30 .46 ,1 N
1.0 .d0| — 27.10,9 13 42,7 30 .26 ,7 P eee s
2 .20 .10 1. 3,8 3 .43 42 csse s c sren s

PL g. ph. 2 .29 34 1.11.,8 3 .40 ,6 3 .52 ,o 30 44 49
2 .30 .10 ."38 3-%6,7 LR RPN
3 .51 .10 2 58, — 4385 301 y o e

Fin. 3 .52 .8 ..9...4‘ %12,94 30 42,4
3 52 .10 3o.21,1 | — 444 1 30.43 ,2 “ene

Plus grande phase de 109,136, dans la partie boréale du soleil
Ta premitre impression du disque lunaire aura lieu vers 60° a droite
de l'extrémité supéricure du diamctre vertical du soleil

T BOISIEME
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Résultals pariiculiers & la ville de Strasbourg.

Temps vrai.

38,

1h, 217,

2k, 21m, 385,

3k, 2™, 389,

4*k. 21™, 389,

Asc. dr.mil. duciel | 1860207217 | 201%24/.36" | 2160.206/.51” | 2310,2¢/. 6/
Long. du nonag. . | 1€0 .45.57 173 . 2 .49 186 .49.57 203 .22 .38
Haut. du nonag.. | 44 .20. 0 38 .30 .30 32.32.0 26 .46. o
Pacall, de long. . 0.220,0|=0. 4.50,8|—=0.10.41,3|=0.14 .50 0
Parall. de lat. . . 0.38%17,3| o .41.58,1 0 .45.6 1 .47 .98 ,0
Long. app. € . . |164 .20, 4,1 | 164 .42 .20 ,5|165. 5.57 ,1| 165 .31 .15,5
Lalit. app. €.. « 0.9.6,9| o0.2.44,3|=0.3.15,6/=—0.8.39,3
Long. (€C—©). . |—o0 .25. 8,7 /=0.5 18 1 0.15.52,7 0.38.45,3
Dist. des centres. 0.26.44,8] o.5.58,1 0.16.12 ,5 o .39 .42 ,5
Demi-diam. ¢ . . 0.14.50,9] o0 .14.49,8] o0 .14.48,2 0 .14 .46 2

—an— i
Temps vrai. Long. (¢=®) Latit. ¢ | Dist. des cent. | Demi-diam. il
1h. gMm.38%| — 28/.5¢",0 10’.25",0 307480 e tses e
Comit 1.9 ff| voovoeoloeveonn 30 .46 ,0 30%.46",0
1 .01 38| — 28.,20,8 10.11,9 30. 7,5 trese v
2.36 38| = 0.8,9 1.11 ,6 ceee .
PL g. ph.2.37 .57 0.1g ,I I.3,4 1.6 ,2 30 .44 42
2 .39 .30 0.53 7 0.53 ,2 e e Cerene
3 .57 .38 29.22,38 | == 6.34,8| 30.6,5 o« e
Fin. 3 .59 .7 .« v e o e 30 .41 ,7 30 .41 9
3 .59 .38 30.9g ,1 | — 6.45,7 30.54 40 e
R R — ST ORI

Grandeur de l'dclipse 114,173, dans la partie bordale du soleil.
La premiére impression da disque lunaire aura lieu vers 67° a droite
de Jextrémité supéricure du diamctre vertical du soleil.

Tom. 1X,
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QUESTIONS PROPOSEES.
Problémes de Geomelrie.

I. UELLE est la courbe enveloppe de I'espace parcouru par un

cercle mobile d’un rayon donné, dont le centre décrit une ellipse
donnée ?

II. Quelle courbe doit décrire le centre d’'un cercle d'un rayon

donné , pour que l'enveloppe de I'espace parcouru par ce cercle
soit une ellipse donnée ?
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GEOMETRIE ANALITIQUE.

Théorie elementaire de la courbure des lignes et des
surfaces courbes ;

Par M. GERGONNE.

[, Vs Via Vi Via “la Sla Via o

LONG-TEMPS encore aprés la découverte da calcul différentiel , les
géométres se confiaient & ses méthodes, par une sorte d'instinct ,
- et sans trop serendre compte des principes théoriques qui pouvaicnt les
justifier ct leur servir d’appui. Bien que souventils n’en fissent usage
que par pure élégance, ils n’en regardaient pas moins cette nouvcelle
branche de calcal comme étant d’une nécessité indispensable dans cer—
taines recherches , qui alors étaient réputées étre essentiellement de
son domaine,

Mais , & mesure que , par les travaux de quelques hommes
supérieurs , et notamment par les méditations de notre illustre
Lagrange, la métaphysique du calcul différenticl a été mieux connue,
cette branche de calcul est aussi devenue, peu a peu, de moins
en moins nécessaire ; et on est parvenu, par degrds, a soustraire
a son empire une muliitude de questions , soit d’analise , soit de
géométrie, que pourtant, avant qu'elle fat connue , on efit & peine
os¢ aborder. 1l est digne de remarque qu’en particulier le probléme
des tangentes, qui lui avait donné naissance , en soit devenn , des
prewiers , tout- a-fait indépendant , du moins pour les courbes

algébriques.
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La véritd est quon ne saurait rencontrer aucune question, con-
sidérée individuellement, pour la solution de laquelle le calcul diffé-
rentiel soit d’une nécessité indispensable. Tout le service que nous
retirons de ce calcul se réduit au fond & nous permettre , au moyen
de la symbolisation d’une nouvelle opération { la dérivation ), d’en-
fermer la solution d'une infinité de questions particuliéres dans une
formule unigue, ol nous pouvons lire d'une maniére distincte la
série des calculs & effectuer, dans chacun des cas individuels qu'une
question gdénérale peut ofirir. Ainsi, par exemple , on n’a pas besoin
du calcul differentiel pour mener une tangente ou une normale i
telle ou telle courbe dont on a l’équ’aﬁon , mais il est nécessaire
pour écrire I"dquation de la tangente & une courbe gueleconque ; par
I’'un quelconque de ses points.

Si, dés le temps de Descartes et de Fermat, les géometres avaient
remarqué avec plus d’attention combicn souvent I'opération appelie
dérivaiion se représente dans les calculs; s'ils eussent eu deés-lors
Iidée, fort simple et fort naturelle d’ailleurs, d'allecter un symbole
a cette nouvelle opération , ainsi qu'ils I'avaient déji fuit pour toutes
les autres , il y a tout licu de croire que Leibnitz et Newton n’eussent
pas cu a se disputer I'invention des nouveaux calculs; et Pon n’elit
pas ¢été prés d'un siecle a en chercher la métaphysique DMais ce
n’est pas d’ordinaire d’une allurc si aisée que V'esprit humain s’acheniine
vers les découvertes. Parmi une multitude de routes qui se présentent
devant lui, une scule est la boune; mais, comme, avant de s’y
engager, eclles lui sont toutes également inconnues, ce ne pourrait

étre que par le hasard le plus heureusx qu’il se déterminerait
pour celle-13,

Ce serait, sans doute une pudrilité d'éviter constamment l'usage
du calcul différentiel , sur-tout lorsque son secours peut introduire
dans les récherches des simplifications de quelque importance ;
cependant , il ne peut étre que trés-utile a celui qui veut entreprendre
des études mathématiques séricuses et profondes de ne recourir aux
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precédés de ce calcul quiaprés avoir épuisé toutes les ressources
de l'analise ordinaire.

D’un autreeoié, beaucoup de gens pour quiles études mathématiques
ne sont gu’accesso.rcs, et qui n'ont pas conséquemment le loisir de
les pousser fort loin, peuvent désirer néanmoins de re pas demceurer
toui-2-fait étrangers a ccriaines théories , sans s‘engager  dans
I'etude des brauches de  caleul desquelles on a coutume de
les faire dependre. Ainsi, c’est travaiiler également dans lintéret
des uns et daps celui des autres que de ramener aux simples élé-
mens le plus grand nombre de ces théories, sur-tout lorsqu’il est
possible de le faire sans en accroiire la complication d’'une maniére
trés-notable.

Parmi les théories que 'on regarde communément comme le plus
essenticllement dépendontes du calcul différentiel, celle de la cour- -
bure des lignes et surfaces courbes tient sans contredit un des premiers
rangs , soit en clle-méme , soit par la multitude des importantes
applications dont elle est susceptible. Il peut donc n’étre pas sans
intérét de montrer comment cette théorie peut étre rendue indé-
pendante des méihedes diflérentielles ; et tel est 'objet que nous
nous proposons dans l'essai que I'on va lire.

SectioNn L
Des contacts du premier ordre.

Dans cette premiére section, nous ne nous occuperons uniquement
que des contacts simples ou du premier ordre ; c’est-a-dire que nous
traiterons successivement des tlangentes et normales aux courbes
planes , des tangentes et plans normaux aux courbes & double
courbure , ct enfin des plans tangens et des normales aux surfaces
courbes.

§ 1.

Du contact dans les courbes planes.

En prenant pour origine des coordenndes rectangulaires l'un
quelconque des points du périmétre d'une courbe plane quelconque,
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son équation peut toujours , soit immédiatement , soit, s'il est néces<
saire , par le développement en série, étre amenée i cette forme

o=Ax+F:r_y+Gx"+......
™ (1)
+By S Hy s

A la vérité, lorsque le second membre de cette équation sera une
série indéfinie, elle ne pourra étie employée , avec séeurité, que
pour des portions de la courbe assez voisines de lorigine pour
que la petitesse de x et de y rende la série convergente ; mais
ce n’est justement que pour de telles portions de la courbe que
nous nous proposons d’en faire usagé. A

Lorsqu'on ne considére donc que des points de la courbe trés—
voisins de lorigine, on peut, sans crreur sensible , négliger, dans
Iéquation (1), les termes de plus d’une dimension en z et y; d'out
il suit que, plus la portion de courbe que I'on considérera, a
partir de l'origine, sera petite, et plus aussi cette courbe approchera
de se confondre avec la droite ayant pour équation

Az-+By=o ; (2)

la courbe se confondra donc rigoureusement & [origine avec cctte
droite , qui en indiquera alors exactement la direction ; c’est donc
une Zangente a la courbe, en ce point. (*¥)

(® Nous avons choisi les notations de maniére a lier ce qui concerne les.
courbes planes avec ce qui est refatif aux courLes & double courbure et aux.
surfaces courbes.

(**) Cette maniére simple et naturelle de parvenir & la tangente paraft tout-
a-fait conforme & lidée quon doit se faire d’une telle droite. Si cependant
quelques ecprits peintilleux n’en étaient pas pleinement satisfaits, ils pourraient.
la remplacer par ce qui suit.

Soit menge par lorigine une seécante a la. courbe ; elle pourra généralement
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On voit donc que , Jorsqu'une courbe passe par [origine, on

obtient I'équation de sa tangente en ce point ,en égalant simplement

& zéro, dans léquation de la courbe , I'ensemble des termes d'une
seule dimension par rapport aux coordonnées.

Ayant ainsi la tangente a la courbe par l'origine, rien n’est plus

facile que d’obtenir sa normale par le méme point ; I'équation de

cette normale sera

rencontrer cette courbe en plusieurs aulres points. Soient x, y les coordonnées
de celui d’entre ces points qui est le plus voisin de Porigine, et soit r sa dis=
tance a cette origine, ou la corde interceptée. Soient posés

x=ar , y=br; O)
a cause de
xefyr=r:, ®
nous aurons
a*4-br=1 0]

et I'équation de la sécante sera

= 7

a

En meltant les valeurs () dans I'équation (1) , elle devient , en divisant par r,
o=(Aa<+-Bb)4-(Fab-4-Gab+Gaz4-Hb>)r-4uurne §

dquation qui nous donnerait les diverses valeurs de r; mais pour que la sécante
devienne tangente , il faut que r soit nul; on doit donc avoir alors

Aa<4-Bb=o0 ,
qui, combinée avec (&, donne, comme dans le texte ,
Ax<4-By=o0 .

Rien ne serait plus facile que de ramener i celte méthode la théorie de

points singuliers des courbes ; mais ¢ela nous entrainerait beaucoup trop loin,
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=] A

. (3

N

S’agit-il de mener une tangente ou une normale & une courbe
donnée , par l'un quelconque (2, y/) de ses points; on y transportera
d’abord lorigine , en changeant respectivement, dans ’équation de
la courbe, z, y en 2’4z, y/-y; I'ensemble des termes indé-
pendans de x, y, dans I'équation résultante , égalé & zéro, sera
Péquation de condition , exprimant que le point (27, ¥/, est sur
la courbe ; et 'ensemble des termes d’une seule dimensicn ; par rapport
aux mémes variables, égalé pareillement & zéro, sera I'équaticn de -
la tangente & la nouvelle origine , rapportée aux nouveaux axes;
on la rapportera aux axes primitifs, en changeant respectivement,
dans son équation z, y en x=—a/, y -y’

On remarquera, au surplus, que, dansle développoment des puis-
sances et produits de puissances des binomes 2~+2 , y/-fy, on peut
rejeter les termes de plus d'une dimension en # , §, attendu qu’on n’est
point dans le cas d’en faire usage. Si l'on rejette également les termes
indépendans de ces deux variables, et que, dans ce qui restera, en
change respectivement z , y en z—a’ , y—y’ , on aura immédiatement
Péquation de la tangente au point (2/,4/), rapportée aux axes
primitifs , et de laquelle on conclura facilement celle de la normale
par le méme point.

Appliquons ce procédé a Dellipse ayant pour équation

x? y? .
— +-3-2- =1. (4)
Nous aurons d’abord
@)
a3 + bz =1

puis, en développant;
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o= il +'——-I)+24,x+uu
+ 2L

Parce que le point (27, y/) est sur la courbe, on aura

x/2 y/z
ot = )

et 1’équation de la tangente, rappertée aux axes primitifs, sera

xf (ot ===xc’) +y’<7'—y’)

a? b2 =03

ou simplement, en vertu de la relation (5)

o T 0)

On en conclura, pour celle de la normale par le méme point

2! !
—=r= (7)

a!
C I%

Nous ne disons rien du cas ol il s’agirait de mener & une courbe
une tangente ou une normale par un point qui lui serait étranger,
attenda que ce second probléme se raméne facilement au premier.

On voit , par ce qui précéde , que si les équations de deux
courbes qui passent par origine se ressemblent seulement dans les
termes du premier ordre, quelque différence qu’elles puissent pré-
senter d’ailleurs , ces courbes auront en ce point la méme tangente
et la méme normale. Il n’est pas méme nécessaire pour cela que
les deux équations se ressemblent dans leurs premiers termes ;
car, si

Tom. 1X, 19
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o=az+fxy+gz 4. g ®
~+by S B i

est I'dquation d’une courbe , I'équation de sa tangente par l'origine
sera

az+4-by=o0 ; (9)

de sorte que cette courbe aura la méme tangente en ce point que
la courbe (1), si senlement I'équation (g) a lieu en méme temps
que léquation (2); c’est-d-dire, silon a seulement

A B

—_—=. 10

— =3 (10)
Deux courbes quni ont une méme tangente en un méme point
sont dites elles-mémes zangente 1'une & Vautre en ce point. On
voit, par ce qui précéde , qu’une infinité de courbes différentes
peuvent avoir la méme tangente et la méme normale au méme point.

Si Ton veut mener une tangente A la courbe (1) par le point
(#/,y’), on écrira d’abord

o=A(z/+a, 4 F(2/4+2)(y'+y)+GCla'42)+..

+B(y'-y) +H(y'+y) -+
puis , en développant,
o=dAus/+Faly'4Ga*+-..... a4+ B gt
—~+By! +H)f/’+.....+ Fy'} A4 Fa' | Ao

G262/ A2Hy/ | ..

on aura donc, en premier lieu, V’équation de condition,
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o=Adz'+Fz'y'+Ga'*4-....
By’ +Hy"+....

(11)

et équation de la tangente sera
0='(A+Fy’+20x’+....)(x-—x’)+(B+Fx’+zHy’+.;.,)(y—-y/)

ou, en ajoutant le double de I'équation (11) et réduisant

o=A(x42)+Flay'4y2/)t2Gzz/+......
+B(y-+y’) +2Hyy .. )

Quant & 1’équation de la normale, par le méme point , elle sera (3)

Ko ! - y—yl B 3
A4 Fy4aCaitos By FadraHyito (13)
§. 2.

Des contacts dans les courbes & double courbure.

En prenant pour origine des coordonnées rectangulaires l'un
quelconque des points d’une courbe quelconque  double courbure ,
on peut toujours , soit immédiatement soit, s’il est nécessaire,, par
le développement en série, amener la courbe a étre donnée parle .
systéme des deux équations

o=Az+Dyz+4Gz'+.7
~+By--Ezz=Hy*+-.... (1)
+C’;+ny + Kz
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o=dAd/z+D'yz+G'y*+...
+Bly+Ezat By | (1)
A Clz Flay4-K' 2.

ou par toutes autres équations déduites d’une combinaison quelconque
de ces deux-la. A la vérité , lorsque les seconds membres de ces
dquations seront des séries indéfinies , elles ne pourront étre em-
ployées , avec sécurité, que pour des portions de la courbe assez
_ voisines de l'origine pour que la petitesse de 2. y et z rende les
séries convergentes ; mais ce n’est justement que pour de telles portions
de la courbe que nous nous proposons d’en faire usage..

Lorsqu'on ne considére donc que des points de la courbe trés-
voisins de l'origine, on peut, sans erreur sensible , négliger, dans
les équations (1, 17), les termes de plus d’'une dimensionen z, y, z;
d’od il suit que, plus la portion de’ courbe que I'on considerera,
a partir de l'origine , scra petite , et plus aussi cette courbe approchera
de sc confondre avec la droite ayant pour équations

A z4B y+C z=o , ()

&

A'z+4-Bly4-C'z=o0 ; (2)

elle se confondra donc rigoureusement & 'origine avec cette droite,

qui en indiquera exactement alors la direction; c’est donc une
tangente 4 la courbe , en ce point. (*) :

(* En posant
e=ar , y=br, z=cr , (@)
avec la condition

obiter=t O
qui donne ’
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On voit donc que, lorsqu'une courbe & double courbure passe
par lorigine, on obtient les equations de sa tangente en ce point ,
en cgalant simplement & zéro, dans les équations de la courbe,
lemam&/e des termes dune seule dimension par rapport aux
coordonnées ’
Ayant ainsi la tangente 3 la courbe ; par Porigine , rien n’est
plus [facile que d'obtenir son plan normal, par le méme point;
I'équation de ce plan sera

(BC'—CB/)z4-(CA/—~AC\y4(AB'—BANz=0 .  (3)

Tout plan qui passc par une tangente & une courbe & double
courbure est dit tangent & cetic courbe ; et toute droite tracée sur

wipyspz=rs @)

les équations

z >
=T @

els

seraient celles d’une sécante quelconque , menée par l'origine, et r serait la
longueur de la corde interceptée , a partir de ce point. Mettant ensuite les
valeurs (2) dans les équations (3, 1/) et divisant par r; elles deviendraient

o=(A a+4B b+ Cc)4(D be+E catF ab4-G a*-Ho*~4-K c*)rda
o=(A'a~+Bb~4C'c)4-(D'bc+E'cat-Fab4Gla*~-Hb2-Kic)r=fiin.

mais , pour que lasécante devienne tangente , il faut qu’on ait r==0; on a donc

aussi alors

Aa+Bb-4Cc=o , Aat-Bo4Cle=0o ;
dquations qui, combindes avec (4), donnent, comme dans le textey
Ax4By4Cz=0o ,

A'x+By4Czi=o ;
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son plan normal, par le point ou ce plan coupe la courbe, en
est dite une normale ; d'ou Von voit qu’une courbe i double cour-
bure a, en chacun de ses points, une infinité de normales et de
plans tangens.

S’agit-il de mener une tangente ou un plan normal & une double
courbure , par l'un quelconque (#/, y/, 2/) de ses points; on y
transportera d’abord lorigine, en changeant respectivement, dans
les équations de la courbe , #, ¥, z en z/~4=z, y'+y , z/4z;
Yensemble des termes indépendans de z, ¥, z dans les équations
résultantes , égalé & zéro, donnera les deux équations de condition,
exprimant que le point (z/, y/, z/) est sur la courbe ; et I’ensemble
des termes d’une seule dimension , par rapport aux mémes variables
égalé pareillement & zéro, dans les mémes équations, donnera les
équations de la tangente a la nouvelle origine, rapportée aux nouveaux
axes ; on la rapportera aux axes primitifs , en changeant respectivement ,
dans ses équations, z,y, z en ¥—a’, y—y', z—z'.

On remarquera encore ici que, dans le développement des puis~
sances et produits de puissances des binomes a/4z , vty , 24z,
on peut rejeter les termes de plus d’une dimension en 2z, y, z;
" et que, si l'on rejette en outre les termes indépendans de ces variables ,
en changeant respectivement , dans ce qui restera, x, y, z en 2—a’,
y—y’, z—2/, on aura immédiatement les équations de la tangehte
au point (2/, y/, 2/), rapportée aux axes primitifs, et desquclles
on conciura facilement celle du plan normal, par le méme point.

Appliquons ce procédé & la_courbe intersection de deux ellipsoides
de méme centre dont les diamdtres principaux coincident. Soient
leurs équations

x? yl z? - ;
TRt T =0 4)
x3 2 - g2

—_——T . /
P Bl (49

nous €crirons d’abord
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@4x)2 | ) | @)
a? + b2 + €2, -
(x/4-x)2 +(7"+}')’ +(z’+z)‘__

—-_—TI
a’3 blz cla >

puis, en développant;

al3 y'2 z! 2x/x | 29/ 22/z
o= —+b2+_:_—1)+a J’J’+___ -

x/2 /2 zI3 2x/x 2 2zlz
_-(alz L+_—l>+ +yy+ +-u.

cl?

Parce que le point (2/, /', z/) est sur la courbe , neus aurcnms
d'abord les deux équations de condition

x!2 Jr/z 2/a
w T = )
‘Tl: JA/z zln
wTmtaE=n )

et les équations de la tangente , rapportée aux axes primitifs,
seront

! (ge—=x') + ylly—y") +z’(z-—-z")

o 22

az 02 c?

%

&/ (xm-=2') z!(zw=z’)

Y=y —
ala + hia + =0 3

¢ ¢l3

ou simplement, en vertu des conditions (3, %)

x'x v

z'z
+ 4 =, Q)
a? o2 €2
N ) oy
e )
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On en conclura (3), pour celle du plan normal par le méme
point

——ey e At P
X% J528/2 (6202 mp2cr2) Y=y Feacta(a2bir=b2qr2) z—z
J

n2g'? (b 3‘;/2—026,,)

7 PR )]

On voit, par ce qui précdde, que, si les équations d’une courbe
passant par lorigine ressemblent sculement & celles d’une autre
courbe , passant également par lorigine , dans les termes du premier
ordre ; quelque différence qu'elles puissent présenter d’ailleurs, ces
deux courbes auront en ce point la méme tangente et le méme
plan normal. Il n’est pas méme nécessaire pour cela que les deux
couples d’équations .se ressemblent dans leurs premiers termes;
car, soient

o=az-{dyz4ga*+....
+oytezzthy . Z 8)
dczt-fayt-ha 4. S

o=a/z4dyz4-g'z* ..
by A elzaA-ly . ) (8)
Hc'z - faytkiz ..

les deux équations d’une courbe, les équations de sa tangente par
Vorigine seront ’

a zbytcz=o0 , ()
a'zby4clz=o0 ; 9"

de sorte que cette courbe aura, en ce point, la méme tangente
que la courbe (1), si seulement les équations (9, 9’) ont licu
en méme temps qué les équations (2, 2/) ; ce qui entraine Ia
double condition

BC’
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o (T Y Al 4 r__BA! 3
BC'—C3 - CA—AC - AE'—BA . (IO)
bl b/

cQlm—ui! ad!—od!,

Deux courbes qni ont une méme tangente en un méme point sont
dites ellcs-mémes zangentes I'une & laatre en ce point. On voit,
par ce qui précéde, qu’une infinité de courbes différentes peuvent
avoir la méme tangente et le méme plan normal au méme point.

Si Ton veut mener wune tangente 4 la courbe (1, 1/) par le ‘
point (z/, ¥/, 2/), on écrira d'abord

o= A(@/+2)+D(y'+ y) (' F2)+Cla'F-z)4.....
By ) E (s )/ ey oo
o O/ m-2)FF (@' 4-2)(y by ) K (e A2) A
o =A@/ +x)+Dy'Fy) (&' +2)+ 62"+ .
By y) B o'z ) a)+Hy by et
SRACE DD UCE oY CE DR o
Développant et posant les équations de condition
o=Az'+4Dy’z/4-Gz"* ~+....
“+By'+Ez/z'+Hy/*+ ... (11)
- Cz' Faly/ + K ...
0= A5/ D'y 2/ 4Gz .....
+-Bly! Bzl gl Hly o, ) (117)
F-Clal - F iy A K 2/ ..

les équations de la tangente, rapportée aux axes primitifs , seront

domn. IX. 20
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o=(A+Ez'+Fy't26x/¥....)(2—2z)
4+ (B4+Fz/'4-Dz/4-2Hy!¥-.....)(y—y"3

~+(C+Dy'4-Ez’'~4-2Kz/4....)(z—2')

o=(A'+E'z+-Fly!+}26/z'+...) (—2") '

HBAP A DS 2 Hy e Xy —y)

+(C/4-D'y'El /2K 4....) (2—27)

ou’, plus simplement, en leur ajoutant respectivement les produits
par 2 des équations (11,11/), et réduisant

o= A(z42")4D{yz'}zy) +2Gxz/+.....
+B y+y)E(za/+22)4-2Hyy/ 4. -\ (12)
+C(z4-z)HFlxy' 4 yz') 42K zz/+-.....
o=A x4z )+D yz'+-2y V426 35'+-..... l
~+B/(y+y )4+E/(za/ 4w )2 Hlyy'F-..... 7 (12/)

F-C' 242 )V Fl(ay'fyx )+ 2K/ 22/,

Quant a Péquation du plan normal‘par'le méme point, elle
sera (3) ‘
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+[2(BK/—K B/)—(CD'—DC/)] o/~ ...

(BC'—CB)+[ (BE'—EB/—(CF'—F€/) jz’+.....’ (#—2")]

—[2(CH'—HC)—(BD'—DB"]y/-....

S +[2(C6G'—GC)—(AE'—E 4] a/ ...

+(CA'~AC) [ (CF—FC)—(AD'—DA"]y 4.l y—yt)b=0. 15)

—[2(AK'—K A\ —(CE'—EC/)]2/+,

A{2(AH —HA")—(BF —FB/]y'+

o

+(AB'—BAy4+[ (4D'—DA"Y—(BE'—EB') z’+....l (z—2
-—-[2(BG’-——GB’)-—(AF/—FA’)]z’+....§
§. 3.
Des contacts dans les surfaces courbes.

En prenant pour origine des coordonnées rectangulaires I'un quel-
conque des points d’une surface courbe quelconque , on peut tou-
jours, soit immédiatement soit, s'il est nécessairc , par le dévelop-
pement en série , amener cette surface A étre donnée par I'équation

o=Ax+Dyz4Gx*+....
“+By+Ezx+Hy*~+.... (1)
+Cz4Fry+4+Kz*-...

A la vérité, lorsque le second membre de cette équation sera une
série indéfinie , elle ne pourra étre employde , avec sécurité , que
pour des portions de la surface courbe assez voisines de l'origine
pour que la petitesse de z , y et z rende la série convergente ;
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mais ce n'est justement que pour de telles portions de la surface
courbe que nous nous proposcns d’en faire usage.

Lorsqu'on ne considére donc que des points de la surface trés-
votsins de lorigine , on peut, sans erreur sensible , négliger, dans
I'équation (1), les termes de plus d’nne dimension, en x, ¥, z;
d’ou 11 suit que , plus la portion de surface que l'on coosiderera ,

a partir de l'origine , sera petite , et plus aussi cette surface approchera
de se confondre avec le plan ayant pour équation

Az4-By+Cz=o0 ; (2)
elle se confondra donc rigourensement A Iorigine avec ce plan,

gui en indiquera alors exactement la direction ; ¢’est donc un plan
tangent a la surface courbe en ce point.

Soit une auntre surface courbe quelconque

passant aussi par
Porigine , dont I'équation soit

o=axtdyz-gx*4-....
Fbytezx by ... > (1)
oz faytkz ..

Cette surface coupera la premidre suivant une courbe plane ou 2
double courbure, dont la tangente & Porigine sera (§

2 ) donnde
par le systeme de Péquation (=) et de l'¢quation

ar+by-t-cz=o . (2)

Or, que la surface (1) varie comme on voudra, ea passant tou-
jours par Vorigine, la section qu’elle détermine sur la surface (1)
variera également ; mais, des deux équations (2, 2/), il n’y aura
au plus que la dernitre qui variera; d'ou l'on doit cgvz(.lme que

, par 'un queiconqne des points d’une surface courbe , on trace,

a \olonté , tant de courbes qu'on voudra , sur ‘cette ‘surface , les
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tangentes & toutes ces courbes en ce point seront toutes situdes sur
le plan tangent 4 la surface courbe en ce méme point.

De [d on peut conclure encore que si, par un méme point d'une
surface courbe , on trace sur cette surface deux courbes quelconques,
et qu’on leur mene ensuvite des tangentes en ce point, le plan
qu'on fera passer par ces deux tangentcs sera le plan tangent a la
surface courbe en ce méme point.

On voit, par ce qui préctde , que, lorsqu'une surface courbe
passe par l'origine , on obtient ['équation de son plan tangent , en
dgalant simplement & zéro, dans son équation , lensemble des termes
d'une seule dimension , par rapport aux coordonnécs.

Ayant ainsi le plan tangent a la surface courbe par lorigine ,
rien n’est plus facile que d’obtenir sa normale par le méme point;

les équations de cette droite sont

—

: (3

x
A

[

z
C

Toute droite mende sur le plan tangent & une surface courbe,
par son point de contact avec elle, est dite tangente a cette surface
en ce point; et tout plan passant par sa normale en est dit un
plan normal, pour le méme point; d'ot Pon voit qu'une surface
courbe a, en chacun de scs points , une infinité de Zangentes et
de plans normaux.

Sagit-il de mener un plan tangent ou une normale & une surface
courbe , par 'un quelconque (a7, y/, z/) de ses points; on y trans-
portera d’abord l'origine, en changeant respectivement , dans son
équation x, ¥, z en a4z, y'4y, z4z; I'ensemble des termes
indépendans de x, y, z, dans I'équation résultante , égalé 3 zéro ,
donnera I'équation de condition , exprimant que le point ( 2/, y/, 2/)
est sur la surface courbe ; et l'ensemble” des termes d’une scule
dimension , par rapport aux mémes variables , égalé pareillement 2

j

z¢ro , dans la méme équation, sera Féquation du plan langent 3
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la nouvelle origine, rapporté aux nouveaux axes ; on le rapportera
aux axes primitifs , en changeant respectivement, dans son équation ,
x,y,z en —z' , y—y', z—2z.

On voit, au surplus , que , dans le développement des puissances
et produits de puissances des binomes a/4z , y/'+y , 2/+z , on
peut rejeter les termes de plus d’une dimension en x, y, z; si
I'on rejette, en outre, les termes indépendans de ces variables; en
changeant respectivement, dans ce qui restera, z , ¥, z en x=—2z/,
¥—y’, z—z/, on aura immédiatement I'équation du plan tangent
au point (2, y/, z’), rapporté aux axes primitifs, et de laquelle
on ‘conclura facilement celles de la normale au méme point.

Appliquons ce procédé i Vellipsoide ayant pour équation

x2 2 z2

— r——

— = (4
bz A =1I. \")

Nous écrirons d’abord

oI e 2 B e O

az b c? ’

puis , en développant,

=(F+E )+ 2”+2""+...

Parce que le point (27, ¥/, z’) est sur la surface courbe , nous
aurons d’abord I'équation de condition

z/3

I T 5

et I'équation du plan tangent , rapporté aux axes primitifs, sera
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w’(x_x/) +y/(y__‘yl) + z/(z_—z’) -
bo

=o0;
a2 c3?

ou simplement, en vertu de la condition (4),

x/x 'y zl'z
=t ra= (©)

on en conclura (3) , pour les équations de la normale , par le
méme point

—! RV !
alx X =bﬂy y =cnz 2 ) (7)

xl yl z!

On voit, par ce qui précéde , que , si les équations de deux
surfaces , passant P'une et l’autre par l'origine, se ressemblent seu-
lement par les termes du premier ordre, quelque différence qu’elles
puissent présenter d’ailleurs, ces deux surfaces auront en ce point
le méme plan tangent et la méme normale. Il n’est pas méme
nécessaire pour cela que les deux équations se ressemblent exac~
ment dans leurs premiers termes;’ car, soient (1, 17) les équations
dont il s’agit; (2, 2/) seront respectivement les équations des plans
tangens aux deux surfaces; et paur que ses plans se confondent,
il suffira qu’on ait

A _ B __ (o]
2 b ¢

: (8)

Deux surfaces courbes qui ont un méme plan tangent en un méme
point sont dites elles-mémes Zangentes 'une & l'autre en ce point;
et il en est de méme pour les courbes résultant de leur section
par un méme plan quelconque conduit par ce point. On voit donc
qu'une infinité de surfaces différentes peuvent avoir le méme plan
tangent et Ja méme normale au méme point.
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Si 'on veut mener un plan tangent & la surface (1), par le
point (a/, ¥/, #/), on écrira d’abord

o=A(&' &) A Dy 4y )& 42)FCla' oY A
By p)H B2 a/--a)+ H(y -y oo
4 C (2 2)+Fa'42) (y/ ) +K (14 7) e
Développant et poéant Péquation de condition |
o=Az/'4Dy’z/+Gz"*+.....
~By/-Ez7' z/~-Hy/*+-..... (9)
+Cy/+Fz'y/ 4+ K7 4.0

L’équation du plan tangent, rapporté aux axes primitifs , sera
o=(A+E{’+Fy/+2Gx’+ ..... Ya—a')
(B~ Fa/+-Dy/2Hy/ ..o X y—y")
(CA-Dy B2 K /X 3— 1)
ou, plus simplemeﬁt , en lui ajoutant le double de I'équation (q)
et réduisant
0=A(x+x’)+l7(y{’+{y’)+2‘Gxx/—|—.....
+B(y+y)+EGza'+ag/ +2Hyy' + . 2 (10)
F ORI Flay +yz)t2Kzz F e
Quant aux équations de la normale, par le méme point, elles seront (3)

am—s! b

A4-Ez'4-Fyl4-2Gal-....

— y=y .

= y (11)
B4-Fa'-Dz/-2Hy'4....

Zw—z!

= C¥Dy4-EaaKato |

Sectron 1I.
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SEcTIiOoN Il

Des contacts du second ordre.

Dans la précédente section , nous n’avons présenté aucun résultat
qu'on ne sache aujourd’hui obtenir sans rien emprunter au calcul
différenticl ; et nous n’avons fait simplement qu’offrir, pour parvenir
3 ces résultats, des mcthodes qui nous paraissent, 3 la fois, plus
simples et plus naturelles que celles qu’on a coutume d'uppliquer
a leur recherche. Il n’en sera pas de méme, dans la présente section,
ol il sera question des centres et rayons de courbure , cercles et
plans osculateurs, développées et lignes de courbure; et il n’est pas
a notre connaissance que ces divers objets aient été traités jusqu’ici,
d’une maniere simple, par les procédés de I'analise ordinaire.

Nous suivrons d'ailleurs ici la méme marche que dans la section
précédente ; c’est-3-dire , que nous traiterons successivement de 1'os-
culation dans les courbes planes, dans les courbes & double courbure

et dans les surfaces courbes.

§ 1.

De Posculation dans les courbes planes.

Si I'on congoit qu’une droite indéfinie se meuve sur le plan d'une
courbe plane donnée quelconque , de manitre & lui étre constamment
normale ; la courbe enveloppe de l'espace parcouru par cette droite,
c’est-d-dire , la courbe a laquelle , dans son mouvement, elle ne
cessera pas d’étre tangente, est ce qu'on appelle la développée de
cette courbe donnée, laquelle, & Iinverse, e¢n est appelée la déve-
loppante. On les a ainsi nommées parce que, si l'on congoit quun
fil soit d’abord appliqué le long de la développée , et qu'on le
développe ensuite en le tenant toujours tendu, Pun de ses points
parcourra évidemment la développante. Quant & ses aulres points ,

Tom, I1X ,n.° ¥V, 1.5 novembre 1818. arx
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ils parcourront aussi des courbes qui auront la méme développée
que la courbe donnee d’ou l'on voit qu’a une méme courbe donnée
doivent toujours répondre une développée unique et une infinité
de développantes.

En considérant sous ce point de vue la génédration des courbes
planes, on voit qu’en chaque point d’une courbe , le point décrivant
se trouve dans le méme cas que s’il allait décrire un cercle ayant

pour centre le point de contact de la développée avec la normale
au point dont il sagit,

et pour rayon la distance entre ces deux
points.

Ce cercle est ce qu'on appelle le cercle osculateur de la

courbe en ce point : son centre et son rayon sont dits le centre

et le rayon de courbure de cette courbe pour le méme point
parce qu’en'effel la courbe a en ce point une courbure égale
celle de son cercle osculateur.

On est donc ainsi conduit a considérer toute courbe plane comme
formée d'vue infinité d’arcs de cercles infiniment petits se touchant
consécutivement , et variant sans cesse de rayon ;

; auquel cas la
développée est le licu des centres de ces arcs. Cela revient encore

4 considérer la courbe proposée comme Venveloppe de I'espace par-
couru par un cercle mobile , de rayon variable, dont le centre parcourt
sa développée et dont le rayon croit ou décroit constamment d’'une
quantité égale a la longueur parcourue sur cette derniére courbe
par son centre.

Lorsqu'un cercle cst simplement tangent 3 une courbe en Vun
de ses points; c'est-a-dire, lorsque le cercle et la conrbe ont en
ce point une méme tangente , ce qui exige que ce cercle ait son

centre sur la normale ; si d’ailleurs ils sont situés

du méme co6té
de cette tangente commune, ou

, en d’autres termes, s'ils ont leurs

courbures tournées dans le méme sens ; le cercle passera entre la

courbe et sa tangente, ou bien ce sera au contraire la courbe qui
passera entre lui et cette tangente , suivant que la courbure de
cette courbe , en ce point, scra plus grande ou plus petite que
celle du cercle, c’est-a-dire, suivant que le rayon de courbure dé



ET DES SURFACES COURBES. 151
la courbc en ce point sera moindre ou plus grand que celui du

cercle

; mais , lorsquiil s’agit du cercle esculateur , la courbure

variable de la courbe se trouvant, au point de contact, exactemeny
égale a la sienne, cette courbure devra Jui étre supérieure d’un
coté de ce point et inféricure de l'autre ; ainsi, tandis que , d’'un
coté du point de contact, le cercle passera entre la courbe et sa
tangente , de lautre c6té de ce point, ce sera la courbe , au
contraire, qui passera entre cette tangente et lui; c’est-a-dire, que
le cercle osculateur de l'un des points d’une courbe coupe et touche
2 la fois cette courbe en ce point (*); il est évident, en outre ,
quil est le seul , entre les cercles tangens, qui puisse étre dans
ce cas.

Soient mendes a une courbe quelconque deux normales , 'une fixe et
l'autre mobile; elles toucheront sa développée en deux points distincts et
se couperont elles-mémes en un troisieme point. Mais , a2 mesure quela
normale mobile se rapprochera de la normale fixe , deux de ces points
tendront sans cesse a se confondre avec le troisiéme, et ils se confon-
dront, en effet, en un seul qui sera le centre de courbure répondanta la
normale fixe , lorsqu’enfin la normale mobile se confondra tout-a-fait
avec elle. Le calcul, appliqué & ces considérations, va nous conduire
simplement 4 la déterminatiou du centre de courbure d'une courbe
quelconque en l'un quelconque de ses points, d’ou il nous sera
facile de conclure le rayon de courbure et le cercle osculateur.

Reprenons 1’équation

o=Az+t+FzytGz* ...

» (1)
~+By +Hy* ...

(* 1l faut en excepter les points de la courbe ol sa courbure est maximum
ou minimum ; mais ceci rentre dans la théorie des points singuliers, que nous
avons précédemment dcarlée,
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exprimant une courbe plane quelconque , passant par l'origine des
coordonnées. Nous avons vu ( SECT. I, §. 1. ) que les normales

cette courbe par lorigine et par le point quelconque (27, y/) , avaient
respectivement pour équations

x Y
ZA=E (3)
L et o _ y—yl . 3
A4-Fy'42 Gl ... - B-Fu/4-2Hy'4-.... ’ (1 )

sous la condition

o=Ax/~+-Fa'y'4Gz'*+-.....

(12)
By +Hy /...

On aura donc l'intersection des deux normales en considérant comme
équations d'un méme probléme déterminé en =z, y, soit le systéme de
deux équations (3, 13) soit tout systéime de deux équations déduites
d’une maniere quelconque de la combinaison de ces deux-la. En y
chassant les dénominateurs elles deviennent respectivement

Ay—Bz=o (14)
(A4-Fy'+ 2Gx'4....)y —(B-Fa'4-2Hy'+....)
=(A4Fy/42Gz'4.....)y/ —(B4-Fa'4-2Hy'4...)a’ ;

dont la dernitre, en vertu de l'autre , se réduit 2

(Fy!~-2 Gx’—-l—)y —(Fz'42Hy!4-....)x

(15)
=(Ad+Fy'+262'+ ..y = B4Fa/~2Hy'4 .. )z

on pourra donc , dans la recherche de Vintersection des decux

normales , substituer au systéme des équations (3, 13) le systeme
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des équations (14, 15), lesquelles , pour ce point, ont lieu en méme
temps qu’elles.

Mais , 4 mesure que le point ( 2/, y/) se rapprochera de l'origine ,

)

la derniére tendra sans cesse 4 se réduire 3

(Fy'+2Ga’)y — (Fa/s-2Hy ) v=Ay'— Bz’ ,
ou

(A—Fy~+-2Hz)y’=(B—Fa+426G)z/ ;

2

d’'un autre c6té, dans les mémes circonstances, I'équation de con-
dition (12) tendra de plus en plus a devenir simplement

Ax/4By'=o ;

au moyen de laquelle on pourra éliminer & la fois 2/, y/ de l'autre
qui se réduira ainsi &

A(A—Fy+aHz)A-B(B—Fz+26Gy)=o ,

ou bien
(2dH—BF)z4~(2BG—AF)y+4(A4*+B*)=o0 . (16)

“Ainsi, lorsque les deux normales seront fort voisines, leur point
d’intersection sera sensiblement donné par le systéme des deux équa-
tions (14, 16); il le sera donc rigoureusement , lorsque ces deux
normales se confondront, puisqu’alors 7, y/ seront rigoureusement
nuls ; il est donc vrai de dire que le centre de courbure & l'origine
est donné par le syst¢me des deux dquations (14, 16). On en
tire, pour les coordonnées de ce centre

= AA*4-B" _ B(A>+4-B2) (17)
T 2(GBi—FAB4-HA» ' y= 2(GB3—FAB4-HA? /

Ce sont donc 1d aussi les équations du point de contact de la dé-
veloppée avec la normale a lorigine.
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Si l'on représente par 22 le rayen de courbure de la courbe (1),
pour le méme point, on aura

B=y gy

c’est - A - dire , en substituant

.R —_ (A:+Ba)%
3(Coi—FAB4HAD) (18)

En conséquence, le cercle osculateur aura pour équation

(AABOAAB)
cBi—rabgra —° - O) (19)

'+

(" Si l'on mene une sécante 4 une courbe plane par deux de ses points
et si l'on concoit que I'un de ses points se rapproche sans cesse de lautre,
en suivant le cours de la courbe, et en entrainant avec lui la sécante qui tournera
ainsi autour de ce dernier ; lorsqu’enfin ces deux points se confondront, la sécante
deviendra tangente.

Pareillement , par trois points quelconques pris sur une courbe , soit fait passer
un cercle ; et concevons que le second de ces points vienne joindre le premier ,
en suivant le ‘cours de la courbe, et entrainant avec lui le cercle qui consé-
‘quemment variera & la fois de situation et de grandeur ; lorsque ces deux points
se confondront, le cercle sera simplemnte tangent & la courbe. Si ensuite le
troisieme point vient joindre les deux autres, sous les mémes conditions, lors-
quil les aura atteints , le cercle tangent sera osculateur.

Voild pourquoi on considére la tangente et le cercle tangent comme ayant
avec la courbe deux points communs qui se confondent en un seul; et voila
aussi pourquoi on considére le cercle osculateur comme ayant avec la courbe
trois points communs qui se confondent également en un seul.

Cela revient évidemment & considérer la courbe comme un polygone d’une
infinité de cOtés ; sa tangente comme le prolongement de l'un de ses cdtés;
ses cercles tangens comme des cercles qui ont ce c6té pour corde commune ;

et erfin son cercle osculateur comme un cercle qui passe par trois de ses sommets
conséculifs,
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Veut-on présentement avoir le centre et le rayon de courbure
d’une courbe quelconque, en 'un quelconque (z/, ¥/) de ses points;
on y transportera d’abord Porigine , en changeant respectivement ,
dans I'équation de cette courbe z , yen 2/4z, y’4y; on [era ensuite
le développement des puissances et produits de puissances de ces
deux binomes, dans lequel on pourra négliger d’ailleurs les termes
de plus de deux dimensions en 7, y. Egalant ensuite 2 zéro I'ensemble
des termes indépendans de ces deux variables, on aura I’équation
de condition qui exprime que le point (2/, y/) est surla courbe;
le surplus de I'équation transformeée se trouvant alors de méme fornie
que Véquation (1), on égalera séparément , dans l'une et dans
l'autre, les coelliciens des termes correspondans ; ce qui donnera
les valeurs de 4, B, F, G, H, en fonction de 2/, y/ et des
constantes renfermdes dans Déquation de la courbe dont il s’agit.
Ces valeurs étant enfin substituées dans les formules (17, 18), le
centre ct le rayon de courbure de la courbe pour le point (27, y/)
se trouveront déterminés. Mais , comme le centre de courbure se
trouvera rapporté aux mnouveaux axes, il faudra, pour le rapporter
aux axes primitifs , changer respectivement, dans ses équations,
x,y en x—al, y—y’.

Appliquons ce procédé a Pellipse déja considérée précédemment,
et ayant pour équation

—Z—;+%z- =1, 4)

Nous aurons d'abord

Is;

(x'4-x)2 + 2

a? bz
développant et posant, comme alors , la condition

x/3 2

— 4
a3 b T ©®)

?

il viendra
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—_— _z
o—azx—{- x

2y’ X
-+ . }'+;; ¥
Comparant cette dernitre équation , terme 3 terme , avec I'équa-
tion (1), nous aurons -

2x/ ‘
A=e— , F=o0, G= — ,

a? az

2y/
Be= — ’ H= — H

ABr= 4( +2),

B—FAB4-HA= — “—+-§—)

/

ou simplement, en vertu de la relation (5)

CB*—FAB+HA = ;%. :
substituant enfin ces valeurs dans les formules (17, 18) nous au-
rons , d’abord pour le rayon de courbure,

3

/2 12 3
R:a’b’(%—‘-{:)' A (2.0)

et ensuite pour les équations du centre de courbure , rapporté aux

axes primitifs ,
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x/2 y/z xl2 ')"2
T—x/=—big/{ AR o — K )
a4 + b+ ’ y=y'= a_y at -t be

. . -
de ces dernitres, on tire, en transposant ,

x/z /z a’z /2
et (24 TN, pmpd e (Z42)]

mettant pour 1, dans I'une et dans l'autre, sa valeur donnée par
la relation (5) , elles deviendront, en réduisant,

Q2e==bh2 /3 D 2wy 2 _)”3
xr= — = y= > ” : (2:2)

et telles sont les équations du centre de courbure, pour le point
(#/, y/) de la courbe (4), réduites d leur forme la plus simple.-

Ayant ainsi obtenu les équations du centre de courbure d’une
courbe , pour I'un quelconque (27, y/) de ses points, rien n’est
plus aisé que d’obtenir I'équation de la développée de cette courbe ;
il ne s’agit en effet pour eela que d’éliminer x/, y/ entre les équa-
tions de cc centre et l’équation de condition qui exprime que le
point (#/, y/) est sur la courbe.

Ainsi, dans I'exemple qui vient de nous occuper , on tire des.

i, _ ax .:. __y_’_ by ; )
a -_'\az--—b2 ? b bremg? ’

]

équations (22)

valeurs qui, substituées dans I'équation (5), donne pour Iéquation

de la développée de la courbe (4),

(az_b2> (az__bz P=I (23)

Si I'on prend pour axe des x la tangente méme 2 la courbe par
I'origine; auquel cas l'axe des y en sera la normale, I'équation
Tom. 1X. 22
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-

Ax+By=o0 (2)

de cette tangente devant glors se réduire 3 y=o0, on devra avoir

A=o0 ; ainsi, si I'équation d'une courbe passant par l'origine est
de la forme

o=By+4-Fazy+Gz*+-...

(24)
+Hy* ..

I'axe des z sera une tangente d la courbe, le centre de courbure
répondant & lorigine sera sur l'axe des y, et le rayon de courbure
répondant au méme point aura (18) pour expression

= - (25)

Si l'on veut savoir comment la courbe est eoupde par une paral-
Itle 3 la tangente trés-voisine de cette droite, il faudra supposer
y sensiblement nul dans l'équation (24), ce qui, en ne faisant
attention quaux deux plus petites valeurs de 2, réduira sensible~
ment cette équation 3

Gz*=o ;

ce qui revient 2 dire qu’une corde infiniment petite, paralléle & la
tangente , a son milieu sur la normale (*).
Les principaux points de la théorie que nous venons de développer

sont un des résultats les plus importans des travaux gdométriques
de Huygens.

(* On aurait pu parvenir immédiatement et d’'une maniére trés-simple 3 la

formule (25), en supposant dés abord laxe des x tangent A la courbe |
on .A4=o0,
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.
§. 2.

De losculation dans les courles ¢ double courlure.

Concevons que, par la tangente en 'un des points d’une courbe
4 double courbure, ct par un autre quelconque des points de cette
courbe T'on conduise un plan, lequel scra tangent & la courbe au
premier de ces deux points; concevons que le dernier de ces deux
points se rapproche peu & peu du premier, en suivant le cours de
la courbe, ct en entrainant avec lui le plan tangent, qui tournera
ainsi sur la tangente. Lorsqu’enfin le dernier’ point aura atteint le
premier, le plan tangent se trouvera avoir acquis une position dé-
terminde trés-remarquable , et dépendant uniquement de la courbure
de la courbe au point de contact. C’est dans cette position qu’il est
dit le plan osculateur de la courbe en ce point.

On voit par la génération du plan osculateur que, pius un arc
de la courbe, puis & partic du point de contact , sera petit et plus
aussi cet arc approchera de se confondre avec ce plan, et consé-
quemment d'étre un arc de courbe plane tracé sur le plan oscu-
lateur ; cet arc se confondra donc tout-3-fait avec ce plan, lorsque
sa longueur sera nulle,

On est donc conduit far-1a & considérer toute courbe & double
courbure comme formée d'une infinité d’arcs de courbes planes ,
consécutivement tangens les uns aux autres , et situés dans des plans
variant sans cesse de position. Les plans de ces arcs sont les plans
osculateurs de la courbe en ses différens points. Il est évident , d’apreés
cela, qu’une courbe plans n’a, pour tous ses points, qu'on seul et
méme plan osculateur, qui est le plan méme de cette courbe.

Appliquons le calcul & la recherche du plan osculateur, suivant
le mode de génération que nous lui avons assigné, Reprenons les

deux équations générales
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o=Az+Dyz+Gx*~4-....
+By+Ezz+Hy*+.... (1)
+Cz+Fay+Kz*—-...
o=A'z4-D'yz4-G'y*~4-....
+B/y+E’zx+H’a:’-;-«... (1)
+Clz4-Floy+K/z* ...

d’une courbe & double courbure passant par l'origine des coordonndes ;

et dont nous avons trouvé la tangente au méme point donnée par
les deux équations

A z+4+B y+C z=o , (2)

A'z+ Bly4+Clz=o0 ; (2)
Par cette tangente et p.ar un point quelconque (27, ¥/, z/) pris

sur la courbe , soit fait passer un plan ; I'équation de ce plan
sera évidemment

(A'x'+B'y!4-C'z") (Ax~+By+4Cz)=(Ax'}+By'4-Cz') (A x+B'y4C'z). '(22)

En effet, il est d’abord évident que cette équation est celle d’un
plan ; il n’est pas moins évident que ce plan contient la tangente
a lorigine , puisque le systtme des équations (2 , 2/) satisfait a
Péquation (22) ; enflin, cette équation (22) est encore satisfaite par
les valeurs @/, y/, z/ de x, ¥, z; ce qui prouve que le plan
qu'elle exprime contient le point (a7, y/, z/).

Or, comme ce point est sur la courbe (1, 1/), on doit avoir,

comme nous l'avons d¢ji observé, dans la précédente section, les
deux équations de condition
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0= Aa/4-Dy’s/+ Gl ...
By B/l By ) (11)
F-Cz'4-Fa'y’ 4 Kz2/*}....
0= A'w/+Dy/s'+G'zl .....
~Bly/E 2/ 2~ H y/ ... (117)
G/ Py A K 2

au moyen desquelles I'équation (22) pourra étre changde en celle-ci

(Dly’ /4Lt 2/ 2! Flacly! 4 Gloct 2= H y 124 K/ 2121 ) (A 4B y4-C )
23)
=(D y/z/E z'a/4-F aly' 4G x/>4-H y/24-K z/2-f=se00) (A/2~-B'y—4-C'z) « §
Mais , 3 mesure que le point (2/, ¥/, 2/) se rapprochera de
lorigine, cette équation tendra sans cesse & se réduire 2
(Dy’z’+E’z’x’+F’ xfy’-{-G’x”-!— If/),f:_}_Klzlz) (A x4-B _y+C z)
(2
=(D y'z/4-E z'a/4-F &/y'~-G x/24-H y2+4-K 2/?)(A'x+4-Bly4-C'z) ;
d’an auire cote, dans les mémes circonstances, les conditions {11, 11/)

approcheront de plus en plus de pouvoir étre remplacées par les

sulvantes
A 2'4B y'+C z/=o0 , (25)
Ax!4-Bly4-Cl2/ =0 ; (259

tirant donc de ces dernidres les valeurs de a7 , y/, pour les substituer
dans lautre , qui deviendra ainsi divisible par 2z, et posant,

pour abreger,
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BC/'—CB!=a , CA'—AC'=b , AB'—~BA'=c¢ , (26)
Dbc+E ca+FabA-Ga*+Hb+K c>=L (27)
D'bc+E'catFlab+Gla*+4-H'b*~+-K'e*=L' (277)

ce qui donnera

Aa+Bb~+C€c =o ; (28)
Aa'4-By/4-Cc’=o0 , (28"

on aura enfin , pour ’équation du plan esculateur de la courbe
(1, v/), & Torigine des coordonnées
L/(Az+-By-+-Cz)=L(A'z4B'y+C'z) ,
ou encore
(AL'—LA")zx+(BL/—LB)y~+(CL'=—LC)z=0 . (29)
On peut donc, A lorigine, considérer la courbe (1, 1/) comme
une courbe plane située dans ce plan; sa normale, pour le méme

point , sera donc lintersection du méme plan avec le plan normal
(3) dont l’équation , au moyen des abréviations (26) , devient

ax+tby-t-cz=o 5 (30)

¢liminant donc successivement &, y, z entre les équations (29, 30),
on pourra prendre pour équations de cette normale

x i4
b(CL/—LC!y—c(BL/~LB"y ~ ¢(AL/==L.A"y=a(CL/'—LC’)

= £ . (31)
a(BL/—LB/) —b (AL/—LA')
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S'agit-il présentement d’obtenir le plan osculateur de l'un quel-
conque (z/, ¥/, z/y des points d’une courbe & double courbure
quelconque, on transportera d’abord 'origine en ce point , en chan-
geant respectivement dans les deux équations de la courbe, 2, ¥, z
en 2/4-xz , y'+y, 2/+z. On développera les puissances et produits
de puissances de ces binomes , négligeant, dans le développement
les termes de plus de deux dimensions en 2, y, z. Egalant cosuite
a zéro, dans chaque équation Uensemble des termes indépendans de
ces variables , on obticndra ainsi les deux dquations de condition
qui exprimeront que le point (2/, y/, 2/) est sur la courbe. Les
équations transformées se trouveront ainsi réduites & la forme des
équations (1, 1/). Egalant donc respectivement les coefliciens des
unes & ceux des autres, on obtiendra ainsi les valeurs de

A4, B, ¢, D, E, F, ¢, H, K

3

A4, B, ¢, D, E, F, 6, H, L/,

en fonction de &/, y/, z/ et des constantes des équations de la courbe
on en conclura ensuite les valeurs dea, 4, ¢, L, L’; et substituant
le tout dans I'équation (29), elle deviendra celle du plan oscu-
lateur demandé, rapporté & la nouvelle origine ; de sorte que, pour
le rapporter a Vorigine primitive, il faudra changer respectivement
Z,y, z en a—z’ , y—y/ , z—=2/,

Appliquons ce procédé a la courbe donnée par les deux équations

424422 —4rz—3r*=o0 , (32)
4y* 42 +4rz—3r*=o0 . (32%)

C’est la courbe suivant laquelle se coupent les surfaces de deux’
cylindres droits égaux , d’'un rayon égal a r, et qui se pénctrent
de telle sorte que leurs axes sont 4 angles droits, et que 'axe de
chacun est tangent 3 l'autre. Nous aurons d'abord
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4z -z H4(2/2) — hr (2 +2)—3r=0 ;
4y Ay 4 e e 4r(z+z)=3r =0 ;
développant et posant les deux conditions ]
42/*4=(22'—1)*—4r*=0 , (33)
hyP-(aa/ 1) — hri=o ; (33)
les équations transformées seront
= 2z/x-}a* o =oy/y--y*
—l—kzz’——r)z—l—z' +(2z’—i-r)z+z’
qui , comparés respectivement aux équations (1, 1’y, do/nneront
‘A=2x' , B=0, C=az/=—r , D=0 , E=o , F=o0 , G=o0, H=1 , K=1,
‘A'=o0, B=2y', Cl=2z/4r, D/=o0 , E'=o, F=o, G'=1, H=0, K'=1;
de 14 on conclura
a=—2y/(22!—r) ; b=—2a'22/%7r) ,  c=4aly’";
et, par suite, en ayant égard aux relations (33, 33/,
L = jy*[ 424 (22/ —r)*]=16r2y/* ,

L'=4a"[ 4y"* 4 (22/4-r)*]=16r2" ;

_d’ol encore
AL/ ~LA' =--32r*a" , BL/—LB/=w32r*y/%

CL/—~LC/=16r*[22/(a/* —y/*)omr (225 /%) ]= 241 3 4272 ~T1") ;

en
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en conséquence, I'équation du plan osculateur au point &/, ¥/, z')

rapporté a lorigine primitive sera (29)
4a’* (w—a/ =4y (y—y ) 8r(42/*—r*)z—2)=0. (34)

Si la courbe était plane, le plan osculateur devrait toujours étre
le méme, quel que put étre le point (2, ¥, 2/) , dont consé-
quemment les coordonnées ne devraient point paraitre dans ’équation
de ce plan; il faudrait done qu’elles pussent en étre chassées, au
moyen des seules conditions qui expriment que le point (a/,y/, z/)
est sur la courbe ou, ce qui revient au méme , il faudrait qu’en
y substituant pour a/, y/ leurs valeursen 2/, tirées de ces mémes
équations , les termes en z/ disparussent d’eux-mémes par I'égalité
de leurs coefficiens & zéro. Ce serait donc aussi par un pareil calcul
que Pon parviendrait & assigner les relations qui doivent exister
entre les coefliciens des équations de deux surfaces, pour qu’elles
se coupassent suivant des courbes planes.

Si T'on congoit gu’une droite indéfinie se meuve dans I'espace de
maniére a demeurer constamment tangente & une méme courbe A
double courbure , cette droite décrira une surface développable dont
la courbe donnée sera l'aréte de rebroussement ;-cette surface scrait
aussi évidemment I’enveloppe de l’espace que parcourrait un plan
indéfini, constamment osculateur de la courbe ; c’est-a-dire, que ce
plan, dans toutes ses positions , ne cesserait pas de lui étre tan-
gent ; cette méme surface , licu des tangentes, peut aussi étre dite le
lieu des développantes , attendu que les développantes de la courbe ,
qui sont eomme elle & deuble courbure , s’y trouvent toutes situées.

Lorsque la courbe donnée est plane, il est évident que les deux
nappes de la surface développable .doivent se confondre en un seul
plan qui sera le plan méme de la courbe, ou du meins celui de
Fune -de ses parties, si elle en a plusicurs ; Féquation de cette
surface devra donc étre décomposable en facteurs du premier degré,
ou du moins admettre un ou plusieurs facteurs de ce degré, ce

Tom, IX. 23
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qui offre un nouveau moyen de reconnaitre si une courbe est plane,
du moins forsqu’on a I'équation de la surface développable dont
elle est I'aréte de rebroussement,

Or, lorsquon a les équations d’'une tangente en un point quel-
conque (2/, y’,z’) d'une courhe , rien n’est plus aisé que d'obtenir
I'équation de cette surface ; il ne s’agit en effet , pour cela , que
d’éliminer 2/, y/, 2/ eitre ces deux équations et les équations de
condition qui expriment que le point (/, y/, z/) est sur la courbe.

Ainsi, par exemple , les deux équations de la tangente & la
courbe (32, 32/) au point (a/, ¥/, 2/) étant

4xx’+(;z—r) (22'—r)—4r*=o0

dyy't(aatr)zdtr)—dr=o

~e

si 'on en tire les valeurs de 2/, y/, pour les substituer dans les
équations (33, 33/) lesquelles deviendront ainsi

{(2z—=r)(22'—r)—4r*} ;+4x’(2.z’—r)’— 16r°2*=o0 ,
{(aztr)(zarbr)— 4 by ¥ 2z r =16y =0 5

Pélimination de 2/ entre ces deux dernitres conduira i 'équation de
la surface développable dont la courbe (32, 32/) est 'aréte de
rebroussement. '
Puisqu’au point de contact une courbe quelconque est sensible—~
ment une courbe plane , tracée sur son plan osculateur, elle doit
avoir, en ce point, un centre de courbure et un cercle osculateur
situés sur ce plan et qu’on peut désirer de connaitre : cherchons-le
d’abord pour la courbe (1, 1/), & l'origine des coordonnées. Pour
cela concevons qu'un plan indéfini se meuve dans l’espace , de
maniére. 3 demeurer constamment normal 3 une méme courbe i
double courbure ; I'enveloppe de I’espace qu’il parcourra ou, ce qui
revient au méme, la surface développable a laquelle il sera cons-
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tamment tangent pourra étre nommée le licu des axes de courbure
de la courbe proposée , parce qu'en effet ses élémens rectilignes
seront les axes des arcs de cercles infiniment petits dont cette courbe
poarra étre congue comme formée. Chacun de ces élémens rectilignes ,
lequel sera, en méme temps , la ligne de contact de la surface
développable avec le plan normal, coupera donc le plan osculateur

au centre de courbure cherché.

Imitons cette génération par le calcul, et cherchons , pour la
courbe (1, 17} qnel est I'axe de courbure qui répond 2 lorigine ;
le plan normal en <ce point, au moyen des abréviations (26), a pour

son équation, comme nous l'avons déja observé,
ax+by-+cz=o . (30).

Au moyen de ces mémes abréviations , 1’équation (13} du plan normal,,
en un aulre point quelconque (2’ , ¥/, z’), devient (SECT. I, §.2),

sous les conditions (11, 117),
( — [(CD/'—DC")—2(BK'—KB/)] e/ uue. )

! 4a4[(BE/—EB)—(CF/'—FC/)]a/4... ) (x=2')
| —[(BD/—DB/)—2(CH/—HC/)]y e

[ —[(AE/—EA))—2(C6'—6C)]a/ . ]

b+ EF—FC)—(AD'~D Ay | (g b =0 - (31}
A [(CE—EC/) = a( AK'—K A")] 2/ o |
—[(BF'—~FB)—2(AH'—HA ]y, ]

~+y +e+[(4D/'—~DA')—BE/—EB/)]&/+.. ; (c—2') |

+[(AF'~FA')—2(BG/mmGB] &/ Fue )

Ces deux plans se coupent suivant une droite déterminde par le
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systtme de leurs équations, laquelle doit devenir 'axe de courbure
A Dorigine , lérsque les coordonnées a2/, y/, z/ deviennent nulles.
Mais , dans la recherche de lintersection de ces deux plans on
peut substituer a I'une ou & autre de leurs équations, toute éc—lua—
tion résultant de leur combinaison. On pourra donc , en particulier,
oter de I'équation (31) les termes de I’équation (Jo). Si ‘ensuite on
transpose , et qu'on suppose le point (z/, ¥/, z/) trés-voisin de
Vorigine , ce qui permettra de ne conserver que les termes d’une
seule dimension en 2/, ¢/, 2/;.cette équation deviendra

—[(CD/'—DC/)—2(BK'—K B/)] 2
+[(BE'—EB/)— (CF/'—FC')] x’! x
-[(BD'—DB’) —2(CH/'—HC/]y""
—[(AE/ —E4")—2(C6/—GC')] o

-+ [(CF —FC')— (AD’—DA/)]y/l y ¢ =axl4by'4cz ;- (32)
+[(CE'—EC)—2(AK'—K )]
—[(BF/—FB/y—2(AH/—HAN]y’

*+\+-[(4D/—DA'y— (BE/—EB’ ]2/} z
+[(AF/—FA’)—2(BG'—GB’)]a’

mais , dans les mémes circonstances , les €équations de condition
(11, 11’) deviendront sensiblement

Az'4-By'+Cz'=o0, (25)
A’z’+ B’y’+C’z’=o ; (25l)

desquelles tirant les valeurs de 2/, 9/ en 2/, pour les substituer
dans (32), gelle-ci deviendra, aprés la division par z-,
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§ —[{CD'—DC)—~(BK'—KB')]c

¢ +[(BE'—EB/)— (CF/\—FC)]a)x
{ +[(BD'—DB)—a(CH/'—HCN]b
—[(AE/—EA)—2(CC'—GC]a

+H H[(CF—FC)— (AD'—DANb )y § =a+bter.  (33)
A+ [(CE'—EC—2(AK'~KA")]c
—[(BF'—FB')—2(AH/—HA']b

+ +[(AD'—DA")— (BE'—EB)]c)z
—-l—[(AF/—F/;/)—z(BG’—GB/)]a

Voila donc I’dquation d’un plan, coupant le plan fixe (30) suivant
une droite qui, lorsqu’on supposera 2/, y/, 2/ nuls, deviendra 'axe
de courbare qui répond & 'origine ; mais cette supposition: ne change
rien 4 I’équation (30); donc le plan qu’elle exprime contient déji
V’axe de courbure ; il contient donc aussi le centre de courbure ;
puis donc que ce centre est dailleurs, ainsi que mous l'avons déja
dit sur la droite dont les équations sont

x
b(CL/—LC/y=c(BL/~LB/)

— 14
T ¢(AL/=LA!y=—a(CL'—LC’) > (1)

z
= @(BL/—LB') =} (AL/—LA')

L

11 est vrai de dire qu'il est & lintersection de ce plan et de cette
droite,
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Résolvant donc les équations (31, 33) par rapport & 7', 5, £,
en ayant égard aux relations (26, 27, 27/), nous aurons , pour les
coordonnees du centre de courbure qui répond a Porigine

(@245 4-c?){b(CL/=C'L)—c(BL/—B/L}
2{(AL-A'L/) (AL - A'L)y}(BL-B'L’y(BL/-B'L)4(CL-C'L/)(CL/-C'L),

r=—

_ (a34-b24c?) ‘(AL = A'Ly—a(CL/—C/LY}
y= 2{(AL~A'L!) (AL~ A'L)4(BL-B/L/y(BL/-B'L)4(CL-C'L/)(CL/-C'L)

(34)

- a’-}-b’-{-c’)’a(BL B/LY=b(AL/—A'L)}
- 2{(AL-A'L/ )AL/~ A'L)4(BL-B'L/)(BL/- B' L)} (CL~C'L/(CL/- CL)

or, en désignant par R le rayon de courbure, on a
B=\wpyta s

il viendra donc, en substituant , et ayant toujours égard aux re-
lations (26)

R= (@ Fb2gen) 5{ (AL'—A'L)=-!‘-(BL'—-—B/L)2+(CL'--C’L)} (35)
2{(AL-A'L)) (AIJ—A’L)+(BL—.D’L’) BL-B'L,A(CL-CL)(CL/-C'L) §

Est-il question présentement d’avoir le centre et le rayon de
courbure d’une courbe quelconque a double courbure , pour un point
quelconque (2/, y/, z/) de cette courbe ; on' changera, dans ces
équations z, ¥, z en 2’4z , y/+y, 2/4z; on développera en sup-
primant les. termes indépendans de z, y, z, et négligeant ceux
de plus de deux dimensions par rapport & ces variables ; comparant
alors. les équations transformées aux équations (1, 1’); et supposant
quelles sont les mémes, on ‘en conclura les valeurs de 4, 4/, B,
B/, C, C,.... etpar suite (26, 27, 27/) celles de e, b,c, L, L’ ;
ces valeurs , substituées dans la forinule (35) , feront connaitre la
longueur du tayon de courbure ; en les substituant ensuife dans
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les formules (34), et y changeant z , y, z en g—a' , y—y/, 2=—z/,
on aura la position du centre de courbure. *).

Si, par le centre de courbure, on congoit une droite perpen=
diculaire an plan osculateur , cette droite sera l'axe de courbure,
pour le point (2, ¥/, z/), si, entre les équations de cet axe et
les équations qui expriment que le point est sur la courbe, on
élimine 2/ , y/, z’/, l'équation résultante en zx, y, z sera celle
de la surface développable lieu des axes de courbures. (**)

(*> Si l'on méne une sécante & une courbe & double courbure par deux
quelconques de ces points dont 'un soit fixe, et que l'autre se rapproche peu
4 peu de celui-la en suivant le cours de la courbe , et en entrainant avec lui
la sécanle , qui tournera ainsi autour du premier de ces deux points, lorsque
ces deux points se confondront en un seul, la sécante sera alors nne tangentes

Par trois points pris arbitrairement suc une courbe 4 double courbure , et
"dont un est supposé fixe , soit fait passer un plan, et sur ce plan soit décrit
un cercle , par ces trois points ; si l'on concoit que l'un des points mobiles
se rapproche peu & peu du point fixe, en suivant le cours de la courbe et
en entrainant avec lui le plan, ainsi que le cercle qui, sans quitter ce plan
variera sans cesse de grandeur et de situation ; lorsque les deux points se con-
fondront , le plan et le cercle seront tangens & la courbe. Si le troisieme point
vient joindre les deux autres, sous les mémes conditions , lorsqu’il les aurs
atleints , le plan el le cercle se trouveront osculateurs de la courbe.

Voild pourquoi on a coutume de considérer la tangente et le plan tangent
3 une courbe & double courbure, comme ayant avec celte courbe deux points
ccmmuns 'qui se confondent en un seul; et c’est pour cela aussi que I'on cona
sidére le plan et le cercle osculateurs de la méme courbe comme ayant avec:
elle trois points communs qui se confondent également en un seul.

Cela revient évidemment i considérer la courbe comme un polygone gauche
d’une infinité de cbtés : le prolongement de I'un d’eux est la tangente ; te &
plan qui passe par cette tangente est un plan tangent; et le plan et le cercle
qui passent par trois sommels consécutifs sont le plan et le cercle osculateurs.

(**) Si la courbe est plane, cette surface sera cylindrique; si la courbe est
tracée sur une sphére , cette surface sera conique et aura pour centre le centre
méme de la spheére 5 généralement parlant , son aréte de rebroussement sera
le licu des centres des sphéres osculatrices de la courbe ; cest-d-dire , des
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Si, entre les équations du centre de courbure pour le point
(#/, ¥/, 2/) et les deux équations qui expriment que ce point appar-
tient & la courbe , on élimine 2/, y/, 2/, les deux équations en
Z,y, 2z quon obtiendra seront celles d’une courbe i double cour-
bure lieu des centres de courbure quon appelle encore ici la
développée (*) de la courbe proposée, parce que si l'on eongoit
qu'un fil, d’abord maintenu sur toute sa longueur, se développe
de maniére 3 lui demeurer constamment tangent, un des points
de ce fil tracera dans I'espace la courbe dont il s'agit.

§. 3.
De Posculation dans les surfaces courbes.
Reprenons I'équation ( SECT. 1, §. 3)
o=Az+Dyz+Ga*+-....
Byt Ezznt-Hy . 2 0
- Cz-Fry+4-Kz*—-... S

@une surface courbe queleconque passant par l'origine ; pour la-
quelle nous avons trouvé \1’équation du plan tangent en ce point

sphéres qui ont avec cette courbe quatre poits communs se confondant en un
seul, ou encore des sphéres qui passent par quatre sommels consécutifs de
1a courbe, eonsidérée comme polygone d'une infinité de c8tés ; mais la recherche
de cette aréte exige la considération des termes du troisitme ordre des équa-
tions de la courbe.

(*y A proprement parker , une méme courbe 3 double courbure a une in-
Enité de développées , toutes situdes sur la surface développable lieu de ses
axes de courbure ; mais nous ne mentionnons ici que la développée principale ,
en renvoyant, pour le surplus , & V.dpplication de Vanalise & la géométrie de
MoNgE,

Az
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A z4B y~4-C z=o0 , (2)

et celles de la normale correspondante

ATFTc- )

Nous avons vu en outre que, pour un autre point quelconque
(2, ¥/, ) de la méme surface, I'équation du plan tangent était

o=A(z~+42")+D, yz/+zy/)+2éxx’ +..
+B(y+y")+E(za'+2z )2 Hyy'4-... ) (10)
FC(z4-2")-Flay'4ya')+2Kz2/ 4.
et celles de la normale

i
A4-Ez!4-Fyl4-2Gxl-....
/
—_ I~ (I )
B+4-Fx'+4Dz/~42Hyl!+4-.... ‘
Z—z/

- C+Dj’+E$’+2KZ’+.. .

Ie tout sous la condition
o=Az'¥D'yz+Gz*+-....;
~+By/-Ez' 2/4Hy/*+..... (9)
+C/4Fz'y/+ Kz +..... |
Si d’abord nous supposons que le plan tangent passe par I'axe

des z, auquel cas cet axe sera une tangente quelconque i la surface
Tom. I1X. 24
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z ne devra point entrer dans I'équation (2) , et par conséquent on devra
avoir A==0 ; I'équation (1) deviendra donc

o =By+4-Dyz+Ga*+-.....
4 Cz+4+Ezz++Hy*+-..... (12)

+Fay+Kz3*4-.....
celle du plan tangent

By+Cz=o, (13)
et celles de la normale

i z .
X=a , —E-='E. (14)

Faisons tourner le systéme des plans coordonnés autour de la tan-
gente, c'est-a-dire , autour de l'axe des #'; en posant

y'::-uCes',v-pSinp R
(15)
z=uSin.p4¢Cosp ;

p étant Pangle de 'axe des z avec celui des y. 1l viendra en substituant
dans (12) et ordonnant,

0=(CSinp+4BCos.p)u-+{D(Cos.p—Sin.*p)wm2(H—K)SinpCos.plus
~-(CCes p—BSin.p) ~-(ECosp—FSinplvx
- (ESin.p+-FCos.p)ru

+Gx*+-.... !
~+(HCos.*p-K Sin.’p4-DSih.pCos.p)u* ... (16)
=+ (HSin.*p-4-K Cos.p=DSinpCos.p)p s,

. - - / -
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Si, dans cette équation , nous faisons #==0, I'équation résultante en
v ct z sera celle de l'intersection de la surface par le plan des vz,
c’est-a-dire, par un plan quelconque passant par la tangente &, si
nous laissons p indéterminé, Cette équation est

0=(CCosp—BSin.p)—(ECos p—FSin pvx—4Gz*4 ...
~(HSin.*p~+K Cos.’p— DSin. pCos.p)p ...

(17)

en la comparant aux formules (24, 25) du premier § de la présente
section , et désignant par r son rayon de courbure 4 l'origine nous
aurons
__ CCos.p—BSin.p
r= —_—2_0—_ .

(18)
Quant & son centre de courbure, ses équations seront évidemment

CCos.p—B.Sin.
z=o0 , u=o, ;::—__BE—I_P . (19)

Mais des équations (15) on tire

z=2Sinp-+yCos.p ;
(20)

y=7Cosp—ySinp ;

donc , en repassant au systéme primitif, on pourra dire que le centre
de courbure, a Vorigine, d’une section faite par un plan passant par
I’axe des &, supposé une tangente a la courbe, et faisant un angle
quelconque p avec le plan des 2z, est donné par les trois équations

CCos.p—BSin.p (21)

x=o0, 2zSinp-tyCosp=o0, zCosp—ySinp= e ;

desquelles on tire

CCos p=BSinp _, CCos.p—=BSinp
=0, y=— = Sinp , s=—4—pr—" Cosp. (22)
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Si, entre les deux dernidres on élimine p , I'équation résultants
en y et z sera, sur le plandes yz, celle du lieu des centres de cour-

bure, & l'origine, de toutes les sections planes faites par la tangente
Z : cette équation est

2G(y’+z‘) =By+4Cz, (23)

c'est-h-dire , celle d’un cercle passant par l'origine, ayant pour
tangente en ce point l'intersection de son plan avec le plan tangent

N . . " 2102
a la surface, et ayant pour diamétre B

2G

Ainsi , de toutes les sections faites & une surface courbe quel-
conque , par des plans passant par une méme tangente quelconque
& cette surface, celle qui a, au point du contact de cette tan-
gente , le plus grand rayon de courbure est celle qui est faite par
lé plan normal. De plus, les centres de courbure de toutes les autres
pour le méme point , sont sur une méme circonférence y ayant pour
tangente , en ce point, une nouvelle tangente & la surface perpen-
diculaire & la premiére; d’ow il suit que les cercles osculateurs de
toutes ces sections, pour le point de contact de la tangente , appar-
tiennent & une méme sphére, tangenie en ce point a la courbe,

De ce beau théoréme , d&t & Meusnier, il résulte en particulier,
que conngissant sculement , pour un méme point quelconque d'une
surface courbe, les centres de courbure de deux sections faites dans
cette courbe , par des plans passant par une méme tangenie, on
peut facilement avoir le centre de courbure de toute autre section
Saite par un nouveau plan passant également par cetle tangente,
Ce centre sera , en effet, l'intersection du plan coupant avec une
circonférence passant par le point de contact et par les deux centres
déjd donnés.

Nous venons d& voir de quelle manitre les sectigna planes obliques
sont lides entre elles et & la section normale , lorsque les plans
coupant passent par une méme tangente. Examinons présentement
la relation qui existe entre les diverses sections normales,
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Nous pouvons , dans cette nouvelle recherche , admettre une sim-

plification de plus : nous pouvons supposer quon a pris pour plan

des xy le plan tangent lui-méme, en prenant son point de contact

pour origine ; ce qui fera coincider la normale avec l'axe des z;

I'équation (2) devra donc simplement se réduire & z=o0, on aura
donc, & la fois 4=o0, B=o0, ce qui réduira I'équation (1) &

o=Cz+Dyz+Ga*+ ...
~+Ezz+Hy*+4- ... (24)
+ny+Kz‘+ s

Afin d’obtenir une section normale quelconque, faisons tourner le
systtme des plans coordonnés d’une quantité indéterminée p autour
de I'axe des z. Posens pour cela '

x=1Cos p—uSinp ;

o
y=1¢Sinp+uCosp

¢t=ySin. p-}+2Cosp ,
(26)
u=yCos.p—z Sinp .

par la substitution des valeurs (25) dans I'équation (24), la surface
se trouvera rapportée aux axes des Z, z, z; si ensuite on veut avoir
son iutersection avec le plan des 7z, que on peut considérer ici,
a raison de I'indétermination de p, comme un plan normal quelconque,
il faudra, dans cette équation transformée , suppeser Z=o; mais il
revient au méme, et il est en méme temps plus court de faire im-

I & o . 3 Y . 1
médiatement cette supposition dans les formules (25), c’est-a-dire ,

de faire dans (24) B
x=1Cosp , y=iSinp ;

ce qui donne, en ordonnant ,
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o C1+(DSinp~-ECos p)iz-4-K7* ...,

(7)
+(GCos.p~+HSin.’p4-FSin pCosp)t*~4-....e

telle est donc I'équation de la section faite dans la surface (24) par
un plaa normal 7z , faisant avec le plan des 7z un angle (iuelconque )

En comparant cette équation (27) aux formules (24, 25) du pre-
mier § de la présente section, on aura pour le rayon 7 de courbure de

X

cette courbe A lorigine,

c
= i . . (28)
2(GCos.2p4HSin.2p+FSin.pCos. p)

Si l'on fait varier la valeur de p, celle de r variera aussi; afin
donc de savoir comment ces deux variables sont lides entre elles, con—
cevons que, pour chaque position du plan Vnormal, on porte sur la
tangente correspondante , dont I'éguation est

. yCos. p—aSinp=o0 , (29)

de part et d’autre du point de contact, des parties proportionnelles
3 la racine quarrée der, c'est-a-dire, des parties moyennes propor-
tionnelles entre r et une longueur constante et arbitraire a; et cher-
chons la courbe sur laquelle les points ainsi déterminés se trouveront
.situés ; en désignant par x, ¥ les coordonnés de cette courbe, nous
-devrops avoir les deux équations ‘

a=y/a.Cosp , y=y/ar.Sinp , (30)

exprimant a la fois que le point (z, y) est sur la tangente (29) et
que sa distance au point de contact , c’est-a-dire, a lorigine est
‘égale 3 /.

Prenant donc, dans ces deux derniéres equatlons, les valeurs de
Sin. p, Cos. p, pour les substituer dans la formule (28), nous aurons
pour I'équation dc la courbe demandée
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Ga*~+Hy*+Fzy=::C ; (B1)

équation d’une ligne du second ordre rapportée a son centre.

Ainsi, 8¢ ayant fait @ une surface quelconque, par un quelconque
de ses points, une suite de sections normales, coupant le plan tan:
gent suivant une suite de tangentes & ces sections , on prend sur
chacune de ces tangentes, de part et d’autre du point de contact,
des longueurs proportionnelles auz racines carrées de rayons deé
courbure gu’'ont au point de contact les sections qui leur correspondent
les points ainsi déterminés sur le plan tangent appartiendrort d une
ligne du second ordre, dont le point du contact sera le centre.

Cette courbure a été remarquée pour la premiére fois par M. Dupin,
qui I'a nommée indicatrice; il a appelé tangentes conjuguédes et tan-
genies principales, les tangentes dirigées suivant ses diaméetres eon-
jugués et principaux, et il a de méme appelé sections conjugudes
et principales, rayons de courbure conjugués et principaux les sections
et rayons de courbure qui répondent aux tangentes conjugudes et
principales.

Il suit de cet élégant théordme que tout ce qui est vrai du rapport
des quarrés des diametres conjugués ou principaux d’une ligne da
second ordre et des angles que forment entre eux ces diamétres doit
étre vral aussi du rapport des rayons de courbure des sections nor-
males, conjuguées et principales, et des angles que forment éntre
cux les plans de ces sections; ainsi, 1.° Jles rayons de courbure qui
répondent aux sections principales sont lun plus grand et lauire
plus petit que tous ceux qui répondent auz aulres sections normales’;
2.° la somme de deux rayons de courbure conjuguds , pris avec
leurs signes , est toujours constante et égale & la somme des rayons
de courbure principauz ; 3.° le produit de deux rayons de courbure
conjugués et du quarré du sinus de langle des plans qui les con-
tiennent est aussi constant et égal au produit des rayons de courbure
principauz. 4.° Les rayons de courbure des sections qui jfont, de
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part et d'autre, arec les plans des sections principales des angles
égaux sont .égaux ; etc, eic, elc.

Il avoit déja été remarqué par Euler que Tes sections normales de
plus grande et de moindre courbure se coupaient perpendiculaire-
ment ; il avait méme montré que les rayons de courbure de ces
deux sections étant connus, on en pouvait déduire celui de toute
autre section normale donnde de position ; mais il était réservé a
M. Dupin de ramener toute cette théorie &4 une autre extrémement
simple et beaucoup plus généralement connue.

A raison de l'indétermination de A, une méme surface a, enlun
guelconque de ces points, une infinité d'indicatrices différentes ; mais
la forme de I’équation (31) montre que toutes ces indicatrices sont
semblables et concentriques; et conséquemment elles ne cessent pas
d’avoir leurs diamétres proportionnels aux racines quarrés des rayons
de courbure des sections correspondantes. Si en particulier on suppose
a==0, l'équation (31) devient simplement

Ga*--Hy*~+-Fay=o0

et exprime alors un point ou deux droites, c’est-a-dire, une section
conique de dimensions infiniment petites; mais, comme c’est aussi
a cela que se réduit Déquation (24), lorsqu’aprés avoir supposé g
tout, & fait nuls, on suppose ensuite x, y infiniment petits, il en
faut conclure que Ze point de contact d'une surface quelconque avec
son plan tangent est une section conique de dimensions infiniment
petites, dans laquelle les diamétres soni proporiionnels aux racines
quarrées des rayons de courbure des sections normales correspon=
dantes. Cette remarque est due 3 M. Dupin.

-Si I'on prend les deux sections principales pour plans des zz et
des yz, le terme en zy ne devra point se trouver dans l’équation
(31); on devra donc avoir F=o; en sorte que I'équation (24) de
a surface deviendra
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0=Cz4-Dyz4Gz*~-...
+Ezz++Hy*+-.... (32)
+-Kz ...

dans les mémes circonstances le rayon r de courbure d’une section
normale formant un angle p avec le plan des xz, aura (28) pour

expression

c :
7= (GCos.sp4HSinp) ° (33)

on en conclura les deux rayons principaux en y faisant succes-
sivement p=o0, p=iw; désignant donc ces deux rayons par @, &,

on aura
C C
—_— o= e 3
a 2G ’ b 2H ! ( 4)

en dliminant donc G, H de la formule (33) , au moyen de ces deux-1a;

il viendra

r r .. T
-a—Cos.’p—}-Z-Sm.’pz — s (35)

équation donnée par Euler. (*).

(*) Tant que G, H sont inégaux et de mémes signes, lindicatrice étant une
ellipse , toutes les courbures sont plus grandes que la moindre et moindres que
la plus grande des deux courbures principales, Si G=H , I'indicatrice devient un
cercle et conséquemment loutes les courbures sont égales, comme il arrive au
pole d’un sphéroide ; origine est dite alors un ombilic. 8i G et H sont de
signes contraires , I'indicatrice devient une byperbole , les deux courbures prin=

-

Tom, IX. 25
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Dans le cas de 'équation (32) , I'équation (10) du plan tangent par
le point (2, ¥/, &) devient simplement
o=Cz+2")+Dyz/H-zy) +-2Gz /4 ...
~E(za'4z2/Y42Hyy'+ ..... (36)
t-2Kzz/~4 ...
ce b]an tangent coupe le plan tangent a i’origine , C’est-a-dire, le
plan des zy , suivant une droite dont on-obtiendra l’équation en
égalant z & zéro dans celle-ci; cetté équation sera done
(E2' 4262/ +..) 24Dzl 2 Hy/Hu)y+-C2/ =0 37
s.us la condition |
0=Cz/+-Dy/z/4-Gz"*Fsus.
d-Ez/2/ 4 Hy* ..., (38)
K

mais, 3 mesure que le point (2/, 5/, 2/) s¢ rapprochera de l’origine,
elle tendra'a se réduire &

(Ez'+2Ga'\o4 (Dz/4-2Hy')y+Cz/ =0 ; (B9)

cipales ont leur convexité tourndes en sens inverses; les courbures des autres
sections normales peuvent prendre tous les degrés possibles de petitesse ; et en
particulier ces courbures sont tout -2 - fait nulles , lorsque les sections sont
faites suivant les asymptotes de I’hyperbole , qui sont ainsi osculatrices de la
surface. Enfin , si I'un des deux coefficiens G , H est nul , Vindicatrice s

réduit au systtme de deux paralltles, et la courbure minimum , paralléle &
ces droites, est seule nulle.
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et, dans les mémes circonstances, l'equation de condition tendra a
se reduired Cz/=o0 ou z/=o0 ; donc 4 mesure que le point (27, ¥/, 2/)
tendra & devenir origine, les deux plans tangens en ce point et
a lorigine tendront & se couper suivant une droite ayant pour

£quation

Ga'z~Hy'y=o ; (40)
mais en méme temps la droite joignant ces deux points tendra con-
tinuellement vers sa projection sur le plan des 2y, c'est-a-dire, vers
la droite, ayant pour équation

a'y—y'z=o , (41)

désignant donc par p et ¢ les angles de ces deux droites avec I'axe
des x on aura '

Tang.p= m Z;' ' Tang-q=+i-: ’ (42)
d'od
G-+4-HTangpTangg=o0 ;
ou (34) |
b+4-eTangpTang.g=o0 ; (43)

relation entre deux tangentes conjuguées.

Ainsi, deux points marchant lun vers lauire sur une surface
courbe , la sécante qui joint ces deux points et l'intersection des plans
tangens dont ils sont les points de contact tendent sans cesse &
devenir deux tangentes conjuguées, et le deviennent en ¢ffet lors-
qu'enfin ces deux points se confondent , quelle que puisseétre d'ailleurs,
sur la surface courbe, la route suivie par lun d’eux pour joindre
Zautre. Cette remarque est encore de M. Dupin,
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Cela revient, au surplus, & dire que deux courbes qui se coupent
sur une surface courbe ne peuvent étre lune et Pautre des lignes
de contact de cette surface avec deux surfaces développables, cir-
conscritzs qu'autant que l'élément rectiligne de chaque surface déve-
loppable au point d'intersection des deux courbes est tangent & la
ligne de contact de U'autre. Ce qui avait déja été implicitement remarqué
par Monge.

. La surface étanttoujours située par rapport aux axes des coordonnées

comme le comporte I'équation (32), les équations de sa normale par
le point (27, y/, z’) sont (11)

Koo y-——yl Lomnz!

Ez’-{—zGa;’-}-.... - Dz/-2Hy' s = C+D_y’+Ex'+2Kz’+.... ? (44)

de sorte que Déquation de la projection de cette normale sur le
plan des zy est

(Dz’—l—szy’—}—....)(;:v—x’): (E z'+sz’+....)(y~y’ ) >

ou encore

(Dz'42Hy't . )x-(Ez/4262'+..)y = Dalz/-Ey'z/-2(G-H a'y'.  (45)
Puisque , généralement parlant, cette projection ne passe pas par
Yorigine, il faut en-conclure que la normale au point (27, y/, /) ne
rencontre point l'axe des z, qui est ici la normale & Vorigine. Ainsi,
généralement parlant, deux normales & une surface courbe ne sont
pas dans un méme plan. ‘

Pour que la normale par le point (a7, ¥/, z’) coupit V'axe des
z, il faudralt qu'on elt la ‘condition

Dz/z/~—Ey'z/—2(G—H)a'y/=o0 ;

d’ou 1'on peut conclure que l'équation
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Diz—~Eyzem2(G—H)zy=o0 , (46)

est celle d’une surface qui coupe la surface (32) en tous les points
desquels les normales rencontrent l'axe des z.

Or, cette équation est celle d'une surface conique passant par les
trois axes , d’ou l'on peut conclure que la courbe dont il s'agit a
deux branches qui se coupent & l'origine suivant les directions des
axes des x et des . Ainsi , plus deux normales qui se coupent
approchent de se confondre et plus aussi le plan normal qui les
contient tend & se confondre avec le plan de I'une des sections
principales , et il se confond rigoureusement avec lui lersqu’enfin
la seconde normale a atteint la premiere.

Cela revient évidemment a dire qu'er partant de l'un quelconque
des points d'une surface courbe, il n’y a, en général, que deux
directions suivant lesquelles on puisse cheminer sur celte surface
de maniére que la normale en ce poin! soit rencontrée par celle
gui la suit immédiatement ; et ces deux dircctions, toujours per-
pendiculaires Pune & lautre , sont celles des sections principales
qui répondent & ce point. Cette remarque est due 3 Monge.

Concevons que I'on trace, sur une surface courbe , une courbe telle
que la tangente en chacun de ses points soit dirigée suivant la
section principale de plus grande courbure qui repond a ce point;
une telle courbe seva dite une ligne de plus grande courbure de
cette surface; et il est clair qu'on peut concevoir de telles lignes
par chacun de ses points, 8i, au contraire , la tangente en chacun
des points de la courbe est dirigée suivant la section Principale
de moindre courbure , cette courbe sera dite ligne de moindre
courbure ; et on pourra également en concevoir yne pareille par
chacun des points de la surface proposée, Les lignes de plus grande
et de moindre courbures d’une surface courhe sont appelées d’un
wom commun les lignes de ceurdure principales ou simplement



186 COUBRBURE DES LIGNES

les lignes de courbure de cette surface. Celles d’une série coupent
donc perpendiculairement toutes celles de lautre série; de sorte
qu’en quelque nomkre qu’elles soient , elles divisent toujours la
surface dont il s’agit en quadrilatéres courbes dont tous les angles
sont droits.

Si, sur une surface courbe , on trace une courbe quelconque ,
les normales mences & la surfrce par tous les points de cette courbe
appartiendront généralement 4 une surfice gauche ; mais , si la
courbe dont il s’agit est une ligne de courbure, la surface ;gauche
se changera en une surface developpabe , ayant pour aréte de
rebroussement I’ensemble des centres de courbure qui répondent &
cette ligne. L’cnsemble des ardtes de rebroussement des surfaces
gauches qui répondent i toutesles 1'gnes de courbure d'une surface
‘donnée forme une nouvelle surface 4 deux nappes, lieu des centres
de plus grande et de moindre courbure de tous les points de cette
surface , et & laquelle toutes ses normales sont tangentes.

Aprés avoir ainsi étudié la courbure d’une surface , en la rapportant
3 la normale et aux deux tangentes principales de 'un de ses pdints,
il ne nous reste plus qu'd généraliser nos résultats , afin de les rendre
facilement applicables A tout point d’une surface courbe quelconque,
autre que \l’origine des coordonnées.

Reprenons pour cela )l’équation générale

o=dAx+Dyz-}Ga*+.... 2
By Ezx+Hy*~-...; (1)
~+-Cz4-Fzy~+Kz>—-... S

d’une surface passant par lorigine; celle

—
—

W=

=z, 3)

Al s

de sa normale par ce point; et enfin celle
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prr——"
A+4-Ez'+Fyl42Gxl+-....
=y
= (1)
B4-Fx/~4-Dz!~p2Hy!+-....
Zm—z!

T C4Dy'4-Ex'doKe'dun |

de sa normale par un autre quelconque (2/, y/, 2’) de ses points,
soumis a la condition

o= /Ix’-#—D/y{’—l—er”—}—.....

~+-By/'+4-Ez' 2/ Hy/*}-..... (9)
GO+ Faly' 4Kz ...

Concevons que, par un point (# , ¥, z) de la normale qui répond
a4 lorigine, distant de cette origine de la quantité B, on méne
a la surface courbe une seconde normale, dont le pied soit (27, ¥/, 2)
et la longueur R/ ; pour les deux. points dont il s’agit, les équa-
tions (3, 9, 11) auront lieu, et Uon aura en outre

R2= x’—l—-_y’-{—z’ , (47)
B =(omalpA-(y—y P Ha=2) s (48)

ce qui fera en tout sept équations au moyen desquelles une des
huit quantités qu’on y considére étant connue, on pourra déterminer
les sept autres. En outre, le plan qui contiendra les deux normales

R, R, aura pour équation
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(Ba/meCy')z-4-(Ca'— Azy+(dy'—Bal)e=o ,
ou, ce qui revient au méme,
(Bz—Cy)a/+(Cx—Az)y'+(Ay—DBz)z/=o0 : (49)

Enfin, en chassant les dénominateurs , dans les équations (3, 11),

et supprimant dans les dernidres les termes qui se détruisent en
vertu des premidres , on aura

Cx=Adz ; Cy=Bz; (50)
#(Dy/'4-Ez'4-2Kz/~4..)—~z (Ez/+Fy'+4262'4-... )
=a/(C+Dy'+-Ex'42Kz/4-..)—2/ (A} Ez/+Fy/+262/+...)

y(Dy’+Ex’+2K 2/ i) =2z (Fz'+-Dz!-2 Hy/~+...)
=y/(CH-Dy/'4Ez'+-2Kz/+-..)~z/(B4-Fa'+-Dz/+2 Hy'+-...) .

(1)

Cela posé , si l'on congoit que le point (x, y, 2) glisse sur
R , de maniére 3 se rapprocher de plus en plus de l'un ou
Yautre des deux centres de courbure qui répondent 3 lorigine,
R/, que nous supposons dans ce mouvement, demeurer toujours
normale , se rapprochera de plus en plus de cette premiére normale.
Son pied (2/,y’, z’), qui se rapprochera continuellement de I’ori~
gine , décrira sur la surface, d’aprés ce que nous avons dit pré-
cédemment , une courbe passant par cette origine et ayant pour
tangente en ce point 'une des deux tangentes principales; d’ou il
suit que pareillement le plan normal (49) tendra sans cesse a devenir
celui de 1'une des sections principales.

Mais lorsque 2/, y/, 2/ sont trés-petits , on doit avoir semsiblement

B:
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Bz:Bl:=x:+y:+z: ; (52)

de plus, on peut alors, sans erreur sensible, remplacer les équa-
tions (g9, 51) par les suivantes

A2'4By!'4-Cz'=o0; (53)

#(Dy'+Ex/+42K2)—z(Ez'4-Fy/4-262/)=Calmm Az’
5
¥(Dy'+Ez'+2Kz/)—z(Fa'+Dz/+2Hy/)=Cy/'~— Bz’ ; f 9

en y joignant les deux équations (50), on aura en tout six €qua-

tions -entre lesquelles on pourra néanmoins éliminer z, y,z, 2/,
y’, z/ , puisque ces derniéres se trouvent affecter tous les termes

des équations ol elles entrent.
En chassant d’abord x, y des équations (52, 54), au moyen des
équations (50), elles deviennent

z __’..______H____._ .
¢ L Viqmge (55)

{(AE—206)e—C /4 AD ~CF)zy/—{(CE—14K)z— AC}z/=0,
{(BD—2CH)z—C*}y’+ (BE—CF)za'—{(CD—2BK)z—BC}z/ =o,

En représentant par a une indéterminée , on satisfait aux deux

derniéres , en posant

& —{(BD—2CH)zmeC?} {{CE=24K)zmAC}—(AD—CF){(CD-2BK)z=BC} ,

Tom. IX. 26
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Y = {(4E—2CG)z=-C?}{(CD=2BK)z=BC}—BE=CI}{(CE—24K)z—AC} ,
A&

f"'((AE-—zCG)z-C’ {(BD—-zCH)z-—C=}—-(AD-—CF)(BE—-CF)z’ :

¢’est-a-dire, en développant, réduisant et ordonnant

— {BfDE-—2FK‘+C(DF,-.2EH)__..,4(Da_.43}{)}_Z_’;‘

—{(BF+-CE)y—24(HAK)}= +4

2 —{C(BF=2DC) - A(ED—sFK )~ B(E*—4KG))

» 3 /.‘ C?
>

(36)
—{(CD+AF)—2BK+6) = +B .,

== 4{(FD—2 EH,+B(FE-21)G)-—C(F=_4GH,}-EZ

—{(4E4-BD;—2C(G+H)} = +C

substituant toutes ces valeurs dans I'équation (53) ety introduisant
pour % sa valeur, on aura, toutes réductions faites,
2AB(DE—2F K)= A*(D*—2HK)
~+-2BC(EF — 2DG)—B*E*—4KG) : R*

+-2CA(FD—2EH,— C*(F*—(GH)
BCD—A*(H+K) _
T2y TFFFC | +CAE—B K+G) | RA(A+B 4 C'y=A. (57)
4-ABF—C*(G+-H)
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équation qui donnera rigoureusement pour la surface (1) les valeurs
des deux rayons de courbure principaux qui répondent & lorigine ,
puisque &/, y/, z/ ayant disparu, peuvent étre supposés tout a fait
auls.

R éiant déterminé , par cette équation, on tirera des équations
(50, 52)

- AR BR _ CR 58)
T YV aEmeac ) TS VaErEsG ' fT Vagsaa:

q"i seront les coordornées du centre de courbure. Quant aux plans
des denx sectiow: :incipales on en obtiendrala double équation , en
introduisaut Gaas (4gj les valeurs (56) , et y mettant ensuite pour

z e . .
ra la valeur (25): cela donne, toutes réductions faites,

g [B(DE»zFK’)+C(FD-zEH)-A)D*—4HK}]B§ 'Bz—-Cy‘,\
H[(BI+CEy—2 A(H+K)]y TFEFC
(EF-2D6)4ADE-2FK)-B.E*-{KC)]R

3—*—[( CD+AF}-2B(K~+6)]y THFFC

[A(FD-2EH)+B. EF-2DG)-C(F*~4GH)]R

-+ (Ca—dz))=0.(59)

+3 }u,f-px)

+[(AE+BD,—2C(G+H)]\ ZFBFCs )

S’agit-il présentement de déterminer, pour un point quelconque
(z/, ¥/, 2/) dune surface quclconque , les centres et rayons de
courbure et les plans des sections principales, on changera respec-
tivement z, ¥, z en 2’2 , y/~+y, z/~z; on développera , en arrétant
le développement aux termes de deux dimensions en =z, y, 2,
inclusivement ; on égalera a zéro Vensemble des termes indépen-
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dans de ces variables, ce qui donnera 1’équation de condition ; on
comparera terme a terme I'équation restante A I'équation (1) ; afin
d'obtenir les valeurs de ses neuf premiers coefliciens; on substituera
enfin ces valeurs dans les formules (57, 58, 59), en changeant
dans les dernieres, #, y, z, en g—a/, y—y/, z—2z/.

Si, entre les trois équations du centre de courbure pour le point
(2/, y’, 2’) et I'équation de condition qui exprime que ce point
appartient a la surface courbe , on élimine a/, y/, g/, I’équation
résultante en x, ¥, z sera celle du lieu des centres de courbure de
cette surface ou de sa développée, c’est-a-dire , de la surface a la-
quelle toutes ses normales sont. tangentes.

Appliquons ce procédé a Iellipsoide donnéde par I’équation

= =1 (60)

x/l y/ﬁ /2
‘;; ~+ .b—z +—;-; =1I (61)
ot ensuite
2x/ . ¢
o= — g+ —2*
2y’ ¥
,_+ -b-;- y+ ba y.
2z 1
—— ] 3
-+ = z4 —~Z

qu'il faudra comparer & Péquation (1).

Nous aurons donc, en premier lieu
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D=o, E=o0, F=o;
4u moyen de quoi la formule (57) deviendra simplement
4(AL’HKH-DP*KG+4C*GH R

T2y 4By G4 HA-K)+B*K+6)+C 6+ H)]R ' (62)
(LB C) =0 . : !

Nous aurons ensuite

2x/ 2y/ 22/ 1 X I
A= PRy O=3 O=g Heg k=g

d’ol nous conclurons, en ayant égard a la condition (61)
atpro=i( ST,

A-HK+B=KG+C=GH_.J—.(_+Z’_’ 2)=t_;

2he b3 a3’
A HEK) By E G CH O )= 23(62-}4:!) 2 e T e _.§

e { (@b 3f03) (/3 132 2)

a’bzcal

En conedquence , I'équation qui donnera les deux rayons de courhuro
au point (&/, y/,2’) sera
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RH{(@ o) =@y e L 2 R

aé | be ¥ ok

alz ylz z/2 2 ‘
+a’& ol — + oA — =0.
at b4 ch °

Tout ce qui précéde pourrait dtre susceptible de développemens
beaucoup plus amples; mais nous les abandonnons a la sagacité
du lecteur, en le priant de considérer que nous n’avens pu nida
nous proposer ici d’éerire un traité ¢élémentaire ; mais seulement de
montrer comment l'analyse élémentaire pouvait étre employée &
traiter des questions pour la solution desquelles on a coutume de
recourir au calcul différentiel. La vérité est qu’il n’y a proprement
d’'un peu compliqué iei que ce qui concerne les courbes a double
courbure ; meis eela tient & la nature méme du sujet.

A la vérité nos formules finales sont moins simples que celles
que fournit le calcul diffi¢renticl; mais on doit remarquer que la
simplicité de ces derniéres est plus apparente que réelle ; elle tient
uniquement & ce que ces formules ne sent au fond que des sym-
boles d’opérations & “effectuer, tandis que les nétres au contraire
n’exigent que de simples substitutions , dans chacune des applications
qu'on se- proposera d’en" faire.

Nous. pensons toutefeis que la maniére trés-simple dont nous
sommes parvenus aux beaux résultats d’Euler , de Monge , de
Meusnier et de M. Dupin, sur la courbure des surfaces courbes,
n’aura pas échappé au lecteur. 8i donc quelqu'un désirait sculement
de se mettre & peu de frais au courant de ces résultats, il pourrait
passer, & la lecture , les deuxiémes § tant de la premicre que de
la seconde section, qui sont tout -a-fait indépendans de tout le
reste. Il pourrait en outre supposer, dés ’abord, dansle § premier
de 13 seconde section, que Paxe des 2 est tangent 2 la courbe, ou
que A=0; et ne lire ensuite que la premitre partie du présent §.
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Nous n’ajouterons plus qu’un mot, et ce sera pour faire remar~
quer I'anatogie entre les principes qui nous ont dirigés dans ce qui
précéde et ceux que nmous avons exposés A la page 183 du V.© ve-
lume de ce recueil. Ici, comme 13, tout se réduit, en derniere analise,
4 obtenir d'abord du probléme proposé une solution approximative,
dont la précision soit subordonnée  la petitesse de certaines quantités,
a éliminer ensuite du résultat ces mémes quantités qui, du moment
qu’clles ont disparn , ne sauraient plus influer sur ce méme résultat qu’on
doit dés-lors regarder comme tout-3-fait exact. Il n’est probablement
aucune des questions dans lesquelles on emploie la doctrine des in-
finiment pelits ou toute autre doctrine équivalente qui ne puisse
étre ramenée & ces principes qui nous paraissent non moins simples
quils sont lumineux,
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QUESTIONS PROPOSEES.

Problémes de géomeétrie transcendante.

ON sait que le lieu de toutes les tangentes & une courbe 3 double
courbure est une surface développable dont cette courbe est I'arcte
de rebroussement.

La courbe étant donnée, la surface dévelnppable lest aussi, et,
si on l'étend sur un plan, son aréte de rebroussenient deviendra une
courbe plane qui sera également donnée.

Mais si, au contraire , la courbe plane est donnée , elle pourra étre
considérée comme l'aréte de rebroussement d’une infinité de surfaces
développables toutes différentes les unes des autres ; mais ayant tou-
tefois un caractire commun, et que, par leur développement on a
appliqué sur un plan.

Ces remarques donnent [ieu aux deux questions suivantes :

I. Quelle courbe plane devient une courbe 3 double courbure
donnée, lorsqu’on applique sur un plan la surface développable dont
cette courbe est 'ardte de rebroussement ?

IL. Quelle est Péquation générale de toutes les surfaces développables
telles qu’en les appliquant sur un plan, leur artte de rebroussement
devient une courbe plane donnée ?
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ANALISE ALGEBRIQUE.

De la résolution de l'équation geéncrale du 3.m¢ degré ;

Par M. de STANVILLE , répétiteur d'analise & I'école royale
polytechnique.

[a e Vi Vo Vi S, VI V)

LA méthode que I'on suit ordinairement pour résoudre les équations
du 3.7¢ degré diflere peu de celle que les analistes du xv1.® si¢cle
ont imaginée les premicrs pour parvenir au but; et on peut apporter
pour raison de la ressemblance entre leurs procédés et les nétres
“la simplicité des calculs qu’exigent leurs méthodes , simplicité que
sans doute les modernes n’ont pas espéré de pouvoir surpasser. Mais
on peut, sans rien perdre de cette simplicité, parvenir aux formules
finales par une route un peu différente , et cela sans rien supposer
au-dela de ce que savaient les aneiens géométres, tant sur la com-
position des équations que sur la grandeur et la nature de leurs
racines. La méthode que nous nous proposons d’indiquer ici a de
plus l'avantage de porter une plus grande lumiére dans I'esprit, de
mieux faire voir sous quelles conditions les parties qui composent
I'expression générale des racines sont réelles ou imaginaires, et de
micux faire concevoir enfin pourquoi le cas ou les trois racines sont
impliquées d’imaginaires est précisément le seul ou elles puissent
étre toutes trois réelles.

Si I'on considére I’équation

¥’ +Ay*+By+C=o ,
Tom, IX,n° VI, 1.5 décembre 1818. an
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on pourra regard?er les deax premiers termes du premier membre
comme étant les deux premiers termes du cube d’un binome , dont

y serait la premidre partic et 3 la scconde. Si donc il arrivait qu'il

“existit entre les coefficiens la relation nécessaire pour que les deux
, A .

autres termes complétassent le cube de y+§-, on pourrait , par

une simple extraction de racine cubique en déduire une équation
du premier degré qui donnerait ¥ en fonction des coefficiens. Cela
aurait encore lieu , quand bien méme le premier membre ne diffé-
rerait du cube d’un binome que par une quantité constante; car
en ajoutant 3 chaque membre ce qu’il manquerait au premier pour
le rendre un cube, ’extraction de la racine cubique des deux membres
ramenerait également l’équation au premier degré (*).

Si l’équation ne se trouve dans aucun des deux cas que nous
venons d’examiner, on pourra la mettre sous la forme suivante

(45 ) (-5) (5 )=

ou encore sous celle-ci

A \3 A3
(e 454 Y )
Par conséquent, si l'on pose

A A
y+—= =2, B— 5=p, C-—--—+—- =q,

la question sera réduite 3 résoudre l’équation

2 +prtg=o .

(") Clest le cas résolu par les Indous ; voyez a ce sujet un article de M.
Terquem , dans le 1IL¢ volume de la Correspondance sur Pécole polytechnique,
page 275.
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Pour résoudre cette équation , nous partirons d'un principe fort

simple , et qui consiste en ce que la somme de deux cubes se com-

pose du double du cube de la demi-somme de lenrs racines et du

triple de la somme de ces mémes racines, multiplié par le quarré
de leur demi-différence ; ce qui résulte évidemment de I'équation

(a4-0)*+(a—0b=2a°+Gad? .
Cela posé, si l'on fait passer le terme tout connu du premier
membre dans le second , on aura
2 pr=—q .

Or, le premier membre de cette équation étant composé de deux
parties, on peut faire en sorte qu’il devienne la somme de deux

cubes; c'est ce qu'on voit aisément, car on a
pams 6 2 =) e siz + 2]
X T =2 = — x=2( — e —_ .
4 5 g 17 > 204 s’

or, le dernier membre de cette double égalité est, d'aprés ce qui
précéde , égal & la somme de deux cubes; et , comme le premicr
est d'ailleurs égal 4 —¢, on aura, en formant les deux cubes,

O

Mais , le premier cube du premier membre de cette derniére équation
¢tant égal a

x3ppx . —_—
2P +.‘_{xz+ -§-§Vx2+:_p ,

sera aussi égale 3

P (o DYCED]

g

D’ailleurs, la partie rationnelle est égale & —-—2—', et la quantité, sous

le radical, revient &



200 EQUATION GENERALE

ab-f-opxif-p2a? P _ x3+px)=
4 - (

ainsi, puisque la partie affectée de 2z sous le radical est le quarré

de la partic rationnelle , qui est elle-méme égale a ___q_ , il en

résulte que le radical est égal a —q+V T +27 ; et ,

comme le second cube ne differe du premler que par le signe

du radical , ce second cube sera égal & —= —-V T +p3

Si l'on tire les racines cubiques de chacun des deux cubes dont
il sagit, on aura les deux équations

i _4'+-'~"—=f/— L4y 40
2 <2 @ 27
4 3_V;_i_ qz+p>3_;
2 2 Y2

lesquelles étant a outées donneront

=) It EE +f1+;7;i—,/m.'
2 4

27

Ceite formule présente neuf combinaisons , parmi lesquelles trois
seulement se rapportent i ’équation proposée. Il est facile de dis-
tinguer celles qui représentent- les racines de cette équation , et
quelles sont les équations auxquelles les six autres satisfont ; et pour
cette raison , nous nous dispenserons d’entrer dans cette discussion.

Il y a un cas qui a beaucoup exercé les géomeétres, et qu'on

désigne sous le nom de cas irréductible : c’est celui ou chacune des

deux quantités dont il faut extraire la racine cub:que est imaginaire,
Lorsque cette circonstance a lieu , les trois racines sont réelless
Cest ce qu’on peut démontrer trés-facilement. Désignons , en effet,
par a, b, respectivement , les racines cubiques des quantités qui
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sont sous les radicanx cubes, et qui sont propres, par leur addition,
a donner une quantité réelle , en designant par « I'une quelconque
des deux racines cubiques imaginaires de l'unité , les deux autres
racines de la proposée seront

ua+ «*d > u’a+xb .
LEn mettant pour « sa valeur, ¢es deux racines préndront la forme
—Eaym, S,
mais a-l;b est supposé une racine réelle de la proposée; et mous
avons vu ci-dessus que
a—b=y'w¥5p ;
en représentant donc par 7 la racine déja supposée réelle , on aura
a—b=\rgip ;

mais on a vu plus haut que

(++2) (e 47) = 542

. done
2 -‘{__}.J.’_S_
4 _ s
Vatip= 7
=73

Ainsi , I'une des racines étant r , les deus autres. seront donndes
par la formule

et par conséquent elles seront toutes trois réelles.

Si l'on veut avoir une idée bien nette du cas irréductible , omr
ebservera que la quantité qui est sous le radical quarré, et qui
est égale a
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2 4 N\
(e+5)(=—37)

ne peut étre négative qu'autant que le second facteur Dest lui-
méme, puisqu'on peut toujours supposer que l'une des valeurs de
z est réelle. Ainsi, il faut que p soit négatif , ce qui cst d’ailleurs

évident , et que cette valeur de & soit moindre que 2V% .On

pourra donc toujours représenter cette valeur de z par 2V.§i Cos.¢.

Si I'on substitue cette expression pour x dans I'équation
z3—pz+g=o0 ,

on aura une équation qui , étant divisée par 2V :;; , deviendra
4COS.’¢-—3COS.¢=—V%7_']; ;

ps-.
4Cos.3p+=3Gos.0=Cos.3¢;

Cor3o=— /T,

cette équation servira i trouver I'angle @, et par suite Cos.e.
L’équation entre Cos.¢ ¢t Cos.3¢ ayant lieu encore en rempla-

or,

done

cant 3¢ par 3e+nc ou ¢ par ¢+—Z—c, n étant un nombre entier

quelconque , positif ou négatif , et ¢ désignant la circonférence ;

il s'ensuit que les .valeurs de # peuvent toutes é&tre représentées
par la formule

nc
’ 'w=’{V—%?.Co§.< ¢+—3— ;

laquelle , par les diverses suppositions faites pour z , ne donne
que ces trois formes distinctes
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2V % .Cos.p,

2 _”:.Cos.z/ <
3oty )

2”.Cos.(¢—- g-) ,

les valeurs de #, au nombre de trois, sont donc toutes réelles ,
et peuvent s'obtenir par les tables de sinus.

Nous terminerons ici ce que nous nous étions proposé de dire
sur les équations du troisicme degré; nous y ajouterons seulement
qu'on aurait pu évaluer les deux cubes qui composent le premier
membre de I'équation

—_— .
A e O e B U
2 . 2 s 7

en fonction des coefficiens z, ¢, d’'une autre maniére que nous ne
P’avons fait ; car le produit des deux cubes qui composent le pre-

mier membre, étant égal au cube du produit des racines , -sera
conséquemment égal a —-—Z;—; et , comme leur somme I'est égale
a4 —¢g, il en résulte que ces cubes sont les racines d’une é_quation
du second degré dont le coeflicient du second terme est égal & ¢,
et dont le dernier terme est égal a -.--5- ; mais nous mn'avons
point voulu faire usage de ce moyen, afin d’éviter emploi d’une

équation auxiliaire,
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GEOMETRIE APPLIQUEE.

De la résolution des équations numeériques du 3.2¢ degré,
par- la parabole ordinaire ;

Par M. GERGONNE.

[a Ta Vo Vi o Vi V1o Vo a Mo V1

ON a souvent besoin de rdsoudre des équations -numériques du
troisitme degré ; et il est trés-utile dans ce cas de savoir, au moins ,
a lavance, si I'équation proposée a deux racines imaginaires ou si,
au contraire, ses trois racines_ sont réelles. Dans ce dernier cas,
les formules générales refusant le service , il peut étre commode
“d'avoir quelque’ procédé graphique qui fasse conmaitre les signes des
‘racines , et qui en donne i peu prés les valeurs. Ménge (*) et
- antérieurement M, Bérard (**), ontindiqué, pour parvenir & ce but,
T'usage de la parabole cubique'; la méthode que je vais exposer ,
et qui n'emploic que" Ia'parabole ordinaire , ne parait pas éte
* connue.

On sait que, par un point donné comme on voudra sur le plan
d'une parabole, on ne peut jamais lui mever que trois normales
au plus; que deux de ces normales peuvent se confondre en unc

(*) Correspondance sur Uécole polytechnigue , tom. III, n® 2, mai 1815 ;
page 20I.

(**) Opuscules mathématiques et Méthodes nouvelles pour déterminer les racines
des équations numériques , page 33.

seule ;
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scule, et qu’enfin elles peuvent étre foutes deux imaginaires; de

sorte qu’alors il n’y a, par le point dont il sagit, qu’une seule
normale possible et réelle. Ainsi, les trois normales & une parabole
présentent exactement les mémes eirconstances qu’offrent les trois
racines d'une équation du troisitme degré.

Ces circonstances dépendent, comme 'on sait, de la situation du
point de départ des normales , par rapport & la développée de la
courbe ; c’est-i-dire que les trois normales sont réelles et inégales,
ou que deux d’entre clles se confondent , ou enfin que ces deux
sont imaginaires , suivant que ce point de départ est dans l'intérieur
de l'angle curviligne formé par les deux branches de la développée
ou sur un des c6tés de cet angle ou enfin hors de ce méme angle.

D’un autre cété ; de méme qu’en la supposant privée de second
terme, ce qui est permis, une équation du troisi¢éme degré ne dépend
que de deux donndes seulcment, arbitraires I'une et I'autre ; la po-
sition du point de départ des normales & la parabole dépend éga-
lement de dcux données arbitraires; savoir , les deux coordonnées
de ce point.

Ainsi , tout concourt & établir la plus parfaite analogie entre le
probléme des normales 4 la parabole par un de ses points et la
recherche des racines d’une équation numérique du troisiéme degré;
voici la méthode qui nous a paru la plus propre 2 ramener la
solution du dernier de ces deux problémes & celle du premier.

Soit
2*=/4cy , (r)

\

I’équation d’une parabole rapportée ¥ Ia tangente & son sommet et
a son diamédtre principal , comme axe des # etdes y; on sait que

I’équation de sa développée sera

x 2 y.__ag\i
c(;) =( 3 ) ; (2)
de sorte qu'un point (@, 5) sera dans l'angle curviligne formé pa:x’*
Tom. 1X. 28
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les deux branches de cette développée ou hors de cet angle ,
suivant qu'on aura

(£)<(55 ©
(£)> (%) )

de sorte que, dans le premier cas, on pourra, par le point (2, )
mener A la courbe trois normales réelles, tandis que , dans le second ,

ou

deux de ces normales seront imaginaires ; en particulier , deux des

s o PRI
trois normales réelles seront égales, si I'on a précisément

RO o R

Cela posé , cherchons les normales par le point (2, &). La tan-

gente a la courbe, par un point (2/, §/) pris surson périmetre, a,
comme l'on sait, pour équation

a'x=20y +y’) (6)
avec la condition
&= ey . o)

La normale par le méme point aura donc pour équation
fi(a—a') +a/(y—y) =0 » ®)
Si done on veut que cette normale soit la normale partant du

point (a, &) , il faudra que léquation (8) soit satisfaite par les
coordonnées de ce point, ce qui donnera

2c@—z')+ 2/ b—y')=o0 . (9)
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Nous aurons donc, entre les coordonnées 2/, y/ du pied de la
normale les deux équations (7, 9)au moyen desquelles il sera facile
de les déterminer , et par suite, de construire ces normales.
On peut présentement supprimer les accens , dans ces deux
dquations, lesquelles deviendront ainsi

z*=4cy , z(y—b)+ 2c(x—a)=o0., (10)

et remplacer ’élimination par la construction des courbes exprimées
par les ¢quations (10)'; or, la premiére est la parabole donnée
elle-méme ; donc la seconde est une courbe qui coupera la parabole
donnée en trois points qui seront les pieds des normales partant du
point (2 ,4). On voit d’'ailleurs que cette seconde courbe est une
h.yperbole ¢quilatere , ayant pour asymptotes 'axe des y et une
parallele @ laxe des 2 située a une distance b—2c de cet axe.
Cette hyperbole coupe dailleurs I'axe des & en un point pour lequel

2ac . . .
on a g= - ; ainsi on a tout ce qu il faut pour la construire
20—

par points (*).
Si I'on élimine y entre les égnations (10) on obtiendra I’équation

(*) Dans la recherche des pieds des normales partant du point (e, d), 'hy-
perbole peut étre remplacée par une infinité d’autres courbes. Les équations
(10) . en effet, ayant lieu en méme temps pour ces points, toule combinaison
qwon en pourra faire aura lieu en méme temps qu'elles , et exprimera consé-
quemment une courbe coupant la parabole donnde aux points cherchés.

On peut , en particulier , remplacer I'hyperbole par un cercle. Si, en effet, on
multiplie la derniére des équations (10) par x , en remplacant &* par 4ey,
en vertu de la premitre , et divisant par 4c, il viendra

J2-(2cm=b)y=— s ax=0 ;

ajoutant i cette équation la premieére des équations (10) , il viendra enfia

& pyim= § axm—=(204-)y==0 ;
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234-4e{2c—b)x—8c*a=o0 ; (1)

qui fera connaitrc les abscisses des pieds des normales (*).
Cette équation étant du troisieme degré et sans second terme, on

Ay b g - r ’
peut la comparer & I'équation générale

2 +-prd-g=o0; (12)
ee qui donne
4e(2c—b)=p , —8cta=gq ;_
d’ou on tire ‘

€quation d'un cercle qui passe par lorigine, c’est-a-dire , par le sommet de
la courbe , et dont le cenire est donné par les deux équations

a= za, y=ct 10 .

Cette solution est exactement celle qu’a donnée M. BERARD , dans ses Opuscules
mathématiques, page 109, et a laquelle il est parvenu d’une maniére un peu
différente,

(*) De ce que cette équation est sans second terme il en résulte que les
trois normales partant d’'un méme point du plan d’une parabole ne seuraient
jamais se terminer d'un méme c6té de son axe , et que la somme des distances
2 laxe des pieds des normales qui tombent d'un méme cbté. de cet axe est égale
& le distance & lUaxe du pied de la troisitme normale, On pourra donc,
avec la régle et le compas seulement , résoudre ce probleme : Etant données
deux normales & une parabole , mener , par leur point de concours, une troi-
si¢tme normale & la courbe ? Si deux des normales se confondent, auquel cas
elles doivent étre tangentes a la développée , la distance de leur pied a I’axe
sera moilié de la distance de la troisieme au méme axe ; ce qui fournit un
moyen simple de résoudre ce probleme : Etant donnée une normale & la
parabole | trouver en quel point elle coupe la développée de cette courber
développée que l'on suppose d’ailleurs n'étre point encore tracde, On a donc
ainsi une méthode fort simple pour déterminer rigoureusement tant de points
qwon voudra de la développée d’une parabole Coanée , ainsi que la tangente
3 cette développde en chacun de ces points.
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q 8e2—p 4 3
4= - — = Q- o, I
i b T 20— - (13)

Ainsi, on pourra facilement construire le point duquel menant des
normales a4 la parabole, les abscisses de leurs pieds seront les trois
racines de l’équation (12). :

Suivant que ce point tombera dans Pangle formé par les deux
branches de la développée , ou sur l'une de ces deux branches
ou hors de cet angle , I'équation (12) aura ses trois racines réelles
et inégales ou deux racines égales ou enfin une seule racine réelle.
En substituant les valeurs (13) dans les inégalités (3, 4) et dans
I'équation (5), on trouve d'ailleurs, en transposant

g2 p3 g2 ps qz p3
—t <o, T4 0, =4 —=o0
4 27 ’ 4 27 > ) 4 27 >

e¢onformément aux théories connues.

Une fois le point de départ des normales déterminé , si I'on veut
connaitre & peu prés les valeurs et les signes des racines , il faudra
mener ces normales, et déterminer les abscisses de leurs pieds qui
scront les racines cherchées. Ces normales seront faciles & tracer
par titonnement, puisqu’il ne s’agira que de chercher & décrire
de leur point de départ , comme centre commun , des arcs de
cercles tangens & la parabole ; leurs points de contact seront les
pieds des normales. §'il arrivait que I'un d’ecux touchit et coupit
‘A la fois la courbe , I'équation (12) aurait deux racines égales; et
il n’y aurait plus qu'une seconde normale & chercher. Au surplus;
si la développée était tracée, en remarquant que les normales cherchées
doivent lui 8tre tangentes, on leverait tout-a-fait I'espéce d’incertitude
qui pourrait rester sur le point de contact de la parabole avec
chaque arc de cercle (*).

() On pourra aussi mener ces normales par le procédé direct de Iavant=
derniére note,
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Pour faire usage de ce procédé , il faut avoir une feuille de
carton ou de cuivre sur laquelle on tracera avec soin une parabole,
dont la distance ¢ du sommet au foyer soit divisée en 10, 100,
X000 , ... parties égales suivant sa grandeur ; et 'on prendra pour
unité I'nne de ces divisions. On fera bien de tracer aussi sur le
méme carton ou cuivre la développée de la courbe (*); et il ne
s'agira plus alors que d’opérer ainsi qu’il a été prescrit ci-dessus.
Au surplus, comme , dans des cas particuliers , le point (2, &)
pourrait tomber hors du carton , ou avoir des coordonnées trop
petites ; on fera bien de substituer & I’équation (12) l’equation

2 t-apa-arig=o , (14)

dans laquelle a est une indéterminée, plus grande ou plus petite
que l'unité ; on aura alors

8cr=—n2
a=—-5:; 2 52——4—0—!-’ 5
on disposera de lind¢terminée a de maniére a rendre ¢ et 2 d’une
grandeur telle qu’on les désirera , et, lorsqu’on. aura obtenu les
racines de l'équation (14) , il ne s’agira que de les diviser par a,
pour en conclure celles de I’équation (12).

Nous ne donpons , au reste , cette méthode quen faveur des
géometres & quj ces sortes de spéculations offrent quelque intérét,
Nous estimons que de toutes les, méthodes de résolution des équa-
tions numériques du 3.™¢ degré, celles qu'on déduit de la consi-
dération des fonctions circulaires sont incomparablement les plus
courtes et les plus simples.

(*) On pourra la tracer par points, par le procédé de la derniére note.
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ANALISE INDETERMINEE.

Theoréme sur les puissances des nombres;

~

Par M. Frecicr, professeur de mathématiques au collége.
de Troye , ancien éleve de l'école polytechnique.

[ e Vi Via o Via Vb Ne S0 ¥% V)

TIiEOPLEME. « Toute puissance 2™ d'un nombre quelconque a
» est égale 4 la somme des termes d’une progression par différences;
» dont le premier terme est 1, dont le nombre dés termes est o,
» et dont la raison est égale 4 la somme des termes de la pro-
» gression géométrique 22042042434 e F-3a™2. »
Démonstration. Designons par § la somme des termes de la
progression arithmétique dont il sagit, et par 4 la raison de cette
progression ; puisque son premier terme est 1, et le nombne de
ses termes @, son dernier terme sera 14@—1,d , dou il suit

qu’on aura
S=[1+{a—1)d] —Z— ;

mais , par hypothése, on a
QM= Vomy

d=z2a42a'4........ 2" 2 =2

as=i

donc
(a—1)d=2/a™"'e=1) ;

ce qui donne, en substituant
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S=a™ ,

comme l’énonce le théoréme,
Si m=2, on aura 2-2g-t...--20""2=2, d'od

a*=1-4345+74..0iiii i (20—1) ,
propriété connue.
Mais, si m=3, ce qui donne 2-}2o-4...-}20""2=2(14a);

on aura
=14 34-22)+ 5+ 42)4(7+-62) 4.4+ [(2a—1)+-2(a—1)a] ;

propriété curieuse des nombres cubes, qu'il est d’ailleurs facile de
vérifier immédiatement.
- En faisant successivement ¢=I1, 2, 3, 4,..., 0n a

8=r=r+7 ;

27=3*=1-}9+}17 ,

199

25 Gf=4'=1411421431 ;

4v;: >

125=53=14~134254-374+4g ;
216=6’=1~415-429+434-57-47¢ ;
3P =7 =1417433-449+654-914r07 ,

. -
oooooo € A & ® 6 o ¢ o & e > 8 0 2 s BT e e e 0 O o

Chacun de ces cubes forme donc une progression arithmétique dont
le premier terme est I'umité, dont le nombre des termes est la racine
du cube, et dont la raison est double de cette racine augmentée
d’une unité, -

ANALISE
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ANALISE ALGEBRIQUE.

Sur la méthode de M. WRonskr, pour Fa résolulion
genérale des équations

Par M. Gerconxe.

T e W “Cos

A la page 51 du troisitme volume de ce recueil, j’ai denné une
idée succinete de la méthode proposée par M. VWronski , pour fa
résolution générale des équations de tous les degrés. Fai remarqué
que la forme que ee géométre supposait devoir étre celle des racines
était exactement celle que Bezout , long-temps avant lui, leur avait
déja assignée ; et qu'en conséquence son procédé ne présentait autre
chose de nouseau sinon que, pour parvenir & la réduite, il subs-
tituait & Ja méthode de Bezout une méthode & peu prés impraticable |
au-deld du treisitme degré. Jai indiqué , pour parvenir & cctte
méme réduite , un procédé fort simple qui permet de la former
directement sans aucune élimination, et par des calculs eonstam-
ment symdétriques. Ce procédé mettant dans le plus graud jour tout
le mécanisme du caleul, il m’a été facile d’en déduire cette con-
séquence que la méthode de M. VWronski devait, comme celle de
Bezout, se trouver en défaut dés le quatriémie degré , du moins
tant qu'on ne faisait pas entrer en considération qu’une quatriéme
puissance est [e quarré d'un guarré.

A la page 137 du méme volume, Jai dit qu'au eontraire , en
ayant égard & cclte circonstance, particuli?re au quatriéme degré-,
Ia meéthode de M. VVronsk: pourrait biem s’étendre jusque-]a‘t , et

Tom. IX 24
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jai méme donné la réduite a laquelle je pensais que son applicaﬁox}
3 ce degre devait conduire.

Enfin , 4 la page 206 du méme volume, jai employé un troi-
sitme article a repondre 4 une réclamation contre les deux premiers
que ‘M. Wronski avait fait insérer dans plusieurs journaux.

J'ai reconnu poslerieurcment que mes calculs de la page 133
étaient fautifs , et que les cocflicicns

R Tt o PN
R RN T
RN

ne sauraient &tre tous trois des fonctions symétriques de x,, =z, ,
Zx,, x,, et, comme tels, exprimables rationnellementen p, g, r;
que dans lc seul cas ol p=1; ce que je n’avais di ni eu l'intention
d’admettre.

La vérité est que je n’avais point exécuté les calculs indiqués en
.cet endroit, et que , trop prévenu en faveur de la méthode de
M. Wronski, javais voulu tout au moins la signaler comme appli-
cable au quatritme degré. Je m’étais figuré que , substituant, comme
il le fait, dans P’expression des racines , des racines quatri¢émes a
des racines (uarrées , il devait obtenir une réduite ayant pour ses
racines les quarrés des racines de la réduite ordinaire. Cela arriverait
en effet, §'il n’y avait que cette unique substitution ; mais l'intro-
duction de la quantité p empeéche qu’il en soit ainsi.

Voila donc cette méthode si fastueusement annoncée quine saurait
seulement soutenir I'dpreuve jusqu'au 4.m¢ degré; méme en ayant
égard 4 des circonstances individuellement propres a ce degré. Tout
en continuant donc de rendre hommage 4 la vaste érudition de
M. Wronski en mathématiques , il faut attendre , pour lui accorder

quelque confiance , & titre d’inventeur, qu’il ait prouvé sa mission
par d’autres prodiges.
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QUESTIONS RESOLUES.

Démonstration de la fausseté d'un théoréme d'analise
énonceé aux pages 36 et 71 de ce volume ;

Par M. TEpENAT , correspondant de lacadémie royale
-+ des sciences.

- T T e T T e - Ty e s

Au Rédacteur des Annales ;

MoN CHER PROFESSEUR ,

POUR occuper les loisirs que me laisse abondamment , sur-tout
dans cette saison, ma résidence dans un pays qui ne saurait offrir
de nombreux sujets de distraction , je m’étais imposé, par forme
de tiche , la démonstration du théoréme énoncé aux pages 36 et 71
du présent volume; mais un examen un peu séricux de son énoncé
m’a bientdt convaincu que, du moins au-deld du quatriéme degré,
lors méme que les sommets de la courbe parabolique qui corres-
pond & Péquation proposée sont tous réels, ce thévréme peut se
trouver en défiut dans un si grand nombre de cas que l'on serait
tout aussi bien fondé 2 adopter la proposition contrasire. Persuadé
comme je le suis, et comme vous l'étes sans doute vous-méme,
qu’on ne sert pas les sciences d’une maniére moins utile en repoussant,
dés leur abord, les docirines erronnées qu'en établissant des vdrités
nouvelles , je m’empresse de vous administrer la preuve de mon
assertion,

Le théoréme dont il agit dec démontrer la faussetd , réduit i
son énonecé le plus simple, revient & ce qui suit :
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Soit X =0 une équation en x d’'un degré quelconque m , et soit
X/=o0 sa dérivée. Si , entre X=y et X'=o, on élimine x , on
parviendra & une équation Y=o en y , dont le degré sera m—ri ;
soient v et p, respectivement , le nombre de ses variations el celut
de ses permanences ; ce qui donnera Y—p=m-—-I.

Si la propo.séc X=o0 est de degré impair ’ le nombre de ses
racines imaginaires sera

., <

F-p) s

‘l

et si, au centraire, elle est dun degré pazr le nombre de ses
racines imaginaires sera

Hlp—ptr) ©
Cela posé, soit I'équation du cinquiéme degré
2°—5z4—2904°48902*+}250250—25621=0 , (X=0)
elle peut étre mise successivement sous les diverses formes que
voici ; _ '
‘ ‘(x—1)(x‘—4x*"—294z"+'596x+25‘621)=o ’
(#=1)(2*=22—149+6y/ —g5)(#*—22—149—6y/ —g5)=0;
(= 1)e—1y/ Tty =55 {a—1+y/ 1Bo=6V=;; } X
{o—1—V 1506V ;55 }{#—1—V 1% —6\/:5‘;}:0 ;
ainsi, elle a bien incontestablement une seule racine réelle et quatre
racines imaginaires. Appliquons-lui le procédé indiqué dans I'énoncé

du théoréme en discussion.
Sa dérivée est

5z¢—202'~8702°41780z+25025=0 ;
ou, cn simpliiant,
Zt—42° =17 42°43562-}5005=0 ; (X’=0)

équation qui revient 2
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(e—13)e—7 (45 )at11)=0 5
les abscisses des quatre sommets de la courbe parabolique
(z—1)(2* =42 —2942*+-5962425621)=y ; (X=y)

sont done 413, ~}7, —5 , —11; on aura donc les ordonndes
de ces mémes sommets, en mettant successivement ces valeurs pour
z dans I'équation (X=y). En conséquence , on trouvera pour les
équations -des quatre sommets , tous réels,

z=-}13 , y=-16417 :

z=-4 7, y=-4 6913 ;
F=— 5, y=-— 6911

3

Zm=—I1 , y=m=16415 ;
I'équation (Y=0) sera donc
(y—16417)y=—6913)(y+6911)(y416415)=0 ;

e’cst-a-dire ,

i
o
va

~—317260794y* (Y==0)

-+634521596y
+1287848730020863
Or; a donc ici ¢=2, p=a2; puis donc que le degré de la preposée
est impair, le nombre de ses racines imaginaires, suivant le théo-

réme , devrait étre
t(a—~z)=0 ;
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tandis que nous avons vu que les racines de cette sorte y sont
au nombre de gquaire.

Nous pourrions trés-bien terminer 1iei; car il} y a entre la dé-
monstration de la vérité d'une proposition et celle de sa fausseté
cette différence trés-remarquable que la premiére me saurait étre
établie que par un raisonnement général , trés-souvent difficile &
-découvrir, et souvent plus difficile encore A énoncer clairement ;
tandis qu’au contraire, pour prouver qu'une proposition est fausse,
il suffit simplement, ainsi que nous venons de le faire, de la trouver
en défaut dans un cas particulier quelconque. Cependant , pour ne
rien laisser & désirer sur ce sujet, nous allons niontrer que, sans
exécuter aucun caleul , rien n’est plus aisé que de s’assurer que , passé
le quatridme degré, le théoréme dont il s’agit sera en défaut tout
autant et tout aussi souvent qu’on le voudra.

Soit I'équation X =0 d’un degré impair quelconque ; et snpposons
que la courbe parabolique dont l'équation est y=X ait le cours
qu'on voit ici:

¥

Ld
' 4
14

AB étant I'axe des #, et Vorigine étant quelconque sur eette droite.
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Nous n’avons pu figurer que quatre sommets positifs et quatre
négatifs ; mais les uns comme les aulres peuvent“étre en nombres
pairs quelconques. Soient donc, en général, 2p le nom! re des pre-
micrs, et 2¢ le nombre des derniers; le degré de la proposée sera
ainsi 2p—2¢9-+1; et, comme elle n’aura évidemment qu’une scule
racine reclle, le nombre de ses racines imaginaires sera nécessairement

2pt-2q .

D’un autre cété, I'équation Y =0 du degré 2p--24 ayant 2p racines
positives, et 2¢ racines négatives, aura conséquemment 2p variations
et 2 permanences ; donc , suivant le théoréme , le nombre des racines
imaginaires de la proposée , X=o, devrait étre

Fa(p—9) 3

nombre qui pourra différer du véritable autant qu'on le voudra.

Mais la courbe , toujours supposée de degré impair , aprés avoir
coupé l'axe des x, et avoir eu, au-dessous de cet axe , un nombre
impair quelconque de sommets négatifs , pourrait, en remontant,
le couper de nouveau , avoir au-dessus un nombre impair quelconque
de sommets positifs, redescendre encore , en coupant une troisiéme
fois 'axe des &, et ainsi de suite. Supposons qu’elle le coupe 2n-}x
fois ; nous aurons ainsi an séries de sommets positifs dont ceux de
la premiére série sculement seront en nombre pair ; de maniére que
nous pourrons représenter les nombres de sommets successifs de
ces séries par

2P5 » 2p‘z+‘ ’ 3}7;+1 ,:°:“"2P;n+‘ .
. Nous aurons pareillement 27 séries de sommets négatifs dont ceux
de la derniére série seulement seront en nombre pair , de sorte
que nous pourrons représenter successivement les nombres des
sommets de ces derniéres séries par

271+l ) 2?,‘"1 ) 2q,+1 ,;ccooono;'aqﬂﬂ ?

le nombre total des sommets des deux séries sera dene
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a(ptpat P )20 F 9ot g, 2 (20—1)

Ie degré de la proposée X=o sera donc

2f,”:+l’z+----+ﬁzn )+2<q1+(/3+""+73n)+ 4n—1 ;

et puisqu'elle est suppesée n’avoir que 2n--1 racines réelles, le
nombre de ses racines imaginaires secra

(A st pan 27 g st 2 2 (1)

Mais, d’'un autre c6té, le nombre des variations de l'équation Y=e
étant ici

2pitp byt p ) (2n—1)

et le nombre de ses permanences

2(7""7 r+7 ;+‘*"+7:n )+(2”- 1)

Ie nombre des racines imaginaires de la proposée X=o , devrait
étre , suivant le théoréme

o i(p»+p:+«---rl-pz~m)-—(q.+qz+--~+qu5} ;

wombre qui pourra différer du véritable autant qu’on te voudra.

Dans les degrés pairs, les choses se passeront encore 3 peu prés
de la méme manitre. Seulement les branches extrémes de la courbe
seront toutes deux situées au-dessus de 'axe des #; de sorte qu’en
désignant par 2n le nombre des racines xéelles.de la proposée , om
aura n-f-1 séries de sommets positifs te'les que eeux des deux
séries extrémes seront en nombre pair et tous les intermédiaires en
nombre impair ; on aura ensuite n séries de sommets négatifs, en.
nombre impair dans chaque sévie ; de maniére que lo§.nombres de
la premiére série pourront étre représentés per

2py
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20, 5 27,1, 2p,1 ieeeennns 2P0ga s
et ceux de la seconde par
2¢.:41 , 29,41, 2,41 ,.eiiii2¢,41

le nombre total des sommets , tant positifs que négatifs , sera donc

2(P1+Pz+----+l’n+x) +2(71+7 z+"“+qn>+(2n_l) >

de sorte que le degré de la proposée X=o0 scra

2(P1+Pz+--'°+pn+l)+2:ql+92+"“+7u)+2n 5

puis donc que nous lui avons suppesé 27 racines réelles , le nombre
de ses racines imaginaires devra étre

2(ptp.tp 3 +"“+pn+-l)+3(71+7 ¥, +.-..+q,,) .

D'un autre coté, le nombre des variations de I'équation Y=o
étant ici

2{pebpHp Fotpur ) Ha—1) o
et le nombre de ses varialions
2'91+7z,+7;+--»+%)+” ’

le nombre des racines imaginaires de la proposée devrait étre ;
suivant le théoréme,

i_z(-(f’l +P2'+""+Pzr+i)—<7n+qg+----+q,,\ } H

nombre qui differera du véritable tout autant qu'on le voudra,

Tom. I1X. 30
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Nous pensons qu’en voila bien suffisamment pour établir qu’au-
deld du quatritme degré , ce théoréme -ne saurait pas plus éire

admis que toute autre régle arbitraire et de pure imagination que
Ton voudrait lui substituer.

La moralité 3 déduire de tout ceci; car, pourquoi les fables en
seraient-elles seules susceptibles ? c’est que les plus habiles peuvent
faillic , tout aussi bien que les plus faibles; que conséquemment on
ne doit jamais refuser a autrui lindulgence que l'on peut étre
bientét dans le cas de réclamer pour soi-méme ; qu'il faut soigneu-
sement se garder de toute précipitation et bien marir ses idées
avant de les faire éclore; et qu’enfin on ne doit jamais affirmer et

admettre comme jfaif certain que cela seulement qui est rigoureuse-
ment et généralement démontré,
Agréez , etc.

St-Geniez ( de I'Aveyron ), le 25 d’octobre 1818.
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Examen du méme theéoréme , pour les quatre premiers
degrées ;
”~
Par M. Servors, conservateur du Muséum dartillerie. (*)

[ U T SIo VL V1o Vi o Yo ¥, V]

ON ne saurait se refuser a iegarder le théoréme énorcé aux
pages 36 et 71 du présent volume des Annales , comme étant
d’une importance tout-i-fait majeure ; et, s’il était vrai , son in-
vention ferait époque dans I'histoire de la résolution des équations
numériques ; car , malgré la longueur des calculs qu’il nécessite ,
il réduit & m—1 les conditions de réalité des racines d’une équa-

tion du degré m; tandis que Lagrange, par deux voies différentes,
me—1

. . m
trouve que le nombre de ces conditions est ~- .
I 2

Jeélimine 2 entre X=% et X/=o0 :le résultat, Y=o, cst, sans
contredit, une équation dont les racines sont les ordonnédes des diffé-
rens sommets ( points auxquels la tangente est paralléle a ['axe
des # ) de la courbe parabolique qu'exprime I’équation X=y;
points dont les abscisses sont les racines de I’équation X’'=o.

Supposons que les racines de X=o soient Ztoutes réelles ;
celles de VPéquation X’/=o seront {towtes. réelles aussi ; ainsi
que celles de Y=o qui , dans ce cas, seront alternativement
positives et négatives. Supposons ensuite que les racines de X=o
ne soient pas foules réelles : celles de X/=o seront ou ne seront

*) Ceci est extrait d’une lettre de M, Scrvois au Rédaeteur des ANNALES

et n'avait point €té destiné pour Pimpression,

J. D. G,
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pas toutes réelles. Dans le premier cas, la discussion que prdsente
le mémoire de la page 60 est lumineuse et me salisfoit ; ainsi
j’admets le théoréme jusqu’ici.

Dans le second cas, c’est-a-dire, lorsqu’a la fois la proposée et
sa dérivde X’=o0 ont toutes deux des ragines imaginaires , la chose
me semble encore problématique, pour ne pas dire plus.

1.° Quand X’=o0 a des racines imaginaires, généralement parlant,
Y=o en a aussi et autant qu'elle ; car & des sommets imaginaires
doivent répondre en genéral des coordonnées imaginaires (*).

2.° Lapplication du T%éoréme de Descartes i une équation sup-
pose, comme l'on sait , que cette équation a toutes ses racines
réelles ; on s'impose donc ici le travail dinduction ou de démons-
tration @ priori qui puisse établir la correspondance entre les cas
de réalité de tountes les racines de Y=o et ccux de la non réalité
de tout ou partie de ces mémes racines : c’est un travail de la
premiére sorte que parait avoir commencé l'auteur du mémoire déja
cité : suivons le un instant.

Au troisiéme degré; supposons que X=o ait deux racines ima-
ginaires ; et admetjons d’abord que X/=o0 ait ses deux racines réelles ;
il est visible que ¥'=0 aura ses deux racines réelles et de méme
signe, c’est-a-dire, toutes deux positives ou toutes deux négatives;
et par conséquent, par le théoréme de Descartes ou deux variations
ou deux permanences. Si, au contraire, les deux racines de l’équa-
tion X’=o sont imaginaires, celles de Y=o le seront aussi, et
parce que l'équation est de degré pair, son dernier terme sera po-

sitif ; on n’aura donc, pour la succession des signes de ses termes ,
que les deux foraies possibles

(" Il ne pourrait guére y avoir d'exception que pour le cas olt I'équation
X=0 ne renfermant que des puissances paires de x, l'équation X’==o0 aurait
quelques racines imaginaires de la forme x==a\] =7 ; mais , en posant x?==z,
on ferait sorlir Péquation de ce cas d'exception, et 'on en ramenerait la dis-
cussion & celle d’une équation d'un degré moitié moindre,

J. D, G.
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+ 5=
+a+:+;’

qui donnent encore deux variations ou deux permanences, comme
dans le cas des racines réelles de X’==o0 ; donc le théoréme vaat
pour le troisicme degré,

Au quatriéme degré. Supposons d’abord que X=o0 ait deux racines
imaginaires, et admettons en outre que X’/=e ait ses trois racines
réelles ; Y=o aura aussi ses trois racines réelles , deux positives
et une négative, ou bien trois négatives; ce qui sera indiqué par
deux variations et une permanence, ou bien par trois permanences ;
si, au contraire , nous admettons que X’ ait deux racines imagi-
naires; ¥'=o0 en aura en méme nombre; mais sa racine réelle est
négative 5 et , comme d'ailleurs le produit des deux racines imagi-
naires est positif , le produit de ses trois racines sera négatif ; le
dernier terme de ¥ =o0 doit donc étre positif , ce qui ne permet,

pour la succession dessignes de ses termes, que les quatre formes
suivantes

-+, 4+ , 4, 4 ; trois permanences ;
=%, 34
gy =, H deux variations et une permanence ;
’ P

o4+ =s4+;

donc encore le théoréme a licu jusqu’ici.

Supposons présentement que X=o ait ses quatre racines imagi-
naires , et admettons que X/=o0 a scs trois racines réelles : celles de
Y=o le seront aussi et seront de plus toutes trois positives, ce qui
correspond a trois variations, et justific conséquemment le théoré¢me.
Admettons ensuite deux racines imaginaires dans X’=o. 1l y en aura
également deux dans Y=o ; et sa racine réelle sera positive ; ce
qui exige que son dernier terme soit négatif ; on aura donc, pour

les formes possibles, dans la succession des signes de ses termes
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R une pariation et deux permanences ;
+ g vom g — = H

+ ,—, 4, = ; troisvariations ;

Ces indices sont donc plus étendus que ceux du cas précédent;
car le premier, une variation et deux permanences est celui de
la réalité des quatre racines de la proposée X=o; donc, si je ne
m’abuse (et je désire yue cela soit) le théoréme est en défaut dés
le quatritme degré. Du moins est-il certain que l'induction qui est
Pobjet du mémoire cité n’est ni assez développée ni assez prolongée,
et qu'elle n'arrache pasl’asseniiment du lecteur | our le cas général (*).

(™ Tout se réduit évilemment , dans cette question, & savoir si les trois pre<
miéres formes sont purement hypothétques, ou si, au contraire, quelqu’une
d’entre elles peut réellement s'offiir au calculateur; or, pour cela , il suffit
d’un seul exemple; car clest ici, et ici seulement qu'il est permis de sappuyer
des faits , et d’invoquer en sa faveur le témoignage de l'experience.

Soit donc prise I'équation

44765622 —~615042-4-11955852=0 ; X=o0
qui revient A

(x24-16x4-5878) (x2==16x4-2034)=0 ,
ou encore i

{ (x48)2-4-5814 } { (x=8)2~4-1970 }—_—.o 5
et qui a aibsi , bien certainement ses quatre racines imaginaires ; sa dérivée est

x34-3828x0—15376=0 , ) X'=o0)
ou

(@ +424-3844) (x=—f)=0,

ou encore
; { (o=4-2)2-}-3840 } (x—4)=0 .

Les abscisses des sommets de la courbe parabolique dont I'equation est
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Au surplus, il me semble que le théorme serait encore assez
impostant quand on lui imposerait pour limite ou condition de
vérité la réalité des racines de I'équation X/==o0; car je crois qu'on
pourrait traiter X’=o0 comme la proposée, par le moyende X"/=o0,
et ainsi de suite; et recucillir de I’ensemble des résultats les carac-
téres de réalité des racines de la proposée ; cette voie scrait encore
plus courte que celle que propose Lagrange, d’aprés de Gua, dans
la note vur de la Résolution des équations numérigues (*).

{(x4-8)245814}{ (x=—8)4-1970} =y , X=y)
sont done
a=} ; a=-—2z16V T,

d’olt l'on conclura, pour les ordonnées des mémes sommets
=11832588 ,  y==—2636100=2=982040\ T ;
Péquation (Y==0) sera donc ici
(y+26361004983040y/ Z75) (1 $2636100—~983040V =75 ) (y=11832588)=a

ou

(r>4-5272200y4-21444537834000) (y==11832588)==0 ;

ou enfin
+y3
=—6560388y2

Il

Y=
=40939232619600y ¢ )

=—253744381040134392000

équalion qui répond & la troisitme des quatre formes du texte , et d’ou, par
Vapplication du théoréme , on se trouverait faussement induit a conclure quc
la proposfe a ses qualre racines réelles.

Il demecure donc avéré que le théoreme dont il s'agit ici ne saurait méme
se soutenir au-dela du troisieme degré.

(*) Malheureasement il demeure établi par la discussion 4 laquelle s’est livré
M. Tédenat, dans le précédent article, que, méme avec cette limitation, le
théoréme ne saurait étre admis au-deld du quatrieme degré.
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QUESTIONS PROPOSEES.

Problémes de Géométrie.

| QUEL est Te lieu des centres de toutes les sections circulaires
faites dans une surface dounée da second ordre?

IL. Quel est le lieu des foyers de toutes les sections faites dans
une surface donnée du second ordre par des plans paralleles a un
plan fixe donné? ,

IIL Quel est le lieu des foyers de toutes les sections faites dans

une surface donnée du second ordre, par des plans paralltles A une
droite fixe donnée ? '

IV. Quel est le liea des foyers de toutes les sections faites dans

une surface donuée du second ordre par des plans passant par un
poiat fixe donné?

Probléme danalise indétermince.

Démontrer que la formule (14222" k=1 , dans la quelle le

nombre entier # n’est pas nul, est toujours exactement divis.ble
par 2"t* P
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ALGEBRE ELEMENTAIRE.

Démonstration dun fuit de calcul algebrique (rés-
important et trés-remarquable , et des principales
consequences qui en resultent ;

Par M. de StaNnviLLE , répétitcur d’analise & 'école royale
polytechnique,

[, %% ¥, V) Vo Vi V]

Soir 1a série indéfinie

3

2z
1.2.3

+0no'

1fa = a(p+E) = +o(a+) a+2k)

et soit une autre série

z¥
2.3 e

I,

14b = B B) = B (AR) (k)

ne différant uniquement de celle-la qu'en ce que & y a pris la
place de a. Nous nous propesons , en premier lien , de démontrer
que le produit de ces deux séries est une série composée en (a+5)
de la méme maniére que la premiére l'est en a@ et la seconde en &7
c'est-a-dire , que ce produit est

Tom. I1X, n.° VII, 1.°* janvier 181Q. 3z
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z3 g.
1 04D) - H@BYa 4B HB) = +atB) @B e bk ak) g

Pour y parvenir, assurons-nous d’abord de la forme des premiers
termes du développement de ce produit ; nous trouverons , pour
ces premiers termes

1| = o h)| = a(a+i)at-2h) |
42| 4+ el 4+ 3ablath)
FIHE| A+ 3ab(h)

o B(BA-E)(b42k)

e

LA ]

L] . . zz
On voit d’abord que le coefficient de Z est a+b. Celui de = peut
I .
se décomposer en ces deux parties

a[(a+£k)-4-5] ou a(a+-04-k) ,
b[(+k)+-a] ou  Ylat+b-4k)
dont la somme sera conséquemment

() aHbHE) -

3
Lie coeflicient de -I—zz—g peut’ également se décomposer ea ces deux
Parties o
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a{(a—l—k)(a-&-g’f)+2lz(a+lfj+li(5+/’f}}
b b+-k)(b+2k)F2a(0+4-k)tala+k)}

or, le multiplicateur de @, dans la premiére partic, est évidemment
. . z2 ,
ce que devient le coeflicient de — , lorsqu'on y change 2 en at4;
1.2
et le multiplicateur de % dans la seconde est ce que devient ce
méme coefficient , lorsqu’on y change 4 en 44k ; puis donc que

2

nous avons trouvé que le coefficient de

revenait a (a--2)

(a-4b+-k) , il en résulte que le multiplicateur de @, dans la pre-

midre partie du coeflicient de

et celui de 4 dans la seconde

1.24

sera également

(e+-b4k)a+-b4-2k) ;

. . 23
I'ensemble de ces deux parties , ou le coeflicient de — , sera done
1.2,

alamt-b a2 l)-+ a-Ho Y a-btal)
c'est-a-dire ,

(a+5)(ab+I) a+b¥2k)

1l demeure donc prouvé, par ce qui précéde , que du meins la
loi dont il sagit se soutient pour les quatre premiers termes du
produit de nos deux séries; et il ne serait pas difficile de s’assurer
qu'elle a également lien pour un plus grand nombre de termes
de ce produit.

Il n’est donc plus question, pour compléter notre démonstration;

que de prouver que si cette méme loi se soutient jusqu’au coefficient de
zP—1

. N inclusivement , elle aura lieu également pour celui de
T2 (p=I

=P

~—— ; or, on trouve, pour le premier de ces deux coefliciens ;
2200 P R



BB+ R B2k (B43E) . .

Or, en. remarquant que

alat Ey(atok,(a434) « .. oL [a4(p—2)4]
+’Lj-‘- baladi)aak) . v, [a-4( p—3)]
+._ P2 pbteh)alatl) o e e la+(p—4)k]
e e e e e e
T ) B e [64+(p—42K]
I T2 Y ) B [a4(p—3)k]
OB BA-2k)B43k) . . . . . . [B+(p—2)k]

et pour le second
a(a+k)at2k,(a43k) « . .. ... [at+(p—1)k]
+LoaatR)atoR) L [a4-(p—2.K]
+EE R aeE) e [a-+(p—3,k]
e e e e
+ A a(a-l—k\ K)o oo [64+(p—3 K]
+ Pabbdl@4el) oo, [84+(p—2)k]

. . [bHp—1)R}
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P _ p—1
—-—= ——+1 ’
J X

LA i P"" P-2 p-r
X 2 +

P p—r P2 _ p=1 p=2 P"3 p—1 P“'"
L. . = . . + -
I 2 3 1 2 3 1 2

on verra que ce coefficient peut se décomposer en deux parties ,
dont la premiére est

] a(at-k)(at2k)(@+3k) « o o o . o\ [a+(p—1)E]

+ b () a2l [e+(p—2)k]

4 FE 008 (B r e [oH(p—3)E] ‘
a

+..o.o---o--.oaoo-ooo-.o-»o;on-.

,|.’l.t‘:i @+B)(B+h) . oo oe s oo [BH(p—34]
k ABBAE)BA2E) « o v o v [b(p—2)E] T

et la seconde _
Tom. IX. St bis.
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. alatk)at2k) .. ., o ... 000 [a(p—2)k]

+’::-—[(b+k).a(a+k) cee e e [eH(p—3)E]

b —
ﬂ +’%L—a(a+k).(5+k) cee e e [B(p—3E]

2

+ a4 R GH2R. [24(p—2)F]

F AR B2R)G43K) o o .o B p—1)E]

Or, il est aisé de voir que le multiplicateur de 2, dans la premiére
- . . zp—‘l
de ces deux parties, est ce que devient le coeflicicient dem,

lorsqu’on y change a en a-}+-%, et quele multiplicateur de 4, dans
la seconde, est ce que devient ce méme coefficient, lorsqu'on y

change & en b-+%; si donc, comme nous le supposons , le coeffi-
zp-l

cient de —————— est en cffet réductible 2 la forme
1.2.---(}7-—‘1)

(a+23)(a-b-4k) a+b42K)....[a-}-b+(p—2)F] ;

le multiplicateur de @, dans la premiére de ces deux parties , et
celui de & dans la seconde, sera également

(a+-0+k, (a-b-4-2k)(a-b+3K).....[a+b4-( p—1)E] 5

en réunissant donc ces deux parties , et ayant égard au facteur

2P

commun qui les affecte, on aura, pour le coefficient de -

(a-t8)(a+2+k)a+b+2K) [0+ B+-(p~1)E] ;
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comme nous lavions annoncé. Il est donc prouvé ; par ce qui
précéde , que , si la loi dontil s’agit se soutient jusqu’a un terme
quelconque du produit , elle aura lieu également pour le terme
qui le suivra immédiatement ; puis donc que nous nous sommes
assurés de son existence pour les quatre premiers termes , il s’ensuit
gu'elle a lieu pour tous, et qu'ainsi le théoréme est démontré en
toute rigueur.

Pour abréger , désignons par fz notre premitre série , c’est-h-
dire, posons

fa=ra £ a(e+h) = Salat ) a-t2l) g o

nous aurons pareillement

z3

(=145 = Hb(+k) = bR +-20)

+--u: .

1.2.3

et encore

fat0)=1-4-(a+0) = (BN a+HI4HE) i 5

en conséquence , le théoréme qui vient d’étre démontré pourra éire
écrit sous cette forme trés-simple

fa.fb=f(a}D) . ¢))

On remarquera que, d'aprds cette notation, on doit évidemment
avoir fom 1,
Si dans Péquation (I) on change & en b, elle deviendra
fa f(b+c)=a+b4c) ;
mais , en vertu de la méme équation,
f(o4c)="fb.fe ;

substituant donc, on aura
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fafb.fe=fla+b4c) .

En supposant qie ¢ se change en ¢4, et se conduisant de la
méme maniére, on prouvera pareillement que

fa.fb fefd=f(a+-b~+ctd) ;
et en poursuivant toujours ainsi, on se convaincra qu’en général
fafb.fefd o =f(aFo4-ctd40n) ;

c’est-a-dire , que le produit de tant de séric qu’on voudra , de la
forme de la série fg; et ne différant les unes des autres qu’en ce
que a s’y trouve successivement changé en 4, ¢, d, ... est une
série composée exactement en g-fb—+c-+-d+4- ... de la méme maniére
que Pest la premitre en @, la secondeen 2, la troisitme en ¢, la

quatriéme en 4, et ainsi de suite.
Si dans la derniére équation ci-dessus on suppose les quantités
e,b,c, d,...... égales entre elles et & la premiére @, et leur

pombre égal & m ; elle deviendra
(f2)n=fma ; @

c’est-3-dire qu’une puissance entidre et positive quelconque m de

la série fa, est une série composée en ma de la méme manidre

que celle-la Test en a,
Suivant I'équation (1) on a

o fe=f(b4c);

posons d4c=¢, dod c=a—0&; il viendra , en substituant
7]
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(5.8 6—0)=ta ;
fo o f(a—) ; 10
—f;"" (a"" ) b ( I)

c’est-a-dire que le quotient de la division de la série fz par la série
th cst une série composée en (2—5) de la méme maniére que le
dividende I'est en 2 et le diviseur en 5.

Par I’équation (II), on a

(f&}”‘:fmﬁ H
a . . .
posant mb=a, d’ot b= ~ il viendra
a m
(f—) =fa ;
m
d’olt on tirera, en extrayant la racine et renversant

Vie=f—; (V)

CRR

c’est-a-dire que la racine d’un degré quelconque m , entier et po<
sitif , de la série fz n’est autre chose qu’une série composée em
a R y . ,
— de la méme maniére que la puissance l'est en a.
m

On aura, d’aprés cela

m 71 e n/ == m
(lejr=y (a)m=y fma=f —a;
¢’est-a-dire ,
m m
(fo)v=f ;a .

Tom. IX. 33
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m et » étant deux nombres positifs quelconques, L'équation (I7)

(faim={ma

a donc lieu, quelque nombre positif , entier ou {ractionnaire qu’on
représente par m. Il serait ensuite aisé de prouver, i laide des
raisonnemens usités en pareil cas , qu’il en sera encore de méme
lorsque m sera un incommensurable positif quelconque.

On aura encore, quel quc soit le nombre positif 7,

1 fo
- —_
(fa) T )™ T (faym ’

ou, d'aprés ce qui préctde et le théordme {II)
fa)=m= > =1, S
(fa)=m= —= (om—ma)=f—ma .

Ainsi, quelque nombre entier ou fractionnaire , positif ou négatif,
tommensurable ou incommensurable qu’on représente par m , 3l
est toujours vrai de dire qu'on a

/~ (fa,"=fma ,
c'est-a-dire ,

1.2.3

{1+a—f—+a(a+]f)-%+a(a+k)(a+zlt) = +....§m

z 2 i 3
=1-+}ma < ~-ma{ma+t k) %+ma;ma+k)(ma+zk) Ti—é ~+....

et cela quels que soient d'ailleurs 2 et £.
Si, dans cette équation , on fait =1 et f==—1, clle deviendra

m m me=—1 m mes=1 M-==2
{1 m— —_— —_—— e — .
\ +z) z I+ P z+ l 2 + I 2 §

23+m. 3
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la formule du dinome sc irouve donc ainsi démontrée, quel que
soit I'exposant m. ,

Si, dans la méme équation , onsuppose k=0 , 6=T1 ;, Z=1I
m=2Adux, elle deviendra

! ! T Ax—_+
(‘+:+:.:+,.2,5+---- =1+ -+

Ia série du premier membre est , comme l'on sait , un nomkrs
incommensurable (*), compris entre 2 et 3 : c’est la base du sys-
teme de logarithmes néperiens ; en le représentant par ¢ , suivant
Yusage, on aura

Ax | A A3x3
A'x-'-—" 1 — o-l:
€ + 1 + 1.2 + 1.2.3+

St 'on fait ¢4=a, auquel cas 4 sera le logarithme néperien de
&, on aura

xle | 22 2332 .

e

1.2 1.2.3

formule qui donne le développement des exponentiels en séries ou’
ce qui revient au méme , le développement d’'un nombre z, ew
fonction de son logarithme.

Si, dans cette dernitre- formule, on change x en m et gen 147,
elle deviendra

(1+2)"=1+4

ml(x:-x)_*_mﬁlz(t-l-x)‘_l_ m3B(1f-x)

1.2 1.2.3-

mais on a, d’un autre c6té,

(*). Voyez la page 50 du' présent’ volume.-
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x

(1=)"=14m — +m(m—1)—j:2 +m(m—1)(m—2)

el

x3
1.2.3
égalant donc entre elles ces deux valeurs, en supprimant l'unité
de part et d'autre, et divisant par 7, il viendra

(1) mlﬁi’_jx’ Wil

1.2.3

x3

=2 4 m—1) = +(m—1)(m—2)

1.2,3

-

faisant enfin, dans cette dernidre équation , m=o, on aura

x x2 a3 x
1(,1+x)=-!-—--;- +5 - Z‘_%‘

formule qui donne le logarithme néperien de 1--z, en fonction
du nombre z. ‘

Ceux qui désireront de plus amples détails sur ce sujet pourront
consulter nos Mélanges d'analise algébrique et de géométrie ( veuve
Courcier , Paris, ‘1>815 ). ‘

Dans un prochain article, nous nous occuperons du développement
des fonctions circulaires en séries.
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ERN

GEOMETRIE ANALITIQUE.

Théorémes nouveauzx , sur les lignes et surfaces de
tous les ordres ;

Par M. FreciEr, professeur de mathématiques au collége
de Troyes, ancien éleve de T'école polytechnique.

T e Ty s s T e s > T

J'AI démontré aux pages 229 et 321 du VLE volume de ce recueil ,
et a la page g5 du VILe , quatre théorémes assez remarquables
sur les lignes et surfaces du second ordre. Javais dés-lors entrevn
que ces théorémes avaient leurs analogues dans les lignes et surfaces

des ordres supéricurs : ce sont ces derniers dont je vais m’occuper
1ol

" THLOREME I. « Soit une ligne quelconque de lordre m et
une ligne du second ordre , ayant son centre en un quelconque
» des points du périmétre de la premiére. Soient menés i cette ligne
» du second ordre deux diamétres conjugués , dont I'un soit tangent

k-

*

» 4 la ligne de l'ordre m; ce dernier coupera cette courbe en
» m—2 points. Par chacun de ces points , concevons une paralléle
» au conjugué de ce diamétre, chacune de ces paralleles pouvant
» couper la ligne de l'ordre 7 en m~1 nouveaux points , elles
» auront avec cette ligne (m-w1)(m—2) points d'intersection fixes,
» non situés sur la tangente,
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»

»

» Cela posé , soient menés 4 la ligne du second ordre deux nouveaux
diametres conjugés quelconques , chacun d’eux aura, avec la ligne
de l'ordre m, outre le centre de celle du second ordre m—r,
points d’interscction ; ce qui fera, pour les deux 2{m—1) nou-
veaux points, variables avec la direction des diamétres conjugués

» arbitraires.

» On aura donc en tout, sur la ligne de l'ordre m, (m—1)(m—2)
~+2(m—1) ou m(m—1) points, dont (m—i1)m—2) fixes et
2(m—1) variables.

» Or, bien qu'une ligne de I'ordre m—r1 se trouve complétement
déterminée par ; (m—1)(m—4-2) points seulement de son périmétre,
il arrivera néanmoins que les m(m—1) points dont il s’agit, soit
réels , soit imaginaires , se trouveront constamment appartenir &
une ligne de cet ordre. En outre, cette ligne variable de I'ordre
m—1, qui ne passera pas par le point pris arbitrairement sur
la ligne de l'ordre m, coupera constamment le conjugué du dia-
métre tangent A cette derniére ligne en ce point , aux m—t
mémes points; de sorte que toutes les lignes de l'ordre m—r1 qui
pourront naitre ainsi des changemens de direction des diamétres
conjugués de celle du second , passeront constamment par un
méme nombre (m—1)(m—2)4(m—1) ou (m—1)* de points fixes.
» Et , attendu que deux lignes de cct ordre ne sauraient se
couper cn un plus grand nombre de points, ces lignes n'auront
aucune autre intersection que ces points fixes eux-mémes ».
Ainsi, par exemple , s'il s'agit d’une ligne du 3. ordre, le dia-

metre. tangent la coupera en un seul point, par lequel menant une
parallele- & son conjugué, cette parallele déterminera deux nouveaux
points. fixes. sur la courbe. les deux diamétres conjugués arbitraires
en détermineront quatre- autres variables et ces six points, quelles
que soient d'ailleurs. les directions des deux derniers diamétres, ap-

partiendront constamment 3 une ligne du second ordre, ne passant

Pas parle point de contact de la tangente, mais coupant constam-
ment cette: tangente aux deux mémes points qui, joints aux deux
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peints fixes de la ligne du 3.¢ ordre seront les quatre points communs
a toutes les ]?gne§ du second ordre auxquclles les changemens de
direction des diamétres conjugués arbitraires pourront donner naissance.

Démonstration. Soient pris pour origine le centre de la ligne du
second ordre, pour axe des & le diamctre de cette courbe tangent
4 la ligne de Vordre m, et pour axe des y le conjugué de ce
diamétre.

Pour que l'axe des z soit une tangente 3 une courbe ayant son
point de contact 4 l'origine, il est ndcessaire et il suffit que I'équa-
tion de cette courbe ne renferme ni le terme tout connu ni le terme
du premier degré en x; afin qu'en y posant y=o , elle devienne
divisible par a*. Ainsi, d’aprés les conventions énoncées ci-dessus,
Péquation de notre ligne de l'ordre m ne saurait étre que de la

iprme suivante :

aa™
—(a/4-by)a™
- (all by -y e
B (1)
d(p/ gy rlyr e oty 2 )2t

F gy sy o Auy™ )
Alyry syt i o ey™) )

En y faisant y=o0, et divisant par z* I'équation résultante
a:n’""—l—-a’x’"';+a”x’""4+........+})”=0 (2)

sera celle des paralleles menédes & I'axe des g, parles m=2 points
ou la tangente 4 lorigine, c’est-i - dire ,1'axe des z, coupe la
courbe (1),
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Si présentement on mene i la ligne du second ordre deux dia=
mdtres conjugués quelconques , les équations de ces diametres
seront de la forme

z—gy=o0 , a=—hy=o ; 3)

g, h étant deux nombres arbitraires , dépendant des directions de
ces diametres , mais liés entre eux par la condition

gh=k , (4)

dans laquelle le nombre constant # ne dépend uniquement que des
dimensions de la ligne du second ordre , et de sa situation par
rapport aux axes des coordonndes.

Si l'on prend le produit des équations (3), en ayant dgard i ¥a
condition (4), on obtiendra, pour I'équation du systéme de deux
diamétres conjugués quelconques

B (g+B)zyHly* =0 . 5)

Si ensuite on multiplie Iéquation (2) par cette derniére, il viendra
pour l'équation du systtme tant des diamétres conjugués que des
paralleles & T'axe des y mences par les m—-2 points ou laxe des
2 coupe la courbe (1)

az™t-a’z™" *t-a/la™ - .....+p”'
(2" 2a/a™" 30/ g™ - p [ (g B2y —ky* ] =o0. (6)

Si présentement on veut savoir en quels points le systtme de
droites exprimé par Péquation (6), coupe la courbe exprimée par
I'équation (1) ; il faudra considérer ces deux équations comme celles
du méme probleme détermin¢ en =z, y. Mais , il est clair que,
dans cette recherche , il sera permis de subsiituer & V'une ou 2
Vautre des équations (1, 6) une combinaison quelconque de ces deux

équations
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équations ; on pourra donc, en particulier , remplacer Iéquation (1)
Par sa différence avec ’dquation (6), laquelle étant divisée par y,
€ qui revient 3 en éter Iéquation de l'axe des «, devient

Blgm= |

(B y)a™

+ ey 4"y )am

I
gy ey )2 P =0 @)
(g sty e Huly™ )2
S(rdrytsy e e ey™ )

Y(aam 2 -a/am /= o) (g Yo —hy ]

Cette dquation est donc celle d'une courbe qui est coupée par e
systéme des droites (6) aux mémes points ol ces droites coupent
la courbe (1) ; or , cette courbe est du degré m—r1, quels que
soient g , % ; ainsi la premiére partic du théoréme se trouve démontrée..
I1 est d’ailleurs évident que la courbe (7) ne passe point par l'origine:

Si, dans la vue de savoir ou cette courbe est coupée par laxe
des y, cest-a-dire , par le conjugué du diamétre tangent a l'origine
on fait, dans son équation, z=o0; elle deviendra

Py b s (r— By =0 , (6)

équation qui fera connaitre les ordonnées des intersections demanddes;
mais , puisque cette équation est indépendante de g, k., ces m—I
points d’intersection seront toujours les mémes, quelles que soicnt
les dircctions des deux diaméetres conjugués donnés par les équa-
tions (3), ce qui démontre la seconde partie du théorsme..

Tom. 1X,. 33
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Remargue. Supposons présentement que les axes .des coordonndes
soient rectangulaires ; c’est-a-dire , supposons que le diamétre de la
ligne du sccond ordre tangent a lorigine & la courbe (1) en soit
un des diametres principaux ; alors I'axe des y sera une normale
.

A cette courbe (1) et contiendra conséquemment son centre de

courbure répondant A lorigine; soit R le rayon de courbure pour
ce point; 1l est facile de se convaincre qu’on aura

R=— Pl ™) (9

Supposons présentement que I'on ait m=3 , I’équation (8) deviendra
PE (P g )2 gy rly D attrtry ity D=0 ; (10)

on trouvera les intersections de la courbe proposée avec I'axe des

y , en faisant , dans cette équation z=o0 , ce qui donnera , en
divisant par y ,

sy*4-ry-t1=o0 ; (1) .-

de sorte qu’en désigant par ¥, ¥ les distances de ces intersections
a lorigine , on aura

sY*4r¥Y-41=o ;

sYPdr¥i41=o0 ;

d’ol on tirera

_ 1 Y4y
S= ‘Y—X:; ) r-—--——i;YT . (12)

d’un autre c6té I'équation (7) devient, dans la méme hypothése ,

(*) Voyez sur cela la page 154 du présent volume.
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9" g trly)z - (ctrytsy ) H(pa tp ) (g + Ba—kyl=0 ;
en y faisant #=o0, I’équation (8) se trouve rempiacée par celle-ci
sy*+(r—p"ky+1=0 ;

st nous supposons de plus que la ligne du second ordre qui a son
centre a3 lorigine soit un cercle, nous aurons k=-—1, ce qui ré-
duira cette derniére équation a

sy (r-p yti=o ;. (13)

- r .
mais la formule (g) donne p”=—~ﬁ;substxluant donc cette va-
2

leur , ainsi que les valeurs (12) de s et r, dans I’équation (13);
elle deviendra

2Ry*—{ zB(Y+Y’)+YY/}y+2BYY/=o ;

=L 4

formule qui va nous fournir , pour la construction du rayom
de courbure , en wun quelconque des points d'une ligne du
troisi¢tme ordre , un procédé tout-a-fait analogue a celui que nouvs
avons déja indiqué pour celles du sccond , a la page 23z du VL¢
volume de ce recueil : voici en quoi il couvsiste.

On menera d’abord la tangente ct la normale au point dont il
s'agit; la normate coupera la courbe en deux nouveaux points dont
on} prendra les distances au point de contact de la tangente pour
Y, v

La tangeate coupera la courbe en un point par lequel on meners
% la normale une paralletle qui, par sa rencontre avec la courbe,
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d :tcrminera deux points sor son périmetre. On menera aussi, par
le point de contact , deux droites arbitraires et indéfinies, perpen-
diculaires entre elles déterminant, par leurs intersections avec la
courbe , guatre nouveaux points sur son périmétre.

Par cinq de ces siz points on fera passer une ligne du second
ordre, lajuelle passera aussi par le sixiéme , et coupera la normale
en dcux points . la distance de I'un ou de l'autre de ces deux
points au point de contact pourra étre prise pour y.

Tout sera alors connu dans la formule (14) qu’il ne sera plus
q testion que de construire.

THEOREME II. « Par un quelconque des points d’une ligne
» quelconque de Pordre m , soit fait passer deux droites l'une
» tangenie et l'autre non tangente et de direction arbitraire mais
» fixe; la premitre coupera de nouvean la courbe en m—2 points,
» par chacun desquels menant une paralléle 2 la droite non tan-
» gente , cette parallele déterminera , par sa rencontre avec la
» vourbe, m—1 points sur son périmetre ; de sorte qu'on aura sur
» ceite courbe (m—1)(m—2) nouveaux points fixes, non situés sur
» sa tangente, .

» Soit construit ensnite arbitrairement un triangle dont le sommet .
» soit au point de contact, dont la base soit paralléle & la tangente,
» et qui ait le- milieu de cette base situé sur la droite non tangente ;
» ses deux autres cotés , considérés comme droites indéfinies , déter=
» mineront sur la courbe 2(72—1) points de son périmétre , variables ,
» comme le triangle arbitraire qui aura servi a leur détermination,

» On se trouvera donc avoir en tout , hors de la tangente,
s (m—1)(m—2)42(m—1) ou m(m—1) points de la courbe, dont
» (m—1)(m—2) fixes et 2(m—1) variables, )

» Or, bien qu’une ligne de I'ordre m—1 se trouve complétement
» déterminée par ;(m—1)(m-2) points de son périmétre , il arri~
» vera*néanmoins que les m(m—1) points dont il s’agit , soit

b
p. Xéels, soit imaginaires , se trouveront constamment apparteniz



.

»

»

»
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4 ane ligne de cet ordre. En outre , cette ligne variable de I'ordre
m—1, qui nc passera pas par le point de contact, coupera la
izingente en m—1 points fixes ; de sorte que toutes les lignes
de l'ordre m—1 qui pourront naitre du changement de grandeur
et de dimensions du triangle arbitraire , passeront constamment
par un méme nombre (m—1)(m—2)4(m—1) au (m—1)* de
points fixes,
» Et, attendu que deux lignes de cet ordre ne sauraient se

» couper en un plus grand nombre de points; ces lignes n’auront

aucune autre imtersection que ces points fixes eux-mémes. »
Démonstration. Ce théoréme ayant beaucoup d’analogic avec le

précédent , se démontre d’'une maniére 4 peu prés semblable.

D’abord, en prenant respectivement les deux droites tangente et

non tangente pour axes des x et des ¥ ; pour les mémes raisons
gue eci-dessus, on pourra prendre pour équation de la courbe pro=
posée I'équation (1), c’est-a-dire,

az™
J-(a/+-y)am
@bty )am
)

i
)

T
:_]..( ,v”+q”y+r”y’-¥-- oo ,//ym- z) 21
S (g'yFriy sy . o0 ulym= g
Fyry sy oo oo oey™ )

Cette courbe coupera encore l'axe des #, cest-i-dire, la tangents

A l'origine, en des points déterminés par I'équation

B3 g™ @l g™ A e P 0 (2)
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laquelle sera aussi I'équation commune des paralléles 3 l'axe des ¥
menées par ces POll’l[S.

D’un aatre c6té, I'équation commune aux deux cétés du tnang]e
qui passent par le point de contact, sera, d’aprés les conditions

de la construction de ce triangle,
x*—ky*=o ; (15)
& étant une quantité variable et tout-a-fait arbitraire..

Veild donc en tout 7z droites dont on aura I’équation commune
en multipliant les deux dernitres , ce qui donnera

ax™ ~a/zm e/ am i A opa?
=o0. (16)
—k az™ Pl amm 3l am e L p)yt

Si présentement on veut connaitre en quels points ces 7 droites
conpent la courbe (1), il faudra considérer comme équations d'un
méme probléme déterminé 4 deux inconnues x, ¥y, soit les deux

équations. (1, 16), soit tonte combinaison qu’on voudra faire de ces.
deux-la.

On pourra donc, en particulier , substituer & 1’équation (1) sa
différence avec I’équation (16) qui est, en divisant par ¥, ce qui
revient a oter ’équation de l'axe des x du résultat,

Fam=r ]
@ ey (amm?
e I
gy ety g
4—(q’+r’y+s?y’+....+z/ym— 2\
(A rytsyie e R ey™)
Hh(aam 2 ta/am i aligm bt 4 p)

|

o: ()
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On aura done les points d’intersection demandés en combinant entre
elles les équations (16, 17) ; ce qui prouve que P'équation (17) est
celle d’une ligne de I'ordre 2—1 , qui passe par ces m{zm—1) points
quel que soit 4 ; ee qui démontre déja la premiére parlie du théoréme,
Si, pour savoir en quels points la ligne (17) coupe I'axe des z,
c’est-a-dire, la tangente & l'origine , on fait, dans son équation y=o ,

elle deviendra
Bagm bt e e g2 g 1 =0 (18)

équation indépendante de % ; ee qui prouve , conformément % la
seconde partie de I'énoncé du théoréme , fue ces points , dont aucun
n’est l'origine , sont fixes sur la tangente , quel que soit d'ailleurs
le triangle construit sous les conditions indiqudes.

THEOREME III. « A nne surface quelconque de lordre m,
» soit mené un plan tangent, par un point tel que la ligne inter-
» section de ce plan avec la surface ne passe pas par ce point. Par
» ce méme point, soient menées, sur le méme plan tangent, les
» deux tangentes principales.

» Considérons la courbe intersection de la surface donnée avec
» son plan tangent comme unc section faitc par ce plan & une
» surface cylindrique , ayant sa génératrice parallele au diametre
» conjugué de ce plan tangent ; cette surface cylindrique coupera
la surface proposée suivant un certain nombre de courbes fixes.
» Soit fait du point de contact le centre d’une surface quelconque
» du second ordre ; le plan tangent en sera un plan diamétral ; soit
» mené , 2 la surface du second ordre le diamétre conjugué de
» ce plan;

» Soit ensuite construite arbitrairement une surface conique du
» second ordre, de manitre pourtant qu’elle ait son sommet ou centre
» au point de contact; qu’elle passe par trois diamdtres conjugués
» de la surface du second ordre qui a son centre en ce point ; que
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» ses sections paralléles au plan tangent aient leurs diamétres pﬁrx‘3
cipaux respectivement paralleles aux tangentes principales dont
il a été question ci-dessus , eten oulre proportionnels aux racines
» quarrées des rayons de courbure répondant 4 ces mémes tangentes
» principales ; cette surface conique coupera la surface courbe dont
» il s’agit suivant plusieurs lignes courbes , variables comme la
» surface conique qui leur aura donné naissance.
» Or, tant ces courbes variables que les courbes fixes dontila
» été question ci-dessus , se trouveront toujours appartenir & une
» méme surface de l'ordre m—1 qui, dans toutes les variations
» qu’elle pourra subir, coupera toujours le diamétre conjugué dw
» plan tangent en m~—1 points fixes, differens du point de contact. »
Démonstration. Soient pris le point de contact du plan tangent
pour origine et les deux tangentes principales pour axes des # et
des ¥ lesquels seront ainsi perpendiculaires 'un a lautre ; le plan
des. 2y sera un des plan diamétraux de la swrface conique qui a
son centre i lorigine. Soit pris le diamétre conjugué de ce plan.
pour axe des z, l’équation de la surface donnée de l'ordre 7 sera.
de la forme.

Fu@, yyheFu- (2, Nte* Foolz, 0420 F oole, it
wed2™ 2 F 2, yitemt -Fx(x ’y)'l'szo(x? J’)=0 > (l9>

dans laquelle nous supposons que , en général, Fi(x, y) désigne une-
fonction rationnclle et entiére en @,y du degré % ;.de sorte que
F,(x ,¥) doit étre une quantité indépendante de ces deux variables.

Si, pour savoir suivant quelle ligne la surface (1g) est conpée:
par le plan des xy, on fait, dans son équation, z=o0, il viendra,
pour V'équation de cette ligne

Fu(#,y)=0 3 (20)

mais, puisquon suppose que le plan des wy est tangent!l lorigine]
les-
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les axes des # et des y doivent étre respectivement fangens aux
ntersections de la surface (19) par les plans des zz et des yz ; dou
il suit que la fonction F,, ne doit renfermer ni le terme constant
ini les termes du premier ordre en z et y.

De plus, puisque nous supposons que la courbe intersection de
la surface avec son plan tangent ne passe pas par le point de
eontact ; le premicr membre de I’dquation (20) doit renfermer un
facteur du second degré, en x, 5, exprimant ce point de contact,
€'est-a-dire,, l'origine des coordonndes.

Enfin, puisque les axes des # et des y sont supposé dirigés
suivant les tangentes principales; ce facteur du second degré, qui
ne doit d'ailleurs contenir ni termes constans ni termes du premier
ordre , ne doit pas non plus renfermer de terme en zy (*) , et
doit conséquemment étre de la forme Pa”4-(y*; au moyen de
quoi I'équation (20) devient

(P2 +Qy") a2 5 ) =0 ; (21)

JSn., désignant une fonction rationnelle et entitre en z ef y da
degré m—2 ; d’olt 'on voit que

Sna(®, y)=0, (22)

sera I'dquation de Pintersection de la surface (19) par son plan
tangent ; cc sera donc aussi équation d’une surface cylindrique
ayant sa génératrice paralléle d I'axe des z, et coupant le plan
des xy suivant cette courbe.

Supposons que, dans F,_, , le terme indépendant de # et y
soit 'unité, ce qui est permis, puisque nous donnons des coefficiens
a tous les autres termes; si alors nous représentons par B, R/le

() Voyez Ia dessus la page 179 de ce yolume,

Tom. IX, 34
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plus grand et le moindre tayons de courbure 2 I'origine ; mous
aurons (9)

b 4 I
—_ - B—m— .
R . 2P ! 2Q ’
dol
I b 4
P=—=<p» Q==
on aura donc
lez_‘_B,yz
Fm(x:,}’)='_' 23&, 'fm-z(x’y) H

au moyen de quoi 1’équation (19) deviendra
(Bz*4By?). fno(2y ¥)—2BR/2[F . (2, y)+2F 0., 25 7)
+2 . F (@, y)+d-2" 2 (2, )42 F(z, y)]=o. (23)

Considérons présentement la surface du second ordre que nous
avons supposé avoir son centre i l'origine. Puisque nous avons
supposé ‘que I'axe des z était le conjugué du plan diamétral qui
coincide avec le plan des 2y, il sensuit que les sections de cetle
surface par les plans des #z et des yz doivent étre des lignes du
second ordre rapportées a leurs centres et & leurs diameétres con-

juguds ; et que par conséquent 1’équation de cette surface ne saurait
étre que de la forme

Az*4-By*+Cz*~+Fay=1k , (24)
Solent
{ =52, x=g'z , xz=g'z ;
g g { (25)
y=hz; y=Hkz ; y=h'z ;

les équations de trois de ses diamétres , conjuguéds les uns aux
autres, I'équation de sorr plan tangent en un point (2/, 5/, z/) sera
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2Ax3'4-2 Byy/'4-2CCz/+Fzy/'+a'y)=2k ,

sous la condition

(26)

Az*4-By*4-Cz/*+4Fa'y' =k ¢ (27)

et le plan diamétral paralléle & ce plan tangent aura pour équation
2dzx'4-2Byy/42Czz/ +-F(xy'4z'y)=o0 . (28)
Pour que le premier des diamitres (25) soit conjugué au plan des

deux autres, il suffira que, ccs deux-ci étant dans le plan (28),

1? premier passe par le point (a/, y/, z/), ce qui donnera les quatre
conditions.

2/=gz’ y'=ha ;
(24g - Ya'4-(2Bl —++Fg' Yy/+-2Cz/=0 ;
(2dg/"+Fh/)a'+-(2BL/'+-Fg/)y'+2C2/ =0 »

Eliminant 2/, / des deux derniéres , au moyen des deux premiéres 5
et divisant par 2z, il viendra.

(24g! +F¥ g4 (2B +Fg' Yit-2C=o0,
(2Ag""Fl'\gA-(2BA/'+Fg")h+2C=0 -

Pour que les trois diamétres fussent conjugués les uns aux autres;
il faudrait qu'on edt trois systémes de deux. pareilles équations ;

mais il est aisé de voir que les six équations qu’on obtiendrait ainsi.

seraient’ deux 3 deux identiquement les. mémes ; de sorte qu'elles
se réduiraient aux. trois suivantes.
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sdgg A2Bhl Fgh +h g Y2C=o0 ,
s Ag/g/4-aBI A F(g WA Hg ) 2C=0 ! (29)
> Ag"g ~+2BK'h +F(ghh +h'g Y +2C=o ;

Ce sont donc 13 les équations nécessaires et suffisantes pour ex-
primer que les diametres (25) sont conjugués les uns aux autres.
On voit que des six quantités g, g/, g”, &/, &', B, il y en a
trois qui demcurent tout-a-fait indéterminées.

Considérons présentement la surface conique du second ordre ,
ayant pour équation

Rz +RBy*~-re*-fprzt-gyz=o : (30)

Cette surface conique a évidemment son sommet ou centre & Yori-
gine; cn outre, puisque son équation ne renferme point le terme
en zy , toutes ses sections paralléles au plan des zxy sont des lignes
du second ordre ayant leurs diamltres principaux puralléles aux
axes des 2 et des ¥, c'est-a-dire, aux tangentes principales menées
3 la surface (19) par lorigine; enfin, 4 cause des caefficiens A/,
R, de 2*, y* les longueurs de ces diamétres principaux sont pro-
portionnelles aux racines quarrées des rayons de plus grande et de
moindre courbure de la surfuce (19) & lorigine.

Remarquons présentement que , quels que soient p, ¢, r, que
nous supposons ici tout-a-fait indéterminés , en pourra toujours assu-
jettic la surface conique (30) & passer par trois diamétres conjugués
de la surface (24), puisque, pour déterminer les six coefliciens
g> 8> 8", k, &, k" des équations (25) de ces diamétres, on
pura seulement, outre les trois équations (29), les trois équations

Rg *+Bh *+K+pg +gk t
Blg' *4- R *+K+pg' gk (31)
R/g//a:t. Bﬁ//zi K+[73”+9 B! ,
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qui expriment que les diamétres (25) sont sur la surface (3¢)

Ainsi, en supposant, dans I'équation de cette suriace conique
que p, g, r sont tout-a-fait indéterminés , cette surface scra exac-
tement conditionnée comme lexige I'énoncé du théoréme. Elle
coupera la surface (19) suivant un systtme de courbes, variables
comme les coefliciens p, ¢, r, qui la déterminent.

Veut-on avoir ’équation commune 4 cette surface conique et &
la surface cylindrique (22) ; il ne s'agira pour cela que de prendre
le produit des équations de ces deux surfaces; ce qui donnera

(R/f—[—By’+rz"+pxz+qyz).fm_z(x, Y=o . (32)

Si T'on veut présentement savoir suivant quelles courbes le sys~
¥me de ces surfaces conique et cylindrique coupe la surface donnde
de l'ordre m , il ne s’agira que de considérer comme équations d’un
méme probléme indéterminé & trois variables, soit les deux équa-
tions (23, 32), soit toutes combinaisons de ces deux équations
qu’on voudra leur substituer ; on pourra donc , en particulier , subs-

)

tituer & I'équation (23)sa différence avec I'équation (32) , qui est,

en divisant par z, ce qui revient & exclure le plan des 2y,

2BR[Fp. (z, y)+2Fp (2, 9)+F ot 2 (2, y)+™ Folz, y)]
(ratpatgy)fn-.(z,y)=0 ; (33)

d’ol il suit que ces courbes seront toutes situées sur la surface

(33), <'est-a-dire , sur une surface du degré m—r1, laquelle ne

passe ni par lorigine ni par la courbe (22), conformément i

I'énoncé du théortme.

Si, dans la vue de savoir en quels points cette surface coupe
Paxe des z, on suppose, & la fois , dans I’équation (33) z=o),
y=o0, I'équation résultante en z ne renfermera plus les indéter—
mindes p, ¢ , r, ce qui prouve que, la surface conique variant,
ces points restent fixes sur I'axe des z; ce qui est encore conforme
2 I’énoncé du théoréme, qui se trouve ainsi complétement démontré,

11 est aisé de voir, au surplus, que, pour chaque surface co~
gique, en particulier, la condition de passer par les intersections
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tant de cette surface que de la surface cylindrique avec la surface
proposde déterminera complétement la surface (33). Concevons , en
effet, un plan quelconque passant par 'axe des z ; ce plan coupera
la surface proposée suivant une ligne de Vordre m , et la surface.
(33) suivant une ligne de l'ordre m—1 ; il coupera de plus la
surface cylindrique (22) suivant 72—z2 droites , toutes paralléles a I'axe
des z, lesquelles couperont la courbe de ’ordre m en (m—1)(m—2)
points ; il coupera enfin la surface conique suivant deux droites
qui seront deux diamétres conjugués de la section faite dans la
surface du. second ordre qui a son centre & l'origine ; et ces deux
droites détermineront, sur la ligne de I'ordre 7, 2(m—1) nouveaux
points; ce qui fera en tout m(m—1) points, lesquels se trouveront aussi
sur la ligne de.l'ordre z—1. Or, nous avons vu ( T%éor..1) que , par la
condition de passer par ces m(m—1), points, cette courbe est compléte-
ment déterminée ; toutes les sections faites dans la surface (33) sont.
donc détermindes ; cette surface est donc elle-méme déterminée..

THEOREME 1V. « A une surface quelconque de lordre m ;.
» soit mené un plan tangent, par un point tel que la ligne , in--
» tersection. de ce plan avec la surface, ne passe pas par ce point.
». Par ce méme point, soient menées, sur le méme plan tangent,
» les deux tangentes principales.. .

» Considérons la courbe insersection de la surface donnée avec
» son plan tangent comme une section faite par ce plan & une surface
» cylindrique ayant sa génératrice paralléle & une droite fixe , menée
» par le point de contaot, dans une direction quelconque; cette

surface cylindrique coupera la surface proposée suivant un certain

nombre de courbes fixes..

» Soit ensuite construit arbitrairement une surface conique du
». second ordre , de maniére pourtant qu’'elle ait son sommet ou

centre au. point de contact , et que ses sections, par des plans
» paralleles au plan tangent, aient leur centre sur la droite fixe
» dont il vient d’étre question , leurs diamétres principaux paralléles.
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» aux tangentes principales, etles longueurs de ces diamétres propor-
» tionnelles aux racines quarrées des rayons de plus grande et de moindre
» courbure qui répondent au point de contact ; cette surface conique
» coupera la surface proposce suivant un certain nombre de courbes,
» variables comme la surface conique qui leur aura donné naissance.
» Or, tant ces courbes variables que les courbes fixes dont il
» a été question ci-dessus, se trouveront toujours appartenir 4 une
» surface de l'ordre m—1 qui, dans toutes les variations qu’elle pourra
» subir, coupera toujours le plan tangent suivant unc méme ligne
fixe de 'ordre m—1 , qui ne passera pas par le pointde contact, »
Démonstration. Soient pris encore, comme ci-dessus, pour axes
des z et des y les deux tangentes principales; et soit prise pour
axe des z la droite fixe , menée par le point de contact; si I'on
représente toujours par R , R’ les deux rayons de plus grande et
de moindre courbure en ce point, on pourra prendre de nouveau pour
équation de la surface proposée I’équation (23) , c’est-a-dire , I'équation

(B/2*+Ry®) frnws (2, 5)-2 BB 2[F (0, )2 F e 2 (0, y )2 Fue 5 (2,)
F 2™ 2 F (7, y)Azmm L F oz, ) ]=0 ; (23)

etle plan des 2y, c’est-a-dire, le plan tangent i Porigine sera-encore
coupé par cette surface suivant une ligne de l'ordre m—2z , ayant
pour équation

Jmea(®, y)=0 , (22)
laquelle sera aussi I’équation d’une surface cylindrique ayant sa di-
rectrice parallele & Taxe des z, et coupant le plan tangent suivant
cette courbe.

Quant 4 la surface conique du second ordre, ayant les centres
de toutes ses sections paralleles au plan des xy sur l'axe des z,
et les diametres principaux de ces mémes sections respectivement
paralléles aux axes des z et desy, et proportionnels aux racines quarrécs
des rayons de plus grande et de moindre courbure de la surface (23)a
Porigine ; il est clair que ’équation de cette surface conique sera

Rz*4-Ry*~-rz*=o0 ; (3%
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dans laquelle r sera une quantité tout-a-fait arbitraire. L’équation du
systéme de cette surface conique et de la surface cylindrigue (22)
sera donc

(B'z*+By*+12%). frou o (7, y)=0. (35)

Si, présentement , on veut savoir suivant quelles courbes ce
systeme de surfaces conique et cylindrique coupe la surface pro-
posée , tout se réduira a considérer comme équations d'un méme
probléme indéterminé ¥ trois variables , soit les deux équations
(23, 35) soit toute combinaison qu'on voudra faire de ces deux-la,
On pourra donc, en particulier , dans cette recherche , substituer
3 l'équation (23) sa différence avec I’équation (35), qui est, en
divisant par z, ce qui revient 2 exclure le plan des xy,
2BR ¥ .2, y)F2Fn. (@, 94t 2 Fi(z, y)42m . F o (2,y)]

1z fme . (#, y)=0 ; (36)
d’oli il suit que ces courbes seront toutes situdes sur la surface (36),
c’est-a-dire , sur une surface de I'ordre m—1 , laquelle ne passe
ni par lorigine ni par la courbe (22) , conformément 3 I'énoncé
du théoréme.

Si, dans la vue de savoir suivant quelle ligne cette surface coupe
fe plan des zy , clest-d-dire le plan tangent, on fait, dans eette
équation , z=o0; I'’équation résultantc en =z, y, qui sera

Fouilz, y)=o0 ,

ne renfermant plus lindéterminéde -, sera.celle d'une ligne de Pordre:
m—1 tout-a-fa't fixe, quel?e que soit la surface conique (34), et
ne passant pas par le point de contact; ce qui est encore conforme
3 I'énoncé du théoréme qui se trouve ainsi complétement démontré.

En se fondant sur le ThAduréme 1, on deuiontrera aisément.,
comme nous l'avons fait pour le Théoréme 11I, que , pour chaque
surface conique en particulier, la conditivn de passer parles inter-
sections tant de cette surface conique que de la surface cylindrique
€22) aveclasurface proposée , détermine complétement la surface (36).
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ALGEBRE ELEMENTAIRE.

HRecherches sur les fractions continues

Par M. CERGONNE.

o e Vo "Ia Mo Vo Vio Ul WL V)

MALGBE les travaux d’un grand nombre d'illustres géomdtres,

la théorie des fractions continues est loin encore d’étre aussi avancée
que son. importance pourrait le faire désirer. Nous savons développer
une fonction en fraction continue ; nous savons , dans quelques cas,
revenir d’une fraction continue  la fonction génératrice ; nous savons
aussi, dans quelques cas, reconnaitre qu’une fraction continue est
incommensurable ; mais personne encore n’a établi la limite précise
qui sépare les fractions continues rationnelles de celles qui ne le:
sont pas. On ne saurait douter non plus que les fractions continues-
ne doivent affecter certaines formes particuli¢res , suivant qu’elles sont
racines d’équations de tel ou de tel autre degré, mais, passéle second de-
gré , pour lequel nous savons que les racines se développenten fractions:
continues périodiques, nous ne connaissons plus les caractéres qui distin~
guent les racines soumises ¥ un pareil développement, ce qui serait pour-
tant d’autant plus important qu'd eette connaissance se rattacherait
immédiatement la recherche des diviseurs commensurables de tous
les degrés des équations numériques. Nous ne savons pas méme
former immédiatement la somme ou la différence de deux fractions
continues , leur produit ou le quotient de leurs divisions ; et, A plus-

forte raison , ne savons-nous pas en assigner les puissances et les
racines.

Tom, IX , n.° V11, 1.°F février 181q. 35
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Dans cet état d’indigence ol nous nous trouvons relativement a
ce genre de fonctions, toute recherche qui les concerne semble
devoir étre accueillie avec quelque intérét ; et c’est, en particulier,
ce qui doit recommander aux yeux des géometres le mémoire de
M. Bret, 3 la page 37 de ce volume; mémoire dans lequel, aprés
avoir donné plus de généralité & des théorémes qu'on ne démontre
communément que pour les fractions continues dans lesquelles les
numérateurs sont égaux a I'unité, il a donné, pour le développement
des fonctions en fractions continues , une méthode qui lui est
propre et qu’il a appliquée ensuite a4 la recherche de plusieors ré-
sultats non moins curieux qu’ils sont elégants.

Ces résultats, au surplus, ainsi que beaucoup d’autres du méme
genre, avaient déjd été déduits par Lagrange de lapplication des
fractions continues a Dintégration par approximation des équations
différentielles & deux variables (*). Mais , la méthode de Lagrange,
.comme celle de M. Bret, peut paraitre longue et laborieuse ; et
ni Pune ni 'autre n’ont une marche assez uniforme et réguliére
pour qu'il soit permis dasseoir solidement une induction sur les
résultats qu’on en obtient.

Il nous a paru qu'on pouvait parvenir simplement 3 ces mémes
résultats , de maniére 3 ne laisser aucun doute sur la loi qui les
régit, et qu'on pouvait en méme temps établir plusieurs théorémes
curieux sur certaines classes de fractions continues; en développant
en fraction de cette sorte la série trés-remarquable dont M. de
Stainville s’est occupé a la page 229 du présent volume. Clest ce
gue nous nous proposons de montrer ici.

Soit done la série

) Voyez les Mémoires de l'académie de Berlin , pour 1776, page 236 ;

voyez aussi le Traité de calcul différentiel et de calcul intégral , de M. LAGROIX ,
deuxieme édition , tome II, Page 427
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05 oot DB atel) b ()

4qu’il soit ‘question de développer en fraction continue ; pour pro=
céder 3 ce développement, nous emploirons la méthode indiquée par

Euler; .c’est-adire que nous poserons successivement
T

‘2 3 zk
1o a(a+h) a4k o2k — “alath) (e+2k) @430 s ==

2 3
14 @40 =5 (o) (e2h) i—+: (@@ 2K @3~ .

-az

A=az.

1~4a -z- +-a (a+lt) - +a (ak) (a+2k) -— +a (atk) (a+2k) (a43k) ——-——4+ “ aE +B*

:+ (e+k)~ + (a+k)(a+zk)——+ <a+k)(a+zk)(a+3k>———+

B=(a~k)z. (,,:;2 z ]
2+— (a+k) +—(a+k) (”+21‘)——+——(a+’f)(d+2k)(a+3k) + . 2
z 2.3
C=@th= S T+ 5 eI S 6“‘*‘2"’““*3""“*4"’ 13T (e
—=(a+k)z. 2 ' '
3+*‘~(”+">§+ 27 (at B)(at2h) x'.?*' > ot k)(a+zk)(a+3k) +, . 34D
3. : 3
. x+Z—g( +21<)f gé(a-}-zl«)(a*_?vk)—z—--{- & (a+2k)(a+3k)(a+[k)i_+ z(a-zk)z
D=2(a—2k)z. - -2bz
w37 4 fran 4+ 54(“+2k><“+3k)——+ et @D Dt
.L 5 z 3. 4 5 72
E~2(a+2k)z.l +4_5.T~ (a+3k) I + <a+3k)(a+4k) l—.2 +".=2(a+2k)z
5+3_,:' (a-4-2k) f+ = 2 (o) (@30 ;f;+ St+F
+ﬂ;( +3b = 4 56( +-3k) (a4-4k) ._.+,,. 3(am3 )
=33z — 0T ; _ cz- be |
6+ 445 —5g @ s + 5b (a+3k)(a+4k) - —G
4.5:6.7 z | 45. 6 7
1 g 0 e (bR _+.. - egane

G=3(a+30=. z & 5 7+H *

+4567c+3> Zds

27 (@3 @R

;.qaoCOOOanacco.a..co.:to.c-n.0n¢~0090¢
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Nous remarquerons qu'il n’y a point d’induction dans tout ceci ,.
attendu que , d'une part , on peut toujours calculer le terme général
soit du numérateur , soit du dénominateur de chacune de ces
fractions et que de 'autre on peut prouver que, si la- loi qui se
manifeste pour les valeurs successives de A, B, G, D,...... se
soutient jusqu’a une quelconque de ces quantités, elle aura égale~
ment lieu pour celle qui la suivra immeédiatement.

En représentant donc, comme l’a fait M. de Stainville, par fa la.
série proposée , nous tirerons de tout cela

X
fa=— az

OZ  (amk _ (2)
I - lb_'_(a )z_(a'-l-h 2(gemobyz
3 A—— 4Bz
——r  3(a=3p)x
5' + 6 b TT Y 2

formule fondamentale pour toutes les recherches qui vont. nous.
occuper.

1. On a vu. ( pag..235) que:
fafb=f(a¥b) ;-

done , si I'on a lés deux fractions continues-

 §
L ez -
3 —— , (@=k)z ;
1’+ Py -____(a-;k)z 2(a-2 )z
I XS
¢
— 3:
1 e=—  (6=})z
1+ G+Rz
- —ei0ene ’;'

keur. produit sera la. fraction coatinue:
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x
—  (a}d)z
1= +§a+b-k)z w o tbye
2 == 3 -+ 202z 2a(atb-42kz
& 5 R

voild donc du moins des fractions continues dont on sait immédia~
tement assigner le produit.
2.° On a vu aussi ( pag. 236) que

(fa)m =[ma ;

donc, la m.™¢ puissance de la fraction continue:

1
T — 22 (a=—b)z
1

(e-+-b)z _
3 +i(i___2k)z 2(a42k)z

5 e,

2 —

est la fraction continue

1
— maz
L ——  (ma=k)z
1

(math)z

s(ma—2k)z

2(ma-t-2k)z

5 e s

voild donc du moins une fraction continue dont nous savons assigner:
immédiatement une puissance d’un degré quelconque,
3.° Nous avons vu encore ( pag. 237 ) que

fa ,
- =fa—>b) ;
donc, si I'on a les deux fractions continues

! az
31 ——, (a=p)z

3 + (a+4)=

+3(_a_:2_1:)_7; 2(a4-2 )z

- 5 +--0uo '3
Tom.. IX. 35 bis

2 —
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) 4

bz
T — (b=
P - +( Rz (o+£)z 2(b-2B)z
a - e 2(b-42k)z
5 e 3

le quotient de la division de la premitre par la seconde sera

b (a=—b)z
‘;‘ —_— (a—b==k)z _
v+ T e i btz 2(a=b=2k)z

3 —— \z(a-b-}-zk)z
4 - 5 +¢o:u s

¥oild donc du .moins des fractions continues que P'on sait immédia-
tement diviser I'une par l’autre.
4.° Nous avons vu enfin ( pag. 237 ) que

Via=f

3le

donc la racine m.™¢ de la fraction continue

1
—_— z
1 — 2z (a—=k)z

o

(a+Tz
o— +2 (a-zk)z 2(a+2k)z

T A g

2

ast la fraction continue
m

SRl (. a
% —— +( m _ )z—( = :k)zﬁ—‘z( %;‘2k)z—z(%:2k)z+

o¥ege

on encore , en réduisant

I
. az
rh memE miadmige

am - am(a=amk)z..

L am(agambye
. 4m — 5m B
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voild donc du moins une fraction continue dont nous savons assigner
immédiatement une racine d’un degré quelconque.

5.° 8i, dans notre série , on fait a=1, k=-—1, elle se réduira
b . . . . B
a 14z ; faisant donc les mémes substitutions dans la fraction continue

v

¢quivalente 2 sa m.™° puissance, il viendra, en changeant zen «,

X
M
(1f2)"=— ...'? +(m+1)x S
2 - iw 2 (Mmmmn) s
75 4.
de 13 on conclura
1 mx .
JUS— e e .
(1+4-z)m (1+2)™"=1 1 +(m+t)x (m=1)2
P a2(m2)e .
HIEE ameae
- o 5 +00:§

ce qui, en changeant le signe de 2, donnera cette autre expression

mx
(14z)r= 1475 =
H ” +£.m_"1)f 2(m-2)%

- 4+

o(md2)x

5 ""'cvu:

6.° Si, dans notre série, on suppose simplement 2=o elle devient;
en changeant ¢z en 2

x 22 x3 ab A
R Sl B B v L

que T'on sait étre égal 3 ¢*, ¢ étant la base des logarithmes né~
périens ; faisant donc la méme substitution dans la fraction continue
équivalente , nous aurons
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1=—=_ 7
S 2 —"'+..2_x. 2x
4 —— 3z
54— 3z
6—-_- e
ou, en simplifiant
I
= — x
F——f

a-—'g_l_f_—: .
2 =F4Z =

2 — -
7 +un.
de 14 on conclut
I
—0u e“”=x-—--f- L
1 - x x
Tt _r .
54 -
2

x -~
7 +.u;

ce qui, en changeant le signe de x, donne cette nouvelle expression:

&= ’+i:'._f x
’ 24—

x
3—.-— &
2 - ad

—_——
5 2+;_
on en conclut, en posant =1, A
1
e=— I 1
! l+:—i I
3+';..._'. 1
54— _rx
a-——. —
7 T eew
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7 — l.:.‘

résultats déji obtenus par M. Bret, i la page 50 de ce volume;
mais dont notre procédé rend la loi beaucoup plus manifeste.
7.° On sait que

mlgafx) = mele(idx) | mIBOFx)
Rl a2 +

1.2 1.2.3

(14-2)"=1 +e

égalant cette valeur de (1-}-2)™ au dernier des deux développe-
mens que nous en avons obtenus ci-dessus, il viendra , en suppri-
mant l'unité de part et d’autre et divisant cnsuite par m

t(!-l-x) ml‘( 1+x) _mx

— =T 0%t
1 T - +(m 1)  ameays smbare
—l" 5 '—nu;
faisant enfin l'indéterminde m=0 , nous aurons
Kidz)= —
(142)= +_:__ 4o
34— __ 4=
-—— Ox
4 5 _é. X xGx
7+ —5_ 1%
9 +.n|‘
et par conséquent
la= —'-_ o
T +§'_ 4 4
4+ e 2 4
6 +;-""nn

Tom. IX, 36
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82 Si dans notre série fondamentale et dans le développement
de sa m.™° puissance , on fait k=0, a=-—1; on aura

(x-—-—‘:—-}- = —’i"l‘:;z%':i"')m

1.2 1.2.3

a2me

5 e

Si, au contraire, on fait, 3 la fois, e=1, k=1, il viendra

(1 —z4-22 =23 2d— 25 )™

mz

+

l'l(l-l

(m=—1)z

(m--1)z

2 +-—3_. 2(m-2)z

- +

3

a(m42)z’

5 —eree

Comme ces recherches ne présentent rien de difficile , nous croyons
pouveir nous dispenser de les pousser plus loin.
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GEOMETRIE ELEMENTAIRE.

Démonstration de quelques proprieteés de I'angle plan,
du triangle , de langle tricdre et du tetracdre;

Par un ABONNE,
G erRGONNE

[ 2 Vo Vb Vi Vo ¥

DANS ce qui va suivre, nous adopterons les idées de Bertrand de
Genéve , sur la nature de l'angle ; c¢’est-d-dire , que nous considé-
rerons l'angle plan comme la portion indéfinie du plan ou il est
tracé comprise entre ses cOtés; et 'angle diédre ou triedre comme
la portion indéfinie de D'espace comprise entre ses faces. Nous
dirons , en conséquence , qu'une droite tracde sur un plan le divise
en deux parties égales , qu'un plan tracé dans Pespace le divise
aussi en deux parties égales, que tout plan vaut quatre angles droits
plans, et que l'espace vaut quatre angles droits di¢dres ou huit
angles droits triedres.

I. Soient 4, B les deux c6tés d’un angle plan que nous dé-
signerons par (4B); soient p, g les prolongemens de ces cétes
au-deld du sommet dc l'angle ; désignons par (prg) I'angle de ces
prolongemens, et par (4Ag) , () B) les angles formés par chaque
coté avec le prolongement de I'autre.

Parce que chacune des deux -droites Ap~, Bg divise le plan ol.
elle est tracée en deux parlies égales, on aura
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4By B)=(rg)t+(4g) ,
(4B)+(4g)=rg,;+(B) ;

prenant successivement la demi-somme et la demi-différence de
ces deux équations , il viendra, en réduisant,

(4B)=yg) , (4g)=W¥DB) ;

<'est-h-dire, dewr droites qui se coupent sur un plan forment des
angles opposés par le sommet, égaux entre eux. Cestla xv.® pro=
position d'EucLIDE , de laquelle on peut facilement eonclure que

deux plans qui se coupent dans lespace forment des angles opposés
par laréte, égaux entre eur.

IL. Soient trois droites indéfinies , tracées sur un méme plan,
et se coupant deux 3 deux ; elles diviseront ce plan en sept régions;
dont une seule limitée ct triangulaire, que nous désignerons par 1';
trois autres serontles opposés au sommet des trois angles du triangle,
nous les désignerons par 4, B, C ;enfin, les trois derniers seront
les espaces indéfinis compris entre chaque cdté du triangle et les
prolongemens des deux autres ; nous les représenterons par A4/,
B, C/,respectivement opposésa 4 , B, C.

Exprimant que les angles opposés au sommet sont égaux , nous
aurons d’abord

A=AI+T
B=B'4+T,
C=C+4T;

d'olt , en ajoutant,

A4B+C=A'B'4-C'4-3T.
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représentant ensuite par A l'angle droit plan ; et exprimant que
tout le plan en vaut quatre , nous aurons

A+BACA- A B O T=4A

prenant la demi-somme de ces deux équations et transposant , il
viendra , en réduisant et divisant par A,

A B C T
ara =T

. T . . y
mais la fraction Y dont le numérateur seul est fini, peut étre négligée

vis-a-vis du nombre entier 2 ; en la supprimant donc et chassant le
dénominateur A, # viendra finalement

A+4+B4-C==24

'est-a-dire , la- somme des trois angles de tout triangle vaut deux
angles droits. Cest la XXXIL® proposition d'EUCLIDE.

1I. Soient 4, B, C les trois arttes d’'un méme angle triddre
7', dont les angles ditdres soient respectivement désignés par (4, ,
(B), (C). Soient désignés par pr, g, 7 les prolongements de ces
arétes au-dela du sommet de 'angle. Les trois droites 43", Bg ., Co,
seront les aretes de huit angles triedres que nous désignerons, d’apres
Jeurs arétes, par

(4BC) , (4By), (4g€), (¥BC),
wad),» gl s wB)), (4go)

et qui seront tels que ceux de la seconde ligne seront les opposés
au sommet de leurs correspondans dans la premidre, et leur seront
tonséquemment égaux par ce qui précede; de sorte qu'on aura
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(4BC)=(yg)), (AgC=yBy),
(4By)=(pgC), FBC)=(4g)) -

Présentement , chacun de nos trois angles diédres (4), (B), (),
considéré comme indéfini , se trouvant composé de deux angles
tri¢dres , on doit avoir , en ayant égard aux relations ci-dessus,

(ABC)+(rBC)=(4),
(4BC)+(4gC)=(B),
(ABC)+(4Bp) ou (4BC)H(Fgl)=(C);
d’ol, en ajoutant,

2A(ABCYH(ABC)Hp BOHAg O+ (rg O)=(4+(B)H(C) ;

mais , la somme des angles triédres de méme sommet situés d’un
méme co6té d’un plan devant valoir quatre angles droits triedres ;
cn aura, en représentant 'angle droit triédre par A

(ABC)H-(BC)+(Ag O+ (g C)=44 ,

retranchant cette équation de la préeédente , il viendra en divisant
par 24
(ABC) A (B) (»)

— —2.

A 24 | 24 ' aA

Si I'on représente par D l’angle droit di¢dre, on aura 2A=D,
et par conséquent

(4ABC) (A | B +(C> .
A D oD TDp T
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cest a-dire, en prenant respectivement les angles croits diedre et
triédre pour mesures des angles diédres et trigdres , un angle triédre
quelconque a pour mesure la somme de ses irois angles diédres
diminude de deux unités : Cest le théoréme de CAVALLERT , sur
la mesure du triangle sphérique.

IV. Soit présentement ABCD un tétraédre quelconque. Désignons
par (A4), (&), (C), (D) les rapports de ses angles triedres 3 l'angle
droit triedre , et par(A4B), (4C), (BC), (4D), (BD), (CD) les rap-
ports de ses angles di¢dres a l'angle di¢dre droit ; nous aurons , par
ce qui précede,

(A)=(4B)}HAC)+(AD)—2 ;
(B)=(4B)A-BC)+BD)—= ,

(C)=(4C)+ (BO)H(CD)—-=2

-

.

(D)=(4D)+(BD)+(CD)—2

En ajoutant d'abord toutes ces équations et transposant, nous

2{(AB)+(ACYH(BC)H(AD)HBD)+(CD)}—(A)—(B)—(C)— (D)=8 5

c'est~a-dire , Ja somme des angles diédres d'un tétraédre , moins
la somme de ses angles iriddres vaut huit angles droits tricdres ,
ou l'espace entier.

Si l'on ajoute seulement les trois premiéres équations, il vien-
dra, en transposant,

2U(AB)(AC) + (BCY) = (Aym=e(B)=—(Cy=6—(AD)—(BD)—(€D) ;

cest-a-dire , lexcés de siz angles droits triddres ou des trors
guarts de lespace sur la somme des irois angles diedres d’un méme
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angle dun téiraédre est ézal @ lexcis du double de la somme
dcs trois angles diédres adjacens & la face opposée sur les angles
driedres de la méme face.

Si. I'on prend seulement la somme des deux premitres, il vieadia

2{AB)y={ d)~(B)= 4 =(AC)—(AD,—BC,—(BD) ;

c'est-a-dire , le double de lexcés de l'un des angles diédres d'un
¢éiraédre sur les deux angles triédres adjacens est égal & Vexcés
de huit angles droits triédres ou de Uespace entier sur la somme
des quatre angles did¢dres adjacens & celui-la.

Si de la somme des trois premiéres on retranche le triple de
la derniere , il viendra

(A4 B H(C) =3 (D)=2{ (4B)4-(AC)~}-(BC)=—(AD)—(ED)—(CD) } ;

c’est-d-dire , lexcés de la somme de trois des angles triddres d'un:
tétraédre sur le triple du quatriéme est égal a l'excés de la somme
des trois angles diédres adjacens & la face opposée & ce dernier
sur la somme des irois autres.

Si de la somme des deux premiéres on retranche celle des deux
derniéres , il viendra

2[(4B)—(€D)] = (A)+(B)—(€)—(D) ;

c’est-a-dire , la différence entre deux angles ditdres opposés d'un
tétraédre est égale & lexcés de la somme des deux angles triddres
adjacens aw premier sur la somme des deux angles triddres adjacens
au dernier.

La plupart de ces propositions ont été démontrdes par I'abbé DE
Gua , dans les Mémoires de lacadémie royale des sciences dé
de Paris, pour 1783 ; on pourrait en augmenter indéfiniment le
nombre ; mais toutes celles qu’on obtiendrait se trouvent implici-
tement comprises dans les quatre équations fondamentales d’od nous
avons déduit celles que nous venons d’énoncer.

QUESTIONS
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QUESTIONS RESOLUES.

Démonstration des deusx théorémes de geomeélrie eénonces
& la page 116 de ce volume;

Par MM. Vecrex , licencié é&s sciences ,

DurranDe , professeur de mathématiques au collége
royal de Cahors,

FRrEGIER , professeur de mathématiquesau collége de Troyes,
ancien éleve de I'école polytechnique ,

FaBry , aussi ancien éleve de I'école polytechnique,

Et GERGONNE.

Ay s

LES démonstrations donndes par MM. Durrande, Vecten et Frégier
de ces deux théorémes étant exactement les mémes , nous allons
les confondre dans une seule rédaction.

THEOREME I. Un point P éant pris arbitrairement dans
Cintérieur d'un triangle quelconque ABC; et A7, B/, C/ étant
respectivement les points ov les cotés BC, CA, AB de ce triangle
sont rencontrés par les prolongemens des droites AP, BP, CP,
menées des sommets opposés au point P, on aura

PAr  PB' |  PCr

——-!—-B—E,-I-—-—::x.

AN c

Démonstration. Des sommets A, B, C , soient abaissées des-

perpendiculaires. AA”, BB, CC/ sur les directions des cotés res=
Tom. 1X. 37,
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pectivement opposés ; et du point P soient abaissées , sur les mémes
directions , les perpendiculaires PA7/ , PB% , PC/,

A cause des paralleles, on a les trois éqnations

PA’ PAm Py PR/ PC PC

AA'  AA"’ BRI PBT' CU oo’

mais, d’un antre c6té, les triangles BPC, CPA , APB se trou-

vant avoir une base commune avec le triangle ABC , le rapport
de leurs aires & la sienne doit éire le méme que celul des hau-
teurs ; c’est-a-dire , qu'on doit avoir |

PA  BPC _PB” CPA PC”  APB
AA7 ~ BAGC’ BB’ CBA' CC’ ACB'

au moyen de quoi les: équations ci-dessus deviennent

PV BPG PB' CPA PC’  APB
AA’ T BAC’ BB CBA'’ CU  ACB?

ajoutant donc ces trois dernitres équations membre & membre
.en observant que

BPC+CPA-4+-APB=ABC ,
Oon aura
PA PR PC
av TBR too T i

c’est- 3~dire le théoréme énoncé.
On a évidemment

AA BB . CCY 2
Aa "B Ve

retranchant donc de cetie équation celle du théoréme, il viendra
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PA PB PC

—_— — .

FYOREE 5 AL A

équation qui peut aussi avoir son utilité, Cette remarque est due

3 M. Vecten.

THEOREME I1. Un point P étant pris arbitrairement denrs
Linterieur d'un tetraédre quelconque ABCD 5 et A7, B/, C/, D/
étant respectivement les points ou les faces BCD , CDA, DAB,
ABC de ce tetraédre sunt rencontrées par les prolongemens des droites
AP, BP, CP , DP , menées des sommels opposés gu point P ; on aura

Py PB/ PC PD/

—_—=1,

Tt T =

Démonstration. Des sommets A, B, C, D , soient abaissées;
sur les plans des faces opposées, les perpendiculaires AA”, BB/,
CC”, DD”; et du point P soient abaissées, sur les mémes plans,
les perpendiculaires PA// , PB//, PC/’, PD/",

A cause des paralltles, on ales quatre équations

PA’ PA” PR PB”  PC' PCM P  PD#

AN AA”’ BB BB’ GO GO’ Db DD}

mais , d’un autre c6té, chacun des tétraédres PBCD , PCDA , PDAB,
PABC se trouvant avoir une base commune avec le tétraedre ABCD,
le rapport de leurs volumes doit étre le méme que celui de leurs
Kauteurs ; c’est-a-dire qu’on doit avoir

PA# PBCD PB” PCDA PC# _ PDAB PD” _ PABC
AA” _ ABCD’ BBZY  BCDA’ CG/ — CDAB’ DD” — DABC’

au moyen de quoi les équations ci-dessus deviennent
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PA_ PBCD PR _ PCDA PC _ PDAB P/ _ PABC
AA — ABCD' BB~ BCDA’ CC' CDAB’ DU  DABG ’

ajoutant donc ces derniéres membre & membre , en observant que

PBCD-+PCDA+PDAB+-PABC=ABCD ;

on aura

PA PB PO PD'
An BB ' GG DD

c'est-3-dire e théordme énoncé.
On a évidemment

AA’ BB _.CC'  CIY
AA’+BB'+LC’+DD' =43

.retranchant donc de cette -équation -celle du théortme, 1l viendra

PC _ PD
AA'+'B_E/ <o top =2

équation qui peut aussi avoir son utilité. Cette remarque est due
a M. Vecten.

Les démonstratxons de M. Fabry ne différent de celles-ci qu’en
ce que, par le point P, il méne une droite ou un plan paralléle
3 'un des co6tés du triangle ou a P'une des faces du tétraddre, ce
qui établit des proportions faciles & reconnaitre, et dont la com-
binaison conduit au résultat cherché; ses .démenstrations ont ainsi
I’avantage de ne dépendre aucunement des théor¢mes sur la mesure
des dires et des volurfes.

Nous sommes tombés trés-simplement sur ces deux théorémes,
en cherchant  décomposer une masse , supposée réduite & un point,
en trois ou quatre autres situées aux sommets d’'un triangle ou d’an
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tétraddre , dans l'intérieur duquel la masse dont il s'agit se trouve
situde. Cette maniére d’envisager les deux théorémes en fournira une
aouvelle démonstration fort simple, ainsi qu’on va le voir.

I. Soit p une masse située en P, dans I'intérieur d'un triangle
ABC, et qu'il s'agit de décomposer en trois autres masses @, b, ¢ ,
situdes a ses sommets. Le probléme est évidemment déterminé ; et
conséquemment , de quelque maniére d’ailleurs qu’on le résolve, on
doit constamment parvenir au méme résultat.

Or, la maniére la plus sinpte et la plus naturelle de résoudre ce
probléme est la suivante : soit menée PA, prolongée jusqua la
rencontre de BC en A’ ; et soit décomposée la masse p en deux
autres , 'une @ situéde en A , et l'autre o’ située en A’; il ne
s’agira plus alors que de décomposer cette derni¢re cn deux autres
b, ¢, situdes en B, C.

Or, par le principe des forces paralléles ou des centres de gra-
7ité , on aura

d’ot T'on voit qu’en menant PB, PC, dont les prolongemens ren-
contrent respectivement CA., AB en B/, C/, on aura

PN PE_, PC
P =t PEp=t, Pgg=°

ajoutant donc, et remarquant que @~~f-+c==p , il viendra

PA/_ PR PO
aa TEE e
II. Soit p une masse située en P, dans lintérieur d’un tétraddre
ABCD, et qu’il s’agisse de décomposer en quatre autres masses
8, b,c, d, situdes & ses gommets, Le probleme est ¢videmment
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déterminé ; et conséquemment , de quelque manidre d’ailleurs qu'on
le résolve, on doit constamment parvenir au méme résultat.
Or, la maniére la plus simple et la plus naturelle de résoudre
ce probléme est la suivante : soit menée PA dont le prulongement
rencontre en A’ le plan de la face BCD; et soit decomposée la
" masse.p en deux autres @ et &/ situces respectivement en A et A’;
il ne s’agira plus ensuite que de decomposcr cette derniére en trois
autres b, ¢, d, situees respectivement en B, C, D.
Or, par le principe des forces paralltles ou des centres de gra=
vité , on aura

PAr
Avaalt

d’odt I'on voit qu'en menant PB, PC, PD, dont les prolongemens:
rencontrent respectivement CDA , DAB , ABC en B/, C/, D/,

on aura

PA PR, PC Py .
PRp = Pgp =ty o=t P pp=9

ajoutant donc, et remarquant que a-}-b--c+d=p, il viendra.

PAr  PB/ . PC  PD/

—— =1,

awtessTceotTon =

IT. Cette maniére d’envisager les deux théorémes, nous permet
de trouver facilement I'analogue du premier pour le triangle sphé-
rique. Soit , en effet, une puissance p agissant sur le centre S
d'une sphere, et dont la direction passe par un point P de la sur-
face de cette sphére, situé dans lintérieur d'un triangle sphérique
ABC ; et proposons nous de decomposer cette puissance en trois
“autres @, b, ¢, .ay,ant respectivement les directions SA , SB, SC.
Soit mené par A et P un arc de grand cercle coupant en A’/ le
coté BC ; et soit d’abord décomposée la puissance p en deux autres
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a, a’ vespectivement dirigées suivant SA , SA’; il ne s’agira plus
ensuite que de décomposer cette dernitre en deux autres be , di-
rigdes suvivant SB, SC.
Or, par le principe du parallélogramme des forces, on aura

Sin.PA/ _
P Siman

d'otr l'on voit qu'en menant les arcs de grands cercles PB, PC,
rencontrant respectivement en B/, C/les cotés CA, AB, on aura

Sin PA’__ Sin.PB/ Sin PC/
P‘.Sin.AA’—a ! p’b‘in.BB’— ’ p'Sz'n.CC’

=C.

Mais, par le principe du parallelipiptde des forces, ona ( Voyer

la pag. 55 du présent volume. )
@+ +25cCos.BC4-2c4C0s.CA4-245Cos. AB=p* ;

substituant donc, et divisant par p*, on aura,

Cos.BC

Sin.PAN 2 Sin.PB’ Sin.PC/
- 2.0 =
( > Sin.BB/  Sin.CC/

Sin.an/

/Sz'n.PB’)’ Sin.PC  Sin.PA/

— y o e——n K =1 :
\SimBB ) T 2 SinCC SimanCosCA ) ;
Sin. B("' St'n.PA’ Sin. PB/
-+ e Cos.AB
Sin CC’ Sin.AA  Sin.BB/

équation d'olt il serait facile ensuite de déduire celle qui est re-
lative au triangle rectiligne, en supposant le rayon de la spheére
infini.

1V. Dans tout ce qui précéde, nous avons formellement supposé
que le point P était intérieur au triangle ou au tétraedre. S'il lui
tajt exterieur, il en résulterait de simples changemens de signcs
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dans nos formules ;3 et l'on trouverait, soit par les raisonnemens de
MM. Vecten et Durrande, soit par les nétres que ces changemens
de signes sont assujettis a cette seule régle , savoir qu’un terme

du premier membre de I'équation relative, soit au triangle recti-
ligne , soit au téiraédre , doit &tre positif ou négatif, suivant que
le point P regarde I'intérieur ou Yextérieur du c6té du triangle oun
de la face du tétraddre auquel ce terme se rapporte,

V. D’aprés cela , si dans le cas du triangle , et du point P,
toujours suppesé intérieur, on considére successivement et respec-

tivement les points A, B, C comme points extérieurs aux triangles

BPC, CPA, APB; outre I’équation

PA/ PB/ PC

w Ty Toe="
on devra encore ayoir

AN AT AR

cc CPB CA

PO T AB T BA T

équations auxquelles on peut joindre d’ailleurs toutes celles gue-
donne la théorie des transversales.

On pourrait parvenir, pour le tétraédre 4 des relations analogues.

Démonstration:
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Démonstration du théoréme d'analise indéterminée
enonce a la page 228 de ce volume;

Par M. Fricier, professeur de mathématiques au eollége
de Troye , ancien éleve de I'école polytechnique.

4 . . y . .
THEOREME. Toute puissance paire d'un nombre impair |
diminué d'une unité , est toujours divisible par une puissance de
/ P
deux supéricure de deux unités @ celle qui divise son exposant.
P g 7
Démonstration. Tout se réduit évidemment a démontrer que,
quels que soient d'ailleurs les trois nombres entiers positifs @, %, z,
I'expression '
(14240)"k—1

ant+3

est toujours un nombre entier.
D’abord, comme on a

(14-20)" 4= {(1+aa}

et comme d’ailleurs (1-422)* est nécessairement un nombre impair,
que l'on peut représenter par 1--24; tout se réduit 3 démontrer
que I'expression

(1424)*"—1
T antz

est un nombre entier.
On a, en second lieu ,

Tom, 1X, 38
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(1+2A>zu= {(1-'-'-2:1)’}‘"" .

mais

(ady = 14-hAdf = vk f Al A) 5

et comme, quel que soit 4, 4(14+A) est nécessairement un nombre
pair, que l'on peut représénter par 2B, on aura

(14-24)*=1+48B ,

et, par suite

(247" = (1H8B)™ ;
tout se réduit ‘donc & démontrer que la formule

(1-4-8B)*""'—
an+2

est un nombre entier.

Cela est d’abord évident , pour le'cas oi n=1 ; puisqu’alors elte
se réduit 3 B. On trouve de ‘plus

(14-8B)* =1416B+64B*=134-16B(1-+4B) ,

que l'on peut représenter par 1-4-16B5/
(1+8B)'=(14-16B/)* = 1432 /4356 B2 =1432B/(148B/) ,

que l'on peut représenter par 1+32B”, et ainsi de suite , ce qui

est déja conforme 3 I’énoncé du thdoréme. Or, si, en général,
suivant cet énoncé, on a

([+E§B‘)""'l =1+4-2k*2G ,

on aura
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(148B)y = (14-22+26)
ou
(14-8B)* = | okt 3 Gf-22k+ 4 G2
ou encore

(1+8B)y = 1far+ 3 G(1-2k+1 6)

quantité de la forme 1-4-28*+36/. 11 demcure donc établi que, st
la puisssance 2*=* de 14-8B , diminuce d'une unité, est divisible par
2*+2  sa puissance 2, diminuée dégalement d'une unité, le sera
par 2k*3  puis donc que ces puissances 2°, 2!, 27 , diminudes
d’une unité, le sont respectivement par 2%, 2%, 2%, il sensuit que
sa puissance du degré 2"~', diminuée d'une unité, le sera par
a"™ 2 . l'expression
(187" —x

an42

est donc un nombre enlier ; 'expression

(1424)"—x

20+ 2

en sera donc un aussi, et, conséquemment, il en sera de méme de

(1-2a)*"k—1
ont2 ¢

le théoréme est donc démontré en toute rigueur,
So'ent les deux formules

(14-24)" 8 —1 (14257 h—y
oP+2 ’ - 29+2 ’

elles seront l'une et l'autre des nombres entiers , par ce qui pre’cédc.
Si p n'est pas moindre que ¢, a plus forte raison la formule
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(142a) e—1
29+2
sera aussi un nqmbre entier, d’ou il suit que sa différence avee

la seconde des deux ci-dessus sera également un nombre entier.
Ainsi, la formule

(1 dna) (1T

29+2 ’

dans laquelle on suppose p>>g=—1 est nécessairement un nombre
entier ; et I'on prouverait évidemment la méme chose de la formule

(142a)" B—(14-25 Tt

2P+2 4

dans laquelle on aurait q>p—r.—'

Si T'on suppose p=¢g=1, on aura la formule

[(A-2a 8] —[(14-20)" ]
8 ?

ou, plus simplement, la formule

(124> —(428)* .
8 2

qui devra étre un nombre entier; cest-i-dire , que la différence
de deux quarrés impairs est toujours divisible par huil.

Donc, la somme de deux nombres impairs multipliés por leur
différence donne un produit divisible par huit; d'ol il suit encore

que la somme ou la différence de deux nombres impairs doit né-
cessairement étre divisible par quatre (*).

(*) Cette vérité sapercoit immédiatement en observant que tout nombre
impair est compris daus la double formule 4frn=t1; ou, ce qui revient au

méme , que lout nombre impair, augmenté ou diminué¢ d’une unité, devient
divisible par qualve.

J. D. G.
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QUESTIONS PROPOSEES.
Théorémes appartenant a la géométrie de la régle.

I. SO}ENT pris arbilrairement , soit sur un plan , soit dans I'espace,
r points que ’on numérotera et désignera par (1), (2), 3)een(2).
Soit joint chacun de ces points a celui qui porte le numéro im-
médiatement supérieur par n—1 droites indéfinies, dont chacune
soit désignée par les deux points qui la déterminent en cette maunicre :
(1D2) s (2B 5 BX4) 5 wune (B=1) (1)
Sur la direction de chacune de ces droites, soit pris arbitraire-

ment un point; et soit désigné chacun des n—r1 points ainsi cheisis
par les numéros qui désignent la droite sur laquelle il se trouve
situé; ainsi qu’il suit : (12), (23), (34),...(n—1, B\ ‘
Soient joints deux 4 deux, par des droites, ceux de ces points
ct des premiers dont les indices ne portent ni la répétition d’un
méme nombre ni interruption dans les nombres, du plus petit au
pius grand; et soient désignées ces droites par 'ensemble des in-

dices des deux points qui les déterminent , cn cette maniére

(ME, (223), (2)B3F » (23)(4)ewe 3 les droites dont les indices ren—
fermeront les mémes nombres sc couperont en un certain point que
I'on pourra simplement désigner par Pensemble de ces nombres ;
ainsi, par exemple, lintersection de (1)(23) avec (12)(3) sera désignce
par (123); celle de (35 avec (23)(p le sera par (234); et ainsi
de suite ; et ces nouveaux points seront un nombre de z—a2.
Soient de méme joints deux & deux, par des droites, ceux des
points de ces trois séries dont les indices ne portent ni la répétition
d’un méme nombre , ni interruption dans les nombres, du plus
petit au plus grand ; et soient désignées ces nouvelles droites par
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Iensemble des indices des deux points qui auront servi  les dé-

terminer en cette maniére (1)(234), (12)34) , (123)(4)» (2345, @3)(5) »
(Z35)(5) » ewere; il arrivera que les droites dont les indices renferme-

ront les mémes nombres, lesquelles seront au nombre de trois,
pour chaque série de nombres, se couperont en un méme point,
que 'on pourra simplement désigner par l'ensemble de ces nombres;

ainsi, par exemple , lintersection des trois droites (1)(234) , (12)34) »
(123)(4) sera simplement désignée par (1234), et ainsi des autres ;
ils seront au nombre de n—3.

En continuant le méme procédé, on obtiendra des points, au
nombre de »n—4 , dont l'indice portera cinq nombres, et qui seront
les points de concours. de quatre droites ; puis des points au nombre
de n—5 , dont l'indice portera six nombres , ¢t qui seront des points
de concours de cinq droites , et ainsi de suite; et enfin, un point
unique qui sera le point de concours de n—r1 droites, et sera
disigné par (123...n).

11.. Soient 2 droites arbitraires indéfinies numérotédes dans un:
ordre quclconque et désignées par T,2,3,...n, SC coupant con-
sccutivement. Désignons I'intersection de chaque droite avec celle
qui porte le numéro immédiatement supérieur par l'ensemble de
leurs indices, en cette manidre (1,3), (2,3), 3, 4) 5 evee (2 —1, 7)-

Par ces points. d’intersection , soient mendes des droites indéfinies,
que nous. désignerons simplement par I'ensemble des deux nombres
qui forment lindice de chacun d’eux, en cette manitre : 13,353,

3-/;‘,.... =1, n.

Considérons les intersections deux 4 deux, au nembre de n—z ,.
de celles de ces droites dont les indices ne présentent ni répélition
ni discontinuité de nombres, du plus petit au plus grand ; et soient
désignés ces points par l’ensemble des indices des deux droites qui
les déterminent en cette manitre (1,23), (12,3), (2, 34), (23, §He-er}
les points dont les indices renfermeront les mémes nombres appar-
tiendront A certaines droites, au nombre de z—2 , que l'on pourra
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simplement désigner par l'ensemble de ces mombres; ainsi, par
exemple, la droite passant par (7,33) et (iz, 3) sera désignée pat
123 ; celle qui passera par (3, 35) ct (23,4%) sera désignée par 237 ;
et ainsi des-autres.

Soient de méme considérées les intersections deux a deux de
celles des droites de ces trois séries dont les indices ne portent nd
répétition ni discontinuité de nombres, du plus petit au plus grand ;
et soient désignés ces mouveaux points par l’ensemble des indices
des deux droites qui auront servi a les déterminer, en cette ma-
niére (1,234 » (12, 34) » (1, 234) s+ il arrivera que les points
dont les indices renfermeront les mémes nombres , lesquels scront
au nombre de trois, pour chaque ‘série de nombres , appartiendront
a une méme droite, que I'on pourra simplement désigner par I'en-
scmble de ces nombres ; ainsi , par exemple , la droite qui con-
tiendra les trois points (7, 224), (12, 34)» (123,4) sera simplement
désignée par 1234 ; les droites de cette série seront d’ailleurs au
nombre de »—3.

En continuant le méme procédé, on obtiendra.des droites, au
nombre de »—4, dont l'indice portera cing nombres, et sur cha-
cune desquelles quatre points se trouveront situés ; puis des droites,
au nombre de n—5, dont I'indice portera six nombres , et sur
chacune desquelles cinq points se trouveront situés, et ainsi de suite;
et enfin, une droite unique, sur laquelle n—1 points se trouveront
situés; et qui sera désignée par T23....n.

Ces deux théorémes ont également lieu sur la sphére, pourvu
qu’on substitue aux droites des arcs de grands cercles, il arrive
seulement que les points y sont, dans les mémes circonstances,
en nombre deux fois plus grand que sur un plan.

Probléeme d'analise algebrigue.

Soit X=o0 une équation numdrique d'un degré quelconque, dont
x soit l'inconnue.
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Soit 7 la limite inférieure des racines positives de cette équation;
soit changé z en x4/ , ce qui donnera une mnouvelle ¢quation
X/ =o.

Soit Z la limite inf{érieure des racines positives de cette équation;
en y changeant & en -/, on aura une nouvelle équation
X'=o.

Soit / la limite inférieure des racines positives de cette équa-
tion ; en y changeant # en z-/”, on aura une quatritme équa-
lien X”/=o0, et ainsi de suite.

Cela posé, ;

1.° On demande de démontrer que, si la proposée X=o0a une
ou plusieurs racines positives , la série /4//~-///~-.... sera conver-
gente , et aura pour limite de la somme de ses termes la plus
petite de ces racines ?

. 2.° On demande ce que deviendrait cette méme série, dans le
cas ou la proposée , n'ayant aucune racine posilive, aurait néan-
moins des variations (*).

(* La résolution de ces questions est nécessaire pour compléter la théorie
de la méthode publiée récemment par M. Bérard , pour la résolution des équations
numeriques.
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GEOMETRIE ELEMENTAIRE.

Recherches diverses de géomeélrie plane;

Par M. VEecrEN, licencié ¢&s sciences , ancien professeur
de mathématiques spéciales.

[a Sa ¥ V1o Vb ¥, ¥ V1

P ROTLEME. Etant données les trois hauteurs d'un iriangle ;
construire le triangle ? (*)

Sclution. Ce probléeme a été traité par M. Carnot dans sa
Géométrie de position ( pag. 371 et suivi, prob. XXXVI), On
va voir qu'on peut en obtenir une solution beaucoup plus simple
que la sienpe.

Pour parvenir & cette solution , considérons les deux trian:les
ABC, abec (2 1),
connu qu'il s'agit de construire, au moyen de ses trois havteurs
connues AA/, BB/ , CC’, tandis que lautre est un triangle de
dimensions arbitraires , supposé seulement semblable a4 celui-la ; et

dont le premier est supposé le triangle in-

dont les trois hauteurs sont aea’, b5/, cc’.
A cause de la similitude des deux triangles, et parce que, de
plus, dans un méme triangle, les hauteurs sont en raison inverse

des bases, on aura’

¢*) Ce probleme est un des g5 qui ont €été proposés & la page 315 du

YIIL¢ volume de ce recueil,
J. D, G.

Jom, I1X , n.° 1X, 1.° mars 181g.

&
©w
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cc
: ccaaliec! i ab o
AA’:CC/i:aal:ec? i :ab: be=ab. 7

ccr
BB/ :CC/:: bl :cc'::ab:ac=ab.— ;
: BB
CcC CcC¢ "
or , les rapporls ——, — sont connus; prenant donc arbitrairement
1681 AN’ BB P
le c6té ab dua triangle ach, on pourra, par des quatriémes pro-
portionnelles , délerminer les deux autres; ce triangle ach pourra
donc étre construit; et , par suite , on pourra construire ses trois
hauteurs aa’, b4’ , cc’; ces hauteurs, une fois connues, on dé-
b b ’
terminera les trois cotés du triangle ABC par ces proportions,
bc
aa’:bec:: AN :BC=AA/. —

aa’ ’

b':ca:: BB/ : CA=BD/. — ,
b

cc’:'ab::CC’:AB:CC’.Eg; ;

¢ ?

le problime se trouvera donc ainsi complétement résolu (*).

¢*) Soient @, a’,.a" les trois bauteurs données , et &, &/, & las trais colés
anconnus duy triangle cherché., Nous aurons

sx=—d'%'==ax" .

Avec ces treis hauteurs, prises comme cdtés , soit comstruit un triangle a¢’a”,
_dopt les hauteurs soient &, b, " ; nous aprons encore

ab=—a'b/=qg"b" .

"Enfin , avec les trois hauteurs 5, b, 5" de celui-ci , construisons-en un
roisieme b4'0” 5 don les trois hautenrs -saient ¢, ¢/, ¢ , cequi nous donners

bc:bl;/:bl/c” .
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THEOLEME. Soient A JA!, A" les trois sommets d'un triangle ;

et AP, Ak’ AYP ses trows hauteurs, se coupant, comme on
sait, en un méme point G, on aura cetle suile de rapporis egaus

AA’ A’A"APA AC.A/C.AMC AC.A'C.AC
APV AP.APE T AUPLAPIAP T ARU.AYP.APC °

Démonstration. Les triangles

APA’ , APAY , A/P/AY , AP’A , AZPIA s A/PrA/ ;

sont respectivement semblables aux triangles

En divisant P'une par l'autre , les deux premitres suites d’égalités , on aura

x! x

Yo

le triangle 535" est donc semblable au triangle xa’x”; ses hauteurs e, ¢’ ¢'r)
doivent donc étre proportionnelles aux hauteurs aa’a” de celui-1a, on doit done aveir

x b x ¥ . o
ST TTel wews
d’o
b e albt
g=—, =, A=,

ee qui fournit une construction assez élégante. Aw surplus , la construclion
peut étre réduite 4 ce qui suil :

Avec les trois hauteurs données , prises pour cétés, formez un triangle, dont
vous menerez les trois hauteurs ; avec ces trois nouvelles hauteurs , prises éga~
lement pour cdtés , formez un second triangle , dont vous menerez une seule
hauteur que’conque ; et prolongez-la au-dessous de la base , de maniére qu’elle
devienne égale & la hauteur correspondante du triangle cherché, En menant ,,
par Uextrémité de ce prolongement , une paraliéle & la base , elle formera ) GVER

des deux autres vlbtés prolongés , le triangle demeondd,
7. D. €,
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AP”C , AP'C, APC, AP/C, AZP/C, A/PC,

(fig- 2)-puisque les-uns et les autres sont rectangles et ont de
plus un angle commun ; on a donc

TAN_AC T AVA - AC - MM AC
AP T APr® AP T AP/’ ADY AP’
AN AC APA AIC AAM ANG
A'Pr T AEN APH T APt Avpr T AVP

équations qui, étant multiplides membre 4 membre’, donneront
- AA" AAT AN AC aC .AMC"

—

AP Pt APLAPLAYPARAPLAPY

mais , d’aprés un théoréme connu ( Voyez , en particulier , la
dléorie des transversales de M. Carnot ), on a

. APLAP/ AP = A/P.AVP/ AP/
done

AA VAT AR ACAC AGT ACN.AC.AC

— —

A'pT AP GNP Apd AP AP ATPJAPT AT

.
?

d'olt , en extrayant la racine quarrée , on conclura le théoréme
«énoricé.

THEOREME. Soit pris arbitrairement sur le plan d’un triangle
ABC wun point P, par lequel sorent menées les droites AP , BP,
CP, dunt les prolongemens rencontrent respectivement en A’, B/,
C/ les directions BC , CA , AD ; soit formé le triangle A'B/C/
dont les cotés B/C/, C'A’, A/B/, sont coupés respectivement en
A, B/, Cr ,» par PA , PB, PC ; soit formé le triangle A"B"C/ ,
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dont lrs cotés TG, CVAY, AYBY, sont coupés respeclivemint
en A, B, C, par les dioites PA, PB, PC, et cinsi de
suile. .

1.° Les droites BC, B/, BYCH ) BHCH! | s concourront en
un méme point a; les droites CA, C/A, C/rAv | CHAMW,, ...
ceucourront en unméme pownt b ; et les droites AB , A/B/ , A/B/
A/, B y.s. concourront en un méme point c.

2.° Les trois points de concours a, b, ¢, appartiendront &
une méme ligne droute.

Démonstration. Par un théortme connu , sie, b, ¢ sont respec—
tivement les points de concours de BG et B/C/, de CA et C’A’, de
AB ct A’B/, ces trois points @, b, ¢ seront en ligne droite. En
outre , chacun des triangles de la série indéfinie ABG, A’B/C/,
AVBICH, ABICY, ... se trouvant dépendre de la méme maniére de
celui qui le précede , tout se réduira a prouver que B/C” passe par a,
C/7A’ par b, et A”B” par ¢ ; ou plutét a démontrer simplement
que B7C// passe par @, puisque les trois cétés du triangle A”/B//C”
se trouvent dans des circonstances absolument semblables.

Il s’agit simplement de prouver qu’'une droite menée par B’ et
par a ( fig. 3) doit passer par A’”. Pour y parvenir, remarquons
que les deux droites CBa et B’C/z, qui se coupent en 2, d’apres
I'hypothése , forment, avec les deux droites BB/ , C/A!, le qua-
drilatere complet B/C/eBA/B~B/, dont les trois diagonales sont B/a,
BC/, A’B/; or, il est connu que l'une quelconque des diagonales
d’un quadrilatére complet est coupée harmoniquement par les deux
autres ( Voyez la Theorie des transversales de M Carnot ) ; donc
le point de rencontre ¢ de BC/ ou BA avec A’B/, et le point de
rencontre du prolongement de aB/ avec la méme droite A’B/, sont
ceux ou la diagonale A’B’ est divisée harmoniquement. Mais la figure
AB/CA’BPA est aussi un quadrilatére complet, dont les trois dia-
gonales sont A’/B, A’/B/, CP; par conséquent, la diagonale A/B/
est divisée harmoniquement aux points ¢ et G/ ; donc la droite
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aB’/ doit passer par le point L7, et 'on demon:rerait la méme cbos;_%
pour les deux autres (*'.

THEOREME. Soit un quadrilatére complet dont les quatre cblés
soient ABC/, BCA’, CAB’, A/B’C’, et dont les trois diagonales
soient conséquemment AN’ , BB/, CC/. Soient de plus, a linter-
section de BB et CC’/, b Fintersection de CC/ et AN/, c celle
de AA’ et BB/ ; concevons , en outre, que les trois diagonales
sorent indéfiniment prolongérs ; et soit enfin une droite fize et
indéfinie MN , donnée arlitrairement sur le plan du quadrilatére,

Par les deux extrémités de chacune des diagonales soent menées
des paralléles & la droite fixe MN , prolongées jusqu’a leur ren-
contre aveec les deux autres diagonales.

Chaque diagonale , les paralléles partant de ses dewr extrémités
et Func quelconque des deux autres diagonales seront guatre droites
dont l'ensemble formera un guadrilaiére simple , dont on pourra
mener les deux diagonales , lesquelles se couperont em un ceriain
point,

() On peuat aussi parvenir , assez simplement , & la démonstration de ce
théoréme & I'aide des comsidérations suivantes.

Soient considérés le triangle ABC comme la perspective d’un triangle équi~
latéral , et le P comme la perspective de sen centre, ce qui est permis ;
les droites BC, BfC’, B7C¥,.... seront des perspectives de droites paralléles,
et devront conséquemment concourir en un méme point a. Pour la méme
raison , lés droites CA, (VA’, C”A” ... concourent en un méme poiat & ; et
les droites AB, A’B/, A#B/,.... concourent en un méme point c.

Soient présentement considérés les deux triangles ABC , AZB/C/ comme les
perspectives des deux bases d’un trenc de tétraédre , a bases non paraliéles ;
P étant la perspective de son sommet. Alors les points @, & , ¢ seront les
perspectives de ceux ol les cdtés de la base supérieure du tronc rencontrent
leurs corréspondans dans la base inférieure; ce sera donc les perspectives de
trpis points de lintersection des plans des deux lases; et conséquemment ils
deveopt dtre ¢n ligne droite, comme ces trois points eux-mémes.

J. D. G.
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Or , comme chacune des irois diagonales AA’, BB/, CC/
du quadrilaiére complet , combinéde tour-o-tour avec les deux autres,
donnera naissance & deux de ces quadrilatires simples ; il arrivera
gu'tls scronl en tout au nombre de siz.

Cependant les intersections des diagonales de ces six quadri-
latéres simples ne seront qu'au nombre de trois seulement , cest-
a-dire , que pour les deux quadrilatéres domt un cité sera segment
d'une méme diagonale et dont les cdlés opposés seront les deus
aulres diagonales entiéres , les qualre diagonales se couperont au
méme point.

Soit x le point commun d'interscction des quatre diagonales des
deur quadrilatéres simples qui , Sappuyant sur AA', ont pour
leurs cotés opposés BB/, CC/.

Soit y le point commun dintersection des quatre diagonales des
deux quadrilatires simples qui , sappuyant sur BB/, ont pour leurs
edtés opposés CC/, AA/.

Soit enfin z le point commun d'inlersection des quatre diagonales
des deux quadrilatéres simples qui, s’appuyant sur CC/, ont pour
leurs cotés opposés AN/, BB.

S lon méne les droites ax, by, cz, elles seront paralldles
entre elles et & la droite fize MN.

En outre , les points a , b, ¢ seront respectivement en ligne
droite avec 'y et z, z et 2, x et 'y (%),

(™ M. Vecten aurait pu eonsidérer aussi les trois quadrilatéres simples que
forme chaque couple de diagonales avec les pacalleles 3 MN menées par les
extiémités de la troisiéme.

Appelant x/ lintersection des diagonales de celui dont les cdlés paralléles
passent par A, A’; appelant y/ lintersection des diagonales de celui dont les
cOtés paralléles passent par B, B/, et appelant enfin z/ Pintersection des deux
diaganales de celui dont les cotés paralléles passent par CC/; il arrive que a/,
y', 2/ sont respectivement sur les droites yza, zxb, xyc.

M. Veeler aurait pu ajouter encore que tout ce qui précéde ne cesse pas
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Démonstration. On sassurera facilement de la vérité de ce
théoréme en remarquant que la détermination de chacun des points
z,y, z, du point &, par exemple, revient a celle que donne
M. Brianchon, dans son Mémoire sur les lignes du second ordre,
ou il propose ( Art. LIV ) de décrire une hyperbole qui touche
guatre droites données; et qui ait lune de ses asymptoles paral-
léle & une droite donné: de pos‘tion ; car, sinous supposous que les
quatre droites B'C/, CB/, BC, BC/ { fig. 4 ) soicnt les tangentes données
a I'hyperbole cherch e , qui doit avoir en outre , une de ses asymp-
totes paralltle & la droite MN; la paralléle & cette derniére droite
conduite par B, rencontrera la courbe cherchée en un point que
mous représenterons par U, et qui sera situé & I'infini ; on connaitra
donc quatre tangentes et un po'nt de i’hyperbole cherchée ; on pourra
donc la construire d’aprés l'article LI de l'ouvrage cité. Pour cela,
il faudra joindre le point @ au point U, c’est-a-dire, mener par &
une paralléle g2 2 MN, puis mener par B l'une des diagonales
du quadrilatére simplé qui, ayant BB/ pour I'un de ses deux edtés
non paralléles, a son opposé sur AA’; et le point x de rencontre
de cette droite avec la premitre sera un des points de la courbe.
Or, on aurait tout aussi bien pu mener l'autre diagonale du qua-
drilatére; et son interscction avec @z aurait été également un point
de la courbe ; or, cette cette courbe, ayant déja un point U sur
@x n’en saurait avoir deux autres sur cette droite ; done , lautre
diagonale doit également passer par le point z , qui est évidlemment
le milieu de la portion de la paralléle & MN conduite par 2, in-
terceptée entre AA’ et BB/ ; ce qui démontre la premiére partie de

a’élre vrai, lorsque les droites , au lieu d’étre paralléles & une dreite fixe MN,,
concourent en un point fixe quelconque.
Tout cela paralt pouvoir se démontrer facilement, au moyen de ce qui a
&é dit & la page 183 du VIL® volume de ce recueil.
J. D. G.

notre
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notre théoréme, et en méme temps le théoreme LIV de I'ouvrage
de M. Brianchon. 1l est clair, d'ailleurs, qu'on pourruit faive le
méme raisonnement sur l'intersection des deux diagonales du qua-
drilatére simple qui, ayant CC/ pour l'un de ses cotés , a austy
son opposé sur AA’, et qu'ainsi celte intersection doit se confondre
avec le point # qui se trouve ainsi l'intersection des quatre diago-
nales de deux quadrilatéres simples et d’une parallele 2 MN con-
duite par a. On demontrerait évidemment des choses analogues des
points ¥, z. Quant a la seconde partie du théoréme, on voit que
les trois points z, ¥, z appartenant avec le point U a la section
conique qui touche a la fois les quatre droites B'C’, B/C, BC,
CB/, il résulte de I'article XXIII de Pouvrage cité que deux quel-
conques de ces trois peints sont toujours en ligne droilte avec un
des trois points @, &, .

F THEQREME. Si Ion prolonge , dans un méme sens , les trois
cbtés d'un triangle ABC , des quantités BC/, CA’, AB/, respec-
tivement égales aux cotés consécutifs BC., CA, AB ; que l'on pro-
longe les mémes c¢biés en sens inverse, des quantités AC”, CB”,
BAY respectivement égales aux cétés conséeutifs AC, €CB, BA;
gue on méne les siz droites AA’, BB/, CC/, AA”, BB”, CC/,
et guenfin on méne les trois dreites Aa , Bb, Cc divisant les
angles du triangle en deux parties égales, et se terminant en a,
b, ¢, auz cbiés opposés , on aura

AABB.CC’  AABBZ.CC” _ BCHCA CA4-AB AB4-BC
Aa.B6.Cc — ~ Aa.BbCc _ aAB __BC —_c¢ca

Démonstration. Par la construction ( fig. 5), les droites AA/;
BB/, CC’ sont respectivement paralléles aux droites BB#, CC/,
AA/7 5 d'on il résulte que les triangles ACA/, BAB/, CBC’ sont
respectivement semblables aux triangles BCB”, CAC/”, ABA”, e%
qu'ainsi on a

:1'0”20 I.X: 40,
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AAr  CA BBR AB CC’ _BC
BB7  BC?® CC’ CA' AA"” AB’

ce qui donne, en multipliant,

AA. BB CC/
AATBB.CCr 1
ou

AA’BB/.CC/'=AA” BB”.CC/ ,

et démontre ainsi la premidre partie de la double égalité ci-dessus.

Par la méme constroction, les droites Az, Bb, Cc sont respec-
tivement paralléles aux droites BB/, CC/ , AA/ ; d’ou il résulte
que les triangles CBB/, BAA’, ACC’/ sont respectivement sem-
blables aux triangles CzA., B¢C, AJB, et quiainsi on a

BB’ CB/ AA/ BAY CCr AU

A2 CA’ G BC Bt AB’

ce qui donne, en multipliant

AA’BB.CC' BA.CBL.AC
Aa.856.Cc ~ AB.BC.CA '

mais, d’apres la construction , on a

BA’=BC~+C\A , CB’'=CA+4AB, AC/'=AB-}BC ;
donc enfin

AALBB.CC’ _ BCHCA CA4AB AB4-BC
AaBb.Cc  AB  BG  CA

ce qui démontre la seconde partie de notre double égalité.

Soient B, B/, B”, respectivement, les points ol les cotés A’A 7,
A”A, AA’ d'un triangle AA’AY sont rencontrés par les droites
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qui, partant de ses sommets, divisent ses angles en deux parties
égales. Suivant un théoréme connu ( Yoyez la Geoméirie de M.
LEGENDRE ), on auia

AA’AA'=3B"4AB.AYB ;
on aura de plus, par un autre théoréme connu,

AA/:AAZ:: A/B: AVB ,
et par suite
AA/4AAY : A/BAVB:: AN/ : A/B:: AAZ ; AVB
ou

AA/HAAY AN AA: A/B:: AAY . AVB

de cette double proportion on tirera

AA’A'A" AAZ AN
AB= — , AB= e
AAAA" AAFAA"

substituant ces deux valeurs dans la premictre équation ei-dessus

on en tirera

A5 =AA/. /,__AA’.AA”.A’A”' .
AE' = AN AN/ ARAL RN

ou encore

s __AAs A A (BAAAM—ATAN"
AB'=AA’AA/, AATAR:

AAZAA (AA'-AAVF-A’ATY (A A/} AA"—A’ A
= . . (AA'4-AA")3 .

Cela posé , désignons simplement par ¢, ¢/, ¢/ les trois eéids
& un triangle et par d , 4, 4/ les droites qui, divisani ses angles
en deux parties égales, se terminent aux cOids OPPOSESs ; NOUS au=
xons , par ce qui précede
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i Y

di=clc,
. [CANZE ?

dr=¢ll¢ e ten(elte—ch
¢ (c"40)2 ’

-d T (c~-c'~4-c') (f'+€—5”) ‘
B (o) ’

prenant donc la racine quarrée du produit de ces trois équations,
il viendra

dd'dr S 2 W [ Sy Y | G —T )

cc’c!! (c/c') (! pc) (cc”) H ( I )

équation qui donne , sous une forme élégante , le produit des
droites qui divisent les angles d’un triangle en deux parties égales,
en fonction des cotés de ce triangle.

On peut simplier cette équrtion en remarquant que le radical du

second membre est le quadruple de l'aire du triangle. En repré-
sentant ainsi cette aire par 7, il vient

dardn . Al DT )
eclelt (¢ ely (o) ee) G

On peut, dans cette derniére expression, introduire le rayon du
cercle circonscrit ; on sait, en effet , qu’en représentant ce rayon
par A1, on a cc/c”=4TRH , ce qui donne, en substituant,

) 1) — 16(c4-c'4-c")RT>
ddid’= (e (' Fres e ()

Si Ton veut y introduire , au contraire, le rayon du cercle ins-

crit, en le désignant par 7, il suffira de se rappeler que 2T'=r c+c'+¢'),
€e qui donnera
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32RT3

(P (L] >
ddd - r(c/-f-c")(c"4-c) (c4-c") ¢

Si l'on désigne par p, p/, p” les trois hauteurs du triangle ,
on aura
2T=c¢p , 2T=cp', 2T=c"p/,
d’ou

8]"”=C€/€//Pp//7”=4PP'P//TH 5
substituant donc, dans la derniére expression, elle deviendra

16pp’p”TRa

(L .
A = e T (5

En comparant cette dernié¢re formule 3 la formule (3), on en
dcduit
(c+e'~cir , T=pp'p'R ;
el par suite
2T =Rpp'p” ; (6)

relation remarquable par sa simplicité.

Il est dailleurs connu qu'en désignant par r, 7/, 7/, r// les
rayons des quatre cercles qui touchent a la fois les trois cotés du
triangle, on a rr'r/r//=T*; substituant donc , dans cette derniére
formule , elle deviendra

2rr/r"r!! =pp'p''R ; (7)

formule également digne d'étre remarqude.
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ARITHMETIQUE APPLIQUEE.

Examen critique de quelques dispositions de notre code
d'instruction criminelle ;

Par M. Gerconxe (*).

o Za Sa 7T Vi VL VL VL Vo W2 V)

LES ouvrages sortis de la main des hommes , quelque soin qu’ils

apportent d'ailleurs & les perfectionner , décélent toujours, par quel-

que coté, les bornes étroites de l'intelligence de leurs auteurs.
La législation compliquée d'un grand état, d’un état parvenu

* Les réflexions que 'on valive avaient été adressées & M. le baron Pasquier ,
peu aprés son avénement au ministére de la justice : l'auteur n’en a eu depu's
aucune nouvelle. Il ne serait pas sans exemple que quelque commis se les fit
approprides et les edt présentées sous son nom au ministre. 8'il en était ainsi,
Yauteur n'en concevrait aucum regret ; car , aprés tout , pourvu que le bien
s'opére , il importe assez peu que ce- soit par telle voie ou par telle autre.

Cependant , comme il se pourrait, en toute rigueur, que la note adressée &
M. le garde des sceaux efit été égarée , on a pensé qu'a une époque o on
parait songer sérieusement a la réforme de notre législation criminelle , il pou-
vait n’dtre pas sans intérét et sans wilité de la reproduire ici; non toutefois
que les hommes chargés de ce soin lisent des recueils de la nature de celui-ci;
mais soit parce que ceux qui les lisent peuvent éclairer, sur I'objet en question,
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un trés-haut degré de civilisstion, doit peut-dtre, plus que toutes
autres créations humaines , offrir la preuve de cette vérité,

Toutefois, lorsque les imperfections dont la législation d’un pays
se trouve entachée sont de nature & pouvoir éire supportées , on
ne doit songer & les faire disparaitre qu’avec une prudente lenteur,
en ne perdant jamais de vue que le mieux n’est que trop souvent
Pennemi du bien, et qu'd cété de Favantage de perfecticnner se
Zrouve aussi le danger dinnover.

Mais, lorsque des dispositions législatives offrent un caractére de
contradiction des plus manifestes ; lorsqu’elles font vouloir d’un cé6té
3 la loi ce que d'un autre elle déclare formellement ne vouloir
pas; lorsqu'il est évident que la discordance choquante qui se trouve
exister entre ces dispositions n’a pu sériensement entrer dans la
pensée du législateur, et n’a sa source que dans une de ces dis<
tractions auxquelles il est presque impossible de se soustraire, dans
un travail de quelque étendue ; lorsqu’enfin , et sur -tout ld
partie de la législation qui se trouve entachée de disparates aussi
évidentes est celle qui décide chaque jour, sur tous les points d’un
vaste empire, de la liberté, de I'honneur de la vie méme des
citoyens ; il est alors du devoir de Iautorité d'en provoquer la
réforme , dés qu’elles lui sont signaldes ; comme il est du devoir
de chacun de les signaler 4 lautorité dés qu'il les a apergues.

C’est dans la vue de remplir ce dernier devoir , autant qu’il est
en nous, que nous consignons ici les réflexions suivantes.

Le Code d'instruction criminelle statue (art. 347, 350, 351),

ceux qui ne les lisent pas , soit engore parce que cel article, n’exigeant pour
étre compris que les notions de calcul les plus €élémentaires , peut , i ce titre,
étre transporté , sans inconvénient, dans des ouvrages périodiques plus accese
sibles au commun des lecteurs,



308 JUGEMENT

1.° Que , lorsqu'un accusé est déclaré coupable par un jury;
3 la majorité de 8 voix au moins contre 4 au plus, il ya licu
A luiappliquer la peine,

2.° Que, dans le cas d’un partage égal de suffrages , dans le
jury , pour et contre I'accusé, I'avis favorable a cet accusé doit prévaloir,

3.° Que, dans I'un et dans 1'autre de ces deux cas , la décision
du jury ne peut étre soumise & aucun recours.

4.° Mais que , dans le cas oi l'accusé n'a été déclaré cou-
pable du fuit principal, par le jury, qu'ad la simple majorité de 7
voix contre 5, les juges ( qui, comme Pon sait, sont, dans nos
cours d'assises , au nombre de 5 ) délibérent entre eux sur ce
méme fa't; et qu’alors, si la simple majorité des juges et des
jurés réunis estime que 'accusé n’est point coupable , I’avis favorable
A cet accusé doit prévaloir.

Une conséquence forcée de cette dernidre disposition est que,
lorsque la simple majorité des juges et des jurés réanis estime
Paccusé coupable, l'avis favorable & cet accusé ne doit point pré-
valoir ; et telle est, en effet , la jurisprudence uniforme de nos
eours d’assises.

La loi statue donc que , dans le cas du recours aux juges,
Faccusé sera déclaré coupable, s'il réunit seulement g voix contre
lui, tant dans la cour que dans le jury.

Mais le recours aux juges ne peut avoir liecu que dans le seu
cas ou l'accusé n’a rencontré dans le jury que 7 voix seulement
qui lui soient contraires. '

La loi statue donc que, dans ce cas, I'accusé sera déclaré cou-
pable, pourvu qu’il se trouve seulement dans la cour deux voix
contre luk. '

Mais lorsque , dans le sein de la cour, decux voix seulement sont
3

contraires 4 l'accusé, trois voix lui sont nécessairement favorables,
et conséquemment la cour doit étre réputee le reconnaitre innocent.

La
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La loi statue done que, I'accusé sera reconnu coupable, si, ayant
€té déclaré tel par le jury, & vne majorité jugée d'abord insuffisante,
il est ensuite déclaré innocent par les juges, c’est-d-dire, par des
hommes & qui, i raison d’un trop grand penchant présumé 4 la
séverité , la méme loi n'a pas cru devoir confier exclusivement le
destin de cet accusé.

La loi statue donc qu’un premier jugement dont I'expression lui
semble trop équivoque peut recevoir d’un jugement tout contraire
le complément de force quilui manque; elle statue qu’un nouveau
poids , ajouté dans le bassin le plus élevé d'une balance inégale-
ment chargée , la fera pencher davantage du cété du bassin le plus

bas.

La loi, en donnant son attache 4 une décision prononcée par
un jury, 3 la majorité de 8 voix contre 4, déclare par 13 qu’elle
trouve , dans cette majorité , une garantic suffisante de la culpabilité
de l'accusé. Mais, lorsqu’au contraire elle en appelle aux juges de
la décision de ce méme jury, dans le cas ot elle n'est rendue
qu'a la simple majorité de 7 voix contre 5, c’est qu’elle ne trouve
plus, dans cette faible majorité , la garantie que l'autre lui offrait,
et quelle veut lui trouver ailleurs un supplément qu’elle juge lui

étre nécessaire.

Mais , ce supplément de garantie , ce n’est , certes, pas dans
une décision toute opposée de la part de la cour qu’elle doit se
promettre de l'obtenir ; et c’est pourtant I3 qu’elle déclare le
rencontrer.

L’opinion des juges , & raison de leurs habitudes, peut bien
dtre suspectée , lorsqu’ils condamnent; mais, par l4 méme, lors-
qu’ils absolvent, cette opinion doit recevoir de surcroit toute la
confiance qu'on aura cru devoir lui refuser dans I'antre cas.

Et c’est pourtant par une sentence d'absolution d’un si grand
poids que la loi prétend corroborer une condamnation prononcée
par le jury, & une majorité équivoque.

Tom. IX. 41
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Lorsque les opinions sont également partagées dans le jury, il
peut souvent arriver que la cour , qu’on ne consulte pas alors,
soit unanimement d’avis que l'accusé est coupable ; cet accusé a
donc alors 11 voix contre lui, et 6 seulement qui lui sont favo-
rables, et cependant il est absout de droit ; d’ot 'on pourrait in-

férer que la loi ne pense pas que méme une majorité de 11 voix
contre 6 soit toujours suffisante pour condamner.

Et pourtant elle condamne, dans d’autres cas, & unec simple
majorité de g voix contre 8.

Et qu'on ne dise pas que le cas du recours aux juges est une
sorte de cas d’exceplion, une sorte dc hors-d’euvre qui sort tout-
3-fait de la régle commune ; car, outre que lorsqu’il est question
des plus chers intéréts des citoyens, les cas d’exception ne doivent
pas étre moins soigneusement combinés que le principe général
éuque’l ils dérogent; il n’est malheureusement que trop connu au-
jourd’hui que, par l'effet d’une faiblesse tout au moins trés-bla-
mable , ce que le législateur avait pu en effet n’envisager que comme
une ressource pour des cas extraordinaires est devenu d’'une appli-
cation presque journaliére ; attendu que les jurés, en ddpit de leur

conviction , arrangent communément leur déclaration de maniere
3

3 rendre obligatoire I'intervention de la cour.

Nous préssentons une objection ; et nous nous héatons d’y répondre.
On dira peut-éire’ qu'in accusé déclaré coupable par un jury ne
peut que trouver avartageuse pour lui la ressource du recours aux
juges , dont la ddcision qui, dans aucun cas, ne saurait aggraver
sa situation , peut quelquefois la rendre meilleure.

Ce raisonnement pourrait tout au plus étre admis, si, le recours
a la décision des juges étant purement facoltatif de la part de
Paccusé, la loi avait statué que , faute par lui d’en faire usage,
la déclaration du jury, bien que rendue & une faible majorité,
réglera son sort; mais, encore un coup, la loi, qui reconnait une
majorité de 7 voix contre 5 trop faible pour condamner, doit, &
plus forte raison, lui refuser sa confianece , lorsque la déclaratien
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qui en résulte se trouve infirmée par une déclaration contraire de
lIa cour,

On a peine 3 comprendre qu’une inconséquence aussi palpable
ait pu se glisser dans notre législation ; on doit présumer du moins
qu’elle n’aurait pas résisté 4 la lumiére de la discussion, dans une
assemblée législative qui n’aurait pas été réduite au silence. Voici
pourtant de quelle maniére elle aura pu passer sans étre apercue.

Si, comme nous venons de le faire, et comme on en a incontes=
tablement le droit, on avait considéré la déclaration de la cour et
celle du jury comme deux jugemens distincts et successifs relatifs
au méme fait, l'inconséquence que nous venons de signaler aurait
probablement frappé tous les esprits. Mais on s’est sans doute con=
tenté d’envisager les choses en masse; on a considéré la cour et
le jury comme formant un tribunal unique, composé de 17 juges;
et en s’est apparemment figuré qu'une majorité de g voix contre 8,
dans un tel tribunal, offrait plus de garantie que celle de 7 voix
contre 5, dans un autre tribunal, formé de 12 juges seulement.

Mais il est pourtant visible que c’est précisément le contraire ;
et que les nombres g et 8, étant plus voisins de I'égalité que ne
le sont les nombres 7 et 5, décélent par 1 méme une plus grande
probabilité d'erreur dans le jugement qui en émane.

Ainsi, sous quelque point de vue que lon veuille envisager la
question, on parvient toujours aux mémes conséquences finales.

Mais, pour réparer ume erreur si grave et si manifeste, faudra-
t-il donc bouleverser tout notre systéme de législation criminelle ?
non, sans doute. Le remede pourrait certainement étre appliqué de
bien des maniéres diverses; mais , si I'on veut atteindre au but par
le moindre changement possible, il suffira simplement de remplacer
Yarticle 351 du code, dont la rédaction est d’ailleurs d’une obscure
prolixité, par un article congu a peu prés en ces termes.

351. 8¢ néanmoins laccusé nest déclaré coupable du jfait prin-
cipal, par le jury , qi'é la simple majoriié, les juges delibéreront
entrc eux sur ce méme jfait, aussi & la simple majorité ; e,
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si leur décision n'est pas conforme & celle du jury | Pavls fapos
rable & l'accusé prévaudra.

Au moyen d'une disposition si sage et si simple, la dignité de
la cour ne sera jamais compromise , puisque son avis, toutes les fois
qu’il aura été manifesté, sera inévitablement prépondérant; 'accusé |
dont le recours a la délibération de ses juges , pourra souvent amé-
liorer la situation, sans que, dans aucun cas, il puisse la rendre
plus facheuse, ne verra plus en eux qu’une autorité tutélaire et
protectrice ; et il ne courra pas le risque d'étre condamné A
une majorité moindre que celle de 10 voix contre 7.

A la vérité, la garantie provenant de cette majorité se trouvera
un peu inférieare 3 celle qu'offre une majorité de 8 voix contre 4,
qui interdit le recours aux juges ; mais rien n’empéchera de con-
sidérer la premitre comme la véritable limite que la loi s'interdit
de franchir , et en dedans de laquelle il lui sera , & plus forte
raison , permis de se tenir dans certains cas. En un mot, onaura
fait ainsi tout ce que la raison et I'équité peuvent rigoureusement
exiger.

Que si, méditant une réforme générale de nos lois criminelles,
on croyait pouvoir ajourner jusque la le changement partiel que
nous venons de proposer ; nous nous croirions fondés a observer
que les grandes réformes sont d’ordinaire et doivent méme étre
longuement méditées ; tandis que tout délai, tout ajournement est
un crime contre 'humanité, lorsqu’il s’agit de réparer unc erreur
dvidente , qui peut chaque jour mettre en péril tout ce que les
citoyens ont de plus cher et de plus précieux (*).

Veut-on savoir ce que dit le calcul sur la question qui nous
occupe? M. Laplace va nous Plapprendre (*¥) : suivant cet illustre

™ Ici se termine la note & M. le garde des sceaux.
") Théorie analitique des probabilités, premier supplément, page 33
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géomdtre, si, dans un tribunal composé de p-t-¢ juges, un accusd
est condamné 4 une majorité de p voix contre ¢<p ; l'erreur pro-
bable de ce jugement sera exprimée par la formule

YETTY

( +p+z+t +p+i+"p:-q +p+i+t.p-:-q_gj;§—r +

4
Pqr 1
2 pti+r ptg ptg—r ptyg—2 pt>

1 2 3 4 g

e B

Cela posd, soit d’abord p=8, g=4; cette formule se réduira
4 J4°. . puis donc que la loi reconnait la majorité de 8 voix
contre 4 suffisante pour condamner, elle déclare tacitement qu’'elle
consent & ce que , sur 131072 jugemens, pris au hasard, il puisse
s’en trouver 17472 qui soient erronés. Cest beaucoup , sans doute ;
mais c’est un motif de plus pour ne pas s’exposer a des chances
d’erreur plus probables.

Soit ensuite p=7 , ¢=5 ;la formule deviendra ;'’’% ; puis donc
que la loi reconnait insuffisante une majorité de 7 voix contre 5,
elle déclare tacitement qu’elle n’entend pas exposer les citoyens au
risque de 22064 jugemens erronés , sur 131072 jugemens pris au-
hasard ; elle ne doit done, dans aucun cas , exposer les citoyens
a un risque plus considérable.

Soit encore p=g , ¢=38; la formule deviendra ;%% ; puis donc
que, dans l'état actuel de notre législation criminelle, une condam-
nation est souvent prononcée a la majorité de g voix contre 8; il
s’ensuit que la loi, aprés avoir prétendu garantir les citoyens du
risque de 22064 jugemens erronés sur 131072 pris au hasard ,
les expose cnsuite au risque, plus que double , de 53381 juge-
mens erronés, pris sur le méme nombre.

Soit enfin p=10; ¢=7; la formule deviendra ;2’7 ; ainsi, dans
le syst¢éme que nous proposons , le risque ne serait jamais , dans
le cas méme le plus défavorable, que celni de 3150z jugemens
srronés , sur 131072 jugemens pris au hasard.
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Nous devons observer , au surplus, pour rassurer ceux de nos
lecteurs qui pourraient étre effrayés d'un semblable risque, que la
formule de M. Laplace suppose que la probabilité de la rectitude
de lopinion de chaque juge peut avoir indistinctement tous les
degrés de valeur entre I et 1 ; tandis que, dans des matiéres cri-
minclles sur-tout , des hommes d’élite ne se décident guére A se
prononcer contre un accusé, 3 moins que la- probabilité de sa cul-
pabilité ne leur paraisse fort au - dessus de : et trés-voisine de
P'unité; & quoi on peut ajouter encore que , fort souvent, les juges
ou les jurés font, dans I'intérét de P’accusé, une déclaration con-
traire 4 leur véritable opinion, quelque fondée que cette opinion
puisse d’ailleurs leur paraitre.

Il faut pourtant excepter de ceci les jugemens relatifs & ce qu’on
est convenu d'appeler délits politiques. 11 w’arrive malheureusement
que trop, en effet, que, dans ces sortes de jugemens, lesprit de
parti aveugle les juges et leur fausse la consciemce a tel point que
tantdt les indices les plus fugitifs suffisent pour les déterminer , et
que tantét, au contraire, les preuves les plus manifestes ne sau-
raient trouver accés dans leur esprit; heureux encore lorsqu’ils ne
votent pas contre leur conviction. Si ’on joint & cette considération
que , dans de telles affaires , la crainte impose silence 4 la plupart
des témoins soit & charge soit & décharge , ou leur fait supposer
des faits, et que le moins qu’il puisse arriver est qu’ils exagerent
ou pallient des faits réels; on sentira qnel fond on doit faire , en
général , sur des sentences, soit d’absolution soit de condamnation,
prononcées au milieu des troubles civils.

On se tromperait grossiérement si I'on se figurait que la question
de législation qui vient de nous occuper est la seule ou l'applica-
tion du calcul soit mécessaire ; ces sortes .de questions sont , au
contraire , excessivement nombreuses. Pour en donner un mnouvel
exerﬁple, sans sortir toutefois de ce qu’il y a de plus élémentaire,
arrétons-nous un moment sur la question des appels.
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Considérons une suite de tribunaux subordonnés les uns aux
autres , de telle maniére que 'on puisse appeler devant chacun d’eux
d’un jugement rendu par le tribunal qui lui est immédiatement
inférieur. Soient an--1 , 2n/4~1, 2n//-1,.... respectivement le
nombre des juges de ces divers tribunaux , du plus inférieur au plus
élevé ; soient p, p’, p”,..... des nombres abstraits représentant le
poids moyen de I’opinion de chaque juge dans chacun de ces tribu—
naux , respectivement.

Si l'on suppose d’abord qu'il n’y ait qu’un seul tribunal, il est
clair qu’il sera suffisant, pour qu'un jugement soit rendu qu’il ob-
tienne une majorité de 2-f-1 voix contre 7z ; mais il se pourra aussi
que ce jugement soit rendu a l'unanimité.

Supposons , en second lieu , qu’il en soit ainsi; mais que la
voie de I'appel & un sccond tribunal soit ouverte i la partie lésée. Il lui
suffira, pour obtenir gain de cause devant ce nouveau tribunal, d’y
réunir une majorité de z/4-1 voix contre »’. Il y 4ura donc, en
faveur du second jugement, un poids (n/<4-1)p/, et contre ce méme
jugement un poids (2z-4-1)p~+n/p’. Afin donc de ne point tomber
dans l'absurde, il faudra qu'on ait

(w410 > (2nt1)p4nipr

ou bien

p=(ant1+<p ;
# étant une fraction positive si petite qu'on voudra, On tire de 1
p’
-; =2n-t1-}-e ,

ainsi , quel que soit d’ailleurs le nombre des juges du second iri-
bunal , il faut que le poids de Popinion de chacun des juges qui



316 JUGEMENT
le composent soit supérieure & autant de fois le poids de Popinion
d'un juge du premier qu'il y a des juges dans celui-ci.

Si I'on suppose que le premier des deux tribunaux n'a qu'un
seul juge, on voit qu'alors , pour si peu que les juges du second
tribunal soient plus éclairés que ce juge unique, nos conditions
se trouveront remplies ; c'est le cas des appels, devant les tribunaux
de premiére instance, des jugemens rendus par nos juges de paix.

Nos tribunaux de premiére instance étant cux-mémes composés
de trois juges, on voit, par notre formule que , pour qu'un juge-
ment rendu sur appel de ces tribunaux par nos cours royales
puisse,, dans tous les cas , é&tre réputé conforme A I'équité , il
faut admettre que les juges de ces cours ont une capacité plus
que triple de celle des juges de premiere instance. C’est au lecteur
A décider s'il pense qu’il en soit toujours ainsi,

Nous avons eu, durant plusieurs anndes, en France, un systtme
de tribunaux civils, égaux en attribution , et tribunaux d’appel,
les uns & I'égard des autres. Il est clair qu’alors on n’avait aucun
motif de préférer l’opinion des juges de l'un de ces tribunaux 2
celle des juges de tout antre. Un tel ordre judiciaire était donc
essentiellement vicieux, bien qu'on ett pris la précaution, autant
que nous pouvons du moins nous en rappeler , de faire prononcer
les jugemens sur appel par cinq juges. On voit, en effet , qu'aprés
avoir gagné un procés en' premidre instance 3 l'unanimité de 3
voix , on pouvait ensuite le perdre en appel, & la simple majorité
de 3 voix contre 2 ; de sorte qu'on se trouvait condamné, bien
qu’on elit eu 5 voix en sa faveur, et 3 seulement contre soi. Voild i
quoi peuvent étre exposésles citoyens, avec des législateurs étrangers,
pour la plupart , aux premiéres notions du caleul ; et il continuera d’en
éire ainsi tout aussi long-temps qu’on persistera 4 pe considérer
I'étude des sciences exactes que comme propre seulement a former
des artilleurs, des ingénieurs, des astronomes et des marins.

J’ai supposé tout-a-I’heure que le jugement du second tribunal
wétait rendu qu'a la simple majorité, Supposons présentement qu’il

le
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le soit & I'unanimité, et dans le méme sens que celut du prem'ier,
mais que la voie de lappel & un troisitme tribunal soit ouverte
a la partie perdante. Supposons enfin que, devant celui-ci , elle
obtienne gain de cause 3 la simple majorité ; alors le poids de
I'opinion , en faveur de l'arrét définitif , aura pour expression

(n-1)p”
et le poids de I'opinion contraire sera exprimé par
(2t 1)+ (ot

afin donc que l'opinion du plus grand poids ne se trouve pas étre
Popinion contraire & cet arrét, on devra avoir

(n//=1)p! > (2n=1)p4-(2n/+1)p/4n/p!
¢qui devient, en réduisant,

P! >(an~+1pt(2n'+1)p’ ,
ou encore

p=(entn)p(anb ik

o/ étant une nouvelle fraction positive si petite qu’on voudra. Eli~
minant done p entre cetle équation et I’équation

p'=(2n+14*p ,

trouvée ci-dessus , on obtiendra
Tom. IX. %o
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P’ an<-1 p ,
7)7 - 21 2 e

La fraction qui commence le sccond membre de celie équation
pouvant élre si peu au-dessous de l'unité qu’on voudra , peut
étre représentée par 1—»a, a étant une fraction positive si petite
qu'on vondra j représentant ensuité #/—a par A’/ qui pourra étre

une trés-petite fraction , positive ou négative , ou méme zéro ,
on aura

pﬂ
—_ =3(n/+1)+;\/ ;
pl

ce qui nous apprend que e poids moyen de l'opinion de chacun
des juges du troisiéme tribunal doit étre au moins autant de
Jois plus grand que le poids de Il'opinion de chacun des juges
du second qu’tl y a dunités dans le double du nombre des juges
qui forment la majorité de celui-ci.

Ainsi , par exemple, nos cours royales rendant communément
leurs arréts & 7 juges, dont la majorité est 4; pour que , dans
le cas du recours en cassation , on ne soit jamais exposé &
craindre que l'opinion contraire & larrét définitif soit d'un plus
grand poids gne celle qui lui est favorable, on est contraint d’ad-
mettre qu'un juge en cassation est communément 8 fois plus éclairé
qu'un juge en cour royale , et conséquemment au moins 24 fois
plus qu’un juge de premiére instance.

Nous ne pousserons pas plus loin cette analise, qui ne saurait
offrir de difficulté d'aprés ce qui préctde. Nous nous bornerons
seulement & observer que d'une part nous avons tacitement sup-
posé que toutes les requétes en cassation étaient indistinctement
admises , tandis que leur admission est le résultat d’un jugement
préalable, ce qui complique encore la question; et que d'une autre,
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la cour de cassalion jugeait, comme les cours royales, du fond
méme de 'affaire, et en jugeait souverainement ; tandis qu'elle ne
juge réellement que de la forme; et que 'opposition de son opinion
avec celle d'une cour royale n’entraine qu'un renvoi devant une
autre cour.

Ne négligeons pas cependant une dernidre considération : c'est
quil ne suffirait pas, pour justificr le systéme des appels, systeme
trés-coliteux pour le gouvernement et pour les plaideurs, d’orga-
niser les tribunaux de telle sorte que l'opinion en faveur du
dernier arrdt ett constamment plus de poids que I'opinion opposée;
il faudrait, en outre, que ce dernier arrét fat plus probablement
conforme & la vérité qu’aucun de ceux qui l'auraient précédé;
mais ccci entrainerait des recherches trés-délicates, dans lesquelles

nous ne saurions nous engager pour le présent.
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QUESTIONS PROPOSEES.

Probléme de probabilite.

ON doit projeter au hasard sur un plan horizontal un tétraddre
donné, pesant et homogene ; quelle probabilité y a-t-il qu’il tombe
sur une face désignée.

Theoréme danalise indéterminée.

Un nombre impair 22-4-x est ou n’est pas premier, suivant que
Pun des deux nombres 2"+ 1 est ou n’est pas divisible par 2 (*).

™) Si la méthode que fournit ce théoréme , pour discerner si un nombre
est ou n'est pas premier, est laborieuse , elle I'est pourtant incomparablement
mons que celle quon déduirait du Théoréme de Wilson.
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RECHERCHES SUR LES POLYEDRES. 3

GEOMETRIE ELEMENTAIRE.

HRecherches sur les polyédres , renfermant en particulier
un commencement de solution du probléme proposé
a la page 256 du VIlc yvolume des Annales ;

Par un ABONNE,

[ o Vo S Vg o V]

ON donne le nom de polygone régulier & un polygone dont
tous les angles et tous les cotés sont égaux; et il suit clairement
de cette définition que, méme en faisant abstraction des polygones
ér0ilés de M. Poinsot, les polygones réguliers sont en nombre
infini , et que le nombre de leurs cétés peut éire quelconque.

Il a d’ailleurs déja été remarqué, dans ce recueil (tom. VI, pag. 199 ),
quau nombre de ces polygones on ne peut se dispenser de com-
prendre la ligne droite, considérée comme double : c’est un polygone
de deux coétés, ayant deux angles nuls, et pour lequel le cercle
circonserit a pour diamétre l'un des c6tés, tandis que le cercle
inscrit se réduit & un point

Les limites extrémes des polygones réguliers de cette sorte sont
d’une part le point, pour lequel les cercles inscrit et circonscrit
se confondent , et deux paralleles indéfinies qui ont un cercle
circonserit d'un diamétre infini , tandis que le cercle inscrit a pour
dramétre la distance entre les deux paralléles.

Nous ajouterons qu’au nombre des polygones réguliers on doit
encore comprendre le cercle , considéré comme polygone régulier

Tom, IX ,n.° X, 1.°7 asril 18:1g. 43



322 ~ RECHERCHES
d’une infinitd de cbtds infiniment petits, et pour lequel , comme
pour le point, les cercles inscrit et circonscrit se confondent.

Nous dirons que deux polygones sont conjugués l'un & lautre,
lorsque chacun d’eux aura autant de sommets que T'autre aura de
cbtés ; et comme, dans tout polygone, le nombre des sommets est
égal au nombre des cotds ; il sensuit que tout polygone est conjugué
2 lui-méme.

Si I'on fait des cotés d’un polygone régulier les bases d'autant
de triangles isocdles et égaux , ayant leurs sommets hors du po-
lygone, ces triangles , avec le polygone donné, formeront. un nou-
veau polygone , dont le nombre des cétés pourra indistinctement,
suivant la nature des triangles ajoutés , é&tre égal au nombre de
ceux du premier ou en étre double ; et qui, dans un et dans
Yautre cas, pourra étre régulier -comme lui.

Un polygone régulier étant donné, si 'on en retranche tous les
sommets par des perpendiculaires aux droites qui divisent ses angles
en deux parties égales, de telle sorte que les parties retranchées
solent des triangles isoceles égaux; ce qui restera du polygone sera
un nouvcau polygone, dont.le nombre des cétés pourra indistinc-
tement, suivant la grandeur.des triangles retranchés , étre égal au
nombre de ceux du premier ou en éire double ; et qui, dansl'un
et dans l'autre cas, pourra &tre régulier comme lui.

On donne le nom d'angle polyédre régulier i tout angle polyedre
dans lequel les angles plans et les angles diedres sont égaux entre
eux 5 et 1] suit clairement de cette définition que , méme en faisant
abstraction des angles polyedres étoilés que Von pourrait former,
3 l'imitation des polygones étoilés de M. Poinsot , les angles po-

lyédres réguliers sont en nombre infini, et que le nombre de leurs
faces peut étre. quelconque (*),

) Il y a, au surplus, cette distinction a établir entre les angles polyédres
réguliers et les polygones réguliers que ces derniers sont donnés d’espéce, dés
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Il faut remarquer quau nombre des angles polyddres réguliers
on doit comprendre l’angle plan, considéré comme double ; cest
en effet un angle polyédre 4 deux faces , ayant deux angles di¢dres
nuls, et pour lequel le céne circonscrit a un angle générateur,
moitié de l'un des angles plans , tandis que le céne inscrit se
réduit & une droite.

Les limites extrémes des angles polyedres réguliers de cette sorte
sont d’une part la ligne droite , pour laquelle les cénes ins-
crit et circonscrit se confondent , et l'angle diédre dont le cone
circonscrit est un plan, tandis que son cone inscrit a un angle
générateur , moitié de l'angle di¢dre.

Nous ajouterons qu'an nombre des angles polyédres réguliers on
doit comprendre aussi le céne de révolution, considéré comme un
angle polyédre ayant une infinité d’angles plans infiniment petits,
et pour lequel , comme pour le point, les cones inscrit et circons-
crit se confondent.

Nous dirons que deux angles polyédres sont conjugués l'un &
Z'autre, lorsque chacun d’eux aura autant d’arétes que l'autre aura
de faces; et comme , dans tout angle polytdre , le nombre des
faces est égal au nombre des ardtes , il s'cnsuit que tout .angle
polyédre est conjugué a lui-méme.

Si Pon fait des faces d’un angle polyddre régulier les bases d'autant
d’angles tridédres isoctles et égaux, de méme sommet que lui,
ayant l'arite opposée i la base hors de I’angle polyédre; ces angles
triedre , avec l'angle polyédre donng, fermeront un mnouvel angle
polye¢dre , dont le nombre des faces pourra indistinctement, suivant
la nature des angles tri¢dres ajoutés , étre égal au nombre de celles
du premier ou en étre double; et qui, dans 'un et dans l'autre

-cas , pourra étre régulier comme lui.

qu'on donne le nombre de leurs cotés; tandis qu'avec un nombre de faces
donné on peut faire des angles polyedres réguliers d'une inkinité d’espéces
différentes.
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Un angle polyddre régulier dtant donné , si l'on en retranche
toutes les arétes, par des plans passant par son sommet et res-
pectivement perpendiculaires aux plans qui divisent ses angles diédres
en deux parties égales ; de telle sorte que les parties retranchées soient
des angles triédres isocéles et égaux ; ce qui restera de l'angle po-
lyédre sera un nouvel angle polyedre , dont le nombre des faces
pourra indistinctements, suivant la grandeur des angles triédres re-
tranchés , étre égal au nombre de celles du premier ou en étre double ;
et qui , dans I’un et dans I'autre cas , pourra étre régulier comme lui.

Les notions que nous venons de présenter , ou plutdt de rappeler,
sont extrémement élémentaires , et pourraicnt méme passer pour
triviales. Nous pensons toutefois qu’elles sont une utile introduction
3 ce que nous nous proposons de dire sur les polyedres.

Nous dirons, 3 Vavenir de deur polyédres qu'ils sont conjugués
Tun & lautre, lorsqu’ayant le méme nombre d’arétes, le nombre
des faces de chacun sera égal au nombre des sommets de l'autre ,
.et qu'en outre le nombre des cotés de chaque face de I'un quel-
.conque sera égal au nombre des faces du sommet homologue de
Yautre. Nous ne donnons , pour le moment, aucun exemple de
ces sortes de polyadre , la suite devant en fournir d’assez nombreux.

On est convenu de n'appeler polyédres réguliers que les polyedres
dont toutes les faces sont des polygones réguliers égaux et dont,
en outre, tous les sommets présentent des angles polyedres réguliers
dgaux; d’ol l'on voit qu’un polyedre régulier peut fort bien avoir
pour conjugué un autre polyeédre régulier.

Mais, attendu Pexcessive exigeance de cette définition , on est
raisonnablement fondé 4 se demander s'il peut réellement exister -
des polyedres réguliers. Avant de traiter cette question , on peut
s’en proposer une autre moins circonscrite , ct se demander §'il peut
exister des polyedres, réguliers ou non , dans lesquels toutes les

faces aient le méme nombre de sommets, et tous les spmmets le
méme nombre de faces,
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La manidre la plus naturelle de traiter cette dernitre question
parait é&tre la suivante : Soient A le nombre des arétes du polyedre,
F le nombre de ses faces, ct § le nombre de ses sommets ; sup-
posons , en outre , que chacune de ses faces ait s sommets et
conséquemment s cétés, et que chacun de ses sommets ait f faces
et conséquemment f arétes.

Si 'on compte, tour-a-tour, les c6tés de toutes les faces, on
les trouvera au nombre de s¥ ; mais, de cette maniére, on aura
compté deux fois chacune des aretes du tétraédre , puisque chacune
d’elles sert de coété a deux faces consécutives ; donc

sF=24 .,

Si ensuite, on compte , tour-a-tour, les arétes de tous les sommets ;
on les trouvera au nombre de f§, mais, de cette maniére, on aura
encore compté deux fois chacune des arites du tétraddre , puisque
chacune d’elles sert d'aréte 3 deux sommets consécutifs; donc

JSS=24 .

Enfin , par le théoréme d’Euler ( Annales, tom, III , pag. 169)

on aura, en outre

F4-S=A42 .

Voila donc trois équations , au moyen desquelles on peut déterminer, .
4, F, S, en fonction de f, s.

Avant d’aller plus loin , nous ferons remarquer que, ces équations
restant les mémes lorsqu’on y permute a la fois fets, FetS ;il s’en-
-suit que, s'il existe des polytdres dont toutes les faces aient e
méme nombre de sommets et tous les sommets le méme nombre
de faces; A chacun d’eux il en doit répondre un autre , qui eR
sera le conjugué,

De ces trois ¢quations on tire
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_ & b
F= 2(f)—fs * §= 2( St~
A= 2f

o

Il sagit donc présentement de savoir s'il y a des nombres entiers
positifs , plus grands que l'unité , qui, mis pour f et s dans ces
formules, donnent pour F, §, A4 des valeurs entires et posi-
tives. Nous disons plus grands que l'unité , et non pas plus grands
que deux, puisque, suivant les remarques faites ci-dessus , un po-
lygone peut fort bien n’avoir que deux sommets , et un angle
polyédre deux faces seulement.

Il faut donc, en-premier lieu , que le dénominateur commun de
~ces trois. formules:ne sait point négatif; or, si I'on pose , & la fois,

F=bf,  s=3+s,
on aura

2(fs)=fs=—fi b F'S

qui sera négatif, toutes les fois qu'on n'aura pas en méme temps
J'=0, s=o. Pareillement, si-I'on pose, a la fois,

f=3+F, s=6-4s" ,
on aura

2 fhs)—fomms—bf —f'" ;

quantité qui est pareillement négative, toutes les fois que f7 et s/
ne sont pas tous deux nuls.

Ainsi, les deux nombres f et s ont une limite de grandeur qui
est 6, et encore ne faut-il pas, lorsque 'un d’cux a atteint cette
limite , que l'autre soit supérieur & 3,
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Si, dans le méme dénominateur commun , on fait f ou s=5,
il deviendra

10—3s ou 10—3f,

et , pour qu’il ne soit point négatif, il faudra encore que s ou f
ne soit pas plus grand que 3.
Si, dans le méme dénominateur, on fait fou s=4, il deviendra

24—s)  ou  2(4—f);

et, pour qu’il ne soit point négatif, il faudra que s ou f n’excede
pas 4.

Si nous supposons f=2 , nos formules deviennent
F=2 , S=s, A=s ;

valeurs qui scront toujours entiéres et positives , quelque valeur
entiére et positive qu'on donne a s. Cest qu'en effet, tout poly~
gone peut étre considéré comme un polyédre 4. deux faces, dans
fequel les faces ont le méme nombre de sommets , et ol les sommets
ont le méme nombre de faces qui est ici deux 5 mais c’est un po-
lyedre qui renferme un espace nul.

Si nous supposons s=2 , nos formules deviendront

~

=] S=2 b Azf;

valeurs qui seront toujours entidres et positives ; quelque valeur
entitre et positive qu’on prenne pour f. C'est qu’en effet tout prisme
indéfini peut étre comme un poly¢dre 4 deux sommets , dans lequel
les sommets ont le méme nombre de faces, et ol les faces ont le
méme nombre de sommets qui est ici dexz ; mais c’est un polyédre qui
renferme un espace infini.

On peut remarquer de plus qu'un polygone et un prisme tels
que le nombre des sommets du premier soit égal au nombre des
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faces du second , considérés comme polyédres, sont des polyddres
conjugués I'un a lautre.

Ces cas ainsi écartés , il me nous restera plus a faire que les
suppositions suivantes,

f=3,/=3, f=4, f=4 , f=3 , f=5, f=3 , f=6 ,
s=3 , s=4, =3, s=4,s=5, s=3 , s=6, s=3 ;
lesquelles donneront , pour les valeurs correspondantes de F, S, 4,
F=4, F=6, F=8, F=w , F=1a, F=20, F=w , F=n ,
S=4,5=8, §=6, S=» , §=20, S=12, S= , S=w ,

A=6, d=12, Ad=12, A=, A=30, A=30,A=w, A==,

Ainsi, en écartant les valeurs infinies, sur lesquelles nous revien-
drons tout-i-1’heure , nous trouvons

1.° Un polyédre de 6 arttes ayant 4 faces triangulaires et 4
sommets triedres ; €’est le tétraédre qui est ainsi conjugué a lui-
méme.

2.° Deux polyédres de 12 ardtes, dont 'un a 6 faces quadran-
gulaires et 8 sommets triedres, tandis que l'autre a 8 faces trian-
gulaires et 6 sommets tétragdres. L’un est un tronc de pyramide
quadrangulaire , a bases non paralléles ; Pautre est formé de deux
pyramides quadrangulaires opposées base & base ; ils sont. conjugués
Pun i Fautre.

3.° Enfin, deux polyédres de 30 arétes, dont I'un a 12 faces
pentagonales et 20 sommets triédres, tandis que l'autre a 20 faces
triangulaires et 12 sommets pentaddres; ils sont donc aussi conjugués
Tun a l'autre,

Quant aux trois cas pour lesquels nous trouvons des valeurs in-
finies , il est clair que, si nous supposons les faces d'une grandeur

finie »
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finie, le polyédre sera d'une grandeur infinie; si donc on le suppose con-
vexe , une portion finie de sa surface pourra étre considérée comme un
plan; ces trois cas nous indiquent donc de combicn de maniéres on peut
couvrir un plan avec des polygones, de telle sorte que tous ces poly=-
gones aient le méme nombre de cotés et qu'ils soient réunis en méme
nombre autour de chaque sommet ; on peut donc parvenir a ce
but , savoir;

1.° En couvrant le plan, soit de triangles se réunissant au nombre
de 6 autour de chagque sommet, scit d’hexagones se réunissant au
nombre de 3 autour de chaque sommet ; et ces deux systemes de
polygones seront conjugués l'un a lautre.

2.° En couvrant le plan de quadrilatéres, se réunissant au nombre
de 4 autour de chagque sommet; et un tel systéme sera conjugué
A lui-méme,

On peut encore envisager Ja chose sous un autre point de vue
on peut supposer les polygones infiniment petits et alors le polytdre,
qui sera d’une grandeur finie deviendra un corps terminé par une
surface courbe. Ainsi, une surface courbe se refermant d’clle-méme,
telle , par exemple , qu'un ellipsoide peut étre découpée en portidns
infiniment petites , soit triangulaires se réunissant au nombre de
6 autour de chaque sommet , soit hexagonales se réunissant au
nombre de 3 autour de chaque sommet, soit enfin quadrangulaires
se réunissant au nombre de 4 autour de chaque sommet.

On voit donc que, s'il peut exister des polyedres réguliers, ce
ne saurait étre que parmi ceux que nous venons de rencontrer ; et
la maniére la plus simple de s’assurer qu’ils existent en effet, et .
en méme nombre, est celle qu'emploie M. le professeus Ehuilier
( Annales , tom. II1, pag. 233 ), et qui consiste & rechercher de
combien de mani¢res on peut réunir , par leurs sommets, des
pyramides réguliéres égales entre elles, assermblées en méme nombre
autour de chaque aréte latérale , de telle sorte que ces pyramides
remplissent l'espace entier autour de leur sommet commun , et

Tom, IX. 44
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forment ainsi , par leur réunion , un polyédre unique qui sera
évidemment régulier.

Soit F le nombre des faces du polyddre, lequel sera en méme
temps le nombre des pyramides; soient § le nombre de ses sommets
et A4 le nombre de ses arétes; soient enfin s le nombre des som-
mets de la base de chaque pyramide; et f le nombre des pyra-
mides qui se réunissent autour de chaque aréte latérale ; désignons
enfin par & chacun des angles diddres latéraux de ces pyramides,
rapporté A l'angle droit ditdre ; l'angle polyédre du sommet aura
pour expression ( pag. 275 de ce volume ) sz —2(s==2) ou
s(#=—2)44 , Vangle droit triddre étant I'unité. Il faudra donc, d’une
part,, que la somme des angles di¢dres , autour de chaque aréte
latérale , fasse quatre angles droits, ce qui donnera

fr=4;

et il faudra, en outre, que la somme des angles polyddres autour

du semmet commun fasse 8 angles droits tri¢dres ; ce qui donnera
encore

Fls(z—2)441=8 ;
éliminant z entre ces deux équations , on en tirera, comme ci-dessus,

=4
F= 2(f4)— 5 !

et, comme d’ailleurs on aura encore, comme alors
sF=24 , F4+-S=A4+4:2 ,

les valeurs de § et A4 seront aussi les mémes que ci-dessus.
Qinsi, les polyddres réguliers sont,
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1.° Le #ltraédre, conjugué i lui-méme;
2.° L'kexaddre et Voctaddre, conjugués I'un & Tautre;

3.2 Le dodécaédre et Vicosaldre , conjugués 'un i lautre ;

4.° La sphere divisée en compartimens triangulaires équilatérauz
infinimens petits, et la sphere divisée en compartimens hexagonaux
réguliers infiniment petits , conjuguédes aussi 'une a l'autre , ct
auxquelles on pourrait substituer deux plans indéfinis , en donnant
aux compartimens une grandeur finie ;

5.° Enfin la sphere divisée en guarrés infiniment petits , conjuguée
3 elle-méme, et i laquelle on peut subtituer un plan indéfini, en
donnant aux quarrés une grandeur finie.

Mais il faut encore joindre & cela, 1.° tous les polygones ré-
guliers, & partir de la ligne droite et & finir par le cercle ; 2.° tous
les prismes réguliers, 3 partir de deux plans paralltles et & finir
par le cylindre de révolution ; ces derniers étant les conjugués des
premiers ; ce sont en effet de véritables polyédres réguliers, dont
les premiers embrassent une étendue nulle , tandis que I'étendue,
embrassée par les derniers, est infinie.

Il est donc vrai de dire que , rigoureusement parlant, et méme
en faisant abstraction des polyédres étoilés de M. Poinsot, les po-
ly¢dres réguliers sont en nombre infini, et constamment conjugués
soit A eux-mémes soit deux a deux, ce qui n’avait pas encore été
remarqué ; mais parmi ces polyédres il n’y en a que 8 seulement
qui renferment un espace réel et fini; et parmi ces 8 il en est 5
seulement dont les faces ont une grandeur finie.

Deux polyddres réguliers conjugués peuvent éire inscrits ou cir-
conscrits I'un A l'autre ; et méme le probleme de I'inscription ou
de la circonscription d'un poly¢dre régulier 2 son conjugué est un
probléme indéterminé, 3 moins pourtant qu'on ne demande le plus
petit des inscrits ou le plus grand des circonscrits; auquel cas les
sommets de l'uu devraient étre les centres des faces de lautze,



33z RECHERCHES
L’indétermination du probléme dans les autres cas donne lien aux
deux questions suivantes.

PROBLEME 1. Quel est, sur les faces dun polyldre régulier
donné , le lieu des sommets de tous les polyédres réguliers con-
Jugués qui peuvent lui étre inscrits?

PROBLEME 11. Quelle est, pour un polyddre domné, la sur-
Jace enveloppe de lespace parcouru par les faces d'un autre po-
lyédre régulier , conjugué & celui-ld , et variable de grandeur , qui
lui est constamment circonscrit ?

Le premier de ces deux problémes, résolu seulement pour le
cas du cube et de l'octaddre , par Mairan , dans le volume de
I'académie royale des sciences pour 1725, a été déja proposé duns
le présent recueil : P'autre ne I'a encore été rulle part.

—

Concevons que l'on érige sur chacune des faces d’'un polyédre
régulier quelconque, comme sur autant de bases, des pyramides
régulitres et égales, ayant leurs sommets hors de ce polyedre ;
ces pyramides, jointes au polyédre donné, formeront un mnouveau
polyédre qui, généralement parlant, ne sera pas régulier. Si, dans
deux pyramides consécutives, on considére les deux faces latérales
qui ont pour base commune une méme aréte du polyedre primitif;
suivant la hauteur commune qu'on aura donné aux pyramides,
ces deux faces pourront étre dans un méme plan ou dans des plans
différens ; dans le premier cas, les faces du nouveau polyedre ,
en nombre égal & celui des arttes du premier, et ayant ses arétes
pour diagonales seront des rhombes ; dans lc second, elles seront
en nombre double de celui de ses arétes et seront toutes triangu-
laires. Dans ce dernier cas, on pourra méme donner aux pyramides

une hauteur telle que tous les sommets du nouveau polyédre soient
réguliers ; mais ils n’auront pas tous, en géné

général , un méme nombre
de faces.

Concevons ensuite qu'au contraire on retranche tous les sommets
du polyédre primitif , par des plans tellement dirigés que les parties
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retranchées soient des pyramides régulicres égales entre elles; ce
qui restera du polyédre donné sera un nouveau polyddre qui, géné-
r:lem:nt parlant, ne sera pas régulier. Les plans coupant savan-
ce ont ou ne s’avanceront pas jusqu’aux milieux des arétes du po-
lyédce primitif ; dans le premier cas, les sommets du nouveau po-
ly*dre , en nombre égal a celui des arétes du premier seront
tétraédres ; dans le second , ces sommets seront en nombre double
et seront tous triedres. Dans ce dernier cas, on pourra méme faire
en sorte que toutes les faces du nouveau polyddre soient des poly-
gones réguliers; mais, en géndral, ces polygones n’auront pas tous le
méme nombre de cotés.

C:s sortes de polyedres, ou plutét ceux de la premidre sorte ;
car il n’est pas & notre connaissance qu'on se soit encore occupé
de ceux de la seconde, ont été désignés par quelques géométres
sous la dénomination de Polyddres semi-réguliers ; et nous adopte=
rons cette dénomination ; mais , puisque nous en reconnaissons de
deux sortes, afin de nous rendre plus facillement intelligibles, nous
dirons des premiers qu’ils saat semi-réguliers par excés , et des
derniers qu’ils le sont par défoxt. En outre , puisque nous avons
distingué deux cas , pour les uns comme pour les autres , nous
en aurons de premiére classe qui auront le moindre nombre de
faces ou de sommets, et de seconde classe , pour lesquels le nombre
de ces faces ou sommets, sera double.

Cela posé, conservons aux lettres 4, I7, §, f, s, pour le
polytdre primitif, la signification qu’elles ont déja regue , et voyons
quels seront, en géuéral, le nombre et la nature des faces, som-
mets et arétes des quatre polyédres semi-réguliers auxquels un
polyddre régulier quclconque pourra douner naissance.

SEMI-REGULIER PAR EXCES. Premiére classe.

A faces, toutes rhombes;

F4-§ ou A--2 sommets, dont Fdes faces et § de f faces;
&'s ou 24 arites.
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Seconde classe.

24 faces, toutes triangulaires;

F+S ou A-4-2 sommets , dont F' de s faces et S de 2f faces ;
Fs+4.4 ou 34 arétes.

SEMI-REGULIERS PAR DEFAUT. Premiére classe.

A sommets, tous tétraddres ;

F+S§ ou A2 faces , dont S de fsommetset Fde s sommets;
Sf ou 24 arétes.

Seconde cld3se.

24 sommets , tous triédres ;
F4-S ou A2 faces, dont § de fsommets et F de 25 sommets;
Sf+A4 ou 34 aréites,

Faisons d’abord Vapplication de ces formules aux cinq corps
réguliers qui, ayant des faces d’une grandeur finie, enferment une
portion finie de Pespace.

Pour le tétraédre, ona A=6 , S=4 , F=4 , s=3, f=3 ; ce
polyedre fournira donc

1.° Un hexaddre rdgulier.

2.* Un corps & 12 faces triangulaires, ayant 8 sommets dont 4
triddres et 4 hexaddres, et 18 arates.

3.° Un octaddre régulier.

"~ 4.° Un corps &4 12 sommets triedres , ayant 8 faces , dont 4
triangulaires et 4 hexagonales, et 18 arttes.

Pour 'hexaddre, on a A=12 , $=8 , F=6 , s=4 , f=3; ce
polyédre fournira donc

1.° Un corps 4 12 faces rhombes , ayant 14 sommets, dont 6
triddres et 8 tétraddres, et 24 ardtes.

2.° Un corps a 24 faces triangulaires, ayant 14 sommets, dont
6 tétraddres et 8 hexaddres, et 30 arétes.

3.° Un corps A 12 sommets tétraddres, ayant 14 faces, dont 8
triangulaires et 6 quadrangulaires, et 24 arltes,
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4° Un corps & 24 sommets tri¢dres , ayant 14 faces , dont 8
triangulaires et 6 octogonales, et 36 aretes.

Pour Voctaddre, ona A=12 , =6, F=8, s=3 , f=4;ce
corps fournira donc

1.° Un corps & 12 faces rthombes, ayant 14 sommets, dont 8
triedres et 6 tétraedres, et 24 ardtes.

2. Un corps & 24 faces triangulaires , ayant 14 sommets , donc
8 triedres et 6 octaédres, et 36 arctes. '

3.° Un corps & 12 sommets tous tétraddres , ayant 14 faces,
dont 6 quadrangulaires et 8 triangulaires, et =24 ardtes.

4.° Un corps a 24 sommets tri¢dres, ayant 14 faces , dont 6
quadrangulaires et 8 hexagonales, et 36 ardtes.

Pour le dodécaidre , ona A=30, S=20, F=12, s=5, f=3;
ce corps fournira donc

1.° Un corps 4 3o faces, toutes thombes, ayant 32 sommets,
dont 12 pentaddres et 20 triedres, et Go aretes.

2.° Un corps i 6o faces, toutes triangulaires , ayant 32 sommets,
dont 12 pentaddres et 20 hexaddres, et go arétes.

3. Un corps & 30 sommets , tous tétraédres , ayant 32 faces,
dont 20 triangulaires et 12 pentagonales, et 6o ardtes.

4.° Un corps & 6o sommets , tous triédres, ayant 32 faces, dont
20 triangulaires et 12 décagonales, et go arétes.

Enfin, pour Vicosaédre ,ona A=30,8=12, F=20,s=3,f=5;
ce corps fournira done

1.> Un corps & 30 faces, toutes rhombes , ayant 32 sommets ,
dont 20 triddres et 12 pentaddres, et 60 ardtes.

2.° Un corps 2 6o faces, toutes triangulaires, ayant 32 som=
mets, dont 20 triédres et 12 décaddres, et go ardtes.

3.° Un corps 3 30 sommets tétraédres , ayant 32 faces, dont
12 pentagonales et 20 triangulaires, et 6o arétes.

4.° Un corps 3 60 sommets triedres, ayant 32 faces , dont 13
pentagonales et 20 hexagonales » et go arétes.

On aurait pu s'attendre que les corps réguliers que nous venong
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de considérer étant au nombre de 5, et chacun d'eux pouvant donner
naissance a quatre corps semi-régulier , ces derniers auraient da
¢tre au nombre de 20; mais d’abord nous avons rencontré parmi

eux l'’hexatdre et 'octaedre réguliers; de plus, en passantles autres

en revue , on en rencontre qni sont répétés ; de sorte qu'en ne

tenant comple que de ccux qui sont essentiellement différens, sans
étre réguliers , leur nombre se réduit 3 dix ; de telle sorte que
ceux qui dérivent de polyddres réguliers conjugués I'un i l'autre
sont les mémes. De plus ces dix polyédres semi-réguliers sont, deux
a deux, conjugués I'un a lautre ; de maniére que le semi-régulier
par exces de P'une quelconque des deux classes est conjugué avec
le semi-régulier par défaut de méme classe qui dérive du méme
polyddre régulier, ainsi qu'on en peut juger par le résumé que voici.

. faces triangulaires
1.° Un polyédre 3 18 arttes , ayant 12 z .
sommets triedres

ommet triedr hexaédres
etsgs msidont/,gm‘es %et g %

faces triangulaires hexagonales

. . { faces quadrangulaires
2.* Un polyédre 3 24 ardtes , ayant 12 ) sommets tétratdres

tried tétracdres
ot I4§ sommetsz dont 6 g riedres ) ¢ 8§ raé § .

e .
faces triangulaires § quadrangulaires

sommels (ricdres

t tétraedres hexaédres
etx4§sommes§dont6§ dtraedr §et8§ }‘

faces quadrangulaires hexagonales

e
3.° Un polyddre & 36 ardtes , ayant 24 g faces triangulaires §

( faces quadrangulaires
4° Un polyddre & 6o arttes , ayant 3o i 1 e §

sommets tétraedres
triedres )
et 32 §

sommets
d
faces

pentacdres
204 . et 12
triangulaires S pentagonales

fa i lair
5.0 Un polyddre & go artes , ayant Go { faces triangulaires z

| sommets tri¢dres

ts hexaedres )° entaédres
' 1>t3:z§s°nmne gdontzog %et ngp §

faces hexagonales pentagonales

Si nous passens présentement aux trois cas de la sphire divisde

réguli¢rement
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réguli¢rement en polygones infiniment petits, ou du plan indé¢fini-
divisé régulicrement en polygones finis; nous rencontrcrons des di-
visions semi-réguli¢res analogues pour cette sphére ou pour ce plan,
winsi qu'on va le voir

La sphere ou le plan , divisé en #riangles, nous donnera,

1.° Une sphére ou un plan divisé en rhombes, ayant leurs grands
angles réunis 3 & 3 et les petits 6 4 6.

2.° Une sphére ou un plan, divisé en triangles isoctles , ayant
leurs grands angles réunis 3 & 3 et leurs petits 12 A 12,

3.2 Une sphére ou un plan, divisé en triangles équilatéraux et
hexagones, présentant a chaque point de réunion deux angles de
triangles et deux angles d’hexagones alternds.

4.° Une sphére ou un plan, divisé réguliérement en hexagones,

La sphére ou le plan, divis¢ en kexagones, nous donnera

1.° Une sphére ou un plan , divisé en rhombes , ayant leurs
grands angles réunis 3 a 3 et les petits 6 3 6.

2.° Une sphére ou un plan, divisé réguliérement en triangles.

3.° Une sphére eu un plan, divisé en triangles et hexagones , pré-
sentant, 3 chaque point de réunion, deux angles de triangles et
doux angles d’hexagones alternds.

4.° Une sphére ou un plan, divisé en triangles et dodécagones.,
présentant, & chaque pomnt de réunion, un angle de triangle et
deux de dodécagones.

La sphere ou le plan, divisé en guarréds , nous donnera

1.° Une sphére ou un plan, divisé réguliérement en quarrés.

2.° Une sphére ou un plan, divisé en triangles rectangles isocéles
rédunis 4 & 4, par leurs grands angles , et 8 a 8 par leurs petits,

3.° Une sphére ou un plan divisé réguliérement en quarrés.

4.° Uune splére ou un plan, divisé en quarrés et octogones, pré-
sentant, 3 chaque point de réunion un angle de quarré et deux
angles d’octogones.

Ep examinant ces différens cas, on voit que nous n’avons pas
32 divisions semi-réguli¢res , tant parce que, parmi elles, il s’en

Tom. IX, 45
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trouve de réguliéres , que parce qu'il en est qui, bien que d'origine
differente , rentrent pourtant les unes dans les autres. Elles se ré-
duisent toutes 3 six distinctes, conjugudes deux a decux, et telles
que les conjuguées sont de méme classe , 'une par excés et 'autre
par défaut, et déduites de deux divisions réguliéres, conjuguées
elles-mémes 'une a 'autre, comme on le voit par le tableau suivant.

compartimens uadrangulaires
1.° Une surface dont les { P ; son g 9 ° %

sommets tétraedres

1 sommets Striédres et hexaedres
et dont les .
X

. sont alternativement
comparumens

{triangulaires et hexagonau

compartimens triangulaires
2.° Une surface dont lesS P % nt % 8

. E et dont
f sommets triedres

sommets . triedres et dodécaedres
les . sont alternativement . . ,
compartimens triangulaires et dodécagonaux

compartimens triangulaires
3.° Une surface dont les } sont % N 8
sommets triedres

% et dont

. tétraedres et octatdres
sont alternativement . .
quadrangulmres et octogonaux

Passons enfin aux polyédres réguliers 3 faces de grandeur finie,
enfermant un espace nul ou infini, c’est-d-dire aux polygones et

prismes réguliers ; chaque polygone régulier donnera , en désignant
par m le nombre de ses sommets

1.° Un prisme régulier indéfini de m faces.

2.° Un corps formé de deux pyramides réguliéres opposdes base
3 base, ayant 2m faces, 3m ardtes et m--2 sommets.

3.° Un polygone du méme nombre m de cotés.

4.° Un polygone d’'un nombre de c6tés double ou 2m.

Quant au prisme régulier indéfini de m faces, on en déduira

1.° Un autre prisme régulier du méme nombre m de faces.

2.° Un prisme régulier d’'un nombre de faces double ou 2m.

3.° Un polygone régulier de m cotés.

4° Enfin, un prisme régulier d’une longucur finie, ayant 2m
sommets, 3m ardtes et m-+2 faces dont m quadrangulaires.

On voit par 13 que ces deux derniéres sortes de polyédres réguliers

g sommets

compartimens



SUR LES POLYEDRES. 33y
ve donnent récllement naissance qu'd deux classes de po]yedres
semi-réguliers , conjugués les uns aux autres, savoir;
faces triangulaires

Des polytdres de 3m arttes , ayant am g

sommets triédres §

sommets dont g tétraedres t2d faces
ont m . ct 2de m .
et m+2 { faces } quadrangulaires } gcc‘)te’s }

Voild ce qu’on est convenu d'appeler jusqu’ici polyédres semi-
réguliers , et I'on voit qu'en rigueur ils sont, comme les re’guliers‘
en nombre infini. Mais on pourrait concevoir d’autres polyédres
qui , peut - étre a plus juste titre que ceux-ci, pourraient étre
appelés semi-réguliers ; on pourrait concevoir, en effet,

1.° Des polyédres dont toutes les faces seraient des polygones
réguliers égaux , et dont les sommets, en nombre pair, présenteraient
aussi des angles polyedres réguliers ; mais moitié d’'une sorte et
moitié d'une autre sorte.

° Des polycdres dont tous les sommets présenteraient des angles
polyedres réguliers égaux , et dont les faces , en noembre pair,
seraient aussi des polygones réguliers ; mais moitié d'une sorte et
moitié d’une autre.

3.° Enfin, des polyédres dont 4 la fois les faces seraient des
polygones régulisrs et les sommets des angles polyédres réguliers ;
n.ais , ou les uns et.les autres , en nombre pair, seraient moitié
d’'une sorte et moitié d’une autre.

Parmi les polyédres semi-réguliers précédemment considérés, nous
en avons déjd rencontré quelques-uns de cette sorte ; et tels sont
rotamment, 1.° le polyédre a 18 arctes, ayant 12 faces triangulaires
et 8 sommets , dont 4 tricdres et 4 hexaédres ; 2.° le polyédre 2
18 arites, ayant 12 sommets triedres et 8 faces, dont 4 triangu-
laires et 4 hexagonales, Mais on congoit qu’il est possible qu’il en
existe d’'autres encore ; et le probléme de la recherche de leur totalitd
est un probleme qui a été proposé a la page 256 du VIL® vg,
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lume de ce recueil. Voyons quelles sont les formules qui dojvent
en donner la solution. -

1.* Soient F le nombre des faces d’un polyédre , toutes de s
sommets ; 25 le nombre de ses sommets, dont § de f et S de f/
faces ; et enfin 4 le nombre de ses arétes; en raisonnant comme

nous l'avons fait dans la recherche des polyédres réguliers , nous
aurons les trois équations

sF=2ad ,
(fHS)5=24,
F4285=A4d+2 ;

desquelles nous tirerons
A BUHD . )
T =N

P AU
T sm(s=2)(fHSD ’

S= s
fsmm(s=2) (SN

M

—

5.% Soient § le nombre des sommets d'un polyedre, tous de f
faces; 2F le nombre de ses faces , dont F de s et F de s/ faces;
et enfin . le nombre de ses arétes; nous aurons les équations

SS=24 ,
(s4s)F=24 ,
S+2F=A+_2 H

desquelles nous tirerons
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- 2 f(s4-s") \
4= bf=(f=2)(s4s) °

- 4G+ , \oan
bf=S=2)+)

. 4f
F"""T f=(Jf=2)(s4s")

/

3.° Soient enfin 2F le nombre des faces d’un polyldre dont F
dec s et F de s/ sommets ; 28 le nombre de ses sommets , dont

§ de fet S de f faces; et enfiu A le nombre de ses aretes; nous
aurons les équations

(s+s)F=24,
(f+Sf)S=24,
2F4285=A4=2 ;

desquelles nous tirerons

A__ =2( f+f’)(’+5/)
T I = s+
40/
F= , m
LS SHsN=CSHf s+ (1
S—= 4(s--s")
AL = D+

Il s’agit donc présentement de satisfaire & ces trois systémes de
formules avec des nombres enticrs positifs ; mais auparavant nous
remarquerons que les formules (1, 11) se changeant les unes dans
Jes autres, lorsqu'on y change F en §, fen s et f/ en s/ ; chaque
solution des formules (I) nous donnera une solution des formules (II);
et , de plus , ces solutions correspondantes appartiendront 3 deux
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polyedres conjugués. En sccond lieu, les formules (III) demeurant
les mémes lorsqu’on y permute simuitanément F avec §, favecs,
Jf avec s’ chaque solution de ces formules pourra étre considérée
comme double, et nous fera connaitre deux polyédres conjugués,
On voit par la que le travail se trouvera réellement réduit & moitié,

Mais ce travail sera plus difficile qu'il ne le parait; il ne suffira
pas, en effet , d’obtenir des nombres ensiers positifs satisfaisant
aux formules analitiques; il faudra savoir de plus si les polyédres
que ces vombres indiguent sont géométriquement possibles ; et, au
cas qu'ils le soient , il sera de plus nécessaire de savoir si les
polygones et les angles polyédres dont ils se composeront devront
étre réguliers ou irréguliers ; comment les faces ou sommets de
méme nombre et d’espéces différentes devront étre distribuds et
répartis sur le polyedre, et enfin si ce polyédre devra ou ne pourra
pas étre entiérement convexe.

Nous abandonnerons donc au lecteur cette discussion qui ne
pourrait étre que fort longue ; et ncus nous bornerons a indiquer
la marche qui parait la plus facile & suivre pour résoudre le
probléme numérique , qui est d’abord celui dont il convient de
s’occuper. :

Pour les formules (I) , en posant, pour abréger , f4-/=¢ ,

nous aurons

4 25 4o 4s

= , F S .
fS=—(s~==2)@ bs ——=(s==2)@ ? fs==(s==2)Q

Si I'on veut des polyidres effectifs , tels qu'on les congoit ordi~
nairement , c’est-a-dire , des polyédres dont les faces , d’une grandeur
finie et en nombre fini, n’aient pas moins de trois céiés, et dont
les sommets n’aient pas moins de trois faces , il faudra chercher
toutes les valeurs enticres et positives de s, plus grandes que 2,
qui , jointes a des valeurs entiéres et positives de ¢ , plus grandes
que 3, donnent pour A, F',§ des valeurs enticres et positives;
on pourra prendre, par exemple, s=3, ¢=y, ce qui donnera
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A=18 , F=12, S=4 .

Il s’agira ensuite de décomposer g, valeur de ¢, en deux parties
J et f7, dont aucune ne soit moindre que 3. Prenant, par exemple,
JS=6, dou /=3 ; on obtiendra un polyédre de 12 faces trian-
gulaires , ayant 4 sommets hexacdres et 4 sommets triédres, et 18
arétes, polyedre possible; car c’est un des deux que nous avons
cité ci-dessus pour exemple.

Pour les formules (II), en posant s-f-s==<, nous aurons

A= s p Y
bf—(S=2)¢ bS=(f=2)e bf—=(f=21e

et il faudra trouver des valeurs entic¢res et positives de f, plus grandes

que 2, qui , jointes 3 des valeurs entiéres et positives de «, plus

grandes que 3, donnent pour A4, §, F des valeurs enticres et

positives : on pourra prendre , par exemple, f=3, ¢=9, ce qui

donnera

A=18 , S=12, F=4 .

Il s’agira ensuite de décomposer g, valeur de ¢, en deux parties
s et s/, dont aucune ne soit moindre que 3. Prenant , par exemple,
s=6, d’ol &/=3 , on obtiendra un polyédre de 12 sommets triedres,
avart 4 faces triangulaires et 4 autres hexagonales, et 18 arétes.
C'est précisément le conjugué du polyédre que nous veunons de
signaler ci-dessus ; et que nous aurions pu méme en déduire immé-
diatement,

Enfin, pour les formules (11I) , en posant & la fois f4-f=0,

s-+s/=v¢, nous aurons

2¢¢ 4o 4o

A= o= ' = g % bty —ge *
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Il faudra d’abord trouver des valeurs entiéres et positives de ¢ et
plus grande que 5 , qui rendent 4, F, § entiers positifs ; on
peut poser, par exemple, ¢=7, ¢=7; il en résultera

A=]4, F=4, S=4o

Il s'agira ensuite de décomposer 7, valeur de ¢, en deux parties
f et f/, et 7, valeur de =, en deux parties s et s/, dont aucune
ne soit moindre que 3. Prenant, par exemple, f=4, s=4, d'ou
/=3, s/=3; on obtiendra un poly¢dre ayant 4 faces quadrangu-
laires , 4 faces triangulaires , 4 sommets tétracdres, 4 sommets trie~
dres et 14. arétes.

Ce polyédre est possible, et, pour s’en convaincre , on peut con-
cevoir d’abord deux prismes triangulaires égaux ayant des quarrés
pour faces latérales. En appliquant en effet ces deux prismes 'un
contre I'autre par deux faces latérales de telle sorte que les arétes
latérales de chacun soient perpendiculaires aux arétes latérales de

Yautre , on obtiendra ainsi le polyedre dont il s’agit, et dont toutes
les faces pourront étre régulicres.

e— —

QUESTIONS PROPOSEES.

Probléme de Géometrie.

TOUT polyédre convexe a poir développement sur un plan vn

polygone convexe ou non convexe, divisé en compartimens polygonaux.

Mais un tel polygone ne peut étre le développement d'un polyedre

que sous certaines conditions,

On propose d'assigner ces conditions ?
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ANALISE ALGEBRIQUE,

Sur le nombre des racines imaginaires des équations ;
en réponse aux articles de MM, TEDENAT et Servols,
inserés aux pages 215 et 223 de ce volume ;

Par M. BErarp , professeur de mathématiques , membre
de plusieurs sociétés savantes.

[a e T Via VB o Y2 4

LE probléme de la détermination du nombre des racines imaginaires
des équations est un des plus importans et des plus difliciles
de l'analise. Ce probléeme est réselu depuis long-temps pour les
quatre premicrs degrés , parce que, pour ces degrés, la forme des
racines étant connue, il a été possible d’assigner les conditions de
leur réalité,

De Gua donna ensuite une trés-belle méthode pour parvenic
aux conditions de réalité de la totalité des racines , dans une équa-
tion de degré quelconque (*); mais cette méthode n’apprend rien
sur le nombre des racines imaginaires, dans le cas ou les conditions
de réalité me sont pas toutes satisfaites.

Lagrange résolut depuis , au moyen de son équation aux quarrds
des différences, le probléme qui était échappé a de Gua, et dont
méme il avait pour ainsi dire désespéré.

Enfin , M. Cauchy, ayant repris la méthode de de Gua et les

observations consignées dans la note VIII de la Résolution des

(*) Meémoires de l'académie des sciences , pour 174Xe

Tom. 1X , n.° XI, 1.°F mai 181q. 48
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équations numériques de Lagrange , en a déduit une solution gé-
nérale du probléme ou il s'agit d’assigner le nombre des racines
rézlles et imaginaires, positives et négatives qu'une équation quel-
conque peut renfermer (*). Malheureusement cette solution est si
compliquée qu’elle n’est guére applicable a4 la pratique. Les racines
nulles ou égales qui se rencontrent dans les équations auxiliaires
Ja mettent en défaut; et il faut alovs avoir recours i des artifices
particulicrs d'analise. Aussi n’a t-il pas fallu & Pauteur moins de gr
piges in-4.° de recherches pénibies pour surmonter complétement
les difficultds que son sujet lui avait présentdes (**).

J'ai cherch¢ & mon tour une méthede qui fit plus simple que
celle de M. Cauchy. JFai cru lavoir trouvée dans mon théoréme
énoncé a la page 36 de ce volume. A la page 6o, un abonné a
donné un semblable théoréme, sous une forme un peu plus con-
cise , et en a tenté la démonstration pour les quatre premiers degrés.

C'est ce méme théoréme que MM. Tédenat et Servois ont exa-
miné, pages 213 et 223 da méme volume, et gw’ils ont trouvé
en défaut des le 4.™¢ degré.

Je ne viens point contester 'exactitude des calcols de ces deux
savans gcéomctres : je confesse qu'en effet mon théoréme est cn
dé¢faat dans les cas qu’ils ont énoncés et dans un grand nombre
d'autres. Que ce soit de ma part précipitation ou défaut de lumicres ;
c’est un point assez indifférent & discuter. 1l est d’ailleurs permis
de se conscler d'une erreur, quand on songe que les plus grands
géometres ne s’en sont point toujours su entitrement garantir; et,
qu’en particulier , U'illustre Lagrange lui-méme s’est mépris sur le
sujet dont il s'agit, ainsi quon le verra plus loin (*** . Mais, ce qu’il

") Journal de lécole polytechnique , XVILe cahier, pag. 457.

(**) Oui, mais aussi que de choses dans ces g1 pages ! et quelle large et
£légante exposition ! J. D. G.

(***) On verra la en quoi cousiste cette grave méprise.

J. D. G.
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n'est pas indifférent de faire voir, c’est que mon théoréme , toug
imparfait qu’il est, fournit encore, au moyen de certaines modifi-
cations , une solution, moins simple , en cflet, que je ne lavais
pensé , mais du moins préférable, pour la facilité , a celle de M.
Cauchy , la seule praticable que je connaisse.

Il faut, au surplus, distinguer, en mathématiques, trois sortes
de propositions, 1.° celles qui sont toujours vraies, ou qui n'ad-
mettent ni restrictions ni exceptions; telles, par exemple , que celle-ci:
La somme des trois angles de tout triangle rectiligne vaut deuw
angles droits ; 2.° celles qui, reposant sur un faus principe , ne
peuvent en aucune sorte étre admises. Par exemple, dans ses Sections
coniques , n.° 172, Besout dit que si p est négatif , dans Iéqua-
tion y*=px , celle équation n’exprime aucune ligne possible ; tandis:
qu’il est évident qu’alors elle exprime une parabole qui s’¢tend dw
coté des # ndgatifs; 3.° enfin, celles qui , bien qu'appuyées sur
des principes vrais, admettent néanmoins-, dans certains cas , des
restrictions ou exceptions..

Les premiéres sont sans doute les plus précieuses = celles de Jar
seconde sorte doivent, au contraire , étre soigncusement bannies
mais quant aux derniéres , quoiqu’elles ne puissent pas prétendre
au rang des premicres, elles ont ndanmoins leur degré d’utilité ;
aussi les ouvrages de mathématiques en sont-ils remplis ; et les
géometres en font journellement usage, sans le moindre scrupule &
en voici des exemples..

Les formules qui, dans certains cas, deviennent I, ne font riew
connaitre et sont conséquemment en défaut pour ces mémes cas;
mais , par des considérations particuli¢res , on leur rend leur utilité.

I
a™ti4-C

C’est, en particulier , le casde la formule f2™dz =
m

lorsque m=-1; et cependant cette formule n’en est pas moins employée,
et méme considérée comme fondamentale dans le calcul intégral.

Plusieurs des formules de la trigonométrie sphérique offrent des
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cas douteux : la trigonométrie rectiligne elle-méme n'en est point
exempte. Si ¢, ¢/ représentent deux quelconques des cotés d'ur

. e \
triangle , et @, @’ les angles opposés ; on a Sin.g/= — Sin.a: cette

formule présente un cas douteux , que quelques auteurs seulement
ont signalé (7. Trig. rect. de Bezout, n.* 267 ): langle a’ peut
étre aigu ou obtus; et il faut une considération particulitre pour
lever le doute, Ce n'est pas tout : lincertitude cesse, et il n'y a
plus qu'une solution dans trois cas, savoir ; 1.° sil’angle zest droit
ou obtus; 2.° si @ étant aigu ./ est droit; 3.° enfin, si ¢ étant
aigu ¢ n’est pas moindre que ¢/. Je rapporte ce dernier cxemple,
de préférence & d’autres , parce que la discussion a laquelle il donne
licu ne se trouve dans aucun de nos traitds élémentaires, ol ce-
pendant elle mériterait de trouver place (*).

(*) Nous prendrons la liberté d’observer &4 M. Bérard que ces exemples ne
nous paraissent pas trés-heureusement choisis relativement a ce qu'il se propose
'éiabliv, De méme , en effet , qu'on ne saurait réputer menteur celui qui se
se tait & certaines questions quon lai adresse; on ne saurdit dire pareillement
gu'une formule n’est pas généralement vraie , parce que , dans certains cas,
elle devient ; puisqu'alors méme elle ne cesse pas d'étre vraie. On dit bien
que, pour de tels cas, elle se trouve en défaut ; mais il n’en demeure pas
moins évident que, pour ces mémes cas, elles ne sauraient induire en erreur
celul qui les consulte.

. c . . -
Quant & la formule Sin.a/=-— Sin.a, elle n'est jamais en défaut, Ce n’est
C

point , en effet , Tangle o’ quclle est destinde & faire connaitre, mais seule-
ment son sinus ; et ce sinus, elle le donne toujours tel qu’il doit étre. Mais ,
comme ce méme sims rdpond 4 deux angles distincts ; lorsque nous vovlons
passer de lui & Vangle auquel il répond , ncus nous trouvons dans le méme
cas gue si pous voulions résoudre une équation du second degié; c’est-i-dire,
dans le m&me cas ol se trouve celui qui interrogeant quelqu’un en recoit pour
xéponse : ce que vous me demandez est telle chose ou telle aufre ; et certes,
il 'y a encore rien 1A de coniraire 2 la vérité,

J. D. G,



ITMAGINAIRES. 3ug
Ces exemples suffisent pour prouver qu’on ne doit point cenfondre
un theoréme faux avec un théoréme sujet a rastriction, D'Alembert
a dit quelque part : Les exceptions confirmeni la rigle loin de la
détruire (*). Lagrange a dit (Résolution des éguaiions numérigaes ,
derniére édition, note IX, page 105 ) : Ce principe est générele-
ment vrai y mats j’ai remarqué depuis qu'il élait sujet & de excepticrs
gui pouvaient metire la démonstration précédente en défuut ().

*) Il est peu de maximes plus dangereuses , et c¢n méme temps plus fré-
quemment employe€es , que celles dont M. Bérard cherche ici & sétayer. Que
peut, en effet, signifier -cette maxime , 'si Pon veut lui donner un sens raisor~
nable? sinon que les hommes w’établissent des exceptions que la seulement oit
ils ont posé des régles ; et il est trés-vrai de dire qu’alors lexistence de Uexception
prouye celle de la régle, Que, par exemple, I'onsoit en doute , dans deux mille
ans d’ici, s, an dix-huitiéme siecle , on pouvail étre admis, a I’Age de 19 ans ,
3 I'académie des sciences de Paris ; et qu’alors on découvre Pacte de I'autoriié
royale qui autorise une exception en faveur de Clairaut , n’ayant -encore que
cet 4ge ; des.lors le doute disparaltra , et il sera vrai de dire que lexception
prouve la régle | loin de la détruire. Mais , si quelqu’un soutenait que les frangais
ne sont pas propres 4 'dtude des sciences exactes , et qu’on lui objectit I'exemple
de M. Bérard; je le demande 4 M. Bérard lui-méme , serait-il fond¢ & répondre
que l'exception confirme la régle. 1l ne peut donc étre ici question que d'ins-
titutions humaines , et non de principes nalurels ou métaphysiques. Autrement,
antant voudrait dire que pour démontrer un théoréme , il ne s’agit que de prouver
quil est faux dans certains cas; et que ce qui prouve invinciblement que tous
les nombres sont pairs , c'est quil y en a une multitude qui ne sont point
divisibles par deux ; ce qui n'est certainement pas la pensée de M. Bérard.

J. D. G.

(**) L’autorité de Lagrange , que M. Bérard invoque ici , nous parait , au con-
traire , prononcer contre lui. Il s'agit , en effet , en 'endroit cité, d’'une démonstration
de Foncenex que Lagrange rejette , uniquement parce que , gquoigu'exacle en
geénéral , elle est néanmoins sujette & certaines exceptions. Et, ce qui est trésa
rcmarquable, c’est que ces exceptions ne portent que sur la démonstration elle=
méme, et non sur le principe qui n'en souffre aucune,

J. D, G.
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J'espdre prouver que mon theoréme est de 'espéce de cenx qui ,
bien qu'ils soient vrais , en g<n‘ral, sont néanmeins sujets i des
exceptions. Il ne me restera plus alors que le tort, encore assez
grave , je lavoue, de n’avoir pas fait conuaitre ces exceptions (*);
mais du moins mon théoréme nr mdritera plus la peine de mort
prononcée contre lui par M. Tédenat.

Qu’on me permette encore, avant d’entrer en mati¢re, de relever
4 mon tour certaines maximes avincées par M. Tédenat, et qui
me paraissent, tout aussi bien que mon theoreme, sujettes & quelques
restrictions.

M. Tédenat dit : Pour prouver qu'une démonstration est fausse,
il suflit simplement de la trouver en difaut dans un cas varti-
culier. On voit, par ce qui précéde , que cette maxime n'est rien
moins que certaine (*¥). -

Il ajoute plus loin: I faut soigneusement se garder de toule
~ précipitation , et bien mirir ses idées avant de les faire éclore.
Ce conseil est fort bon; car il est certain que le plus sir moyen
de ne pas tomber est de ne pas marcher du tout (***) ; mais ce

(" Il nous paralt que le tort de M, Bérard ne serait pas tant de n’avoir
point fait connaitre les exceptions nombreuses auxquelles son théoreme est sujet
que de l'avoir donné comme n’en souflrant aucune..

J. D. G.

(**) M. Tédenat dit : Pour prouver qu'une proposition est fausse , il suffit
de la trouver en défaut dans un cas particulier quelcongue ; ce qui est un peu
différent. C’est exactement comme si M. Tédenat avait dit: Pour prouver que
les nombres ne sont pas tous pairs, il suffit den trouver un seul qui ne soit
point divisible par deux ; et nous ne voyons rien dans ce qui précede qui puisse
infirmer cette proposition..

Au surplus , en admettant méme la version de M. Bérard , M. Tédenat
aurait encore pour lui lautorité de Lagrange , qui rejette une démonstration de
Foncenex , uniquement parce qu'elle ne sétend pas a tous les cas.

J. D. G.

(***) Est-ce donc que ce serait ne pas marcher du tout que de chercher

soigneusement si une proposition que l'on soupconne étre vraie , l'est en effet?

“
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principe, il n’était restreint , serait-il bien favorable au progres
des lumiéres? On peut regarder les savans ccmme une sociéte dé
voyageurs , parcourant & l'envi , et dans toutes sortes de directions,
les champs immenses de la science. Les découvertes les plus pré-
cieuses sont souvent faites, les mines les plus riches sont souvent
rencontrées par les plus heureux ct non par les plus habiles. Ce
quil y a de faux est bientot séparé de ce qui est bon ; et les errenurs
méme ne sont pas sans quelque utilité, parce qu’elles provoquent d'in-
téressantes discussions, Ces erreurs n’ont pas dailleurs, en gédmélrie ,
les mémes dangers qu’elles pourraient offrir en politique (*).

PROBLEME I. Troucer les conditions de réalité de toutes les
racines dune équation de degré quelcongque?

Solution. La premicre solution de ce probleéme est due & de
Gua. Soit X=o la proposée : la courbe X=y serpente de part et
_d’autre de I'axe des & : ses points d’intersection avec cet axe déter-
minent les racines réelles ; on observe deux espoces de sommets :
les uns qui tournent leur concavité vers l'axe, et pour lesquels y
est un maximum : les autres qui tournent au contraire leur convexité
vers le méme axc, et pour lesquels, par conséquent, cette ordonnée
est un minimum,

Qui empéche d'ailleurs de publier, pour ce qu'elle vaut , une proposition dont
on n'a pu parvenir a se démontrer ni la vérité ni la fausseté ?

J. D. G,

(*) Chacun ici bas agit suivant soncaractére e} avec son caractére. Ainsi, tandis que
M. Bérard ne déguise que difficilement quelque peu d’humeur contre M. Tédenat »
qui pourtant avait poussé le sentiment des convenances jusqu’a ne pas proférer
son nom dans larticle ol il le refutait; & peine cet article a-t-il été connu
de Panonyme qui avait aussi rencontré le théoreme en discussion , qu’il s’est
empressé de nous adresser des réflexions tendant & corroborer les raisonnemens

de M. Tédenat contre la vérité de ce théoréme. -
J, D. G.
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Cela posé , deux conditions sont nécessaires pour la réalitd de
toutes les racines; 1.° il faut que tous les sommets soient réels on
apparens, et par conséqueni au nombre de m—1 ; et cette pre-
micre condition est évidemment remplie , si la dérivée X/'=o0 a
toutes scs racines réelles et inédgales.

2.° Il faut de plus que tous les sommets soient concaves vers
Paxe des x, ou que tous les y de ces sommets soient maxima.
Or, on sait que, quand X est maeximum , sa seconde dérivée X'/
a un signe contraire au sien ; donc, si I'on pose XX”=z, et qu'on
élimine. # entre cette derniére équation et X’=o0, on obtiendra une
équation Z=o0 en z, dont toutes les racines devront étre négatives.
et qui conséquemment n'aura que des permanences ; c’est-a-dire ,
une équation dont tous les termes seront positifs,

La premiére condition exigera, & son tour, pour la réalité des
racines de X’=o0, deux conditions semblables ; d’ott P'on conclut
que , pour la réalité des racines de X=o, il faut que les auxi-
liaires successives Z=0 , Z/=0 , £Z//=0 , us.. , au nombre de m—1,
aient toutes tous leurs termes positifs..

En formant ces auxiliaires sur des équations littérales, on en
déduit, en fonction des coefficiens de la proposée, les conditions

de réalité de ses racines , conditions qui sont au nembre de

me=i
m.

2

La méthode de Lagrange exige la formation de son équation
aux gquarrés des différences des racines, laquelle , dans lc cas dont
il s’agit, ne doit avoir que des variations de signes (¥).

La méthode de Lagrange n’exige , comme l'on voit, quune

(" Il nous parait que cette méthode n’est point de Lagrange , mais bien de
Waring , comme cet illustre géométre en convient lui-méme , avec sa modestie
accoutumee. ( Résolut. des équat, numérig. , derniere édition ynote III, pag. 110.),

: J. D, G.

auxiliaire
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suxiliaire ; mais cette auxiliaire est du degré mz; celle de de

Gua en exige un nombre m—1 ; mais la plus élevée n’est que du

degré m—1, et les calculs en sont moins difficiles.”Au reste, elles
me——1

conduisent toutes deux au méme nombre m. de condi=

2
tions. Lagrange s'étonne ( Résol. des équat. numérig. , derniére
édition , note VIII, pag. 165 ) de ce résultat; mais je ferai voir

. M ¥ .. [ .
que , parmi ces m ., —_ condxtlons, il s’en trouve qui sont comporte’cs
2

par le systéme des autres (*); et que, par exemple, pour le cin-
‘qui¢me degré, ce nombre, qui devrait étre diz , se réduit 3 m
ou a cinq. '

Il résulte de la théorie de de Gua ce beau théoréme : savoir;
que Quand toutes les racines de X=o sont réelles, si l'on fait
disparaitre lun quelconque de ses termes, auire que les termes
extrémes , les deux termes entre lesquels celui-ci se trouverait s'il
n'était pas nul devront étre de signes coniraires; d'onil suit que,
quand cette condition n’a pas lieu , la proposée a nécessairement
des racines imaginaires (**). ( Résolut, des équat. numérig., derniére
édition, note VIII, pag. 169 ).

(*) Clest ce que Lagrange avait déja insinué & la fin de la note III de
Youvrage cité.

J. D. G.

{**) Cette dernit¢re partie du théoréme se déduit d’une maniére tout autrc~
ment simple de la régle de Descartes. On en déduit, plus généralement, 1.° que
toute équation dans laquelle il manque 2n<-1 termes conséculifs, entre deax
termes de mémes signes, a nécessairement au moins 2(2-4-1) racines imaginaires;
2.0 que toute équation dans laquelle il manque » termes consécutifs, a néces-
sairement au moins # ou n-fI racines imaginaires , suivant que n est pair ou
impair ; 3.° enfin , que toule équation qui présente, en plusieurs endroits, de
telles circonstances a au moins la totalité des racines imaginaires annoncées pag
chacune d’elles en particulier. J. D. G,

Tom, IX, 47
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On peut parvenir , par des moyens plus élémentaires , au résultat
de la méthode de Lagrange. Si , en effet , X=0 n'a que des
racines réelles; en la divisant par le facteur essentiellement réel

a*—2azt-*—F

dans lequel 7 est supposé positif ; on aura un reste composé de
termes en x et des termes sans z. En égalant séparément i zére
la somme des uns et celle des autres, on aura deux équations en
« ct V', entre lesquelles éliminant « , I’équation résultante en ¥
ne devra avoir que des variations, puisque ¥ ne doit avoir que des

me~i
valeurs posntwes. Cette équation sera d'ailleurs du degré m. — ,

vombre des diviseurs du second degré de Iéquation X=o.

o

PROBLEME 11. Déterminer le nombre des racines imaginaires
d'une équation d'un degré quelconque?

Solution. Ce second probleme est beaucoup plus difficile que le
premier , qui n’en est, au surplus, qu'un cas particulier. Il est résolu
depuis long-temps , pour les degrés inféricurs au cinquit¢me , soit
par des considérations fondées sur la forme méme des racines, soit
par la discussion de V’équation appelée réduite. ‘On pecut encore le
résoudre , pour les mémes degrés, soit par Véquation aux quarrds
des différences de Lagrange ( Voyez les numéros 37, 38 , 39 de
son ouvrage ), soit par la méthode de de Gua. Voici les conditions
auxquelles on parvient par ces diverses méthodes.

Premier degré. L’équation we saurait

, dans aucun cas , admettre
des racines imaginaires.

Deuxiéme degré. Soit la proposée z’-4-az-+b=o0. Ses deux ra-

cines seront réclles si V'on a a*—~4b positives ; clles seront édgales

€ celte quantitd est nulle , et imaginaires si elle cst négative. Ce
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sont 13 les trois seuls cas que ce degré soit susceptible d’offrir *).
Troisiéme degré. Soit la proposée x’~-azx*~bx-+c=o; elle aura
ses trois racines réelles , si la quantité 27c*-2ac(20*—gb)+0*(46—a?)
est négative ou nulle; dans ce dernier cas, deux de ses racines
seront égales; et, si cetlte méme quantité est positive , I'équation
aura deux racines imaginaires (**).
Je ferai, & ce sujet, une remarque qui ne sera pas inutile :

¢ 1 nous parait de beaucoup' preférable d’admettre un coéfficient au pre-
mier terme, et de prendre pour la proposée ex2~-bx--c=o ; la condition de
réalité des racines est alors b*~—=jac=o. Or , sous cette forme elle présente di-
vers avantages précieux ; car d’abord on peut y supposer ¢, &, c entiers, ce
qui facilite les substitutions dans les cas particuliers, sur-tout lorsque les coef-
ficiens sont polynomes. En second lieu , les erreurs de calcul ou de copie dans
Péquation de condition sont beaucoup plus faciles & découvrir, attendu que ,.
d'une part, cette équation devient homogeéne , et que de 'autre, les coefficiens
dgalement distans des extrémes doivent y entrer symétriquement. Enfin , sa forme
symétrique la rend plus facile & graver dans la mémoire , ce qui n’est pad
& négliger.

J. D. G.

(**) Pour les' mémes raisons que dans la précédente note, il nous parait

préférable de mettre I'équation sous la forme

axdtbard-cx4d=o-

la condition de réalit¢ des racines se trouve alors trés-symétriquement ex--
imée par l'inégalité

P

(bc==gad)2e=g(b2=3ac)(cr==3bd) <o ,

€e qui revient & dire quil faut que I'équation du second degré

(or=3ac) x2-4-(be—qad)x-4-(c*=3bd)==0 ,

ait ses deux racines imaginaires:

J. D, G,
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c'est que Lagrange s'est trompé en croyant que deux conditiond
distinctes étaient ndcessaires pour la réalité des racines du 3.™¢
degré. Aprés avoir donné ces deux conditions ( Voyez n.° 38 de
son ouvrage ), il ajoute méme formellement :. .57 June de ces con-
ditions manque , l'équation aura deux racines imaginaires. 1l est
pourtant évident que, pour que les trois racines soient réelles, il
suffit que le radical du second degré qui entre dans leurs expres-
sions soit imaginaire ; ce qui ne fournit qu'une condition unique.
Cette condition, que je viens de donner , est précisément l'une de

celles de Lagrange; d’'ot T'on doit conclure que 'autre doit y étre
implicitement comprise (*)-

(*) M. Bérard donne cinq conditions pour la réalité des racines d’une équation
du cinquieme degré, en ayant soin d’observer que peut-étre elles se réduisent
A un moindre nombre. Si donc demain quelqu'un, ayant trouvé quc ces condi~
tions peuvent &tre réduites a4 quatre ou 3 un moindre nombre, s'en autorisait
pour dire grossitrement que M. Bérard s'est trompé , M, Bérard aurait juste-
ment le droit de s’en plaindre.

Cest précisément la le cas de Lagrange; d’une part, en donnant deux con-
ditions pour le troisitme degré, il a pu dire quelque chose de superflu, mais
du moins il wv'a rien dit de faux. En oulre, il a observé quen général plusieurs
des conditions pouvaicnt rentrer dans les autres ; il a donc prévenu le reproche
gue lui adresse M. Bérard.

Au surplus , lorsqu'on entreprend de redresser un homme tel que Lagrange, il fau-
drait du moins ne pas faire les choses & demi ; et en particulier , en cetle rencontre ,
il eut été assez convenable de montrer qu'en effet sa premiere condition se trouve
comportee par la seconde : voici comment on peut s'en assurer.

Suivant nos notations , les deux conditions assignées par Lagrange deviennent

br—3ac>o0 ,
(bemmgad)rmm/y (b2m=3ac) (c2=35d) KO «
Or , la deraiere peut étre mise sous cette forme

(2b3mgabet-27428) 24 (b2 =3ac)3 <0 5
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Quatridme degré. Soit la proposée at4pa*4gr-Fr=o. Les

quatre racines seront réelles, si les trois conditions sulvantes sont
satisfaites

p<LO 5 p—=4r>0 5 167(p*=—fr)* g (144pr —4p°—27g*) >0 »

Les quatre racines seront imaginaires si I'ane ou l'autre des deux
premiéres ou toutes les deux ne sont point remplies.

Enfin , deux racines scront réelles et'les deux autres imaginaires,
si la dernitre condition n’est point satisfaite (*)

Cinquiéme degré. Soit la proposée a°~-pa’~ga*-tra-s=o. Sa
réciproque sera a°-f- oL g Loy L:o,ou,pourubréger,
s S 5 s

2 Fr/zt g 2 plai s’ =X=o.

et Pon voit facilement alors qu'elle ne saurait étre satisfaite qu’autant que la
premiére sera remplie, puisqu'autrement la somme de deux quantités positives
devrait étre négative.

On pourrait également metire celte seconde condition sous la forme

(263==gbcd427ad?) 2=} (c2==3bd)3 L0 ¢
et on en conclurait que la premiére de Lagrange peut étre remplacée par celle-ot
cr==3bd>o .
J. D. G:
(" En prenant I'équation ax i4-ba3~4-cx-f-dx-}-e==0, et posant, pour abréger,
be—bad=A , 3b2==8ac=B , bd—=16ae=C , 3d=8ce=D , c¢d—6he=E ;
ia derni¢re cendition devient

(CremBD)serfy(AD=CE) (BE==CA>0 ;

b la premitre C>o.
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D’aprds la méthode de de Gua, exposée plus haut, X'=o0 aura
toutes ses racines réelles, si X/=o0-a toutes ses racines réelles, et
si, en méme temps , Z=o, résultat de l’dlimination de z, entre
X'=o0 et XX/=z, n’a que des permanences.

On a dabord 5z¢4-4r'a*=+3¢'a*+4-2p/2=0, qui donne #=oet
5234~ 4riz*4-3¢/ad-2p/=X"
2023 4~12r'2°+-6¢/z4-2p! =X" .
D’aprés cela , XX/ =z devient, en divisant X/ par 2 ,
(102’ +-6r'a* -3¢/ a+p/ ) (& 1/ 2t -g' 2 p/ar s =z. (1)
La racine #==0 étant mise dans (1) donne d'abord cette pre=
miére valeur de z, savoir z=p/s’ ou z—p/s'=o..

Si ensuite on substitue dans (1), autant de fois ‘qu’on le pourra,
pour 2’ sa valeur tirée de X’=o0; en posant, pour abréger,,

A=3680¢'r/*— 5121/ =4 400p’r/*— 70509/ r/*+12625p/g'r!
—6250r/s'42250¢/3—5625p/*

B=2400q""r3—385¢'rA=fijo0p’q'r*—3395¢"*r+7125p'g'*
~+-320p/r/i4-2250p°r'==9375¢’s’ ;:

C=1600p/g'r3-256p/r3=2000p/*r/*~2250p'g"*r'+37 50p"*q/-9375p"s'*;

an aura.

- Ax*4-Bat+C=-5"%z=0 ; (2)

éliminant enfin z entre (2) et X' =0 , et posant , pour:
abréger ,

-,
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@=5"B—(5"3r'4 5 b={r'AC—5BC—2p'A* ;
=SB fr' AB—5AC=3g'4* ; d=5"°4 ;
a'=2.5"%cd— Aa*>~Bad—Cad* ; b'="5"%5c'-24ab-Bac-Bbd-2Ccd ;
e=—Ab*=Bbc—Ce*=¢’ 4

il vient

53 2da/ 224 z4-c'=0 - (3)

Réunissant le facteur z—p's’, trouvé plus haut, & I'équation (3),
‘on a enfin, pour I'équation Z=o,

(z=p/s\(b" s &'’ Fa'z* b/ z-}-¢/)=0 ,

Pour que la proposée ait toutes ses racines réelles, il faudra
1.° Que Z=o0 n’ait que des permanences, c’est-a -dire qu'on
devra avoir, a la fois,

>0, ¥>0, >0, pis'o;

2.° Qu’en outre X/==o0 ait toutes ses racines réelles ; ce qui
exige qu'on ait

25.27p4p/r(32r—135¢ 49 (159'—4r") <o

La proposée n’aura -que trois racines réelles dans deux cas;
savoir d’'abord si, X’/=o0 ayant toutes ses racines réelles, Z=o a
une variation ; ensuite, si X’=o ayant deux racines imaginaires ,
Z=0 n’a point de variations ou en a deux seulement,

’ Enfin , la proposée aura quatre racines imaginaires dans deux
cas , savoir d’abord si, X/=o0 ayant ses trois racines réelles, Z=o
a deux variations ; ensuite , si, X/==0 ayant deux racines imaginaires,

Z=0 a une ou trois variations.
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Pour comprendre ce qui vient d'étre dit , relativement aux cas
de deux ou de quatre racines imaginaires dans la proposée , il faut
faire attention qne nous l'avons délivrée de son pénultiéme terme,
pour faciliter I'élimination , et, en méme temps, pour que la courbe
X =y aie toujours quatre sommets ou deux, et jamais aucun. S3
Von donne 4 l'axe des « toutes les positions dont il est suscep-
tible , on®se rendra facilement compte des conditions que nous avons
assignées pour les trois cas de o, 2, 4 racines imaginaires.

On voit , au reste , que les conditions de réalité de toutes les
racines sent ici au nombre de 5 ou m; et non pas au nombre de
?22.-7'-2--2--:-x ou 10, comme l'a trouvé Lagrange , dans l'ouvrage déja
cité (note III) (¥). Il est méme A& présumer , par ce qui a lieu
pour le 3.m¢ degré, que ce nombre de 5 peut encore étre réduit.

Degrés supérieurs au cinquiéme. Les équations X'=o0 , Z=o,
qui nous ont servi pour le 5.™¢ degré, ne suffisent plus pour tous
les cas au-delad de ce degré. Mais, avant d’aller plus loin , fixons
bien les idées sur la signification de nos- diverses équations.

X’=0 donne les abscisses des sommets de la courbe X==y: ¥=:
résultat de I’élimination de x entre ces deux-la donne les ordonnles
de ces mémes sommets; ses racines réelles positives ou ses variz-
tions indiquant les sommets en dessus de 'axe des x , et les né-
gatives ou les permanences indiquant les sommets en dessous du
méme axe. L’auxiliaire Z=o, résultat de l'élimination de z entre
X/=o0 ev XX//=z, fait connaitre, par ses racines réelles positives.
ou par ses variations, le nombre des sommets convexes vers 'axe
des # , et par ses racines négatives ou par ses perwmanences, le

(*) Mais, encore un coup, Lagrange ajoute , 4 .la fin de la méme note:
Il est possible que quelques-unes de ces conditions se troupent renfermées dans-

le systéme des autres , ce qui en diminuerait le nombre , comme nous layons
_@u pour le quatridme degré.

J.D.G.
nombre



IMAGINAIRES. 36z
nombre des sommets concaves vers le méme axe; enfin, chaque
variation vraie, ou chaque sommet convexe, répond 3 un couple de
racines imaginaires dans X=o.

Lorsqu'on demande le nombre des racines imaginaires de X=o,
du degré m , on est censé savoir déterminer le nombre de celles
d'une équation d’'un degré infcricur. La courbe X=y a un nombre
m—1, m=—2, Mm—3 ... de sommets réels, snivant que X'=o
a 0, 2, 4,... racines imaginaires.

La courbe X=y a des formes diverses, qu'on peut classer par
le nombre des sommets apparens. Ainsi, pour le 4.®¢ degré, ily
a deux formes possibles : la premiére qui offre trois sommets, et
la seconde qui n’en offre qu'un seul. Dans toutes deux , I'axe pcut
étre placé de maniére a laisser un sommet en dessus, en sorte que
Y=o0 a une variation dans les deux cas ; mais , dans le premier
Paxe ocoupant les quatre branches , il en résulte quatre racines
reelles; tandis que, dans le second , 'axe ne rencontrant aucune
branche, les quatre rceines sont imaginaires. Voila donc un cas
douteux , dont I'incertitude ne saurait étre levée par 'équation ¥==o0:
c’est le cas de léquation de M. Servois ; mais on voit en méme
temps que le doute est levé par la dérivée X’=o0; car, suivant que
celle-ci aura oun r'aura pas ses irois racines réelles, la proposée
aura zéro ou quatre racines imaginaires,

Dans le cinquiéme degré, la courbe a 4, 2 ou o sommets. Le
cas de quatre sommets se subdivise en deux, dont l'un présente
deux sommets concaves en dessus et deux en dessous, tandis que
Pautre offre deux sommets, l'un concave et l'autre convexe, tant
en dessus qu'en dessous. Ce dernier cas est celui de I'équation de
M. Tédenat; Y=o a deux variations et deux permanences, et X/=o
a toutes ses racines réelles ; de sorte qu'on me sait si X=o doit
avwoir 0 ou 4 racines imaginaires. Pour lever le doute, il faut recourir
a Z=o. La proposée aura ¢ing ou une racines réelles , suivant que

Z:=o0 aura 4 ou 2 permanences, Clest ce quon virifie facilement
48

Tom. IX.
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sur l'dquation de M. Tg’denat , pour laquelle on trouve deux valeurs
positives et deux valeurs négatives de z.

Premiére méthode générale. A mesure que le degré de ’équation
s’éleve, le nombre des cas douteux s’accroit aussi. J'ai trouvé , par
voie d'induction, que les seuls cas certains sont cenx quirépondent
32 0, 1,m—2, m—1 variations de ¥ =0, pour les degrés impairs,
et 2 o, m—2, m—1x variations, pour les degrés pairs ; en sorte
quil n’y a que quatre cas certains dans les degrés impairs , et trois
seulement dans les degrés pairs. Dans ces cas, le théoréme con-
testé (*) donnera, avec certitude le nombre cherché des racines
imaginaires : dans les autres , il faudra lever le doute, en consultant
les équations X/==0 , Z=0. li est méme quelque cas douteux ol
ces deux équations ne sufliront pas,

Deuziéme méthode. Si l'on connaissait le nombre Ry des racines
réelles positives de Z=o0, ce serait aussi le nombre des sommets
convexes de la courbe , dont chacun indique deux racines imaginaires
dans X=o0. Donc, en appelant I le nombre des racines imaginaires
de X=o0, I’ celui des imaginaires de X/=o0, lequel est le méme
pour Z=o, on aurait la relation I=1I'4-2R;. Ce principe a aussi
été employé par M. Cauchy ( Journ. de lécole polytech. , cahier
XV, pag. 462).

La question est donc ramenée i celle-ci: étant donné une équa-
tion Z=o, dunt on connait le nombre I des racines imaginaires ;
trouver le nombre R, de ses racines réelles positives ?

J’ai donné une solution de ce probléeme préliminaire dans mon
ouvrage ( Méthodes nouvelles, etc., pag. 71). Les calculs en sont

(*) Personne n’a jamais prétendu contester la vérité du théoreme de M,
Bérard , pour des cas particuliers, Ce que MM. Tédenat et Servois ont fait un
peu plus que de contester , c’est l'universalité que, dans son ouvrage , M.
Bérard avait cru devoir attribuer & ce théoreme,

J. D. G,
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prolixes ; mai j'ai trouvé (pag. 65) un théoréme qui fournit une
solution trés-simple pour les douze premiers degrés.

Remarquons d’abord qu'un factcur imaginaire du 2.™m¢ degré
2’1 24z+4(«’+4*) multipliant un polynome réel P; le produit Z
ne peut acquérir que deux variations ou deux permanences de plus
que n'en avait P, et jamais une variation et une permanence. Ainsi,
par exemple, dans une équation du 3.™° degré, il‘y a toujours
ou trois variations ou trois permanences , ou deux variations et
une permanence, ou enfin une variation et deux permanences ; or,
dans le 3.™¢ cas, c'est la permanence qui indique la racine réelle,
tandis que les variations répondent aux racines imaginaircs : dans le
43¢ cas c'est l'inverse.

En combinant ce lemme avec la régle de Descartes, on peut
assigner le nombre Rp des racines réelles positives de Z=o0 , et
celui des négatives ; a4 l'exception de certains cas douteux , pour
]eSquels il faut recourir au théoréme suivant.

Lorsque, dans une équation
At B T A C2 A L =0,

on connait le nombre I des racines imaginaircs , ¢’il arrive que
par la régle de Descartes , combinée avec le lemme précédent,
on ne puisse discerner complétement le nombre des racines réelles
positives et celui des négatives, em sorte qu'il en reste deux dou-
teuses, qui soient toujours de mémes signes, alors ces racines dou-
teuses seront toutes deux négatives ou toutes deux positives , suivant

que la fonction
(n—1)* A*—n3n—4)AB3n*C (F)

sera positive ou négative.

Soit, par exemple , I'équation
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244284525~ 428 — 1323 = [z 24 4=0 ,
qui revient h~

(g—1)*(z41)’ (2?3244 =0,

et dans laquelle nous supposons qu'on ait reconnu deux racines
imaginaires. Comme elle a deux variations et cinq permanences, nous
en conclurons, par le précédent lemme , qu’elle doit aveir au moins
trois racines réelles négatives; mais que, si elle en a davantage,
elles doivent étre alors au nombre de cinq ; cette équation a donc
deux racines réelles de méme signe, douteuses par rapport i leur
signe commun , parce que le facteur imaginaire du second degré
a pu également introduire ou deux variations ou deux permanences ;
mais le doute est complétement levé par linspection du signe de
(¥) qui, dans cet cxemple , vaut —664 , ce qui indique deux
racines positives. La proposée , outre ses deux racines imaginaires,
a donc trois racines réelles négatives et deux positives, comme on
le voit d’ailleurs par sa seconde forme,

Revenons présentement au probléme principal. Ayant trouvé,
comme nous venons de le faire , le nombre Ap des racines positives
de Z=o0, on avra le nombre I des racines imaginaires de X=o,
par 'équation I=1I1-}2R,. Ainsi , dans I'exemple précédent, on a
I=2a42.2=6.

Au surplus, rien ne sera plus facile que de construire , pour
chaque degré , une table des valeurs de I qui répondent aux di-
yerses valeurs de 1/ et du nombre ¢ des variations de Z=o0. Nous
avons construit , pour les douze premiers degrés , une semblable
table , qui ne nous a colité que quelques heures de travail , et que
nous plagons & la suite de ce mémoire. Les cases blanches se rap-
portent aux cas impossibles ; et celles qui renferment deux nombres
se rapportent aux cas douteux , ¢t pour lesquels on prend le plus
petit oule plus grand des deux nombres , suivant que (F) est positil
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ou négatif. On trouve une scule case qui renferme trois ncmbres ;
et c’est dans le 12.™* degréd. Ce cas échappe donca la meéthode |
puisqu’alors le signe de (F) ne suffit plus pour lever le deute. 1
est & croire que le nombre de ces cas se multiplierait, & mesure
que le degré de I'équation s'éléverait, ct c’est pour cela que nous
nous sommes arrétés au 12.M°

Pour donner une idde de la maniére de construire cette table,
prenons le cas particulier ou m=7. On tracera au crayon , ou, mieux
encore , on formera , avec un fil métallique flexible , la courbe X=y,
en lui donnant successivement tous les aspects qu’elle peut avoir; alors

1.° Pour le cas ou les six sommets sont apparens, c’est-a-dire,
ol I’=0, on placera un axe mobile de maniére A produire suc-
cessivement o, 1, 2, 3 sommels convexes ; et on reconnaitra que
les valeurs correspondantes de I sont o, 2, 4, 6.

2.° On fera ensuite I’=2; c’est-d-dire qu’on ne laissera & la
courbe que quatre sommets seulement ; on donnera & ’axe mobile
toutes les situations dont il pourra étre susceptible ; et on se rappellera
que chaque sommet convexe , ou chaque variatien de Z=o, vaut
deux imaginaires dans X=o0, et que le nombre des intersections
de T'axe avec la courbe étant retranché de 7 donne 1. Ainsi, quand
I'axe coupe toutes les cing branches, on a F=o0, I=2~4-2.0=2;
ou bhien on a cinq intersections , ¢t I=7—5-—o. Quand V=1

-e

c'est-d-dire , lorsqu’on n’a qu’'un sommet convexe , on a I=2+}2=4.
Quand P'=2, on a deux sommets convexes réels ou aucun; parce
que les deux variatians peuvent étre imaginaires ; et on a J=2
ou 6; ce qui forme un cas douteux ; et voila pourquoi la case
relative & ce cas contient ces deux nombres. On fait ensuite F:=3;
c’est-a-dire qu’on présente a I'axe un seul sommet convexe ; parce
gque deux variations sont nécessairement imaginaires ; attendu que
la courbe n’en peut plus offrir que deux au plus ; on a donc I=4,
Enfin , pour V=4, on a nécessairement 2F imaginaire, ce qui
donne JI=6.

3.° On fait I’=4; c’est-a-dire que la courbe n’a plus que deux



366 RACINES
sommets apparens ; et I'on discute les différentes positions de l'axe
comme nous venons de le faire.

4.° Enfin, on fait /=6 ; c'cst-a-dire que la courbe n’a plus de
sommets ; et I'on raisonne comme dans les cas précédens.

Voyons donc, en résumé , ce qu'il y aura i faire pour déterminmer
le nombre des racines imaginaires d'une équation , du moins jusqu’au
douziéme degré. La proposée étant X=o0 , on écrira ses dérivées
X'=o0, X'=0, X"=0,... en s'arrétant a celle qui sera du 5.™¢
degré seulement. On formera les auxiliaires Z=o, Z/.—.:o , Z'=o0,
en éliminant successivement z entre X/=o et XX”/=z, entre X//=a
et X' X/ =z, entre X/ =0 et X/X/=2z" ... la dernitre de
ces auxiliaires sera également du 5.™¢ degré.

I étant le nombre des imaginaires de X=o ,et VIV, IV, IV, ...
celui des dérivées, ainsi que des ausiliaires , on opérera comme
il suit:

Supposons, pour fixer les idées, que la proposée soit du 8.™¢
degré. On déterminera, par les formules rapportées ( Prod. 11),
le nombre I’V des racines imaginaires de la dérivée X/=o0 et de
Pauxiliaire Z#/==0 , lesquelles ne seront que du 5™¢ degré. Par
le moyen de I’/ et du nombre ¢/ des variations de Z”==0; on
déterminera 1/, nombre des imaginaires de la dérivée X/ =0 et de
Yauxiliaire Z”=o0. Par le moyen de I” et du nombre ¢/ des varia—-
tions de Z/=o0, on déterminera I/, nombre des imaginaires de la
dérivée X’=o0, et de l'auxiliaire Z/=o0. Enfin, par le moyen de I’
et du nombre ¢ des variations de Z==0, on déterminera le nombre
des imaginaires de la proposée. Dans toutes ces recherches , la
table dont il vient d'étre question ci-dessus sera d’un trés-utile
Secours.

Au reste , i1 arrivera des cas ot la méthode sera en
défaut : ce sont ceux odu , Z devenant zéro , les signes de
Z=o0 ne peuvent plus fournir de solution. Ces cas arriveront
lorsque quelques - unes des racines des auxiliaires deviennent
nulles ou égales. Par exemple, si la proposée était a’+1=0 ,



IMAGINAIRES. 365
on aurait G62°=X , et 3oa2t=X" ; dot AXX'=a'’H-a2i=_
Eliminant z entre cette derni¢re et 6z°=o0 , on aura simplement
z=o.

On élude la difficultd en multipliant la proposée par un facteur
connu qui compléte ses termes, et alors la méthode devient appli-
cable. Au reste, la premiére méthode n'est point en défaut dans
cet exemple.

M. Cauchy emploie deux espéces d'auxiliaires , qui ont une
signification différente des miennes : leur nombre est 2(m—1);
ainsi, pour m=38, ce nombre est 14; tandis que, pour la méme
valeur de m, il ne m’en faut que 3 seulement. En second lieu,
les racines égales ou nulles mettent la méthode de M. Cauchy plus
souvent en défaut que celle-ci; et il faut alors recourir a des arti-
fices de calcul trés-embarrassans, et beaucoup plus pénibles que
ceux qui suffisent & la nétre (*). Nous pecnsons donc que ceux
qui prendront la peine de comparer les deux méthodes n’hésiteront
point & trouver celle-ci plus simple et moins laborieuse.

Au reste, il nc faut pas se dissimuler que la méthode de M.
Cauchy , et méme la mienne , sont plus précicuses en théorie qu’en
pratique (**). Les calculs deviennent tout-a-fait rebutans , quand

(*) Daccord. Mais la méthode de M. Cauchy conduit a des formules géné-
rales pour des équations littérales, tandis que celle-ci ne saurait guére s'appliquer,
telle qu'elle est, qu'a des équations numériques. Mais la méthode de M. Cauchy
conduit au but, dans tous les cas ; tandis que celle-ci, en la supposant méme
inattaquable , sous le point de vue théotique , se trouve en défaut des le
12.1¢  degré.

J. D. G.

(**) En ce cas, ce n'est point la peine de chercher querelle & la méthode
de. M. Cauchy, et de lui reprocher la prolixité des calculs qu’elle exige. Dés
qu'en effet il ne s’agit que de théorie , c’est la un objet de peu d’importance ;
et c'est alors la considération de la géneralité et de la pureté des principes
qui doit régler les rangs entre les méthodes. Or, s’il en est ainsi, nous ne
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le degré est un peu élevé. Le moyen qui est alors le plus expé-
ditif consiste 2 tracer la courbe X=y. 1l peut se (aire , 2 la vérité,
que méme le tracé de cette courbe laisse incertain si deux racines
sont imaginaires ou seulement réelles et trés-voisines ; mais , dans
ces circonstances , assez rares d'ailleurs, on peut facilement lever
Vincertitude , par la méthode que j'ai donnée pour V'approximation
des racines réelles des équations numériques ( Méthodes nouvelles ,

etc., chapitre I1I ).

CONCLUSION.

1.8 Jai fait voir qu'une formule déduite de principes exacts;
d'aprés une figure gdéométrique , peut , lorsque la figure
change , par le changement des donndes , se trouver en dé-
faut , et donner lieu i des cas douteux ; ct qu’alors il n'est
pas exact de dire que la formule est fausse (*). A cette
occasion , j'ai rectifié le sens de la formule ¢Sin.a’=¢'Sing (**).

2.° En rapportant les conditions connues de la réalité des racines

voyons rvien de préférable pour la détermination du nombre des racines imagi~
naires des équations numériques , que le recours & Péquation dont les racines sont
les quarrds Jdoo différences des siennes prises deux a deux,

J. D. G.

(") C’est aussi la doctrine que nous avons professée au commencement de
cet article. Pour les points singuliers des courbes , par exemple , la formule
%%; est en défaut, parce quelle se tait ; mais, par cela méme quelle se tait,
on ne saurait dire gu'elle soit fausse dans ce cas. Il n’en est pas de méme du
théoreme de M. Bérard ; son tort a lui est de parler dans les cas méme ou
il devrait se taire, et de tromper ainsi ceux qui linterrogent.

J. D. G.

(**) Nous croyons avoir prouvé que cette formale n’a pas besoin de recti-

Bcation , et quelle est toujours parfaitement exacte.
J. D. G.
I‘OU[‘
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pour les 2m€ 3me  gme deords , pai relevé la méprise de lillustre
Lagrange , relative au 3.™¢ degré (*).

3.0 Jut donné, pour le 5.m¢ degré, des conditions analogues &
cclles qne l'on connaissait déja pour les trois précédens. Ces
conditions ne se sont trouvées quau mnombre de ¢/ng , et non
au nombre de drz, comme l'avait cru Lagrange (**). Ces formules
~me paraissent préférables & tout ce que lon connaissait (***).

4.° Jai donné, pour les degrés de 6 3 12, dews méthodes. Par
la premic¢re, j'emploie, comme moyen principal , I'auxiliaire Y=o,

’

(*) Clest pour la troisi¢me fois que M. Bérard revient li-dessus; et I'on serait
presque tenté d’en inférer que c’est lala partie de son mémoire a laquelle il
attache le plus d’importance.

On a vu plus haut & quoi se réduit cette grave méprise , et quelles peuvent
en &tre les dangereuses conséquences. Certainement la plupart de ceux qui ont Iu
la Résolution des équations numérigues, ont remarqué cette méprise tout aussi
bien que M. Bérard; car tous savent aussi bien que lui qu'une seule conditicn
est nécessaire pouwr la réalité des racines d’une équation du 3.m€ degré, comme,
en particulier , wmaints endroits de ce recueil pourraient en faire foi ; fhais
loin de songer &4 se prévaloir d’une distraction , trés - innocente d’ailleurs ,
de la part d'un homme si digne de leur respect, a I'exemple des pieux et pudigues
enfans de No&€, ils se sont empressés, au contraire, de détourner leurs yeux.
Que si pourtant quelqu'un d’entre eux avait pu croire que , dans Iintérét de
la science , il pouvait étre bon de signaler cette petite inadvertance , il Iaurait
fait sans ostentation , et se serait bien gardé sur-tout d’altendre une telle conjonclure
pour accoler Udpithete dllustre au nom du grand homme dont ils anraient
eu & rclever la faute.

- J.D. G.

(**) Non, encore un coup , Lagrange n’a point cru cela; ila dit formellement

au contraire, que sans doute ces conditions devaient étre en moindre nombre.
J. D. G,

(***) D’accord ; mais qui répondra que M. Bérard n’a pas commis ici une
miprise pareille & celle de- I'//lustre Logrange , et que ces cing conditions sont
toutes nécessaires 7 Sa méprise porterait alors sur tous les degrés, puisqu'il les
rameéne tous au cinquicme.

J. D. G,
Tom‘ X, 49
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dans trois ou quatre cas favorables de chaque degré. Mon théoréme
contesté fournit pour ces cas la solution la plus simple qu’on puisse
espérer. Dans les autres, il y a du doute entre deux combinaisons ;
mais le doute pecut étre levé par des moyens que jindique.

Dans la deuxiéme méthode , j'emploie un nombre m—5 d’auxi-
liaires , et une table dont 'usage est trés-facile , ainsi qu'un théo-
réme nouveau sur les signes des racines réelles. Cette seconde mé-
thode mdritera, je pense, l'attention des géometres ; et je remercie
MM. Tédenat et Servois de m’avoir provoqué a de nouveaux cflorts
par leur judicieuse critique (*).

Ce mémoire aurait exigé plusieurs figures pour en faciliter l'in-
telligence , et en rendre lexposé plus clair ; mais les géometres
sauront. les suppléer. Un reproche plus fondé sera celui de n’avoir
pas suffisamment approfondi certains points et démontré certains
autres (**). Mais je prie le lecteur de considérer que ce sont plutét
des vues que je propose qu'un traité que je prétends faire. Si
elles sont jugdes utiles, je n’aurai pas perdu ma peine , et les déve-
loppemens deviendront faciles (***),

(*) Qu'est-ce pourtant qu'une méthode qui , de P'aveu méme de Pauteur,
est  peu pres inexécutable dans la pratique ; et qui, de son aveu aussi,
échoue en théorie dés le 12.m® degré.

J. D. G.

(**) Cest 14, & ce qu’il parail , un péché d’habitude chez M. Bérard ; il voit pour-
tant combien sont graves les désagrémens qu’il entraine.

J. D, G,

(***) A la bonne heure. Si M. Bérard parlait toujours sur ce ton , son
mérite , que personne ne lui conteste , paraitrait dans un jour beaucoup
plus brillant. On peut dire du talent ce qu'on a dit de Pesprit : celui
qu'on veut montrer fait tort & celui guon a ; et, d’ordinaire, les autres nous
refusent des louanges , méme méritées , en proportion de la part que nous
pous en faisons nous-mémes.

J. D. G.
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QUESTIONS PROPOSEES.

Probléme d Analise algebrique.

ASSIGNER le nombre des conditions strictement nécessaires et

sufiisantes pour qu'une équation de degré quelconque ait toutes

ges racines réelles ?
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ANALISE TRANSCENDANTE.

B " 2 1 s ‘ N
Recherche des  formules propres & intégrer , par
approximation , entre deux limites données quel=
conques , toute fonction differentielle d'une seule
variable ;

Par M. le professeur Kramp , correspondant de Pacadémie
royale des sciences , doyen de la faculté des sciences de
Strasbourg , Chevalier de I'Ordre royal de la Légion
d’honneur.

( Troisiéme Mémoire. )

Ry " g s g e .~ 0

I, D‘ANS un mémoire inséré & la page 372 du VL° volume du
présent recuell , jai donné douze différentes formules au moyen
desquelles on peut intégrer , avec une approximation plus ou moins
parfaite , entre deux limites données quelconques , toute fonction
differentielle d'une seule variable. Je me propose de reprendre ici
le calcul de ces formules , pour le présenter sous une forme quj
me semble préférable ; et pour les soumettre ainsi 4 une verifica-
tion qui leur imprime une sanction nouvelle, si elles sont ecxactes,
et qui, dans le cas contraire , en fasse disparaitre soit les fautes
d'impression qui auraient pu s’y glisser, soit méme les erreurs de
calcul que I'on a soapgonné s'étre introduites dans quelques-unes
d’entre elles. Si j’avais besoin , au surplus , de me justifier , dc

Tom, 1X, n.® XII', 1.°% juin 1819. 50
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.revenir de nouveau sur un sujet qui, aux yeux de quelques lec-
teurs , pourrait paraitre déjd épuisé ; je trouverais mon excuse dans
Vimportance des formnules dont il s'agit; importance qui me parait

sullisarmment établie par les applications qui déja en ont été faites.

2. Soit ydz une fonction différenticile explicite de 2 ; dans la-

queile on suppose y donnée en &, par une équation de la forme
y‘:'l’x H

v désignant une fonction d'une forme connue et dcterminée quel-

conque ; et proposons-nous d’obtenir une valeur approximative de

lintégrale fydx, entre deux limites données quelconques.

3. Considérons ¥ comme l'ordonnée d’'une ceurbe dont =z est
Vabscisse , ct dont la nature est conséquemment déterminée par
Véquation ci-dessus ; la question proposée se réduira évidemment
A quarrer 'espace mixtiligne compris entre la courbe , I'axe des
x ct les ordonnées qui répondent aux deux abscisses données pour
limites de l'intégrale,

4. On peut toujours faire coincider I'axe des y avee la premitre
de ces deux ordonnées , et prendre , en outre , pour unité, la
portion de l'axe des z qui la sépare de P'autre. On réduit ainsi
le probléme & déterminer I'intégrale fyda entre les limites zéro et un.

5. Soit divisée la portion de V'axe des x comprise entre les or-
données extrémes en un nombre arbitraire z de parties égales |,

lequel devra étre d'autant plus grand qu'on aspirera & une plus
grande précision dans les résultats. Soit posé

2 B0 7 Lol 4

T
a=vVo , b=md— |, =4 — ,i .00 p=4 i
9 . ] b d n b [U

A, b, ¢,u..p, q seront ainsi les ordonnées des points de division
e llaxe des x, et pourront étre déterminés au moyen de P'équa-
Zion de la courbe. Si nous imaginons une courbe parabolique passant
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par les extrémités supéricures de ces ordonndes, cette courbe différera
d'autant moins de la courbe dont il s'agit que le nombre z des
divisions de l'axe des x, de zéro 4 wn, aura ¢té pris plus grand;
d'ou il suit que , dans la recherche approximative de fydx, il pourra
étre permis de substituer cette courbe a la courbe proposée. Alors

Pintégrale cherchée ne dépendra uniquement que des quantités a
b, ¢y.e.p, g, et du nombre 2 choisi pour nombre des divisions

de la portion de l'axe des x prise pour unité.

6. On voit par la que, pour résoudre le probleme, il n’est pas
mweéme nécessaire de connaitre la relation générale qui lie y & «;
et qu’il suffit sculement de connaitre les valeurs de la premiere
de ces variables qui répondent & des valeurs de la seconde croissant
en progression arithmétique ; et ce n'est point la un des moindres
avantages de nos formules , qui peuvent ainsi étre appliquées A
des recherches d’expérience et d'observation ol trés-souvent la na-
ture de la dépendance générale entre les deux- variables est tout.

3»-fait inconnue.

7. Solent posés

Ag=b—a ,
2lAa=c—20+4a ;-
AN\ g=d—3c43b—a ;

$A%a=¢ — (d+-Ecemfbta ;

n..or.-.-o...-.a";
1 . s .

m! étant, comme a l'ordinaire , le symbole de 1.2.3....m2. Si, pour

un moment , nous prenons pour unité l'intervalle constant entre

deux ordonnées consécutives, nous aurons, comme l'on sait, pour

V'équation de la courbe parabelique,
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y=a+an+x(xq:-1)A2a+x(x—-1)(x.—-z)A3a+x(x—1)(x-;-2)(x—3)A4a-|_....,~;
de sorte quiil s'agira d’imtégrer

ydr=adx4rdx.detx(x—1)dx.A2af2(@==1)(x==2)dx. A4 00
depuis o jusqua 7.

8. Procédant donc & Ulintégration ; ct observant que l'intégrale
doit s’évanouir en méme temps que x , il viendra

Sydx=a2
»{—-Aar.—ﬂ:i
2
LA (x3 x?
I\ T
- Adn 7 3 - - >
x5 bt 1123 b2
4 —_—— —— — e
'+-Ad< 5 4 +5 2

+..._.'o..g’,-n---‘.-o-

vésuitat dans lequel 1l faudra supposer ensuite z=n,

9. Mais il est clair qWen rendant 2 fois plus grand lintervalle
entre les ordonnées consdéculives , on @ aussi.rendu 72 fois plus
grande l'aire de la courbe 3 quarrer, cest-i-dire , T'intégrale de-
mandée; d'ou il suit que la véritable valeur de cette intégrale n'est
gue la n.™¢ partie de celle que nous venons de lui assigner; c'est-
i-dire quelle est égale a cette intégrale divisée par @, ct prise
gnsuite jusqu’da w#=n. En posant donc, pour abréger,
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A=— ;

x
B= _g..._.._..i_ s
2
x? 3x P
3 62 Tix - 6
D= — 5
5 4 3 2

valeurs dans lesquelles il faudra supposer #=n, on aura

frdz=x <—:— A Aa+BAGACA 4D Ao, )

1o. Si, dans cette dernidre formule, on remet pour Az, A%z,

Na, Aba, . leurs valeurs (7) en @, &, ¢, d, e, en se
rappelant que @=n, on pourra Pécrire sous cette forme

Sydx 14 c + X
n (n 1 +2 3! +4! — n! ¢
i B C D . P
+“(‘4+T+?'—_37+ +<n-x>!>

.........
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11. Il est clair d’ailleurs que les ordonnées également distantes
des extrémes , telles que @ etg, b et p,...., doivent, dans cette-
formule 8tre affectées du méme coeflicient , puisqu’en renversant
P'aire mixtiligne & quarrer, de telle sorte que sa premiére ordonnée
devienne la derniére , et gice versd , sa surface doit toujours de-
meurer la méme. On pourra donc réduire le calcul des coefliciens
@, b, c,.. A lamoitié de leur nombre, si ce nombre est pair,
et 2 la moitié plus un, s'il est impair; et alors il conviendra de
les calculer dans un ordre rétrograde, attendu que les derniers se
présentent sous la forme la plus simple. A la verité, en procédant
ainsi , on se privera du moyen de vérification qui résulterait de
Pégalité des coefficiens également distans des extrémes ; mais on en
trouvera un autre dans I'égalité de la somme de tous les coefliciens
a l'unité, Il est évident, en effet, que, si l'on supposait ala fois
a=1, b=1, ¢=1 ,...., laire & quarrer devrait, d’une parl, étre
la simple somme: de ces coefliciens , et que , d'une autre , elle devrait-
étre égale & Tunité.

12. Le plan général ainsi tracé , il s’agit d’en venir A Pexécution ,
pour toutes les valeurs de z , depuis un jusqu'a douze inclusivement.
Cherchons d’abord les valeurs de 4, B, €, D,..... Il nous [(aut,
pour cela, continuer le tableau commencé ci-dessus (9). Dans ce
tableau , la loi des signes, e.xpnsans ct dénominateurs , est marifeste.
Quant 4 celle des mumérateurs numériques , en remontant (7) a
Porigine de ces nombres , on voit qu’en général 'an quelconque est
égal 4 celui qui est immédiatement au-dessus; plus, le produit de
celui qui est immédiatement a gauche de ce dernier par Pexposant.
de x dans le premier terme dé la ligne que l'on calcule. Ainsi,
par exemple, dans la valeur.de D, on a 6=3+1.3, 11=2+43.3;
et ainsi des autres.

13. Rien ne sera donc plus facile que de pousser ce tableau aussi
loin qu'on voudra. En le poussant jusqua la lette M , et
faisant d’abord abstraction des puissances de z et des dénominateurs ,
on aura
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Pour 4, 1 :
Pour B, 1—1 :

Pour €, 1—~3
2
Pour D, 1~6
+11—6 :
Pour £ , 1—10
+35—50
+24.
Pour F, 1—15
+85~—225
+274—120 ¢
Pour G, 1—ax
175—n35
+1624—1764
720 .
Pour H , 1—28
+322~=1960
+676gmm13132
+13068—5040 .
Pour I , 1—36
45464536

(@Y
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+22449—67284
“+118124—109584
440320 ,
Pour K , 1—45
“+870—g450
+63273—269325
723680—1172700

+ 1026576—362880

Pour L , 1—55
~+1320—18150
“+157773—g02055
~+3416930—8409500
~+12753576—10628640
+3628800 .

Pour M , 1—66
1925—32670
357423 —2637558
13339535-—45995730
105258076—1500917976
120543840—39916800.
On s'assurera de lexactitude de ces résultats, en observant que ,.
dans chaque groupe, la somme des nombres positifs et celle des

nombres négatifs. dowvent étre égales cotre elles, ct moitié du dernier
nombre
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nombe du groupe qui le suit immédiatement; comme il est aisé¢ de
se convaincre que cela doit étre cn effet.

14. Si présentement on retablit les puissances de # et les déno-
minateurs, en simplifiant autunt qu'il se pourra , il viendra

h
Il
Nlu

xz
C= Z —T X s
a3 3x2 112

x5 Saxck 22523 avfx
F= 7——'?4—1733-—-——-— —3—--—-60 s

=T T2 s Ly 67659"3 —32832°443562m2520 ;

84a3
5

+2953122-36528x 420160 ||

_ &b 2736 5y 7483x% 67
I_..;;--4x7+ 7 —648z°4 ——

K= — e

8g775x#
1x a 3 4 2

DB B A gaie ST i 36armagi i

2

~+3421922—181440 |
]'om. IX. 51,'
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1 6o oxT 157-73x6 2
L= X 5z941322%- 3 p —128865.15-}-1_1@
12

—16819002°+-3188394.4>—35 4288024181 4400 s

2t T1x10 119141007 1318779x5 13339535+5
= —_—— =529-3 8
M 3 - +17529-32672%- A -
10525807623
——"663933x*+—33—-—()——f- 377294942} 401812802-19958400.

15. En chassant les d¢énominateurs , ces formules deviennent

24=1 .
6B=22—3 .
4C=2"—fa

+4 .
3oD=64—4{5z*
—+1102—go
12E =22%—2 /a3
—+1052*—2002
+144 .

. 84F=1225=2102*
+142823— 47252
4756722 —5040 .
246=325—"22°

“7o0xt—35282"
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+g74iz*—141122
8640 .
goH =1027—<315.°¢
+ 4104 —29400at
~1218422°—295470a*

3920402 ~226800 .

20l =24%—8o0x7
~+136525—129602°
+74830x‘—2é'9 136473
~+ 59062022—730560x
-+ 403200 -

132K =122%=5942°
1276027 —1559252°
~11931482%—5925150z%
-+1910515223—-386gg1002?
451693442 —23950080 .

24l =22'°—120a%
+316843—48400a7
+4733192°—30927602%
¥13667- 2024~ 4036560027
476521 4562* =85029120%

443545600 4

383



384 FORMULES
5460 M = 420x'*~—300302™
~+95550029 —178378204*
+21683662027—18001333352°
“+1040483730025—418561143002%
1149418189924 —2060030372 02"
2193897888002 —108972864000 .

16. 11 sagit présentement de procéder aux substitutions, On a
d’abord , quel que soit @,
24d=1 .

Les valeurs de B sont

Pour 2=2, 6B=1,

3, 3,
45 5;
5; 7
6, 9,
7> 11,
8, 135
o, 15,
10, 17,
i ; 19,
1, 21y

Les valeurs de € sont
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Pour #==3 , 4C=1.

4, 4,
5, 9,
6, 16,
75 25,
8, 36 »
9, 49
10 64,
ir, 8r,
12, 100,

Les valeurs de D sont

Pour =4, 30D=14,

5, 85,
6;, 246,
7, 533,
8, 9827
9, 1629,

10, 2510 ;
11, 3661 ,

s

nz, o118,

Les valeurs de £ gsoni

(4%}
(91
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Pour =5, 12E=19 ;
6, 132,
7 459 ,
8, 1168 ,
9. 2475
10, 4644 »
I, 7987 »
12, 12864 ,

Les valeurs de F' sont

Pour 2=6 ; 84F=49g2 ;
7 4417 »
8, 18128 ,
9 » 53073 ,
10 , 127180 ,
i1, 266297 ,
12 , 505632 ,

Les valeurs de G sont

Pour #=7 , 24G=751 ;
8, 7360 ,
9> 34479 4
10 , 113920 ,
11, 304375 ,

12, 703296 ,



D'INTEGRATION.

[oF)
Ty

Les valeurs de H sont

Pour 2=8 , qoH=15324 ,
9, 186543 ,
10 988600 ,
11, A 3941207 ,
12, 10732176 .

Les valeurs de I soat

Pour z2=9 , nol=25713 ;
10 , 323600 ;
11 ; 1901961 ;
12, 7717824 .

Les valcurs de X sont
Pour =10, 132K =1285360 ;
I, 13686327 ,

12 121158720

N
-«

.
Les valeurs de L sont

Pour z=711 § 24L=2171465 ,
12, 33267456 .

Enfin , la valeur de M est
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Pour =12 , 5460M= 4716233856 .

17. Nous avons donc présentement tous les élémens nécessaires
pour calculer nos diverses formules ; et nous procéderons a leur
calcul ainsi qu’il suit.

Pour le diviseur uz nous avons la formule

D9 A(a+D)
I

T
%

ofydw=(at+d) . O

Pour le diviseur dezx, nous avons la formule

puis donc qu'on a, pour tous les cas, .4=2I, nous aurons

dax B
BE = 2 o) 4 (4—B)b 5

2
mais , pour le méme diviseur , nous avons trouvé

A=:,  B=i;

Miw

en substituant donc, la formule sera

6/ydz=(a+-c)
(1D
+4 ¢

Pour ]e diviseur #rois, nous avons la formule

d Cc : .
B e (0D (B CYbt0) 5

mais , pour le méme diviseur, nous avons trouvé

&
il
viw

RE
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B= ; ’ C=E )
en substituant done, la formule scra
8/ydz=(a-}-d)
(I
+3(64-¢) :

Pour le diviseur guatre , nous avons la formule

rdae D 1 ' . D
B = (atort - (C=D) o+t (B—Ch 2 )e

mais , pour le méme diviseur, nous avons trouvé
‘B':é » C:l ’ D=_L H
en substituant donc, la formule sera
9o/ydz=7(a-e)
~+-32(0+4d) (IV)
+12¢ .
Pour le diviseur ¢ing, on a la formule
Jyde _ E
5 = )
I
+ T (D=E)(i-+o)
1 E .
+5(c=D+ 2 ) e+a)
mais , pour le méme diviseur , nous avons trouvé

¢=3, D=4, E=i,

i

en substituant donc ,la formule sera
288/ydz=19(a+f)
o bt V)
50 c+4)

[&x}
]

Iom" IXA
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Pour le divigéir siz , on a la formule

Sydx F
=5 =g (etg)

F o (E=F)3-+f)
TRICEEIE . 0

Sk c—D+§——§)d;
mais , pour le médme diviseur ; nous avons trouvé
C=4, D=5, E=11, F=%;
en substituant donc, la formule sera
840fydz=41(a-+5)
. 260
= 27(c+e)
+272 d .

Pour le diviseur sepi, nous avons la formule

ed G

o (F—6)(b4g)

o(E=Ft 3 ) )

(VI)
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N

mais pour le méme diviseur , nous avons frouvé

~
IE]
2
-

en substituant donc , la formule sera
17280/ydz= 751(a-+%)
+3577(%45)

+1323(c4)
Ho98g(d-c) - (*)

(VII)

Pour le diviseur Zui# , nous aurons la formule

Jydx

e 2 (ot
o (G—H)(+-7)
+é(ﬁ-—0%§ e+e)
+ o (B-Pt = — ) (@)
+7 (D—Ed— 5477 )es

mais, pour le méme diviseur, nous avons trouvé

o

(*) O voit par 1d que, dans la formule correspondante de la page 376 da
tome VLe¢ de ce recucil, il sest glissé deus légeres fautes. Lies minutes que 'as
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D=2, E=2i, F=%1, G=%!, H=1:,
en substituant donc, la formule sera
28350fydw=98g(a-tr)
~+5888(5-1-%)
— 928(c+g) (VIII)
~10496(d+-f)
— 4540c . (%)

Pour le diviseur neuf, nous avons la formple

Sydx I
T Ty th

+ & (D)

+-7’-!<G-H+-21- )+
+g(F—6+1— 3 ) @+g)

g (B=Ft = — 42 ) s

mais , pour le méme diviseur, nous avons trouvé

E=2 Rt =122 H=tolY = .
4 =38 % ? - n -

? 10 s

en substituant dopc, la formule sera

entre les mains prouvent, au surplus, que ces fautes ne sont que d'impression,
ou tout au plus de copie.

(") On voit qu'ici encore , il s’est glissé une faute d'impression ou de co-
pie dans le coefficient du premier membre de la formule :correspondame de la
page 376 du volume déja cité,
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89600fydr=2857/a-k)
+15741(84-7)
+ 1080(c4-4) (IX)
~+19344(d+5)
+ 5778(e+f)
Pour le diviseur diz nous avons la formule

dx K
L= 2

10 10!
R

o o U—K)G+E)

-

+é (H—-I—l—-i—( ) (c+2)
1 1 K
(6=t 5 — ) @+n
H I K ,
+-é (F-—G+ — — 5+ '4-!')(84"6’)

1 G H I K
+5—!(E—-F+-; — 5t g!—)f:

mais, pour le méme diviseur , nous avons trouvé

321340

13161 3179 . T4340 98860 PR %7
E=22, F=U2t, =222, H=1" ) [=16180, K=-32

a1

en subtituant donc, la formule sera
598752/ydx=16067(a-}7)
~+106300(0--%)
— 48525 c4-7)
F-272400(d47)
—260550(e+48)
-}427368f .

Pour le diviseur onze, nous avons la formule
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oot
- —(K=L)341)
v, 1 L
e (1..K_+-2- )(c+k)

K L : .
+3 (B s — 5 )
R ¢ I K L .
ﬂ";(G:H-{-; — —3',-+-Z; ) (e+%)
ry X H I K L
Fg(F—tt T — 5+ —5) (48 5

mais, pour le méme diviseur, nous avons trouvé

7 266201 . G__;OA_H; - — 3541207 120196
———8‘— ’ ——— 24 3 — 9 -------”i - 2
d 16987357 2171465
K=ieotnn o fosruiis
e it ? _ ia 7

en substituant done, la formule sera
87091200/ydz=2171465/a~m)
~4~13486539(6-4-2)
w3237 113(c-Fk)
(X5
425226685 (d47)
—9595542(e~4-7)

+15493566( f4g) .
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Pour le diviseur douze, nous avons la formule
Jrdxe M
T a (e)

9
<

4+ f—, (L—HM)(b+m)

+ 5 (e 2 ety

b (K — 3 ) @+n
-4——(,;—(1-1---1+—21i - f—, %f)(eu[—z)
+ (o=t - — gt T — ) (et

S e R a1
mais , pour le méme diviseur, nous avons trouvé

If:ui‘:;ﬁ > G=29304 ; - 267‘2 R I—= 2%12 ;
K== 1000058e

2y L=1386144 , M= 212
en substituant donc , la formule sera

ass 1

63063000/ydx = 1364651(a+n)
+9903168(24m)

— 7587864 (c-+2)
~+35725120(d+}-4) (XII)
—51491295(e—7)

~+87516288(f44)
—877971368 . (%)

() Cette formule est exactement celle de M, Bérard ( tom. VII, pag. x10),
et differe totalement de celle que j’avais d’abord publiee ( tom. VI, pag. 377)
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Toutes ces formules se vérifient , au surplus, en ce qu'elles
donnent l'aire cherchée égale a Vunité , lorsqu’on suppose toutes
les ordonnées @, b, ¢,...... ézales elless-mémes 2 'unité.

Dans un prochain article , nous appliquerons ces résultats a
Pintégration approchée des équations différentielles a deux variables.

QUESTIONS PROPOSEES.

Probléme de Geométrie.

IL est connu qu'en général par neuf points donnés on peut
toujours se proposer de faire passer une surface du second ordre
dont lI'espéce se trouve déterminée par la situation respective de
ces neuf points.

Mais , lorsque la surface est donnée d’espéce , elle n’a plas
besoin d’'un si grand nombre de points pour Atre déterminée ;
ainsi , par exemple , une sphére est délterminée par guatre de
ses points; un cylindre droit par ¢ing, et un céne droit par siz
On sait méme faire passer une sphére par quatre points donnés :
mais aucun ouvrage de gdométrie n’enseigne a faire passer un
cylindre et un céne droit par cing ou siz points donnés ; on
propose donc ces deux problemes?

L'erreur était donc ici entitrement de mon c6lé , et je me fais aulant un
plaisir qu'un devoir de le reconnaitre. Elle a di prendre sa source d'une
part dans la complication de mes premiers procédés , et de Il'autre dans
limpuissance ol j’étais de soumettre mes calculs a la vérification d’autrui.

FIN DU NEUVIEME VOLUME,
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Tom, IX. 53
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CORRESPONDANCE

Entre les questions proposdes e Jes questions résolues,

Tome VII, pag.256 Probléme.
Tom,VIII, pag. 200{

Pag.

Pag.
Pag.
Pag.

Pag.

Probléeme L
Probleme 1I.
Probleme I.
26°{Prob1éme IL
284 Probléme.

315 LXLV Problémes.
346 LXLV Problémes.
Probléme I. .

SSO{Probléme L

Tom. IX, pag. 36 Théoreme.

Pag.

Pag. 116{

Probleme II.
Théoréme I.

{ Probléme I.
72

Théortme 1I.
Probléme 1.

. 126
Pag. 12 {Probléme II.

Pag.

Pag.

106 Probléme 1.
9 {Probléme il

Probléme I.
gProbléme 1L,

Probleme III.
zProbléme 1Vv.

Théoréme.

228

traité ,

tom, IX,

un seul.

pages 339—345.

106=116.

[1]1

293—2g5.

il

215—=—228.

|

277==285.

[T

285—28qg.



foa CORRECTIONS ET "ADDITIONS.

— —_ I
ERRATA

Pour le neuviéme volume des Annales.

(o % vl W Ml W1, N1 S Vi ¥

PAGE 36, ligne 3, — o1r; lisez : Sorr,
Pag. 57, ligne 2, en commencant , — - ; lisez : ==,
Pag. 72, avanl-dernitre ligne , == abaissés ; lisez : abaissées perpendiculairement.
Pag. 114, mettez au bas de la note , J. D. G.
Pag. 196, la pagination porte =200.
Pag. 227 , mettez au bas de la note, J. D. G.

Supplément & I'Errata du tome V1.

Page 376, VIL® formule, == 1324 ; lisez : 1323.
Méme formule , = 2986 ; lisez : 298g.
VIILe formule , = 89600 ; lisez : 28350,
Pag. 377, XILe formule. Cette formule est tout-a-fait fausse : on trouve

la véritable , tom. VII, pag. 110.






