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Essai sur la théorie des définitions

Par M. GERGONNE.

JLLIEN ne semble plus propre à rabattre l'orgueil de l'homme -
à lui inspirer une juste défiance de lui- même , et à lut montrer à
quel point sont resserrées les bornes de son intelligence ; rien na
peut mieux lui faire sentir combien ce qu'il appelle sa raison est
encore ^enveloppé de nuages et de ténèbres que la divergence des
opinions des plus grands philosophes , ou du moins de ceux qn'i sont
universellement tenus pour tels, je ne dirai pas sur telle doctrine ,
particulièrement relative à telle ou telle branche de nos connaissances,,
mais sur ces doctrines premières qui semblent devoir être le fon*v
àement commun de tout savoir humain»

Torn. lX,n.° 1, i.er juillet
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Cette divergence d'opinions , indice irrécusable de l'imperfection

de nos lumières , ne se montre en aucune part d'une manière plus
frappante qu'en ce qui concerne les définitions. Les géomètres de
tous les temps y ont attaché le plus grand prix et la plus haute
importance : Platon regardait, dit-on , celui qui savait bien définir,
comme participant de l'intelligence divine ; et Pascal n'a pas hésité
à regarder l'impossibilité où nous sommes de tout définir, comme la
source unique de l'incertitude de nos connaissances,

Locke a professé une doctrine à peu près pareille , touchant les
définitions ; et cependant , une secte philosophique , sortie de son
école , a voulu , dans ces derniers temps , les frapper d'une sorte de
proscription 5 les a signalées, non seulement comme tout-à-fait inutiles ,
rn/ns même comme d'un usage extrêmement dangereux; et beaucoup
de gens aujourd'hui ont adopté et professent hautement cette doctrine.

Ce n'est pas tout encore : parmi les philosophes qui ont admis
la nécessité ou du moins l'utiîiié des définitions , les uns , comme
Aristote et toute son école , ont prescrit de définir par le genre
et la différence ; tandis qu'au contraire, d'autres, comme Locke,
ont prétendu que cette manière de définir n'était pas toujours né-
cessaire ni même toujours possible* Enfin, tandis qu"Aristote distingue
des définitions de choses , sujettes à être contestées , et qui doivent
conséquemment être appuyées d'une démonstration , et des définitions
de noms y qui doivent être admises comme des axiomes , et placées au
même rang qu'eux dans la pratique du raisonnement ; d'autres philoso-
phes , comme Pascal, Hobbes et Locke, semblent n'en avoir reconnu
que de la dernière sorte; et d'AJembert, prenant un parti mitoyen, ad-
met des définitions qui, dit-il, sont un peu moins que des définitions de
choses ? mais cependant un peu plus que de simples définitions de noms.

Il y aurait sans doute beaucoup d'orgueil à prétendre dire encore
aujourd'hui quelque chose de neuf sur un sujet tant et si long-temps
,débattu ; mais , de même que le rapporteur dans une affaire conten-
tieuse peut souvent , avec des lumières d'ailleurs très - bornées,
résumer et balancer les opinions , de manière à répandre plus de
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Jour sur la discussion, et à lui donner une isMie favorable, il peut
également n'être pas sans intérêt et sans utilité qu'un homme de
bonne foi examine à quoi Ton peut raisonnablement s'en tenir à
l'égard des opinions diverses auxquelles la théorie des définitions
a donné naissance ; et c'est parce qu'il nous paraît qu'un éloigne-
ment bien décidé pour ce qui ressemble à l'esprit de secte et de
parti, est la qualité la plus désirable de la part de celui qui voudra
remplir cette tâche ? que nous hasardons de l'entreprendre.

I. En examinant de quelle manière toutes les langues connues
sont constituées , on operçoit d'abord qu'elles renferment toutes égale-
ment et principalement deux sortes de mots 9 dont les uns désignent
des objets individuels , tandis que les autres sont les signes de
diverses collections d'objets ? plus ou moins nombreux , se ressemblant
les uns aux autres par quelques points dont la considération exclusive
a conduit à en faire autant de groupes distincts» Ainsi; par exemple , le
mot Newton est le nom d'un seul individu, tandis que celui de Géomètre
est , au contraire , le nom commun à une multitude d'hommes
difïérens de pays , de caractère , etc. ; maïs se ressemblant du moins
en ce po'nt qu'ils cultivent tous ou ont tous cultivé , dans le cours
de leur vie , les sciences exactes d'une manière spéciale.

11 serait assez difficile de décider si les noms individuels sont plus
ou moins nombreux que les noms collectifs. Mais ce qu'on peut
remarquer c'est que , tandis qu'il n'y a qu'une petite portion des
noms individuels qui soient en usage dans chaque localité , les noms
communs, au contraire , sont presque tous h l'usage de tout le
monde. Ainsi , par exemple, les noms des rues et des places d'une
ville, ceux des individus dont elle est peuplée, qui sont d'ordinaire
très-familiers aux gens qui l'habitent depuis long-temps , sont inconnus
de presque tous ceux qui n'y font point leur résidence ; tandis que les
mots homme , oiseau , poisson , etc. } sont également sans cesse
dans la bouche de tout le monde.

Nous avons dit presque tous , parce que les termes d'arts et i&
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sciences , quoiqu'ils soient , pour la plupart s des noms communs ?
ne sont gaères familiers qu'à ceux par qui ces arts el ces sciences
sont cultivés.

Ainsi, bien que les noms individuels soient extrêmement nombreux;
ils sont, à l'égard de chacun de nous en particulier > comme s'ils
étaient en petit nombre , attendu que chacun de nous n'en a besoin ,
pour son usage, que d'un nombre assez limité ; et voilà comment,*
dans le langage , on emploie incomparablement plus de nomscommuns
que de noms propres , quoiqu'il puisse très-bien se faire que les
derniers soient beaucoup plus nombreux que les premiers. Quoiqu'il
en soit , on sent qu'il existe et qu'il existera toujours une multi-
tude innombrable d'objets dépourvus de noms individuels ; qu'il
serait d'autant plus difficile de les nommer tous qu'il est impossible
de les tous connaître ; €t qu'on sera d'autant moins sollicité à le
faire qu'on n'en pourrait retirer aucun avantage réel. Ainsi, tandis
que les étoiles du ciel , du moins celles que nous pouvons aper-
cevoir , ont toutes reçu des noms , il est très-probable que les arbres
de nos forêts et tes animaux qui tes habitent ne seront jamais honorés
d'une pareille distinction.

Bs même qu'on a inventé des mots pour désigner collectivement
<!es objets qui se ressemblaient à certains égards , on en a inventé
également pour nommer des collections de groupes ayant aussi entre
eux quelques points de ressemblance; on en a inventé encore pour
réunir, par des propriétés communes , plusieurs de ces collections
de groupes , et ainsi de suite ; jusque-là qu'on est enfin parvenu ,
d'abstraction en abstraction , à un mot unique comprenant univer-
sellement dans sa signification tous tes objets de nos pensées : c'est
le mot être dans notre langue.

Les premiers inventeurs de langues, c'est-à-dire, les premières
réunions d'hommes, ont donc fait par instinct ce que postérieure^
ment les naturalistes ont fait par un dessein réfléchi , c'est-à-dire
que, pour éluder la difficulté , ou , pour mieux dire , l'impossibilité

des noms * tous les objets qui affectaient ou pouvaient
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affecter lenrs sens, ou occuper leurs pensées , ils se Sont tornés à
former des classes , des ordres , des genres , des espèces } des
parwtês f etc. Mais on conçoit très-bien qu'entre leur travail et celui
des naturalistes , II doit y avoir la même différence qui existe entre
des habitations informes bâties a la hâte , dans la seule vue de
satisfaire au premier besoin , et de superbes palais, élevés d'après
des plans dressés à l'avance et long-temps médités. Si donc le travail
d^s naturalistes est loin d'être parfait ; si chaque jour on se trouve
obligé dfy apporter quelques modifications , d'y remplir des lacunes $

d'en faire disparaître des doubles emplois et d'y réparer de graves
omissions ; à combien plus forte raison les classifications entreprises
par les premiers inventeurs des langues doivent-elles laisser k désirer.
C'est .seulement dans un état de civilisation très-avance qu'on pourrait
tenter de reprendre un pareil travail avec tout le soin que semble exiger
son importance ; mais alors même , il laisserait toujours quelque
chose k l'arbitraire ; et son exécution serait inévitablement subor-
donnée à la tournure d'esprit et à la manière de voir et de sentir
de celui qui aurait le courage de s'en charger. Si d'ailleurs, comme
on ne saurait en disconvenir , la langue que nous avons apprise
dans notre enfance est l'instrument dont nous nous servons pour
penser ; il est naturel d'en conclure que le travail grossier des pre-
miers inventeurs des langues ne serait pas sans quelque influence
sur ce travail plus perfectionné.

Nous venons de voir comment un premier genre d'abstraction
avait donné naissance à un grand nombre de mots de nos langues :
nous allons voir un autre genre d'abstraction contribuer encore à
les enrichir*

Les objets de nos pensées ne sont réellement pour nous que des
collections de propriétés par lesquelles nous avons prise sur eux. Que
le sujet dans lequel nous concevons ces propriétés puisse en être
totalement dépouillé saus perdfe toute existence réelle , ou , qu'au
contraire , ce soit l'ensemble même de ces propriétés qui en constitue
l'existence ; c'est là ce que nous devons probablement consentis
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à toujours ignorer, et ce qu'au surplus il nous importe assez peu
de savoir.

Maïs tandis que, drun objet à un autre , quelques-unes de ces
propriétés sont différentes ? il en est d'autres , au contraire , qui
sont constamment les mêmes dans plusieurs objets , très-dîfférens
d'ailleurs , sous d'autres rapports ; et c'est ce qui nous a conduit
à détacher ces propriétés des objets dans lesquels elles résident,
pour en faire le sujet particulier de nos pensées > et à leur imposer
des noms ; et c'est ainsi , par exemple , que ce sont introduits dans
le langage les mots qui représentent les couleurs , les odeurs , les
saveurs , etc. Ces mots ne désignent ni des individus 5 ni des collec-
tions d'individus ; mais seulement la manière commune dont nous
affectent, sous un point de vue particulier, certaines classes d'in-
dividus.

Mais , parce que , dans l'origine, on avait représenté les choses
par des mots ; on a été bientôt conduit à supposer que tous les mots
devaient exprimer des choses , ayant une existence réelle et indé-
pendante ; ainsi , par exemple , on s'est figuré qu'il existait une
rondeur tout-à-fait indépendante des objets en qui on remarque cette
qualité , et l'on a sérieusement demandé , par exemple , ce que
devenait la rondeur d'une boule de cire lorsque celte boule était
applatie. C'est cette réalité , attribuée faussement à de pures con-
ceptions de notre esprit, qui a donné naissance à tant de vaines dis-
putes et fait dire tant de sottises dans les écoles.

Au surplus , ce second genre d'abstraction n'est pas aussi diffé-
rent du premier qu'on pourrait être d'abord tenté de le croire ; et
il est évident, par exemple , qu'en créant le mot blanc ou blancheur s

on n'a fait autre chose que réunir dans une même classe tous les
objets dans lesquels cette couleur se manifeste.

On a donc créé des mots dont les uns désignaient de simples individus,1

les autres des collections d'individus, et d'autres enfin des propriétés ou
manières d'être communes à plusieurs individus; et ces mot$ sont ce
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qu'on appelle des noms en termes de grammaire. On les a distingués en
noms substantifs et en noms adjectifs ; mais cette distinction est nëe
de la supposition de l'existence dans chaque objet d'un soutien ou
support des qualités par lesquelles cet objet se manifeste ; et ,
comme cette supposition ne saurait être appuyée d'aucune preuve ,
il s'ensuit qu'on ne doit raisonnablement considérer la distinction
des noms en noms substantifs et en noms adjectifs , que comme une
distinction purement grammaticale.

Les noms tant substantifs qu'adjectifs ne spnt pas les seuls dont
on ait besoin dans les langues , et il est nécessaire d'y introduire
encore des mots qui marquent les relations que les choses ont entre
elles ; tels sont les mots égalité, inégalité, antériorité, postériorité *
dessus, dessous, dedans , dehors, et une multitude d'autres, dont
on pourrait grammaticalement faire plusieurs classes , mais que ,
philosophiquement parlant , on peut comprendre dans une seule» Si
l'on y joint le verbe substantif, c'est-à-dire , le verbe être ou son
équivalent dans les idiomes étrangers à notre langue ? on aura la
collection a peu près complète des mots strictement nécessaires à
toutes les langues, et qui se retrouvent à peu près dans toutes*

Pour qui a peu de besoins et peu de pensées , la langue peut
impunément être extrêmement bornée ; mais , à mesure que les
besoins se multiplient, que les relations se compliquent, que les
pensées se combinent, le besoin de mots nouveaux se fait sentir
de plus en plus ; et , ce qu'on paraît n'avoir pas assez remarqué ,
c'est que ces mots n'agissent simplement que comme abréviation ;
et qu'ils remplissent exactement le même office que remplissent en
algèbre les symboles par lesquels, dans la Tue de simplifier les
calculs et leurs résultats , on représente des fonctions que Toa
prévoit devoir se reproduire fréquemment,
. On peut remarquer ? en effet f que , de même qu'en chimie 5 le
mixte le plus composé ne peut oJfïrir qu'une combinaison soit des
élémens communs à tous les corps , soit d'autres mixtes plus simples ^
formés eux-mêmes de la réunion de quelques-uns de ces élémens}
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les Idées qu'une science embrasse , les propositions dont eïTes $é
composent , ne sauraient également contenir que les idées et pro-
positions élémentaires que l'étude de la science suppose déjà acquises t

ou d'autres idées et propositions formées déjà de la combinaison de
quelques-unes de celles-ci.

Si donc on n'avait recours à quelques moyens d'abréviation, II
est aisé de sentir qu'à mesure qu'on pénétrerait plus avant daas
quelque science que ce soit, qu'à mesure que les propositions s'éloi-
gneraient davantage des notions premièresd7où on las aurait dérivées;
elles se compliqueraient de plus en plus; et ce serait là un obstacle
assez grave pour arrêter bientôt la marche de l'esprit humain dai>s
ses recherches , et rendre ainsi le progrès des sciences tout-à-faîfc
impossible. On ne peut f. en effet, saisir nettement le sens d'une
proposition qu'autant que les idées dont elle se compose et les rapports
qu'elle annonce exister entre elles , sont simultanément présens
à la pensée ; et comme , d'un autre coté , notre esprit n'a pas la
faculté d'embrasser à la fois , d'une manière distincte , un grand
nombre d'objets , il est nécessaire d'en conclure qu'une proposition
qui renferme explicitement dans son énoncé , une multitude d'idées
et de rapports divers, est , par là même, une proposition* tout-à-faii:
inintelligible*

Prenons, par exemple, cette proposition très-élémentaire de géo-
métrie : Dans un demi-cercle , la perpendiculaire abaissée d'un
peint quelconque de la circonférence sur le diamètre est moyenne
proportionnelle entre les deux segmens de ce diamètre ; et supposons
que , dans la vue de nous rapprocher du langage vulgaire , nous
voulions ôter de cette proposition les mots circonférence, diamètre 9

perpendiculaire et moyenne proportionnnelle , il faudrait Pénoncer
ainsi : Une courbe plane ayant tous ses points également distans
d'un même point ; si 9 ayant mené par ce point une droite ter-
minée de part et d'autre à la courbe > on mène, par un autre
point quelconque de cette courbe , une droite faisant des angles

% avec celle-là , et terminée à sa rencontre avec elle*, le
quarrè
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çuarré Construit sur cette dernière droite sera équivalent au rectangle
construit sur les deux parties qu'elle détermine sur la première*
Voilà , certes , de'jà une proposition d'une passable longueur; mais,
qu'on essaie d'en faire disparaître encore les mots angle , çuarrâ,
rectangle, équivalent, et Ton verra qu'il deviendra tout-à-fait im-
possible , non seulement de la comprendre , mais même de l'énoncer
nettement; et cependant il ne s'agit ici que d'une proposition tout-
à-fait élémentaire ; que serait-ce donc s'il était question de quelque
théorème de mécanique , tel , par exemple , que celui des vitesses
•virtuelles ou de la conservation dôs forces vives;

C'est donc bien à tort que Ton reproche aux savans de ne point
parler la langue vulgaire , et d'en créer une exclusivement destinée
à leur usage ; c'est au fond leur reprocher de s'occuper d'antres
objets que ceux dont s'occupe le vulgaire, ou d'envisager les objets
sous d'autres rapports. Ce n'est point volontairement, c'est tout-à-^
fait par contrainte qu'ils créent des roots nouveaux, à mesure qu'ils
pénètrent plus avant dans leurs recherches; peut-être même pourrait-
on leur reproeher, au contraire, de ne pas user assez largement
de cette faculté • il y a apparence qu'alors beaucoup de parties des
sciences deviendraient d'une étude plus facile ; précisément parce
qne les propositions dont ces parties se composent deviendraient
d'un énoncé plus brief (*).

C'est en imitant exactement ce que font les algébristes lorsqu'ils^
calculent que Ton pourra parvenir à éluder cet inconvénient des
longues phrases. À mesure qu'ils s'aperçoivent que leurs résultats
se compliquent , ils ont soin de désigner par un caractère unique

(*} C'est, par exemple , une chose tout-à-faît inconvenante qu'on n'ait pas
encore de nom pour désigner et la droite qui divise un angle en deux parties
égales et la perpendiculaire sur le milieu d'une droite. Le mol projection peut
aussi rendre plus courtes , et conséquemment plus claires, beaucoup de propo-
sitions de géométrie ; et cependant il n'y a guère que M» Frâncœar qui êit
songé jusqu'ici à l'introduire dans les

2om. IX*
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chacune des combinaisons de lettres qui s'y trouvent répétées plu*
sieurs fois ^ ils opèrent ensuite sur les nouveaux symboles qu'ils ont
ainsi institués comme ils l'avaient fait sur les premiers ; et, si leurs
formules se compliquent de nouveau , ils les simplifient encore par
un semblable procédé , et parviennent enfin, par l'application répétée
du même artifice, à un dernier résultat dont la simplicité n'a, pour
ainsi dire , d'autres limites que celles qu'il leur plaît de lui assigner-
A la vérité , ce résultat final renferme autre chose que les élémens
primitifs de la question à laquelle il se rapporte , et peut même
-De renfermer aucun de ces élémens ; mais il n'en est pas pour ceja
moins intelligible , puisque les symboles dont il se compose repré-
sentent des combinaisons connues soit de ces élémens f soit d'autres
symboles intermédiaires , qui en sont eux-mêmes des combinaisons
absolument déterminées» C'est ainsi, par exemple , que si Ton a
la formule

£n y faisant

«Ile devient

ui devient elle-même
M

n posant à la fols

C'est encore ainsi que continuellement ? dans le calcul, on remplace
les séries



DE LA DÉTINT m tf-tt rf

x 1.2,0 1.2.3.4.5 1.2.3.4.S.o.j

r ~ " T I • 1.2.3.4 1.2.3.4.5.6 **"#--tf# *

les abréviations Sin,#, Cos.^r, e , ••.
Si donc on ne veut pas que les propositions se compliquent de

plus en plus , à mesure qu'on avance dans les sciences , il faut
pareillement créer des mots nouveaux pour désigner les combinaisons
d'idées, rapports ou vues de l'esprit dont on prévoit que la consi-
dération pourra s'offrir fréquemment, et que, sans cet artifice ? on
ne pourrait exprimer que par de longues phrases. Il est donc vrai
de dire qu'en créant ou en perfectionnant une science on se trouva
inévitablement, conduit à créer ou à perfectionner une langue ; et
il est encore vrai de dire que , de même qu'en algèbre, un choix
heureux de notations rend les calculs beaucoup plus faciles k suivre
et à exécuter, la bonne composition de la langue d'une science ,
quoiqu'elle ne constitue pas seule la science 7 est singulièrement propre à
en faciliter Tétude et à en hâter les progrès*

En ayant donc l'attention , toutes les fois du moins que le besoin
ou l'utilité s'en fera sentir, de remplacer une collection de mots
par un mot unique équivalent, il arrivera que les propositions placées
aux dernières limites des scienees ne seront pas plus compliquées
que les propositions élémentaires desquelles elles auront été déduites;
et , bien qu'elles soient formées de mots différens de ceux qu'on
avait employés dans l'énoncé de celles-ci f elles n'en seront pas pouî
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cela moins Intelligibles , puisque le sens de chacun des mots dans
lesquels elles seront exprimées pourra toujours être Indiqué à l'aide
d'autres mots dont la signification précise aura été antérieurement
fixée.

On pourrait objecter ici qu'en remplaçant ainsi une collectîoa
de mots par un mot unique , l'esprit n'en sera pas moins obligé
de porter son attention sur la totalité des idées dont on l'aura
constitué le symbole , .et qu'ainsi on n'évitera qu'en apparence
l'inconvénient des longues phrases et l'obscurité qu'elles entraînent.
Mais , outre qu'une expérience constante montre assez tout l'avan-
tage que nous retirons de ces sortes d'abréviations , soit dans le
discours , soit lorsqu'en nous-mêmes nous nous aidons des mots pour
penser , on peut observer que , .lorsqu'une idée est exprimée par
un grand nombre de mots , nous ne pouvons la saisir nettement
et la distinguer sûrement de taute autre idée dont l'expression aurait
des points nombreux de ressemblance avec la sienne ? qu'autant que
notre attention se porte successivement, et même à plusieurs reprises ,
sur tous les mots qui l'expriment ; tandis qu'au contraire ? en rem-
plaçant une collection de mo.ts par un mot unique , dès-lors que
nous nous sommes une fois rendue bien familière la signification de
ce mot, il peint nettement à notre esprit la collection d'idées qu'il
est destiné à rappeler. On se convaincra au surplus, d'une manière
tout-à-fait frappante , de l'exactitude de ces réflexions , en réflé-
chissant à l'embarras extrême .où nous nous trouverions si les noms
des nombres n'étaient point inventés , et si nous étions forcés de
les suppléer par renonciation distincte .de toutes les unités que
£es nombres renferment,

Ce ne peut donc être? , au plus , que les premières fois qu'un
mat nouveau vient s'offrir à nous, que nous sommes obligés de
nous rappeler , d'une manière explicite, toutes les idées qu'il ex-
prime ; aussi éprouvons nous que c'est alors seulement que son usage
nous cause quelque embarras ; mais cet embarras disparaît bientôt
par Tiîiïet <ie l'habitude ; et nous ne tardons pas à trouver ? an
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eeniraîre ^ un très-grand secours dans l'usage de cette même ex-
pression dont t au premier abord , nous avions à peine entrevu
l'utilité. C'est ainsi , en particulier, que toute la science du calcul
repose sur la puissance des mots f c'est-à-dire , sur l'emploi des
dénominations des diverses collections d'unités. On doit ajouter encore
qu'assez souvent on peut raisonner sur les mots sans qu il soit
besoin de s'enquérir de leur signification , tout comme en algèbre
on exécute des calculs , sans songer aucunement à ce que repré-
sentent les symboles sur lesquels on opère.

Mais somme enfin les mots ne sont au fond que de vains sons f

tout-à-fait insignifians par eux-mêmes 7 et ne pouvant devenir les
signes de nos pensées qu'en vertu d'une convention ; et comme
d'ailleurs il est impossible soit d'en faire UH emploi convenable f

soit de comp^ndre l'usage qu'en font ceux qui nous parlent , sans
être au courant de cette convention , il est d'une nécessité rigoureuse ,
toutes les fois qu'on introduit des mots nouveaux dans le langage ,
d'en circonscrire nettement le sens ; et c?est là ce qu'on appelle
les définir. Ainsi, faire une définition , c'est proprement et unique-
ment annoncer que l'on convient d'exprimer à l'avenir , par un
mot unique , choisi arbitrairement f une collection d'idées que ?

s»ans le secours de ce mot , on serait obligé d'exprimer par
le moyen de plusieurs autres > et conséquemment d'une manière
moins briève. Ainsi , par exemple , lorsqu'on dit : j'appelle nombre
premier un nombre entieF qui n'a d'autres diviseurs que lui-même
et l'unité ; j'appelle diamètre d'un cercle une ligne droite qui f
passant par son centre , se termine , de part et d'autre , à sa eircon^
férence , on fait des définitions. La définition ne fait donc autre chose
qu'établir une identité de sens entre deux expressions d'une même
collection d'idées dont la plus simple est nouvelle et arbitraire,
tandis que l'autre , plus composée , est énoncée en mots dont le
sens se trouve déjà fixé , soit par l'usage , soit par une convention
antérieure. Demander donc si l'on doit définir les mots , c'est de-
mander à peu près s'il faut parier à la manière des perroquets 7
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attacher aucune idée nette aux mots qu'on prononce • c'est
s'il est permis d'introduire un nouveau symbole dans un calcul
algébrique sans faire connaître quelle est la fonction des quantités
déjà connues que ce symbole représente.

D'après Tidée que nous venons de donner des définitions , il sem-
blerait qu'elles dussent être tout-à-fait arbitraires; on les a néan-
moins assujetties à des règles parmi lesquelles, au surplus, deux
seulement paraissent d'obligation rigoureuse , mais qui pourtant
sont toutes bonnes à observer -9 voici en peu de mots à quoi elles se
réduisent:

I, La définition doit renfermer un mot et ne doit renfermer
qiiun seul mot dont la signification n'ait pas été antérieurement
déterminée. Il est clair , en effet , qu'une définition qui ne renfer-
merait dans son énoncé que des mots connus ne serait point pro-
prement une définition , puisqu'elle ne fixerait le sens d'aucun mot*
Elle ne pourrait être considérée que comme un théorème, lequel
aurait besoin d'être prouvé. D'un autre côté , une définition qui
présenterait dans son énoncé plusieurs mots dont la signification ne
serait pas antérieurement connue ne mériterait pas davantage le nom
de définition , puisqu'elle ne pourrait , au plus \ qu'établir une
relation entre les idées que ces mots expriment, sans fixer propre-
ment le sens d'aucun d'eux, ho premier cas revient à celui où
Ton donnerait , en algèbre , la valeur d'une quantité connue en
fonction d'autres quantités également connues ; le second revient
à celui où l'on exprimerait une quantité inconnue en fonction d'une
ou de plusieurs autres quantités tout aussi inconnues qu'elle (*).

(*) II est pourtant des définitions qui, bien que régulières , sembleraient, au-
premier abord » pécher contre la dernière partie de cette règle : ce sont celles
qui ont pour objet des mots compose's , tels ,_ par exemple , que ceux-ci ;
sciences exactes , chimie végétale , anatomie comparée , géométrie descriptive 9.
etc. , mais ici chacun de ces mots composés doit être considéré comme n'e»
formant qu'un seuL

II convient aussi d'observer que souvent rarangemeût àe$ mots simples dan*
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î^a définition ne devant renfermer dans son énoncé qu'un seul

tnot nouveau ? on sent d'après cela qu'il ne saurait être permis de
définir un mot à l'aide soit de ce mot lui-même , soit de quelqu'un
de ses de'rivés ou composés* Cela reviendrait à vouloir, en algèbre,
donner la valeur d*une inconnue, soit au moyen de cette inconnue,
soit h l'aide de quelqu'une de ses fonctions. Celui qui, par exemple ,
définirait Y astronomie 5 la science de Y astronome pécherait évidem-
demrnent contre ce précepte.

On donne aussi communément comme règle des définitions, de
ne point employer le même mot à désigner deux idées ou deux,
collections d'idées différentes ; niais cette règle , bien importante
sans doute, se trouve implicitement comprise dans la première. SI
quelqu'un , en effet , par deux définitions distinctes , se permet
d'attacher successivement au mên^e mot des idées différentes , rïca
n'empêchera d'admettre la première de ces définitions , et dès-lors
la seconde , ne renfermant plus aucun mot dont le sens ne soit
déjà antérieurement fixé y cessera par là même d'être proprement
une définition. Ce sera donc un théorème dont on pourra demander
la démonstration. C'est ainsi qu'en algèbre , si l'on donne deux
valeurs d'un symbole nouveau , en fonction de quantités toute*
connues , on pourra fort bien admettre Tune d'elles ; mais il faudra
ensuite prouver que l'autre coïncide avec celle-là.

Toutefois , à raison de la répugnance 9 peu fondée sans doute ,
que nous avons à forger des mots nouveaux , aussi souvent que
nous en éprouvons le besoin ou l'utilité , cette règle , malgré son
évidente importance , n'est point prise très à la rigueur dans la
pratique ; et on ne rencontre que trop souvent , dans le langage »
des mots qui sont pris, tantôt sous une acception et tantôt sou$

le mot rompostl influe sur la signification de celuï-cï ; et c'est ainsi f par
exemple , qu'un auteur pauvre peut fort i>ien ne paf être un pawrs
muUur*
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une auïrô : tels sont, par exemple , les mots ellipse et
que les rhéloriciens emploient sous une acception très-différente de
celle qu'ils ont reçus en géométrie.

L'inconvénient n'est point très - grave encore , lorsque, comme
dans cet exemple ? les mots dont on fait double emploi ont, dans
les deux cas , des significations totalement différentes. Il n'arrive
ià., en effet, que ce qui arrive en algèbre, lorque, dans deux questions
indépendantes , on se permet de faire usage des mêmes lettres pour
représenter des élémens divers; mais il n'en est plus ainsi, lorsque
les diverses acceptions d'un même mot se trouvent avoir entre elles
une certaine analogie , et sur-tout lorsque c'est dans.une même
science qu'elles sont adoptées ; c'est , par, exemple , ce qui arrive
en géométrie pour les mots axe $ pôle, tangente } projection , etc,,.
On se trouve alors à peu près dans le même cas où serait un
analiste qui , dans une même question , représenterait , par un même
symbole , plusieurs élémens distincts. On ne saurait donc alors usep
de trop de précaution pour éviter l'équivoque* Ce qu'on peut faire
de mieux pour y parvenir, c'est d'ajouter , dans les différens cas^
au mot qu'on se propose d'employer à plusieurs usages , des déter-
minatifs formant avec lui des mots composés drssemWables. C'est
à peu près de la même manière que , lorsque dans une même
question d'algèbre on juge convenable de représenter plusieurs élé-
irums.par une même lettre , on a soin d'affecter cette lettre de
divers accens ou, de divers indices., dont la combinaison avec elle
en forme autant de caractères différens..

IL La définition doit renfermer tout* ce qu'il faut pour bien-
fixer le, Sens du mot défini : il convient quelle ne^ renferme rien
ùM-delà de ce qui est nécessaire pour remplir cette destination.
La première partie de cette règle est évidemment de rigueur; car
Ton sent fort bien qu'en la négligeant on ne ferait point une défit
rntîon , puisqu'on ne fixerait le sens d'aucun mot. C'est, par exemple ,
ce qui arriverait si , voulant défini? la sphère 7 on se bornait à dire
aue c'est une surface courbe. Quant à la seconde partie de la

même
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règle f quoiqu'elle ne soit pas d'observation rigoureuse , il est

néanmoins très-bon de s'y conformer; attendu qu'en toutes choses ,
tout ce qui ne concourt pas nécessairement au but qu'on se pro-
pose est par là-même superflu. Ainsi , par exemple > ce serait définir
la sphère d'une manière inconvenante que de dire que c'est une
surface dont tous les points sont également distans d'un même point
et dont toutes les sections par des plans sont des cercles, puisque
la première de ces propriétés suffit pour distinguer la sphère de
toute autre surface , et que la seconde y est implicitement contenue.

Le défaut de cette attention pourrait môme rendre une définit on
tout-à-faït vicieuse , en y comprenant quelque autre proposition
contraire à la nature de l'objet défini ; et c'est ce qui arriverait ,
par exemple , pour la définition que nous venons de citer , si la
sphère était de nature à ne pas avoir toutes ses sections circulaires.
Uans tous les cas , une définition qui renfermera au-delà de ce qui
lui est nécessaire , contiendra par là même implicitement quelque
théorème et perdra ainsi la précieuse prérogative de se faire recevoir sans
contestation.

La plupart des auteurs de logique prescrivent de définir par le
genre et la différence ; c'est-à-dire , qu'ils veulent que , considérant
l'objet à définir comme espère , on énonce le genre dont cette
espère fait p.utie et le caractère qui distingue cette espèce de toutes
les autres du même genre. Cette méthode serait très-bonne à suivie
généralement, si nous possédions une classification exacte et complète
des objets de nos connaissances; mais, jusqu'à ce que nous en soyons
là , ce serait se tourmenter en pure perte que de vouloir constam-
ment s'assujettir à ce précepte.

Une chose très-essentielle à remarquer , c'est que le but d'une
définition n'est point , en général , de nous donner une connaissance
Gomplète de l'objet que désigne le mot défini , mais seulement de
nous mettre en état de le distinguer nettement de tout ce qui n'est
pas lui. Ainsi , par exemple , quelque définition qu'on adopte pour
le mot végétal ou pour le mot or 7 jamais nous ne pourrons noua

Tom* IX. 3
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flatter d'y comprendre toutes les propriétés de ces deux sortes
puisque nous ne saurions même nous flatter de les toutes connaîtie;
maïs il suffit que les dt finitions que l'on donnera de ces deux mois
nous mettent en état de distinguer ce qui est or ou végétal de ce
qui ne Test pas.

11 est , au contraire , certains objets de nos pensées qui se trouvent
tellement renfermés dans leur définition qu'il est impossible d'en
rifri dire q i n'y soit implicitement compris; c'est, en particulier,
le cas de tous les objets que Ton considère dans les sciences exactes ,
et c'est ainsi, par exemple, qu'on sait tout du cercle , ou du moins
qu'il est possible de tout en savoir , lorsqu'on en sait la défini-
tion. On pourrait appeler ces sortes de définitions des définitions
complètes ? en appelant, par opposition , définitions incomplètes ,
celles qui 9 suffisantes pour faire discerner un objet de touk autre t"
îie le sont pas néanmoins pour le faire < complètement connaître*

III. / / convient d'imposer des noms à toutes les collections d'idées
et aux seules collections d'idées que l'on prévoit devoir se reproduire
fréquemment dans le discours. Ou conçoit , en effet , qu'en négli-
geant cette double précaution, on s'exposerait tantôt à rendre la
langue extrêmement prolixe , et tantôt à la surcharger d'un grand
nombre de mots , sans aucun avantage réel. On a fort bien fait,
par exemple , de donner des noms aux nombres sur lesquels on
opère , dans la multiplication et dans la division , et on ferait peut-
être bien , pour les mètnes raisons y d'en donner aussi aux nombres
que Ton considère dans l'addition et la soustraction ; mais on ferait
également bien sans doute de débarrasser 1 astronomie d'une inulti-
îude de locutions non moins barbares pour la plupart qu'elles sont
superflues, et qui n'ont d'autre eiïel que de rendre la science d'un
abord plus âpre < t plus rebutant.

IV. // convient de définir tous les mois et les seuls mots sur
la signification desquels on nest point généralement daccord. En
efFet , les définitions étant destinées à faire connaître le sens des
mui$, sont par là-même inutiles 9 toutes les fois que ce sens se
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trouve fixe sans équivoque ; tandis qu'au contraire l'omission d'une
définition à i égard dos mots dont le sens n'est point fixé d'une
manière uniforme et invariable t ne peut que rendre vagues et
équivoques les propositions dans lesquelles ces mots sont employés.

Aussi voit-on que la plupart des disputes, lorsqu'on vient à les
examiner de prè* , se récitaient à de simples disputes de mots, dans
lesquelles au fond les deux parties sont d'accord et ne diffèrent que
par les diverses acceptions qu'ils attachent aux mêmes mots , et
desquelles il résulte que telles propositions qui paraissent évidentes-
à l'un paraissent au contraire à l'autre d'une fausseté manifeste.

On demande, par exemple, sur les bancs des écoles, si Fàme
pense toujours ; et ceux qui soutiennent l'affirmative en donnent
po ir raison que l'âme est une substance essentiellement pensante ;
il est clair, en effet, que, si Ton admet une telle définition d@
l'âme f Pâme ne peut cesser de penser sans cesser d'être une âmef
Tnais, par cette définition, on ne fait , à ce qu'il nous parait , que
déplacer la question ; elle se réduit alors , en effet , à ceUe-ci %
avons nous constamment une âme dans tous les mstans de

ne f
De même encore , les physiciens et les chimistes disputeraient

moins sur les propriétés essentielles de la matière, s'ils prenaient la
peine de faire attention que le nombre et la nature de ces pro-
priétés sont tout-à-fait subordonnés à la définition qu'on voudra adopîef
du mot mai/ère. Si, par exemple , on appelle matière tout ce qui
est capable d'affecter nos sens , on ne pourra contester la matérialité
de la cause de la chaleur , de celles de la lumière et de celles
des phénomènes magnétiques et électriques , quand même Timpon-
dérabilité de ces divers agens serait aussi bien prouvée qu'elle l'est
peu. Que si , au contraire , on appelle simplement matière tonte
portion d'étendue impénétrable f la question de la matérialité dtt
calorique de la lumière , de l'électricité et du magnétisme se réduira
à examiner si ces êtres jouissent ou ne jouissent pas de l'étendue et
de l'impénétrabilité..
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Non seulement on ne doit pas définir tous les mots, mais il est

même des mots que l'on tenterait vainement de définir ; et cette
impossibilité résulte de la nature même de la chose. Puisqu'en effet,
définir un mot, c'est en expliquer le sens, à l'aide d'autres mots
dont la signification a déjà été antérieurement fixée ; on sent qu'on
ne pourrait tenter de définir tous les mots , sans tomber dans un
cercle vicieux inévitable (*). Les mots qu'on ne saurait définir sont
principalement ceux qui expriment des idées simples , soit physiques t

«comme il arrive pour les noms des couleurs , des odeurs , des
saveurs , des sons , etc., soit métaphysiques, comme il arrive pou?
les noms des passions . affections ou faculté de l'âme , pour les
propositions , pour les mots étendue ,durée , ressemblance, différence ̂
etc. On ne saurait non plus dé fin vr les noms des individus, attendu
que les qualités qui les constituent tels sont presque innombrables
et nous sont le plus souvent inconnues pour la plupart. Enfin , il
est presque impossible de définir les mots qui expriment des no-
tions abstraites très-compliquées et très-fugitives , tels que eeux de
gloire , de justice , de vertu , de bonheur.

Mais, dira-t-on , s'il est impossible de définir tous les mots, eomment
donc parviendra-t-on à connaître la signification des mots non sus*
ceptibles d'être définis ? Nous répondrons que , s'il s'agit de mots
qui expriment des idées sensibles , on parviendra à en faire com-
prendre le sens > en produisant la sensation à laquelle ils répondent 9

en même temps qu'on les prononcera. Maïs , il est encore certaines
précautions délicates sans lesquelles les tentatives de cette sorte
d'enseignement pourraient devenir tout-à-fait infructueuses. Si , par

<*) Pascal regarde l'impossibilité' absolue ou nous nous trouvons de définir,
tous les mots comme une imperfection de nos méthodes ; mais , si Ton ne
doit appeler imperfection dans un objet que l'absence d'une qualité qui pourrait
$'y trouver , nous ne saurions sur ce point partager l'opinion de l'auteur des
Pensées,
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exemple , dans la vue de faire connaître à un enfant en bas âge
la signification du mot rouge f on met simultanément sous ses yeux
des Cerises , des Fraises, des Groseilles , des Framboises , etc. â
il sera fort à craindre qu'il ne prenne le change et n'attache au
mot rouge le sem que nous attachons au mot fruit. II faudra donc
choisir de préférence des objets tout-à-fait disparates d'ailleurs , et
n'ayint , ponr ainsi din* , d'autres propriétés communes que celle
que. dêVigne le mot dont il s'agit de faire connaître la signification*
Ainsi , par exemple , dans le cas actuel , on fera convenablement
de prendre pour objet d'expérience une Jleur , un fruit, du vin et
un morceau d'éttjje. Si , au surplus, on n'a pas sous la main ces
divers objets , et que leurs noms soient déjà connus de celui à qui
on s'adresse, il suffira de les lui rappeler. Ainsi , par exemple , en
lui disant successivement

Le sang est rouge ,

Une pivoine est rouge ,

Une fraise est rouge ,

Uècarlate est rouge t

Etc. , etc. , etc. ;

il y a tout lieu de croire qu/il se formera une idée nette de îa
-signification du mot rouge*

La ressource que nous venons d'indiquer, comme propre à faîrei
connaître la signification des mots qui , exprimant des idées sen-
sibles , ne sont point susceptibles de définition , ne saurait évidemment
être employée vis - à - vis des êtres privés de l'organe auquel
ces idées sont relatives; et voilà pourquoi, par exemple, pour les
aveugles de naissance , les noms des couleurs ne seront éternellement

de vains sons $ auxquels il nous sera à jamais impossible de
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leur faire attacher les idées que ces sons réveillent en BOUS. I/homme
doué d'un sens de plus serait exactement dans la même situation
à notre égard.

Si un mot exprime une idée simple intellectuelle * tel que le*
mots désirer, craindre , se ressouvenir , etc. , ou une idée de re-
lation , telle que les mots dessus , dessous f dedans , dehors, etc. ^
ee ne sera guères que , par une observation attentive et long-temp$r
prolongée , des diverses circonstances dans lesquelles ce mot est em-
ployé par ceux qui en connaissent bien la valeur , que Ton pourra
parvenir à en découvrir l'exacte signification % et se mettre soi-même-
en état d'en faire un emploi convenable.

On voit par là, pour le dire en passant, de quelle importance,
il peut être de placer près des enfans en bas âge des personnes
intelligentes qui sachent leur faire acquérir de bonne heure une-
connaissance exacte de leur langue , connaissance au défaut de
laquelle ils ne pourraient retirer que des fruits tardifs et souvenl
très-imparfaits de l'éducation dn monde , bien autrement importante*
que celle qu'on reçoit dans les collèges*

Le moyen que nous venons d'indiquer comme propre à acquérir
l'intelligence de mots qui expriment des idées simples intellectuelles r

peut être généralement employé à la recherche de la signification?
de tous les mots d'une langue ; et dès qu'on en connaît un certaia
nombre , des lectures choisies et la fréquentation des gens qui parlenl
bien r suffisent pour acquérir peu à peu l'intelligence de tous les
autres» C'est f en effet > de cette manière que les enfans en bai
âge , le peuple et même les gens lettrés parviennent , sans le se-
cours des définitions et des vocabulaires * à apprendre peu à peu
leur langue , et c'est encore de la même manière <jue nous apprenons
Souvent les langues étrangères par le seul séjour dans les pays oiV
elles sont généralement en usage. On conçoit fort bien, en effetr

^ue , si une phrase contient un seul mot dont la signification nous
soit inconnue , l'énoncé de cette phrase pourra souvent suffire pouf
mmis en ré*éU* la taJeur. S i , par exemple f ou dît à
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qui connaît bien les mots triangle et quadrilatère , maïs qm n'a
jamais entendu prononcer le mot diagonale , que chacune des deujc
diagonales d un quadrilatère le divise en deux triangles, il concevra
sur-le < hamp ce que c'est qu'une diagonale , et le concevra d'autant
mieux que c'est ici la seule ligne qui puisse diviser le quadrilatère
en triangles*

Ces sortes de phrases , qui donnent ainsi l'intelligence de l'un
des mots dont elles se composent , au moyen de la signification
connue des autres , pourraient être appelées définitions implicites ,
par opposition aux définitions ordinaires qu'on appellerait définitions
txphcites \ et Ton voit qu'il y aurait entre les unes et les autres
la morne différence qui existe entre les équations résolues et les équa-
tions non résolues. On conçoit aussi que , de même que deux équations
enlie deux inconnues les déterminent Tune et l'autre , deux phrases
•qui contiennent deux mots nouveaux , combinés avec des mots connus,
peuvent souvent en déterminer le sens ; et on peut en dire autant
d'un plus grand nombre de mots nouveaux combinés avec des mots
connus, dans un pareil nombre de phrases ; mais il y a ici à exécuter
une sorte d'élimination qui peut devenir d'autant plus pénible que
le nombre des mots dont il s'agit est lui-même plus considérable.

Quoi qu'il 'en soit , ces considérations semblent très-propres à ex-
pliquer comment un ouvrage qui , à une première lecture , nous
avait semblé obscur , à raison d'un grand nombre de mots que
l'auteur y avait employés sans les définir , et qui ne nous étaient
point familiers , nous devient ensuite , par des lectures réitérées f de
plus en plus intelligible , et nous le devient au point de pouvoir
définir nous-mêmes ces mêmes mots qui , au premier abord , nous
avaient causé tant d'embarras. Les mêmes cons:derations expliquent
aussi fort bien comment la connaissance une fois acquise d un cer-
tain nombre de mots d'une langue étrangère , nous conduit peu à
peu , par la seule fréquentation de ceux qui la parlent et la lecture
dès écrivains qu'elle possède , sans le secours d'aucun dictionnaire
ou moyen auxiliaire quelconque, à la parfaite intelligence de toufi
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les mots de cette langue. C'est là, en particulier, un moyen dont
on pourrait profiter avec avantage pour l'enseignement des langues
mortes dans nos écoles. Un de ses fruits les plus précieux serait
d'exercer perpétuellement le jugement pour lequel , en général, on
fait si peu dans nos gothiques systèmes d'éducation.

« Parce qu'il y a des mots qu'on peut définir , dit Condillac r

» on a voulu les définir tous » (*) ; mais ? parce qu'il y a des mots
qu'on ne saurait définir , Condillac en a conclu qu'il n'en fallait
définit* aucun 7 ce qui n'est guère plus sensé* II cite pour exemple
le mot triangle y ei prétend que , pour faire comprendre la signi-
fication de ce mot , on n'a rien de mieux à faire que de montrer
l'objet qu'il désigne ; mais , qui ne voit que le mot triangle ,
comme la plupart des mots de nos langues , n'exprime pas un être
unique et individuel, mais une infinité de figures , différentes de
forme et de grandeur ; de sorte que quelqu'un qui en aurait vu.
mille, serait bien loin de les connaître toutes-, tandis qu'elles sont
toutes comprises dans la définition qu'on en donne , et qu'elles ne
peuvent toutes se trouver que là. Il n'est pas même rare de ren-
contrer des gens étrangers à la géométrie qui f par ignorance de
l'exacte définition du mot triangle , se persuadent que , pour qu'une
-figure mérite cette dénomination , il est nécessaire que deux de ses
côtés soient égaux , que le troisième soit horizontal et que le sommet
opposé soit tourné vers le haut ; il en est même quelques-uns qui,
outre ces conditions , exigent de plus l'égalité des trois côtés (**)«
Toutes ces méprises sont une conséquence toute naturelle du défaut
de définition.

Mais il y a plus , et il est absolument impossible qu'on nous
montre un seul triangle tel que ceux que la géométrie considère*

(*) Logique , II.e partie , chap. VI.
(**) C'est dans ce sens qu'on entend souvent dire , dans la société , gue Paris f̂

"Bordeaux çt Ljron forment presque un triangle*

9»
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«t que désigne leur définition commune* On sait, en effet, qu'elle
appose et qu'elle est même obligée de supposer que la surface
du triangle est rigoureusement plane , et que ses limites sont des
lignes sans largeur ni épaisseur, et exactement droites ; or ? ce n'est
certainement pas avec nos instrumens grossiers et nos moyens im-
parfaits d^apercevQir que nous réaliserons de semblables conceptions*
de notre esprit. Il est donc rigoureusement vrai de dire qu'à pro-
prement parler , nous n'avons jamais vu ni ne saurions jamais voir
de véritables triangles ; et que ces figures , purement idéales , nê
nous sont uniquement connues que par leur définition.

« Pour découvrir les propriétés d*uire cBose f poursuit Cemdillac »
» il faut la voir. » Cela est faux ; et il y a même des cas où*
k vue die la chose ne saurait suppléer à la définition. Nous n'en
donnerons pour exemple que Fe Chillogone, que Ton pourrait con-
templer long-temps sans être seulement bien certain du nombre de ses
eôtés ; tandis qu'on en découvre très-facilement toutes les propriétés-
sur sa simple définitions

Condillac veiat quron remplace lés définitions par des an ait ses *r

mais , eu ces analises ne détermineront pas le sens précis des mois f

auquel cas elles seront insuffisantes f ou bien elles le déterminerontr

et alors elles seront de véritables définitions, quelque dénomination
qu'on prétende d'ailleurs leur donner» L,es définirions sont, à quel-
ques égards , une sorte de synthèse, puisqu'elles composent plu-
sieurs idées en une seule ; puisqu'elles fondent plusieurs syrnw
boles dans un symbole unique; mais, en admettant même qu'ont
puisse y trouver quelque chose d'analitique , faut-il donc appeler
indistinctement et uniquement analises toutes les ope'ratîons da notre*
esprit ? Et , parce que tous les êtres qui affectent nos sens sont
des corps, croirait-on faire une utile révolution dans la physique j .
eroirait-on en rendre la langue plus claire et l'étude plus facile ^
en ne désignant que par cette seule dénomination tous les objets
matériels dont elle s'occupe ?

reproche e»fin au* logiciens l'usage où ils sont de rangea
IX. £
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les définitions dans la classe des principes * et îl se fonde sur ce que
ce sont les sensations et non les définitions, qui sont les principes
de toutes nos connaissances ; mais , c'est ici évidemment une très-
mauvaise chicane ; il en est, en effet , du mot principe comme de*
tant d'autres qui sont pris tantôt sous une acception et tantôt sous
une autre. Il est bien vrai que le mot principe, pris dans le sens
le plus étroit, veut dire, commencement y source , origine ; e t , sous
ce point de vue , nous accorderons t tant qu'on voudra , que nos
sensations sont le principe commun de toutes nos connaissances ï
mais on se sert aussi très-fréquemment du même mot pour désigner
une maxime certaine sur laquelle on peut s'appuyer en toute
confiance , et qu'on peut prendre pour base dans ses recherches ;
et c'est ainsi qu'on donne souvent le nom xle principe à une pro-
position qui résulte elle-même d'un grand nombre d*autres. Cette
dernière acception du mot principe n'est pas , au surplus , aussi
étrangère à la première qu'on pourrait être d'abord porté à le croire.
On voit , en effet , que , si éloignée que soit une proposition des
notions premières d'où elle tire soii origine ; elle peut , dès-lors
qu'elle est. vraie , donner naissance à un grand nombre de consé-
quences f dont elle devient , a son tour, la source et l'origine com-
mune t c'est-à-dire , le principe ; et c'est ainsi que , dans la nature P

tout est, tour à tour, effet et cause,
Lors donc qu'on dit que les définitions sont des principes , on

Veut seulement faire entendre par là que ? ne pouvant être refusées t

elles doivent être employées dans le, raisonnement, comme autant
de propositions incontestables; et cette assertion . ne, présente rien
qui ne soit d'une parfaite exactitude. On pourrait encore dire , au
surplus, que, les définitions sont des principes , en ce sens, qu'avant
de parcourir la série des propositions dont une science se compose ,
il est nécessaire de s'enquérir d'abord soigneusement.de la signifia,
cation des termes dans lesquels ces propositions sont énoncées.

On voit qu'ici nous regardons les définitions comine tout^à-fait,
libres et jarj^iuaU^}. car pe u'est qu'eu les : considérant t ainsi qu'on
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ne saurait les contester. Cela vient de ce que nous ne corisîdërons
que des de/initions de notng et que nous rejetons tout-â-faït l'emploi
des définitions de choses* Si nous avons bien compris ce qu'ont
écrit les logiciens sur ce sujet , il paraît qne cette dernière sorte
de définition ne diffère uniquement de la première qu'eu ce que
celui qui l'énonce ne prétend pas fixer le sens du mot défini ; mais
que , prenant ce mot suivant l'acception générale , il prétend sim-
plement expliquer quelle est cette acception. Il suppose donc que
ce mot est entendu de la même manière par iout le monde; et,
s'il en est ainsi , il rentre dès - lors dans la classe des mots qu'il
est superflu de définir(

Nous ne voyons guères qu'un cas où les définitions ne soient
point libres , et c'est celui où se trouvent ceux qui rédigent les
vocabulaires des langues. Leur tâche est , en effet , de nous expli-
quer, non pas le sens qu'il leur plaît d'attacher aux mots , mais
bien celui que l'usage général y attache. Ils se constituent donc ?

en quelque sorte, les interprètes du public; et il faut conséquent
ment qu'ils en soient des interprètes fidèles. Mais la tâche qu'ils
s'imposent est d'autant plus délicate et difficile que souvent on n'est
point très-généralement d'accord sur là signification dTun grand nombre
de mots f et que quelquefois même cette signifiation varie avec les
temps et les lieux.

En résumé ; la distinction des définitions en définitions de noms
et en définitions de choses paraît pouvoir être réduite à dire qu'une
définition doit être admise sans contestation au bien peut être re-
fusée , suivant qu'elle commence par ces mots : j'appelle^ ou par
ceux-ci ': on appelle*

V. / / convient de ne pas détourner les mots , par des défini-
tions , de la signification que l'usage général leur a attribué. Or*
sent , en eiîet ; que , sans cette précaution , ceux à qui l'on par-
lerait , ou pour qui l'on écrirait y perdant bientôt de vue la nouvelle
acception donnée aux mots , seraient tôt ou tard entraînés à les
entendre dans l'acception vulgaire ; ce qui dénaturerait totalement



le sens «du discourç , et pourrait même le rendre tout-â-faït inï
ieiligîble* C'est pourtant là ce que font fréquemment les écrivains
<en métaphysique ; et nous ne voudrions pas même répondre que,
tnaitrisés eux-mêmes par d'anciennes habitudes ^ il ne leur arrive pas
quelquefois d'employer le même mot tantôt dans le sens vulgaire et
tantôt sous l'acception nouvelle qu'il leur a plu d'y attacher ; voilà
probablement ce qui rend la plupart de leurs ouvrages d'une lecture
si difficile et si rebutante.

On sent que ce serait une égale inconvenance de donner , par
une définition , une dénomination nouvelle à une collection d'idées
à laquelle l'usage général aurait déjà affecté une autre dénomination.
C'est pourtant là ce que ne se permettent que trop souvent des
'écrivains qui se persuadent et cherchent à persuader à leurs lecteurs
tju'ils ont des idées nouvelles , par cela seul qu'ils expriment en
termes nouveaux des idées quelquefois fort communes et fort tri-
viales , si même elles ne &ont tout-à-fait fausses.

Aux règles diverses que nous venons d'indiquer 9 touchant les défini-
tions , quelques logiciens ajoutent celle de n'employer, autant qu'il est
possible, dans la définition, que des idées positives*, et̂  en général, eette
règle est fort bonne à observer. Cependant, comme il est beaucoup d'ob-
jets desquels nous savons beaucoup moins ce qu'ils sont que ce qu'ils
ne sont pas , on ne doit faire aucune difficulté de s*écarter de ce
précepte , toutes les fois qu'il en peut résulter quelque avantage
$ous le rapport de la clarté et de la ^brièveté. 11 nous paraît ? par
^exemple , que M. Legendre a très-nettement défini la ligne courbe»
«n disant que c'est une ligne qui n'est ni droite ni composée dé
lignes droites.

On donne aussi pour règle des définitions que , dans le discours 9

la définition puisse toujours être substituée au mot défini , sans que
le sens en soit aucunement altéré. Mais il nous paraît que c'est moins
là une règle des définitions , qu'une règle sur l'emploi des mots. Si ,
en effet f quelqu'un , après avoir défini un mot , l'emploie sous
ime acception différente de celle qu'il lui aura lui-même assignée»<
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il aura tort Sans doute ; mais sa définition n'en sera pas pouf cela
moins admissible : c'eat son langage et «on cette définition qu'il
devra réformer.

Mais il est un objet que les écrivains même qui ont traité le
plus au long des définitions ont totalement passé sous silence : c'est
ce qui concerne le choix des mots. La raison en est sans doute
<jue ces écrivains , uniquement littérateurs , pour la plupart , ont
pensé qu'il n'y avait plus de mots à créer. Mais , puisque le progrès
toujours croissant des sciences oblige chaque jour d'y introduire
des mots nouveaux ; puisque quelques-unes ont senti le besoin de
réformer entièrement leur langue : et puisque , si ce besoin n'a pas
«ié aussi impérieusement senti pour d'autres sciences , il n'en est
peut-être pas .pour cela moins réel, il convient, avant de terminer
de nous arrêter un moment sur ce sujet

En principe , il est rigoureusement vrai de dire que rien n'est
plus indifférent en sol que le choix des signes que nous destinons
à exprimer nos pensées -, et que tout ce qu'on peut raisonnablement
exiger d'eux est qu'ils ne soient ni trop longs ni d'une pronon-
ciation trop difficile et trop peu analogue à là conformation de nos
organes et aux habitudes qu'ils ont contractées. Il semblerait donc
<ju'en se conformant d'ailleurs à ces indications du bon sens , il
devrait être permis de choisir , d'une manière tout-à-fait arbitraire ,
les signes nouveaux dont de nouvelles idées peuvent réclamer l'usage.
La vérité est pourtant que , <Ians nos langues modernes, il n'existe
pas un seul mot qui, si l'on peut s'exprimer ainsi , ait été formé
de toutes pièces ; pas un seul qui ne soit dérivé d'une manière plus
ou moins directe des langues auxquelles les nôtres ont succédé ;
et dont les mots ont été sans doute dérivés de la même manière
de ceux de quelque autre langue plus ancienne. Il est même très-
vrai de dire que l'opinion est aujourd'hui tellement formée , ou, pour
mieux dire, égarée , sur ce point , qu'un écrivain qui, ayant à
exprimer quelque idée nouvelle , y attacherait un signe tout-à-faît
nouveau , et qui ae serait défivé d'aucune langue coriftue, serait
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sûr. d'indisposer contre lui une multitude de gens qui jamais ne consen-
tiraient à faire usage d'an mot ainsi créé.

C'est l'habitude constante où nous sommes de dériver ainsi les
roots des langues plus modernes de ceux des langues qui le sont
moins qui a donné naissance à la science des Etymologfes , à la-
quelle 9 faute de l'avoir envisagée sous son véritable point de vue ,
on a peut-être attaché beaucoup trop d'importance. On a voulu ,
en particulier, en faire une sorte de supplément aux définitions ;
et des g^ns plus érudits que judicieux n'ont pas même paru très-
éloignés de croire que Ton ne pouvait bien posséder une science sans
connaître les langues d'où elle a emprunté les termes qui lui sont
propres (*).

Nous conviendrons très-volontiers que c'est une recherche à îa
fois curieuse et utile que celle de la filiation , des mutations et

(*) C'est , par exemple, une opinion très-répandue que celle de l'utilité de
l'étude de la langue grecque, comme préliminaire de celle de la médecine ; et
on en donne pour raison le grand nombre des mots que cette science a em-
pruntés à la langue d'Hypocrate ; mais, outre qu'une centaine d'origines grecques
au plus serait peut-être suffisante pour la parfaite intelligence de tous les mois
employés en médecine , et pourrait être bien connue en moins d'une semaine;
ne pourrait-on pas suppléer même à la connaissance de ces origines par des
définitions précises /* Si Ton considère que presque tous les bons ouvrages grecs
et latins sur la médecine ont été traduits dans nos langues ; et qu'ici le mérite
du style est d'une importance assez mince , on verra que tout le fruit qu'un
médecin peut se promettre de l'élude des langues mortes se réduit ou à pouvoir
lire dans ces langues quelques ouvrages insignifians f qui n'ont pas paru dignes-
àes honneurs de la traduction , et que les écrits des modernes ont laissés bien
loin derrière eux ;, ou bien à savoir débiter » en présence des femmes qui en-
tourent le lit d'un malade, quelques apborismes qu'ils entendent à peine ; maifc
à l'aide desquels ils se donnent une sorte d'importance aux yeux des sots. L'étude
«les langues vivantes leur serait d'un tout autre secours : elle les mettrait en
possession des progrès que l'art de guérir fait journellement dans l'Europe entière.
Mais ceci ne ferait point TaiFaire des pédans de collèges qui , pour là

..part, êoçi tout-à-fait étrangers à ces langues*
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altérations progressives des divers signes auxquels les hommes ont
eu successivement recours, pour noter et communiquer leur pensées.
Quoiqu'il paraisse que les grecs , nos maîtres et nos modèles dans
tous les genres de littérature , se soient assez peu souciés de ce
genre de savoir (*) ; nous accorderons sans peine qu'il peut n'être
pas tout-à-fait sans, fruits dans l'étude même des langues modernes*
La recherche des étymologies peut fournir d'ailleurs des lumières
très-précieuses sur les temps éloignés de nous, en servant d'appui
et quelquefois même de supplément à l'histoire des peuples , en
nous faisant, pour ainsi dire ^ assister aux premières combinaisons
d'idées qu'ils ont formées , en développant à nos yeux le tableau
graduel du progrès de leur intelligence , et en nous révélant le

(*) On entend chaque jour répéter qu'hors de l'e'tude du latin et du grec
il ne saurait y avoir de salut pour les littérateurs ; et l'on a raison , si l'on
convient de n'appeler littérateurs que ceux à qui ces langues sont familières ;
car , comme nous l'avons déjà observe' plus haut , les définitions sont tont-à-
fait libres. Mais si , au contraire , on pense qu'un homme peut mériter le titre
d'écrivain , par cela seul qu'il écrit Sa propre langue avec pureté et élégance ;
on ne verra plus aussi clairement que l'étude de quelque autre langue soit néces-
saire pour parvenir à ce but. Les Grecs n'étudiaient uniquement que leur langue %

et ils nous ont laissé , en tous genres , des chefs-d'œuvres que nous avouons
ne- pouvoir atteindre. Les Romains du siècle d'Auguste , outre leur langue , cul-
tivaient la littérature des Grecs ; et nous sommes d'accord qu'ils ne sont pas
parvenus a les e'galer ; enfin, nous joignons à l'étude de notre propre langue celle de
la littérature des Grecs et des Romains ; et nous nous avouons humblement In-
férieurs aux uns et aux autres. On pent dire sans doute de très-bonnes choses
en faveur de l'étude du grec et du latin 5 comme moyen de parvenir à bien
écrire dans les langues modernes ; mais il faut du moins convenir que le succès
de cette pratique n'est point prouvée par le fait ; apparemment parce que ses
avantages se trouvent plus que compensés par le peu de loisir qu'elle nous
laisse pour cultiver notre propre langue ; sur-tout d'après le parti qu'on a pris,
dam presque toutes nos écoles , de rendre à dessein Te'tude des langues an-
ciennes longue et difficile ; ce qui ne fait pas pourtant que la plupart de |
jeunes-gens <jui eu sortent y soient pour cela beaucoup plus habile*.



$2 T H E O R I E
secret de leurs diverses migrations. Mais , là paraît devofr se Bornée-
te domaine de la science étymologique ;. et chercher à l'étendre pl\i$v
loin , ce serait vouloir compliquer l'étude ées sciences de difficultés
qui'ne lui seraient pas moins inutiles qu'étrangères. Né serait-il pas*
absurde , en effct, d'attacher nécessairement le succès dans l'étude
d'une science au plus ou moins d'intelligence dtis langues d'où it
a plû à ses inventeurs de tirer les mots qu'on y emploie ; et n'en
?ésu^erait-il pas cette conséquence tout-a-fait insoutenable, qu'une
science qui n'aurait emprunté ses expressions à aucune langue connue-
ne pourrait être enseignée ni apprise ?* Pense~t-on r par exemple v
que celui qui- étudie l'arithmétique arura une idée beaucoup plus,
exacte de- la science du calcuf , lorsqu'on lui aura révélé que*
le nom de cette science vient du root laiin Calculus ? Ne sera-t-il;
pas fonde à demander ensuite d'où vient à son tour ce dernier mot,,
§t pourquoi les Romains l'employaient- de préférence à tout autre t

pour désigner les petites pierres ou jetons dont ils se servaient pour*
compter? E t , de question en question, l'ëtymologiste ne se trou-
verait-il pas bientôt réduit au silence, ou. ce qui est peut-être pis ^
ne serait-il pas entraîné à. chercher son refuge dans les savantes
rêveries débitées par Court-de-Gehelin et quelques autres sur la pré-
tendue langue primitive?

En vain les défenseurs des éfymolôgies diront-ils qu'en formant
nos mots de portions de mots prises dans d'autres langues , nous
obtenons l'avantage de montrer, dans leur eontexture rleur véritable
signification,, et les relations qjii les, lient entre eux 4 on pourrait:
toujours leur objecter- , avec fondement, qu'outre qu'on atteindrais
à peu, près le même but avec des mots formés- de- toutes pièces f

en supposant- les avantages de cette pratique aussi réel qu'ils le
supposent , ce ne serait jamais qu'une très-faible portion de la société
qtn en pourrait; recueillir Les fruits ; le nombre des hommes versés
d̂ n& la connaissance des langues savantes devant toujours être in*-
comparablement moindre que le nombre de ceux à qui ces langues^

tauî-à-fûit étrangères. Mais la vérité est que, loin que le re«^
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cours aux étyrnologies soit un moyen infaillible de d&cuviir la
véritable signification des mots; il n'est propre, au contraire ,.q«i'à
nous induire fréquemment en erreur ; attendu qu'il est bien peu
d'étymologies précises, bien peu sur lesquelles on puisse compter
avec quoique certitude ; et que, parmi celles-ci , il en est une foule
qui s'écartent notamment de la signification que l'usage général a
attachée aux mois , ou qui même sont tout-à fait opposées à cette
signification (*)•

Ce n'est donc point p^r des étymolo^ies , très-souvent ignorées +
fréquemment incertaines et cjuelqueiois trompeuses , mais seulement
par des définitions exactes, que l'on doit chercher à s'instruire de la vé-
ritable signification des mots en usage dans les sciences et sur-tout dans
les sciences de raisonnement. Nous sommes loin , toutefois, de blâmer
l'usage où sont les savans de tirer des langues mortes les mots dont ils
ont besoin pour désigner des objets nouveaux. Il est plus simple et
plus naturel 7 en effet > de faire rentier dan* la circulation des rnoïs
déjà existans t connus du moins des hommes lettrés de tous les
pays, appartenant à des langues à l'abri de toutes vicissitudes, et
pouvant ainsi s'introduire sanb altération sensible dans tous les idioties
modernes, que d'en forger de tout-à-fait nouveaux qui ne pourraient
offrir les mêmes avantages (**) ; mais il ne faut point attacher à
cette pratique plus d'importance qu'elle n'en ofïre réellement.

(*> A combien de bévues ne serait point exposé , par exemple , un citoyen.
de l'ancienne J:\ome , bien, versé dans la langue d'Athènes, qui, se trouvant,
tout-à-coup au milieu de nous , voudrait prendre uniquement l'étymologie pour
guide et pour interprète. JNos balances seraient à ses jeux des baromètres ;
il ne verrait dans nos géomètres que des arpenteurs , dans nos chimistes
que des fondeurs , dans nos barons que des goujats \ il traiterait de lucijers
les jeunes clercs qui 7 dans nos églises , portent des flambeaux allumés , et
prendrait sans doute nos Chanoines de ùt-Denis pour des Prêtres de Baahus.

(**) A condition toutefois que, si la langue dans laquelle on les introduit
n'admet pas de cas , on les rendra indéclinables ; ainsi que l'a fait M. Lacroix
pour les mots maximum et minimum 7 et M. Biot pour le mot erratum,

Uom. IX. 5
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Ce n'est .point~là , en effet, ce qui constitue la perfection des

langues. Une langue sera toujours bien faite, sï une abondante sim-
plicité et une rigoureuse analogie ont précédé à sa formation ; c'est-à-
dire > si ses mots radicaux , quelle qu'en puisse être d'ailleurs l'origine^
sont très-courts, et offrent, dans leur plus ou moins grande res-
semblance , le tableau fidèle du plus ou du moins d'analogie entre
les idées simples qu'ils sont destinés à rappeler ; si de plus elle a
des mots propres à exprimer , sans périphrases , toutes les idées,
tous les rapports , toutes les vues de l'esprit qui sont de nature
& se représenter fréquemment; et si enfin , ces mots offrent, dans
leur contexture , une sorte de tableau raccourci des diverses.collections
d'idées simples dont ils sont les signes. Mais on ne doit pas peislre
de vue que , quelques désirables que puissent être pour les langues
ces diverses qualités , les ràisonnemens faits dans une langue , quel-
que imparfaite qu'elle soit d'ailleurs, pourront toujours être rigoureux,
si tous les mots dont la signification pourrait laisser quelques nuages
dans l'esprit peuvent y être nettement définis à l'aide de ceux dont,
au contraire, la signification ne présente aucune sorte d'équivoque.
C'est ainsi, qu'en algèbre , bien qu'un mauvais choix de notations
puisse rendre les calculs plus pénibles ,.il ne saurait toutefois altérer
la rigueur de leurs résultats.

On sent assez , d'après tout ce qui précède , ce que l'on doit
penser de l'excessive délicatesse de quelques érudits qui jugent im
mot mal fait, et le frappent de proscription , par cela seul qu'il
est composé 4e parties dérivées de diverses .langues ; du latin et du
grec, par exemple. 11 est évident qu'il ne peut y avoir à cela aucune
sorte d'inconvénient, et que même on ne doit pas faire difficulté
d'en user ainsi, si Ton pense que le mot rendra mieux l'idée qu'il
iîoit rappeler , ou si seulement il en devient plus aisé à prononcer
çu plus agréable à l'oreille. Nous n'hésiterions pas même à conseiller
<de forger des mots arbitrairement, sans les dériver d'aucune langue*
tontes les fois que cette dérivation pourrait induire en erreur sur
leur véritable sens , si nous ne pensions qu'il est convenable dp
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-toujours se plier aux usages établis > lors même que ces usages ne
peuvent être justifiés aux yeux de la raison.

Nous n'ajouterons plus qu'une réflexion : c'est que , comme on
ne peut avancer dans la recherche de la vérité qu'en créant des
mots nouveaux , à mesure que de nouvelles combinaisons d'idées
viennent s'offrir à la pensée , il est nécessaire , pour que les sciences
ne demeurent pas stat ionnais , d'en rendre sans cesse la langue
de plus en plus riche* Celte remarque s'applique principalement
aux sciences exactes que nous avons sur-taut en vue ici. En par-
courant leur histoire on a bientôt lieu de s'apercevoir, en effet,
que les symboles et les locutions qui y ant été successivement in-
troduits n'ont guère moins contribué à leur avancement que les mé-
ditations des hommes de génie qui se sont dévoués à leur culture ( + ) ;
et rien ne paraît plus propre à mettre en évidence la toute-puissante
influence des signes sur les idées. On peut donc prévoir que ceux
qui sont destinés à en reculer de nouveau les limites, ne parviendront
sûrement à leur but qu'autant qu'ils continueront d'user à eet égard
àe la liberté la plus entière.

(*) Que ne devons-nous pas, par exemple, à Fus3ge du mot Jonction ,.
le sens que les géomètres y attachent aujourd'hui ?
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QUESTIONS PROPOSÉES.

Théorème danalise*

OIT X = o une équation en x du dpgré m dont la dérivée soit
X / = o ; et soit Y = o l'équation du degré m — i , résultant de l'éli-
mination de x entre les deux équations X = ^ et X / = o ^

i.° m étant pair % si X^o n'a pas de racines égales r elle aura
O * 2 , 4? 6 , . . • • » . . . 772 racines imaginaires % suivant que I^—o aura
mm m mm ,
— , — T i , —-f"2 , . , • . . • "^ZI**~ permanences de signes,
% a "™" 2. 2. a

2.° /72 étant impair, si -ST=o n'a pas de racines égales, elle aura

O, 2 , 4? 6 , .*• . . . (m—i) racines imaginaires, suivant que JTrro aura
m—I m—-i m—i , m—i , m—I ,
• > - f -£ > , +2 , . . * . . . • - j ^ permanences de
signes.

3.° Enfin , si JT--=o a , à commencer par le terme tout connu
' 2 * 2 , 3 , . * • . . . termes nuls consécutifs, ^ f = o aura nne racine
double , deux doubles, ou une triple , trois doubles ou une qua-
druple , etc. (*).

(*) Ce théorème est extrait d'un ouvrage que M. Bérard vient de mettre au,
jour sur te résolution des équations numériques»
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ANALXSE ALGÉBRIQUE,

Théorie générale des fractions continues ;

Par M. BRET 9 professeur à la faculté des sciences de
Grenoble , Chevalier de l'Ordre royal de la Légion
d'honneur.

JLJE problème du développement d'une fraction ordinaire en fraction
continue, se réduit évidemment à la résolution de l'équation

a»

dans laquelle nou& supposons que A, B sont deux nombres entiers
positifs donnés, tels qu'on ait A>B , et où a } af, a" , atn,.,.... f

^ , lf , ^ / ; , ^ / / ;,...,.. sont des nombres entiers indéterminés, positifs
ou négatifs j on peut toujours supposer, au surplus ; que a , a' ?
an , alu , ...... sont positifs.

Posons successivement

îl viendra ainsi
Tom. IX, n.° II r i . e r août 1818,
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B b

c'est-à-dire ,

THÉORIE GÉNÉRALE

C V _ D b"

i> C D

zzAb —Ba ,

C4)

et la question se trouvera réduite à satisfaire en nombres entlers^à
cette suite d'équations s dans laquelle il est évident qu'on pourra
prendre à la fois arbitrairement les dénominateurs a , o/, au , ...*.
et les numérateurs b, $ / \ b" 9..... des fractions intégrantes.

f/Or, si Ton prend constamment £ < # ? bf «C^â* ^ bn K*a
fraction continue se terminera nécessairement; en effet, on aura d'abord

b hf

- < i ; e t , comme on aura aussi — < i , il s'ensuit iju'on aura
y

a-\ >^—-x ; donc, on aura

niais —?— est au plus l'unité ; clone , on aura

On aura} par la même raUpn

donc
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et , par suite ;
h v

d'où on conclura , comme ci-dessus f

E n continuant ainsi , de proche en proche , on parviendra à se con-

vaincre que les portions de développement

L b> h> l>r h" m «*-

Qff —|— , . r» Qliï —1— .̂«. ' ft//// 4 - . , , ,

sont toutes moindres que l'unité*
II est pourtant un cas qui fait exception : c'est celui où l'on

aurait précisément b—a—r , b;=—{a/~i) , bn=-—{a/f—i) >
i///=Z'^^^a///—i) , test-a-dire le cas où la fraction continue serait

et ou , prolongée à l'infini, elle tendrait sans cesse vers Funité ^
tout autre cas , elle sera constamment plus petite.

En appliquant présentement ce que nous venons de démontrer
à la suite des équations (2) , en voit que, si Ton a constammentr

abstraction faite des signes y
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b<a , l'<a* , h"<a» , b»><a»' ,.......

on aura aussi constamment, abstraction faite des signes

c'est-à-dire ?

B<A , C<B , D<C , E<D , ....... ;

les nombres A , B , C, D ,....... seront donc continuellement dë-
croissans ; et, comme Ils sont tous entiers , il faudra enfin que
l'un d'eux soit nul % ce qui prouve que la fraction continue se
terminera.

Donc ? si une fraction continue , dans laquelle les dénominateurs
des fractions intégrantes sont constamment plus grands que leurs
numérateurs > ne se termine pas , elle ne pourra être le dévelop-
pement d'une fraction finie , et sera conséquemment le dételoppement
d'un incommensurable*

Tout ce que nous venons de dire a encore lieu lors même que
les numérateurs des fractions intégrantes sont d'abord plus grands
que leurs dénominateurs , pourvu qu'ensuite ils deviennent plus
petits qu'eux et demeurent constamment tels ; il arrive seulement
alors que la suite des nombres A , B ? C , D , ...... est d'abord
divergente ; mais elle devient ensuite convergente et doit consé*-
quemment se terminer à zéro, comme dans le premier cas»

Posons présentement

•••<
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En réduisant la première de ces fractions continues en fraction
orinaire , on trouvera une expression de cette forme

on passera de là à la valeur de — } en y changeant a en <*+ —• ,
Af #;

ce qui donnera

cfest-à-dîre ^

et Ton aura de même

^ Ap'+AW 7

Eliminant «^ entre ces deux équations , il viendra

on aura donc, en général,

le signe plus ou le signe moins aura lieu, suivant que le nombre
des fractions intégrantes est impair ou pair, eu les supposant du
moins toutes positives.

Si nous prenons la différence entre deux fractions Convergentes
consécutives , nous aurons , abstraction faite des signes t
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A" "A?'~ A'A" *

maïs nous avons trouvé ci-dessus

posant donc

ce qui donnera nécessairement *;/ < i
on "aura

et Ton aurait semblable ment

A'=

à*oh on conclurait, en multipliant 9

A»=A*i

en aura donc généralement

A»=aa>a»..~«^!^o)(i+o>)i+o^

o r of, o" , ...... * > ̂  , <*" étant dès quantités positives , plus petites
que l'unité;

On aura donc ainsi;

conséquent

et comiû^ co* k^ a inégalités»
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il s'ensuit que la différence — —. — devient de plus en plus petite s

à mesure qu'on s'avance dans la série des fractions convergentes ,
puisque d'ailleurs le dénominateur A/ croît très-rapidement.

Cherchons présentement la différence entre la fraction — et la

fraction continue

i

+
r

y étant quelconque ; mais plus grand que fi". Il viendra

on aura pareillement
divisant ces deux équations l'une par l'autre 9 on trouve

Xmmm~A' _ Bpf

_ _ £ "^Afy 5

B'
or, on a, par hypothèse tAf>A,y>t"\ donc x— — est moindre que

$ f et Ton volt de plus qu'ils sont des signes contraires \ ainsi,

si Ton a # < — , on aura # > — et F / ^ ^ ^ « J ainsi ? dans tous
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les cas , la valeur exacte de s se trouvera comprise entre deux

B B>
fractions convergentes consécutives quelconques -— 7 —- , mais plus
voisine de la seconde que de la première -, puis donc que ? comme
nous l'avons vu ci-dessus , la différence entre ces deux fractions
décroît rapidement ? à mesure qu'on s'avance dans la série des frac-
tions convergentes , il s'ensuit qu'elles s'approchent aussi trcs-rapi-
dement de la véritable valeur de x dont elles diffèrent alternati-
vement par excès et par défaut , ce qui justifia pleinement leur
dénomination.

Ce qui précède , suppose , à la vérité , que toutes les fractions
intégrantes sont positives ; mais, dans le cas contraire , il est toujours
facile de transformer la fraction continue en une autre qui n'en
renferme que de telles j on a , en effets

P,
P—1

P
Pf

p'—q"

-?- 1' 1

P" P—«—* + T

• p

et ainsi de suite.
On condutde cette transformation que la nouvelle fraction continue

remplira, à la fois, la condition de ne renfermer que des fractions
intégrantes positives et celle Ae la convergence , si l'on a

q </> —y ~

<)' <p' —q' —
d'où

p >zq

n
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II suffira même, quelles que soient d'ailleurs les premières fractions
inte'grantes, que ces conditions soient remplies, à partir de Tune
quelconque d'entre elles 5 d'où Ton volt qu'en particulier la conver-
gence vers une valeur fixe aura toujours lieu , lorsque les numérateurs
9> 9/ y ç^p—») étant égaux et d'une grandeur quelconque, les
dénominateurs p , p/, pN , croîtront constamment, quelque len-
tement que ce soit, à partir de l'un quelconque,

Voyons présentement comment on pourra procéder, d'une manière
régulière , au développement en fraction continue d'une fonction quel-
conque de où. On pourrait bien supposer que la fonction dont il
s'agit a d'abord été développée en série ascendante ; mais, pour plus
de généralité nous la supposerons développée en fraction, ayant de
pareilles séries pour ses deux termes; c'est-à-dire que nous supposerons

Y-

alors , en posant successivement

k... B
A+A'x+A"x*-{;... A

C

e.t ainsi de suite , on aura

+

Et Ton conclura les valeurs de C, D , E, F...... des valeurs
connues de A% A/, A" ,...-.. B *£', BH

 }....... au moyen
formules

Tom* IX* 7
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D=CB'—BC' , D'-

E—DC'—CD' , E'^DC—CD» , E"=DC'»—CD»' ,

que Ton conclut des équations ci-dessus , en y chassant les déno-
minateurs ^ et exprimant ensuite qu'elles sont identiques.

Si les deux termes de la fraction valeur de y 9 au lieu de proce'der
suivant les puissances de x , procédaient suivant celles de oc11, il ne
s'agirait que d'y traiter xn ainsi que nous venons de traiter x dans
le développement général \ et si une puissance de se se trouvait être
facteur soit du numérateur soit du dénominateur , on la ferait préala-
blement passer soit comme diviseur soit comme multiplicateur dejr,
ce qui ramènerait la question au premier cas.

Pour premier exemple , prenons la fonction

se

Cos.a? x*

©ous écrirons d'abord
x% a» %l*

traitant alors #a comme ^r? dans le second membre, il viendra

i , ^ ' — ^ , 5^=4--
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î ^ p , = _ 4.13-64
3L5.'7! ' 3151g! ' " "

2.8.48.128

avons donc finalement

donc qu'on doit avoir

on aura

1 ~~ » + ^ b : 4 H ^
4 7 * *

ce qui donne , en amenant successivement les numérateurs a être
entiers négatifs , et en multipliant ensuite par a*

résultat dont la loi est manifeste; et qui , quel que -soit^, aati
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fera k la condition de convergence , pourvu qu'on le pousse assez
loin.

Si l'on transforme cette expression en une autre^ dont tous les
termes soient positifs, d'après les formules trouvées ci-dessus, on
obtiendra

£ = — &* »
I.- , „ - . $

d'où. îl suit que , pourvu que Ton prenne #a<2—x* ou # < i #

cette fraction continue convergera , à partir de l'origine, vers la

véritable valeur de — ; dans tout autre cas, elle finira toujours
oc

par être convergente , pourvu qu'on la prolonge suffisamment.

Soit # = y , nous aurons Tang,^r=i , et notre formule deviendra

3 — _ .
py — - —

9
7$ % 1%

Nous savons qu'on a — < i , soit donc, s'il est possible , -7 = — , m
4 4 m

et n étant deux nombres entiers premiers entre eux , tels que
; il viendra , en substituant,

n n*

m ' 'ârn*

9 ~* ""

or a cette équation est absurde 5 car son second membre est uni
fraction continue qui , ne se terminant paa et étant convergente t

en la prolongeant suffisamment, doit avoir une valeur incommen-
surable , tandis que $ôn prenner iriembre a§t une fraction rationnelle^
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il est donc absurde de supposer que — est égal a une pareille

fraction } m est donc incommensurable.
Prenons t pour second exemple , la fonction

. X x* f x$ rr4 x5

~ i ' 2Î ~ 3! 4! 5! ^ • ' " ' >

nous aurons ici

a!' 3!' 4!

Nous aurons donc finalement

co qui donnera , en substituant

résultat dont îa loi est rnanifeste.
Oa a | d'après cela
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I

2

9 +
ee qui prouve que le notnbre e est incommensurable.

On pourrait étendre cette théorie à d'autres exemples , non moins
intéressans ; maïs , comme ces applications ne présentent aucunes

difficulté , nous terminerons par observer que , lorsque les numé-
r a t e u r s b y b1

 % b u , £ , & , $f/
 y sont supposés égaux à l'unité ,

les résultats auxquels nous sommes parvenus se simplifient d'une
manière notable. C'est ainsi, par exemple, que l'équation

devient

alors aussi les fractions convergentes se trouvent toutes réduites à

leurs moindres termes , et la différence •— entre deux fractions con-

vergentes consécutives — , -— , diminue de plus en plus, à mesure

qu'on avance dans la suite que forment ces fractions j on peut aussi
remarquer que le quotient

£>
* — ^ A

- § = "*'
est toujours moindre que l'unité , puisqu'on a , à la fois, J > i e*
sAf>A y d'où il suit que les conditions de la convergence de la
fraction continue se trouvent nécessairement remplies. Si la fraction
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continue a quelques fractions intégrantes négatives, en la transfor-
mant en une autre qui ne présente plus cette circonstance, les conclu-
sions seront encore les mêmes. Enfin , il est facile , dans le cas
que nous examinons , de démontrer ce beau t,héorème , savoir : que
chaque fraction convergente approche ^lus de la valeur totale de la
fraction continue que ne pourrait le faire toute autre fraction, exprimée
par de plus petits nombres. Nous ne faisons que rappeler cette pro-
priété , pour montrer comment elle se rattache à la théorie nouvelle
et plus générale des fractions continues que nous avons essayé de
présenter dans ce mémoire.

GEOMETRIE.

Recherches sur le parallélogramme et sur le
parallélipîpède ;

Par M. GERGOKNE,

N a continuellement besoin , soit en géométrie soit en me'canique J
de déterminer , en fonction des trois arêtes qui concourent en un
même sommet d'un parallélipîpède et des angles que ces arêtes forment
deux à deux, soit la diagonale du parallélipîpède, soit les angles
quQ forme cette diagonale avec ces trois mêmes arêtes, soit enfin
le volume de ce parallélipîpède. Le moyen que l'on emploie commu-
nément , pour parvenir à ces divers résultats, consiste principalement
dans Ja résolution d'un certain triangle sphérique ; ce qui est, à
la fois 9 compliqué et peu symétrique. !Nous allons faire roir
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Ton pefct parvenir au but d'une manière incomparablement plu»
simple et plus élégante, à Paide du seul principe des projections ;
mais afin d'introduire à cette recherche par une recherche analogue,
mais beaucoup plus facile , nous résoudrons d'abord les questions
du même genre , relativement au parallélogramme.

I. soient À , B les deux côtés d'un même angle d'un parallélo-
gramme quelconque ; et soit A la diagonale qui joint le sommet
de cet angle au sommet opposé ; soient, en outre ,

knë;(A,B)^c , À n S . ( ^ , A ) = * , Àng.(»,. A)=jr ..

On peut parvenir d'une extrémité à Vautre de la diagonale A ,
en cheminant extérieurement sur deux côtés consécutifs , égaux et
parallèles à A , B ; d'où il suit que la projection de la diagonale A
sur une droite quelconque est égale à la somme des projections des côtés
A, B sur la même droite. Projetant donc successivement cette
diagonale sur les directions même des côtés A , B , nous aurons

(0

mais f d'un autre côté , en projetant sur la diagonale A les detuc
côtés par lesquels on chemine de Tune à f autre de ses extrémités „
on aura

A-ACos.x+BCo$.y ; ('s)'

multipliant cette dernière équation par A , et remplaçant ensuite
ACos.# , ACos.y par les valeurs que donnent les équations (i) ̂
il viendra , en extrayant la racine quarrée ,

(3)

les équations (i) donneront ensuite
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Cos.#=-L U+BCos.c) , Cos.y= - (B+ACosu;) ; (4)

formules dans lesquelles il faudra mettre pour A la valeur que
nous Tenons de trouver. Telles sont ; en particulier , les formules
qu'il faut employer pour déterminer l'intensité et la direction de
la résultante de deux puissances , données elles-mêmes d'intensité et
de direction.

On conclut encore de là

\ASe ^x

(5)

e t , par suite 7

BSîruc

Des équations (i) on tire

, . . Cos^—Cos.rCos.c -, . Cos.r—CoSiXCos.c , v

d—A . —^ , 5 = A • —J—— ; (7)

Substituant ces valeurs dans Péquation (2) , il viendra r en divisant
par A , chassant le dénominateur et transposant ,

1—Cos.V—Cos.2^-—Cos.2y-f1-2Cos.^Cos.^Cos.j = o ; (8)

équation de relation entre les trois angles que forment deux à deux,
sur un même plan , trois droites partant d'un même point , et par
conséquent trois droites quelconques. C'est aussi la relation entre
les distances de trois points d'un arc de cercle , pris deux à deux,
et de laquelle on déduirait, au besoin , la relation entre les dis-
tances de trois points d'une droite , pris deux à deux , en sup-
posant le rayon du cercle infini , après avoir préalablement trans-
formé les cosinus en sinus , et chassé les radicaux,

Tom. IX. 6
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Si , de cette dernière équation , on tire la valeur de Cos.r pour

la substituer dans les équations (7) , on aura les formules nécessaires
pour décomposer une puissance A en deux autres A , B de di-
rections données,

Par le sommet de l'angle {A , B), imaginons une perpendiculaire
indéfinie à la diagonale A, Si Ton conçoit un triangle dont cette
diagonale soit la hauteur et dont la base soit la somme des pro-
jections des côtés A y B sur la perpendiculaire; il est aisé devoir
que ce triangle sera équivalent au parallélogramme. En représentant
donc par P Taire de ce dernier «, et remarquant que la somme des
projections de A , B est ASh\.x-$-B&ln.y 9 on aura

formule qui , en y mettant pour Sin.x , SIn.y leurs valeurs (5)
deviendra

P—JB&ln.c •

d'où il serait facile de déduire l'expresMon^ de Taire d'un triangle
en fonction de ses trois cotés.

II. Soient A , B , C les trois arêtes d'un même angle d'un
parallélépipède quelconque ; et soit A. la diagonale qui joint le sommet
de cet angle au sommet opposé-, soient en outre

On peut parvenir d'une extrémité h l'autre de la diagonale A , en.
cheminant extérieurement &ur trois arêtes consécutives , égales et
parallèles à A , B , C ; d'où il suit que la projection de la diagonalo,
A sur une droite quelconque est égaie à la somme des projections
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des trois arêtes A , B , C sur la même droite. Projetant donc snc-
c^f!Vemenî cette diagonale sur les directions mcmes des» trois arêtes
A } B ? C ? nous aurons

ACos, y ~B~{-C Cos.a-\-A Cos.c ,

maïs , d'un autre côté , en projetant sur la diagonale A les trois
arêtes par lesquelles on chemine de Tune à l'autre de ses extrémités,

on a

multipliant ceîte dernière équation par A , et remplaçant ensuite
ACos.3; y ACos.y , ACos.z par les valeurs que donnent les équa-
tions (1) , il viendra , en extrayant la racine quarrée ,

A—S/ A2-f B-

Les équations (1) donneront eusuite

(3)

.x=~{A-\-BCosc-\-CCos.b) ,

t

A v

Cos.z= - (C4-JCos.l+BCcs.a) ;

(4)

formules dans lesquelles il faudra mettre pour A la valeur que
nous venons de trouver. Telles sont , en particulier , 1rs formuler
qu'il faut employer pour déterminer Vlnlenshé et Ja direelîon de ht
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résultante de trois puissances données elles-mêmes d'intensité et de
direction.

On conclut encore de là

Sm.y=

et par suite

Tang.tf

r j a f

Tansr.z

— \/B2+C2+z
A

T

T

_ S/ A*+B*~{-2

BCCoi.a—C-BGos.c—CCos.è)2

i C 4̂Cos«̂ —-• (CCos.a—ACos.c) 2

BCCOS.Û—• (JBCos.c— CCos.è)3

+BCos.C+CCos.6

(5)

(6)

Des équations (i) on tire

(i-Cos.2a)Cos.x-(Cos.c-Cos.aCos.b)Cos.y-(Cos.b-Cos.cCos.a)Cos.z '

J?=A.

i—Cos.2^—Cos.2^—Cos.2c-|-^Cos.aCos.èCos.c

(i-Co$.2b)Cos.y-(Cos.a-Cos.bCos.c)Cos.z-(Cos.c-Cos.aCos.b)Cos.x

i—Cos.3a—Cos.2^—

I—Cos.2a—Cos.2^—

(7)

substituant ces valeurs dans l'équation (2) , il -viendra ; en divisant
par A , chassant le dénominateur et transposant
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—CosSa—Cos. 2£—

—(ï —

( ï

= o; (8)

équation de relation entre les six angles que forment , deux à deux ,
dans l'espace , quatre droites qui partent d'un même point , et
conséquemment quatre droites quelconques (*).

C'est aussi la relation entre les six distances de quatre points
d'une sphère , pris deux à deux, et de laquelle on déduirait , au
besoin , la relation entre les six distances deux à deux de quatre
points d'un plan , en supposant le rayon de la sphère infini , après
avoir préalablement transformé les cosinus en sinus et chassé les
radicaux.

Les formules ( 7 , 8 ) présentent tout ce qui est nécessaire pour
décomposer une puissance A en trois autres de directions données.

Par le sommet de l'angle (A 9 B, C)9 imaginons un plan indéfini,
perpendiculaire à la diagonale A. Si l'on conçoit une pyramide
hexagonale dont la base soit la somme des projections de trois faces
de l'angle {A , B , C) sur ce plan ; il est aisé de voir que cette
pyramide sera équivalente au parallélipipède.

il n'est pas moins facile de se convaincre que la base de la
pyramide sera un hexagone symétrique ; c'est-à-dire 7 un hexagon©
ayant ses côtés oppose's égaux et parallèles , et se trouvant consé-
quemment composé de trois parallélogrammes , lesquels seront les
projections , sur notre plan, des trois faces de l'angle (A, B, C);

(*) Voyez le mémoire de M. Carnot sur la Relation entre cinq poinU
l'espace, page 37.
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maïs les projections sur le même plan des trois arêtes de cet
angle sont AS\n,x , BSin.y, CSin.z ; d'où il suit (I) , qu'en désignant
par « , fi 9 y les projections des angles a , b , c sur ce plan , l'aire
de la base de la pyramide sera

y J

de sorte qu'en désignant par P le volume du parallélépipède
on aura

tout se réduit donc à déterminer les angles * , fi , y>
O r , ces angles sont évidemment la mesure des ongles dièdres

que formeraient deux à deux les plans que Ton conduirait par la
diagonale A et par chacune des trois arêtes A , B , C ; en consi-
dérant donc successivement les trois angles trièdrcs dont les arêtes
sont

A , B , C -f A , C , A ; A , A , B? ;

et dont les angles plans , respectivement apposés , sont

^ > ^ 5 y ; b y 3c 7 z -, € , y , .r ;

BOUS aurons 5 par les principes fondamentaux de la trigonométrie
sphérique ,

d'où, en passant aux sinus»,
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./S=^/i—Cos.2£—Cos.-z—

mais , en mettant dans les seconds membres de ces équations pour
Cos,œ,Cos.y} Cos.£, leurs valeurs (4), ils deviennent respectivement

A

- l / i - C o s ' a - C o s ^ C o s *

C
*— y i—Cos.

donc enfin , en substituant dans la valeur de P , il viendra

F =r ÀBCs/1—Cos.2a^Cos.2^—Cos.

D'où il serait facile de conclure le volume d'un tétraèdre , en
fonction de ses six arêtes (*),

(*) Au moment où je termine ceci, je m'aperçois qu*à îa page ^53 du VI.e

volume de ce recueil t M, Bcrard est parvenu, par la même voie que moi,
à Téquaiion de relation entre les six angles que forment deux à deux qualro
droites dans l'espace; mais ^ cet estimable géomètre n'a pas songe à déduire ÛQ
tes formules la diagonale du parallélépipède > ce qui n'était pourtant pss le
point le plus difficile.
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AN ALISE ALGÉBRIQUE.

De la détermination du nombre des racines imaginaires
des équations numériques (*) ;

Par un ABONNÉ.

JLNOUS nous proposons d'offrir ici, pour la détermination du nombre
des racines imaginaires des équations , une méthode à laquelle on
pourra peut-être reprocher sa prolixité , dans les degrés un peu
élevés ; mais qui néanmoins , dans l'espèce d'indigence où nous nous
trouvons à cet égard , nous paraît ne devoir pas être tout-à-fait
dédaignée , et qui peut d'ailleurs recevoir divers perfectionnemens.
dès qu'elle sera bien connue.

Pour rendre nos développemens plus facilement intelligibles , nous-
procéderons d'abord successivement des degrés les moins élevés à
ceux qui le sont davantage. Nous présenterons ensuite l'exposé
général de- la méthode.

(*) Ce qu'on va lire présente des points nombreux de ressemblance avec le
contenu du VLe chapitre d'un ouvrage que M. BÉRARD vient de mettre au
jour , sur la Résolution des équations numériques ; mais , l'ouvrage de M. Bérard
n'étant point encore en circulation , lorsque ce mémoire nous est parvenu 9 il
est impossible que son auteur en ait eu connaissance» On trouve d'ailleurs 4es
premiers germes de la théorie qui va ctre exposée , dans un mémoire du même,
auteur^ inséré à la page 22 du YHI.e volume de ce recueil.
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i. Soît d'abord l'équation du premier degré

on sait que a étant positif, sa ranne unique , toujours réelle f ê t
positive , négative ou nulle, suivant que -r-b est lui-même positif}

négatif ou nul*

2. Soit l'équation du second degré

dans laquelle nous pouvons toujours supposer j et nous supposons
en effet a positif.

Considérons la parabole ayant pour équation

il est clair que la recherche des racines de la proposée se réduit
à la recherche des abscisses des intersections de cette parabole avec
l'axe des x ; ces racines seront donc réelles et inégales, égales ou
imaginaires ? suivant que les intersections de la courbe avec l'axe
des x seront au nombre de deux , se confondront en une seule
ou n'existeront pas.

Et comme les branches extrêmes de la parabole se prolongent
du côté des y positives , on peut dire que la proposée aura ses deux
racines réelles et inégales 7 égales ou imaginaires ? suivant que le
sommet de la couibe aura son ordonnée négative , nulle ou positive.
Tout se réduit donc à obtenir l'ordonnée de ce sommet.

dr
Au sommet de la parabole on doit avoir —=:O: c'est-à-dire.

ax

c'est donc là l'équation qui donne l'abscisse du sommet de la courbe 5
I * IXm Q
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on aura donc l'équation qui donne son ordonnée > en élimîtfant x
entre celle-ci et l'équation X—y ; ce qui donnera

d*où Ton conclura ( i) que l'équation X^=o a ses deux racines réelles
et Inégales , égales ou Imaginaires, suivant que b*—l±ac est positif,
nul ou négatif.

3. Soit l'équation du troisième degré

dans laquelle nous supposons toujours a positif.
Considérons la courbe parabolique ayant pour équation

il est clair que la recherche des racines de la proposée se réduit
à la reclierche des abscisses des intersections de cette courbe avec
Taxe des x ; ces racines seront donc toutes trois réelles ou inégales,
ou bien deux d'entre elles seront égales , ou enfin 11 y en aiira
deux d'imaginaires , suivant que la courbe aura avec Taxe des x
trois intersections distinctes , ou que deux de ces intersections se
confondront en une seule , ou enfin que la courbe ne coupera Taxe
des x qu'en un seul point. 11 pourrait aussi arriver que les trois

(*) II est clair que tout se réduit à éliminer x entre X = o et X ; =o , sauf
à changer ensuite , dans le résultat, c en c—y ; or , si l'on prend la diffé-
rence des produits de X par 2 et de X? par x , il vient bx-%~2.c=-o ; donc ,
tout se réduit à éliminer d'abord x entre les deux équations sœx-^-b'z^o et
èx-4~^c=o , ce qui donne è2—-!$ae-=-o , et à changer ensuite c en c—y. On
obtient ainsi &-—-Ĵ â c—j*)—° » 4U^ e s t e n e ^ e t l'équation du texte»
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intersections se coniondissent en une seule , auquel cas la propo6ee
aurait ses trois racines égales.

Or , sauf les cas d'exception , sur lesquels nous reviendrons tout-
a-Pheure , la courbe aura généralement deux sommets ; e t , en sup-
posant , pour fixer les idées ? que l'angle des coordonnées positives
soit pris au dessus de Taxe des DÛ , supposé horizontal, et adroite
de l'axe des y , supposé vertical , voici quel sera son cours : de
ses deux branches extrêmes et infinies , celle de gauche se prolon-
gera en bas et à gauche , tandis que celle de droite se prolon-
gera en haut et à droite ; et , quant à sas sommets , le plus à
gauche aura sa convexité tournée 'sers le haut , tandis que le plus
à droite aura la sienne tournée vers le bas.

Or , de là il est aisé de conclure , i.° que la proposée ne pourra,
avoir ses trois racines réelles qu'autant que Taxe des x se trouvera
compris entre les tangentes aux deux sommets ; 2.0 qu'elle aura
deux racines égales , lorsque Taxe des oc se confondra avec l'une
ou l'autre de ces tangentes- 3.° qu'enfin elle aura deux racines ima-
ginaires , si Paxe des 00 est au-dessus] ou au-dessous de ces deux
tangentes.

Cela revient évidemment à dire , i.° que la propose'e ne pourra
avoir ses trois racines réelles et inégales qu'autant que les ordonnées
des deux sommets seront de signes contraires ; a*° que deux de
ses racines seront égales , si Tune quelconque de ces ordonnées est
nulle; 3.° qu'enfin elle aura deux, racines imaginaires, si ces deux
ordonnées ont un même signe quelconque.

Tout se réduit donc , comme Ton voit , à déterminer les ordonnées
des deux sommets , ou seulement à pouvoir en assigner les signes ;

or f aux sommets de la courbe, on doit avoir — = 0 ; c'est-à-dire,
dx

-o ; (X'—o)

c'est donc là l'équation qui doit donner les abscisses des sommets ;
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on aura donc l'équation qui donne leurs ordonnées , en éliminant
a; entre celle-ci et l'équation X=zy ; ce qui donnera (*)

(*) Pour exécuter facilement cette élimination , et obtenir l'équation finale leîle
qu'on la voit dans le îexte , on remarquera , en premier lieu , que tout se
réduit a éliminer x entre les deux équations X = o , X / = o , pourvu que , dans
le résultat , on change d en d—y.

Or , si de l'équation X = o , multipliée par 3 , on retranche l'équation X ; =o y

multipliée par a; , il viendra

tout se réduit donc à éliminer x entre cette dernière équation et l'équation

et à changer ensuite d en d—-y dans le résultat.

Le résultat de cette élimination étant

il s'ensuit que l'équation finale en y doit être

} = 0 ; (Y=o)

équation qu'il s'agirait de développer et d'ordonner.
Mais il est clair qu'on aura les coefïiciens de ses différens termes ? du dernier

dY à*Y
au premier} en posant ^ = 0 dans Y, —— , ~ ,— ; or , on a

c\ Y
=iSa{6c—Qa(d—f)}— i2b{2b—3ÛC)

ce qui, en faisant y=-o , donne les trois coefficîens du texte.

Cela revient, au surplus , à dire que l'équation finale en y esl

t d*D dD
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2bhz—oac)}f

La proposée aura donc ses trois racines réelles et inégales , deux
racines égales , ou enfin deux racines Imaginaires , suivant que
cette dernière aura ou ses deux racines de signes contraires ou Tune
dVlles nulle ou toutes les deux de mômes signes -, c'est-à-dire 9

suivant que son dernier terme

(bc-gad)2—4iZ>*—3œc)(c*~$hd) ; (D)
\

produit de ces deux racines , sera négatif , nul ou positif.
Passons présentement aux cas particuliers. Nous avons supposé

que la courbe parabolique X^f avait deux sommets réels et dis-
tincts , ce qui suppose que l'équation X/=^o a ses deux racines réelles
et inégales ou 7 en d'autres termes ? qu'on a (2)

¥—3ac>o ;

maïs , ces deux sommets pourraient fort bien se confondre en un
seul ; ou bien ils pourraient être tous deux imaginaires , et c'est
ce qui arriverait si cette même fonction b2—4ÛC était nulle ou
négative.

Dans le premier cas , la courbe n'aurait qu'une seule tangente
parallèle à l'axe des ce ; dans le second , elle n'en aurait aucun ;
dans l'un et l'autre elle ne pourrait évidemment couper Taxe des
oc en plus d'un point ? et conséquemment l'équation proposée devrait
avoir deux racines imaginaires.

Or , lorsque b%—oac est nul, la fonction (D) qui se réclu't alors
à {bc—gad)z est essentiellement positive -9 il n'y a donc rien de
changé alors au principe que nous avons établi ci-dessus.

Passons au second cas , c'est-à-dire, à celui où l'équation X'ZZQ
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a ses deux racines imaginaires , ou , ce qui revient au même , à
celui où b2 — 3ac est négatif ; si nous résolvons la fonction (JD)
égalée à zéro , comme équation du second degré en J , nous
trouverons

»

racines essentiellement imaginaires /lorsque 1%-—Zac est négatif;
donc , dans cette hypothèse , quelque valeur que Ton donne à d
dans la fonction (29) , on obtiendra toujours des résultats de mêmes
signes ; ils seront donc constamment positifs , puisqu'ils sont tels
lorsqu'on fait, en particulier, £?=o. Ainsi, dans ce cas encore , nous
n'avons rien à changer à nos conclusions.

Il est un dernier cas qui a échappé à notre analise : c'est celui
où les deux sommets se confondant en un seul ? c'est à-dire , celui
où la courbe n'ayant qu'une seule tangente parallèle à Taxe des $,
cette tangente est l'axe des x lui-même. Il est évident qu'alors la
proposée doit avoir ses trois racines égales ; il faut donc que son
premier membre soit un cube parfait , ou du moins soit susceptible
de le devenir au moyen d'un multiplicateur convenable ; soit X ce
multiplicateur, la proposée devra équivaloir à

c'est-à-dire ;

on devra donc avoir

d'où

et , par suite ,
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hc =

on aura donc 9 à la fois t

o , hc—g#J=o , r2-— 3W=ô ,

la fonction (D) sera donc nulle , comme dans le cas de deux
racines égales seulement ; maïs , de plus , l'équation J T = O qui ,
dans ce cas , ne perdait^qne son dernier terme ? perdra aussi celui
qui le précède.

Ainsi , en résumé , et quels que puissent être d'ailleurs les cas
particuliers qui auront lieu } i.° si l'équation JT= o a une variation
et une permanence , l'équation Ji^^o aura ses trois racines réelles
et inégales ; 2.0 si celle équation n'a que des permanences , la pro-
posée aura deux racines imaginaires ; 3.° si cette équation est dépour-
vue de son dernier terme , la proposée aura deux racines égales; 4-̂
enfin, la proposée aura ses trois racines égales, si l'équation JT=o
est privée à la fois de ses deux derniers termes.

Il n'aura pas sans doute échappé au lecteur que la fonction (JD)
se compose de la même manière des coefficiens qui, dans la pro-
posée , se trouvent être également éloignés des extrêmes. On conçoit
que cela ne saurait être autrement , puisqu'en changeant dans la

proposée ^ en — , cette équation ne fait simplement que se renverser;

et que les racines de la nouvelle équation doivent être réelles ou
imaginaires, égales ou inégales, suivant que celles de la proposée
le sont elles-mêmes. C'est principalement pour laisser apercevoir
cette circonstance que nous avons donné un coefficient au premier
terme de la proposée ; nous en avons d'ailleurs recueilli l'avantage
de n'avoir à considérer que des fonctions homogènes»

4. Soit l'équation du quatrième degré
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aui+bj,3+cx'-±-dx+e=o . (X=o)

Soient posées les deux équations

axi+bxl-\-cx*-{-dx-\-e=y , (X -y)

dont la dernière n'est autre chose que la dérivée de la proposée.
En éliminant x entre elles , et posant , pour abréger ,

lc—6ad=A , 31*—Sac—B , bd—i6ae=C ,

cd—§he=E , 3d*—8ce—D , ^—^bd-F ,

on obtiendra

- {O-2(BD+2AE)C+4(A>D+E*BS;~BDF] = o. (*) ( r = o)

(*) Pour parvenir simplement à cetle équation , éliminez d'abord oc entre
les deux équations *

en représentant par E=f(e)=:o Féquation résultante, Tequation cherchée

Cette



DES É Q U A T I O N S . 69
Cette équation est encore , comme ci-dessus , celle qui donne

les ordonnées des sommets de la courbe parabolique , lesquels sont
ici ? en général , au nombre de trois : l'intermédiaire a sa convexité
tournée vers le haut : les deux extrêmes ont la leur tournée vers
le Las -, et les deux branches infinies de la courbe se prolongei t
en haut , celle de droite vers la droite , et celle de gauche vers
la gauche.

En supposant donc ces trois sommets réels et distincts , on voit,
i.° que la proposée ne pourra avoir ses quatre racines réelles qu'au-
tant que Taxe des oc se trouvera compris entre la tangente au
sommet intermédiaire et celle au sommet extrême dont la tangente
est la plus voisine de celle-là ; 2.0 que la proposée aura deux
racines réelles inégales et deux autres égales , si Taxe des oc est
tangent soit au sommet intermédiaire soit à celui des deux extrêmes
qui est le plus élevé ; 3.° qu'elle aura deux couples de racines
égales , si Taxe des oc est à la fois tangent aux deux sommets
extrêmes ; 4-° qu'elle aura deux racines réelles inégales et deux racines
imaginaires , si Taxe des oc se trouve compris entre les tangentes
aux deux sommets extrêmes ; 5.° qu'elle aura deux racines égales
et deux racines imaginaires , si Taxe des oc est tangent au sommet
extrême le moins élevé ; 6.° qu'enfin ses quatre racines seront ima-
ginaires si Taxe des x tombe au-dessous de cette dernière fangente.

Tout cela revient évidemment à dire, i.° que l'équation X = o
ne pourra avoir ses quatre racines réelles et inégales qu'autant que
l'équation Y=o aura une racine positive et deux racines négatives;
2. 0 que l'équation JÇ=o aura deux racines réelles inégales et deux
racines imaginaires , si l'équation Y=-o a deux racines positives et une
négative ou trois racines négatives ; 3.* que Péquation J f c o aura
enfin ses quatre racines imaginaires , si les racines de l'équation
JT=O sont toutes trois positives ; 4«° qu'en particulier , l'équation
X=o aura ou deux racines égales ou deux couples de racines
égales , suivant que l'équation JT=o sera dépourvue de son dernier
ou de ses deux derniers termes 5 et que , dans le premier cas,

Tom. IX. I O
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ses deux autres racines ne seront réelles qu'autant que les racines
restantes de l'équation JT=o ne seront pas toutes deux positives.

Le dernier terme d'une équation du troisième degré , pris avec
un signe contraire étant le produit de toutes ses racines , il s'en-
suit que, quand le dernier terme de l'équation T=^o sera positif,
l'équation X~o aura deux racines réelles et deux racines imaginaires ,
et que, quand il sera négatif, les racines de l'équation X=o seront
outes quatre réelles ou toutes quatre imaginaires ; mais , par la règle
de Descartes , l'équation JT=-O sera , dans le premier cas, de Tune
des trois formes

a—yy—^=o ,

tandis que , dans le second , elle ne pourra être que de la forme

ainsi ces deux cas seront toujours faciles à discerner l'un de l'autre.
Si nous? en venions présentement à discuter les cas particuliers

dans lesquels deux de nos trois sommets deviennent imaginaires,
ou dans ̂ lesquels ces trois sommets se réduisent à deux ou à un
seul , circonstances qui sont indiquées par les équations Y~o ou
^ = 0 , qui ont alors deux racines imaginaires, ou bien deux ou
trois racines égales , nous nous convaincrions que ces cas particuliers
ne nécessitent aucun changement dans nos conclusions générales
relatives au nombre des racines tant réelles qu'imaginaires de la
proposée. II pourrait seulement se faire alors que cette équation
eût trois ou même quatre racines égales , ce qu'on reconnaîtrait au
nombre des termes de la droite de l'équation 1^=0 qui s'évanouiraient.

5. Soit, en général ? l'équation quelconque.
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et soit

l'équation qu'on obtient en éliminant x entre la dérivée

de la proposée et Péquation

Cela posé , soient V et P respectivement le nombre des variations
et le nombre des permanences de l'équation JT=o, ce qui donnera
F4-P = tf2— 1. Si la proposée X=o est de degré impair, le nombre
de ses racines imaginaires sera

±(V-P) ;

et si , au contraire , elle est d'un degré pair , le nombre de ses
racines imaginaires sera

(*) II est patent , par tout ce qui précède , que l'équation 11=0 ne doit pa*
cxce'der le (m—i)me degré : cela résulte aussi de la the'orie de l'élimination,
Bezout a démontre', en effet « que si l'on a deux équations en x et y dans
lesquelles les [plus hautes puissances de x soient respectivement p-\-pf ,
qJpq1 et celles de y seulement p , q ? l'équation finale en y n'exce'derait pas le
degré (/>+/?') (?+?0"""/3y« ^ r -> n o u s avons ici p*\-pf^=rn , ^+^ /=m—1 , p = i %

y = o d'où /?'=77i—• J , 97=m—i ; donc le degré de l'équation en y doit être
au plus



QUESTIONS PROPOSEES.

Nous avons construit des formules générales pour les quatre pre-
miers degrés, et on pourrait également en construire pour les autres 5
mais îl sera peut-être plus court d'opérer immédiatement, dans la
pratique , sur les équations numériques.

QUESTIONS PROPOSÉES.

Problèmes de Géométrie.

îl IÎÀIÉTÀGER l'aire d'un triangle sphérique en trois parties équivalentes,
^àr des arcs de- grands cercles joignant un point de son intérieur
à ses trob sommets?

H. Partager Taire d'un triangle sphérique en trois parties équi-
valentes , par des arcs de grands cercles abaissés sur ses côtés d'un
point de son intérieur ?

'(*) C'est à cela que revient , au fond , le théorème de M. Bérarà dont
nous avons demandé la démonstration à la page 36 de ce volume : théorème
que ce géomètre admet comme un fait analitique*

J. D. G.
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GEOMETRIE TRANSCENDANTE.

Mémoire sur les dcveloppajïles successives dune même
courbe quelconque ;

Par un ANCIEN ÉLÈVE DE L'ÉCOLE POLYTECHNIQUE.

llOUS nous proposons îcï de démontrer quelques théorèmes relatifs
aux développantes successives des courbes quelconques , continues
ou discontinues. Quelques-uns des objets qui vont nous occuper oot
déjà été traité par L'Hôpital , Bernouilli , Euler , et récemment par
M. Poinsot. Mais , comme il peut n'être pas sans intérêt de montrer
comment on parvient au même but par des routes diverses ,
nous reprendrons de nouveau les questions traitées par ces illustres
géomètres , peur en former un tout avec ce qui nous appartient en
propre dans ce mémoire. Le lecteur y trouvera d'ailleurs l'avantage
de n'aveir pas besoin de recourir à d'autres écrits pour entendre
complètement celui-ci.

THÉORÈME 1. Si Von forme la développante d'un arc de
courbe quelconque y puis la développante de cette développante, puis
la développante de cette dernière courbe , et ainsi de suite ; en

faisant commencer ces développantes consécutives à une même ex-
trémité de la courbe primitive ; on obtiendra ainsi une suite d'arcs
de courbes partant d'un même point , alternativement normales et
tangentes en ce point à la courbe primitive , et ayant conséquemment
pour tangentes et normales communes en ce même point deux droites
indéfinies perpendiculaires Vune à Vautre.

Tarn. lX9n.° III, i.er septembre 1818. n
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Or y x.ù en prenant avec des signes contraires les arcs qui vont

dans des directions opposées , la somme infinie des arcs iangcns
à lare primitif est égale à la projection de Varc donné sur sa
tangente à Vextrémité opposée à celle de laquelle partent toutes
les développantes.
. 2.0 En prenant également avec des signes contraires les arcs
qui vont dans des directions opposées , la somme infinie des déve-
loppantes normales à la courbe primitive sera égale à la projection
de lare donné tuf sa normale à Vextrémité opposée à celle de
laquelle partent toutes les développantes.

Soit ÀBO ( fi g. i ) un arc de courbe quelconque , dont AX et
AY soient la tangente et la normale à l'extrémité A , et dont Bol?!
et BOI soient la Jangente et la normale à l'autre extrémité Bo. Soient
de plus B0A/ , BQA'7 les projections de Tare sur ces deux dernières
droites.

Soient ÀBO 9 ABr , AB2 , AB$ , une série d'arcs, tels que
chacun soit la développante de celui qui le précède immédiatement.
Il s'agit de démontrer, i.° que

ABa—AB2+AB4—AB6+.......= B0A' ;

2.° que

AB,—AB5+ABS— AB7+... . . . .=B0A" .

On doit remarquer que le théorème ne suppose pas nécessairement
que l'arc primitif ABO soit soumis à une loi ânalitique ; de manière
qu'on peut même lui substituer une portion de polygone quelconque9

reciiligne 7 curviligne ou mixtiligne*
M- Poinsot a déjà remarqué la vérité du théorème 5 dans le cas

où l'arc primitif est un arc de cercle ; il s'agit de faire voir qu'il
a lieu également, lorsque l'arc primitif est une ligne quelconque.

Démonstration. Soit pris sur l'arc primitif ABO , à partir de son
extrémité A , une partie variable AMQ = 5O ; soit MeTVlT la tangente
correspondante , terminée en Mx à la développante ABX de AB0 ;
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soit fait À M ^ S , ; soit M,M2 la tangente à ABX en M, » terminée
en M2 à sa développante AB2 ; soit fait A3M2 = 52 , et ainsi de
suite. Soit enfin ç l'angle variable que fait la tangente MOM, en
Mo j avec la tangente AX en A. Soient de plus pris AX , AY
pour les axes des coordonnées.

Cela posé , les choses étant d'ailleurs ( fig. a ) comme nous les
avons supposées ( Rg. 1 ) ; concevons qne Tare AMO = 5O augmente
de la q ami té Mo\ï0 = dS0 ; l'arc AMI = 51 augmentera de la
quantité M^I/^d.V, ; et Ton aura l'angle MlM

/
oM/

I = d9. De plus,
Tare MIM

/
I pouvant être considéré comme une ligne droite ? le

triangle MjM'oM/x , rectangle en M',, donnera

c'est-à-dire ,

ou simplement

d'où

l'intégrale devant s'évanouir en même temps que
D'après cela , il est clair qu'on devra avoir

Si Fon développe ces intégrales au moyen de l'intégration par parties ;
en se rappelant qu'elles doivent s'évanouir en même temps que ç 9 on aura
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7

La série infinie des arcs de rangs pairs , pris avec leurs signes, est

Si Ton y substitue pour So , 5 2 , 5 4 , les valeurs ci-dessus , il
viendra ; en réunissant ce qui multiplie chaque intégrale ,

c'est-à-dire ,

| d 5 0 - ) Sin
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ou , en faisant tout passer sous le même signe d'Intégration 5 ce
qui est permis 9 puisque les limites sont les mêmes ,

—Ss+ -Cos

Or , yd5oCos.<p et /H5oSin.<p sont les projections de la courLe pri-
mitive sur les tangente et normale au point A -, en représentant donc
respectivement ces projections par x et y ^ on aura

et on trouverait pareillement

Or , ce sont précisément là les formules au moyen desquelles on
passe d'un système rectangulaire à un autre système rectangulaire
formant un angle ç avec le premier , d'où il suit que ces deux
séries ne sont autre chose que les projections de Tare ÀM0 sur
la tangente et sur la normale à son autre extrémité Mo , ainsi que
l'énonce le théorème.

Les développemens de 5j , S2 , 5 3 , . . . . . , d'où nous avons conclu
ce théorème, ne supposent aucunement que la relation entre les deux
variables So et <p 9 puisse être exprimée par une fonction analitique >
unique et continue; ils ne sont fondés , en effet , que sur le principe
d'intégration par parties ., lequel a toujours lieu quel que puisse être
le genre de dépendance entre So et ç. II faut seulement observer
que ; dans les séries

les arcs So , 5j , 5 2 , doivent se mesurer en prenant négative-^
ment les portions de développantes qui Répondraient à des décroisse-?
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mens de Tangle <p y c'est-à-dire , à des mouvemens de la tangente.
inverses de son mouvement, primitif.

Avant de passer a d'autres propositions qu'on peut conclure du
précédent ihéoième, nous ferons remarquer que les arcs de dévelop-
pantes consécutifs , correspondant à un angle donné <p , doivent
nécessairement décroître sans cesse } de manière à devenir enfin
moindres que toute longueur donnée; du moins tant que Tare pri-
mitif n'est pas infini \ car, puisque chacune des séries

SQ~5

se décompose en d'autres dont la sommation ne dépend que de
celles de Sin.<p , de Cos.<p et des intégrales /d50.Cos.p , /d5 0 .S in .p ,
lesquelles s'obtiennent toujours , quel que soit <p , lorsque 5 0 n'est
pas infini ; il s'ensuit que ces séries en SQ 7 S17 5 2 , . . . . • . . sont
toujours convergentes 7 et qu'ainsi les arcs dont on vient de parler
finissent par s'approcher indéfiniment de zéro.

On parviendrait à la même conclusion > en formant la somme

cette intégrale devant , en effet , être finie 7 tant que 5O le sera
lui-même y on est certain que la série dont elle exprime la valeur
est convergente , et qu'ainsi les longueurs des développemens successifs*
faits dans le même sensj finissent par décroître indéfiniment.

THÉORÈME IL Si l'on forme la développante d'un arc de courhe
quelconque , puis la développante de cette développante , puis la
développante de cette dernière courbe , et ainsi de suite, en alternant
constamment la direction du mouvement de la tangente ; c'est-à-
dire , en faisant commencer chaque développante au point où finit
celle qui ta précède immédiatement ; ces développantes se trouveront



C O N S É C U T I V E S . 7 9

toutes comprises entre la tangente à l'une des extrémités de Tare
primitif et la normale à son autre extrémité. Cela posé,

i.° Si les deux droites indéfinies qui comprenne rit toutes ces
courbes sont convergentes 7 auquel cas les développantes auront des
longueurs sans cesse décroissantes ; ces développantes tendront au s ai
sans cesse à devenir des épîcycloïdes intérieurs ;

2.° Si ces droites sont parallèles , les développantes tendront
sans cesse à devenir des cycloïdes ;

3.° Enfin , si ces mêmes droites sont divergentes , les dévelop-
pantes tendront sans cesse à devenir des épicycloïdes extérieures.

Soient A # AÏ , AXA2 , A2A5 , une suite indéfinie d'arcs de
courbes ( fig. 3 ) , dont le premier est quelconque et dont chacun
est la développante de celui qui le précède immédiatement ; de telle
sorte que le premier développement se fasse de AÏ vers A2 , le
second de A2 vers A3 , le troisième de A5 vers A4 ? et ainsi de
suite. Les points Ax , A3 , A5 ,.,.„. se trouveront tous sur la normale
à la courbe primitive au point Ai , laquelle est rencontrée en I
par la normale à son autre extrémité Ao ; et les points Ao , A2 ,
A4...... seront tous situés sur la tangente menée à la courbe pri-
mitive y par cette dernière extrémité , laquelle se trouve coupée en
G par la tangente à son autre extrémité Ai.

Soit fait l'angle K^h.^®; les deux droites AxA3 A s, ...., AOA2A4 ...
seront convergentes, parallèles ou divergentes, suivant que l'angle
* sera aigu 7 droit ou obtus. Il s'agit donc de démontrer que les
développantes consécutives tendront à devenir des épîcycloïdes in-
térieurs dans le premier cas , des cycloïdes dans le second et des
épieyeloïdes extérieures dans le troisième.

Ici encore ? comme dans le précédent théorème , l'arc primitif
peut n'être point assujetti à la loi de continuité ; ce peut être même
une portion de polygone quelconque , reetiligne , curviligne ou
mixtiligne.

Soient A IMO=5O , A IM 1=5 I ; A 3 M 2 = 5 2 , A5M5 =$, . . . . . . f-
une suite d'arcs variables conse'cutifs et correspondant , dévelop-
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pans les uns des autres ; et soit <p Fangle que fait la tangente
MoMx au point Mo avec ia tangente A,G au point A,.

Soient enfin 2O , 2 , , S a , les longueurs totales des dévelop-
pantes A0Ax, À Ï A 2 , AZA5 ......

Nous aurons d'abord , comme dans le précédent théorème ,

l'Intégrale s'éyanouissant avec ç. On aurait de même

mais MiA2 = AIA2—AIM1 = SI51 ; donc

Ces valeurs de St , Sz indiquent , en général , comment on peut
passer d'une développante à la suivante ; et l'on voit qu'on peut poser
cette suite d'équations

Si l'on fait les substitutions , on trouvera

La
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La loî de ses de'veloppemens se trouve suffisamment établie , fpar h?s
équations même qui ont servi à les obtenir : on passe d'un ^rc
de numéro pair au suivant , en intégrant a partir de ô — o ; et d3
ce dernier à l'arc de numéro pair qui vient après , en retranchant
une intégrale semblable du terme correspondant de la suite ?2X f

? 2 5 , * £ , ,
Comme les développantes de numéros impairs S Ï , S 3 , 2 5 .,;,

entrent seules avec les intégrales successivesy\S'0u<?>,y^5od<?>% J'iS9d^9...»
dans les expressions de tous ces arcs ? nous allons examiner seu-
lement comment varient ces développantes. Comme & n'est autre
chose que la valeur de <p qui répond à Tare AjAo — ^o î ^ s'ensuit
qu'on doit avoir

S, =

Pour avoir le développement du terme général £zn+i y après qu'on
en a éliminé tous ceux S 2 / ï _ 5 9 %xn_% , S£ qui le précèdent,
soient multipliées ces équations , excepté la dernière , par des coeiïi-
ciens a2n, œz?i— 2 9 .^an—4 >•• - ^ 4 ? ^2 > e t formons-en la somme,
en égalant à zéro les quantités qui multiplient *£zn—i > ^zn— 3 J
-£*«— 5 , •••••-Sj , 2X j nous aurons ainsi

les coeificiens a% , #4,0*, tfirt étant déterminés par les
équations

l'om. IX. 12
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Comme tous ces coefficiens contiendront des termes homogènes en
nous ferons azn=/Jzn

 ù}2îl; les nouveaux coefficiens^2 , ^ 4 , Ai}*«.d
se trouveront ainsi donnés par les équations

a! '

a! ~ * + 6!

i T H 6Î û

L'Inspection de l'équation qui donne le coefficient Àzn\ en fonction
des précédens suffit pour faire voir que les nombres A% , A4 , ̂ e> **^A\n

sont les coefficiens du développement de— •, car, en posant
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M- ) ;

le terme général du produit, égalé à zéro, donnera pour Azn la
valeur précédente.

Les coefficiens du développement de - peuvent s'obtenir d'une
Cos.a? l

manière qui en fait connaître la loi • il suffit de multiplier Cos.x
par le produit indéfini

ç désignant le quart du cercle , ou |*r. Ce produit étant convergent
pour oo<q , on peut poser; dans cette limite de oc ,

I- ~

mais , à cause de la convergence du produit qui donne le cosinus,
on peut appliquer , à la fraction précédente , la décomposition en
fractions simples , et poser > en vertu de ce que Cos.# est une
fonction paire %

7@ représentant un nombre impair quelconque. On déterminera Bm

-f-y
par la valeur que prendra V mq / pour x~mq« En diiTérentiant

G os.et?

les deux termes on a
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IX

Sin.x

faisant x~mq , on a , suivant que ;TZ—I est divisible par deux
seulement ou par quatre ,

*«=± - ;
raq

ainsi

€ 0 - , / f y 3 , / « y ^ 5 , 'y"'"-» (iLy/ f y 3 , / « y ^ 5 , ' y " » ,.(iL

On obtiendra donc le terme général de , en développant toutes
Cos.a? l r

ces fractions en progression , et en réunissant les coefficiens de %*n dans
les progressions. II viendra ainsi

ou bien . en mettant — en facteur commun • et multipliant de

part et d'autre par •'*

Â 2. s & \2.n ( ï i ï s ^ .

q \ q j \ y )

(*) On peut déduire assez simplement de ceci la sommation de la série

/
car on a

A - ^ $ r , X t I _JL_! )

or , on peut obtenir A%n , soit par les équations successives
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et telle est l'expression générale d<js coefficient rz , aA » ^g * .•»tfîn qui »
comme on Ta vu, donnent la valeur delà développante 2 a . : + I ; savoir

2:.*¥l

Pour appliquer cette formule à la démonstration du théorème
énoncé , nous prendrons d'abord le cas le plus simple , c'est-à-dire ,
celui où l'angle <*~q • il est visible qu'alors a2n tendra vers la

lîmile constante —, puisqu'alors ( — J sera l'unité t et que la srrîe

numérique qui entre dans l'expression de û2n converge très-prompîe-
ment vers l'unité» Et , comme les premiers coefFiciens a% , o^ ,
^6,...# n'affectent que les intégrales/2f î"15od<?)2»--- I,/2n-"35od^2f l~ ^}...
qui , comme on l'a démontré 9 décroissent indéfiniment ; il en résulte
que ? pour n très-grand , on aura sensiblement

p a r ,.—*."eCif , en y faisant x^zo | en sorte qu'on a
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La série formée par ces intégrales a été trouvée ( Théor* 1 ) égale
à la projection de la courbe primitive sur la dernière normale
AOI. Dans le cas où v~q , cette projection devient la distance
entre deux parallèles qui comprennent les développantes. En la
désignant par i) ? on a , à la limite %

" 2 " + l q '
ainsi > les longueurs des développantes finissent par être constantes*
L'équation de ces courbes limites est, d'après cela , facile à obtenir }

puisque la relation entre les arcs et les angles ç est donnée ; pour
les développantes de numéros pairs ? par

On a démontré que les intégrales /znSoà^z-:t, dont toutes les origines
étalent f = o ? décroissaient indéfiniment ; ce dernier teime disparaîtra
donc à la limite. De plus , les arcs S2/i""s

 ; S1;l"~î ,..... ne s'ecartant

sensiblement de que lorsqu'ils portent sur la portion négligeable

de la série 1 on peut écrire , pour n infini %

2.B , <p <pî & <pi

q \ t Ol Ol nî

Cette relation appartient à la cycloide dont la longueur totale est

— ou — , et dont le demi-grand axe est D. Il résulte d'ailleurs
q &

du mode de génération des développantes de numéros impairs qu'elles
seront aussi des cycloïdes égales; c'est d'ailleurs ce que l'on trouverait
directement, par l'expression de S2tlt+.l.

Reprenons présentement le cas général , où l'angle « , formé par
les normales extrêmes, est quelconque On a vu qu'une dévelop-
pante de numéro impair quelconque était donnée par la formule
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tfln.ysod*-*aB_2.^^

et qu'on avait généralement

~ J i

Pour n très-grand, la série se réduit à l'unité , et l'on a , à la limite

1 \ 9 J

on peut donc , en vertu de la convergence de la série

poser , pour n infini

On conclut de là que le rapport —^—- de deux développantes
2 2 ;i -J- l

successives d'ordre impair est, a la limite, égal à — ; mais comme

on a , pour un arc variable , correspondant à l'angle ç ,

on pourra poser , à la limite ,

-» « ̂ , * •

En faisant, dans ceîteéquaiion, ç~«, on aura Tare total S 2 n = ~-

on peut donc éorire
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Telle est donc l'équation de la courbe vers laquelle tendent les
développantes d'ordre pair. On trouverait , soit en intégrant cette
équation, soit en prenant directement la formule qui donne Sin+ , >

S ^ *—Cos. {^Jh o u S S W ; S S î

Cette équation, comparée avec la précédente, qui donne Sln

voir que la courbe limite est telle que sa développante est une
courbe semblable , mais dans une position inverse. Le rapport de
grandeur des arcs correspondais, dans l'un à <p et dans l'autre à *—?, est

On peut faire voir assez simplement , par des considérations géo-
métriques , que Tépicycloïde est la courbe qui jouit de cette prt>~

priété , et qui a pour équation *S = SSin. ( — J .

Concevons ? en effet , une épicycloïde ÀB ( fig. 4 ) décrite par la
demî-révolution d'un cercle dont le rayon est r sur R -, et proposons-
nous de trouver le centre de courbure pour un point M de cette
courbe. On sait que la normale au point M passe par le point de
contact P des deux cercles ; il ne reste donc, pour connaître le rayon
de courbure, qu'à chercher le point d'intersection de deux normales
consécutives*

Soient AOP = /3 et ÀPM = *. Si le rayon OP tourne de dé', la
normale MN tournera de d;M-d*-, or , ri est facile de voir que

7?

d'où d*= —d/3 ;
2r

l'angle des deux normales consécutives sera donc
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d/3 ou d/3.
r

Le point P s'est déplacé , dans le sens du cercle fixe AH , de
Rdp ; pour avoir ce déplacement, mesuré perpendiculairement à la

normale,on le multipliera parSin.*, ou par fîl ; ce qui fera d/3. , MP*

Or, à la limite , ce même déplacement est égal à pH ; multiplié
par l'angle des deux normales ; on a donc

, R+ir _ R
PW.d/3 =:d/3. —.HP

II est facile de conclure du rapport constant des deux lignes
MP , YN que ? si Ton décrit , au-dessous du cercle générateur , un
autre cercle , dont le diamètre soit à celui du premier dans le rapport

; c'est-à-dire, dans le rapport des distances au centre O, le

point N de la développée se trouvera toujours sur ce cercle ; et
comme l'arc QN sera toujours égal à QC , le point N décrira
une nouvelle épicycloïde semblable ; mais réduite , dans le rapport

. On peut aisément se convaincre, d'après cela, que cette

propriété Identifie Pépieycloïde avec la courbe limite de notre théo-
rème ; car , en désignant par S l'arc AN, et par <p l'angle décrit
par la normale ou la tangente , on aura

maïs QS*=CB , et CB est précisément la courbe totale ANC ; en
l'appelant donc S , on a

Tom. IX. i 3
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l'angle ç, dont la tangente MN a tourné, est précisément s-f js

« * • on a donc

f = S l l . _ , dou • s

SI * est l'angle total formé par les tangentes extrêmes ; comme

qui lui correspond = — = q , on aura

on a donc ; en substituant,

d'oà l'on conclut, pour l'équation de l'épicycloïde ,

équation qui est précisément celle de la courbe vers laquelle tendent
les développantes successives. E t , comme les considérations précé-
dentes s'appliquent aux épycîcloïdes intérieures , pourvu qu'on prenne
d« et d/3 de signes contraires 5 on voit facilement que leurs équatioas
seront de même

l'angle « étant alors plus petit que ç. Le théorème se trouve done
ainsi complètement démontré.

Paris ? le i3 de juillet I 8 Î 8 .
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GNOMONIQUE.

rSur la méthode universelle , pour trace?' toutes sortes
de cadrans solaires à toutes latitudes ;

Par M. FRÀNCŒUR P professeur à la faculté des sciences
de Paris.

Au Rédacteur des Annales j

MONSIEUR ,

JLJE but du petit mémoire de Gnomonique que j'ai eu l'honneur
de vous adresser il y a quelque temps, et que vous avez eu la
bonté d'insérer à la page 233 de votre VIILe volume , était de
donner des moyens faciles de tracer^à toutes latitudes, des cadrans
horizontaux. Les échelles dont j'ai indiqué la construction résolvent
la question avec une telle facilité, que le dessinateur le moins ins-
truit peut former aisément un de ces cadrans. J'ai terminé par exposer
un moyen de calcul, pour réduire au tracé d'un cadt an horizontal
toutes sortes de cadrans plans. Les eclaircissernens qui m'ont été
demandés , sur ce dernier problème, m'ont convaincu qu'en cherchant
à être bref, je ne m'étais pas fait suffisamment comprendre : c'est
ce qui me détermine k revenir ici de nouveau sur le même sujet ̂
dans la vue de lui donner un peu plus de développement.
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Tout cadran est censé construit au centre du globe : Taxe de

la terre est le style dont l'ombre se porte d'heure en heure §ur
diverses lignes tracées d'avance , et qui sont les intersections du
plan du cadran avec une suite de plans conduits par l'axe de la
terre. C'est lorsque le soleil atteint celui de ces plans qui est le
méridien d'un lieu qu'on y compte midi , el que l'ombre du style
se projette sur la méridienne du cadran ; si le soleil est à i5a de
ce plan s il est i î 1 ou \h dans le même lieu , suivant que l'astre
est à droite ou à gauche du méridien. ( Voyez la 2,me édition de
VUrant^raphie ).

Ces faits établis , passons à la résolution du problème, en commen-
çant par le cas où le pkn proposé décline, sans inclinaison.

Soient ( fig. 5 ) Z le zénith d'un lieu, P le pôle, O le centre
du monde ? OP l'axe , ÀZPI le méridien céleste , ÀBGÎCD l'horizon ,
BZVG un plan vertical donné , sur lequel on se propose de tracer
un cadran solaire, GOD , perpendiculaire sur BC déterminera évi-
demment en D le zénith du lieu où le plan horizontal est parallèle-
à celui BZC du cadran. L'azimuth du plan BZG est Fangle ÀOB
qu'il fait avec le méridien ; et , à cause de l'angle droit BOD , l'angle
DOÀ est complément de l'azimuth, c1est-à dire la déclinaison B Z A = ^
du plan proposé. C'est, en d'autres termes, l'angle que fait notre
cadran avec le premier verticaly passant par les points est et ouest.

Désignons par l et L les latitudes des lieux Z et D ; joignons
D au pôle , par un arc de grand cercle , et nous aurons un triangle
sphérlque ZDP , qui a pour élémens ZP=c)o0—/, DP=9Oo~f~Z^
Z D ^ g o 0 , D Z P = i 8 o 0 - ^ , ZPDi=A—x, différence des longitudes.

Il s'agit de trouver L et A. Les équations connues de la trigo-
nométrie sphérique donneni (Voyez YUranographie, équations 17
et 20 f pag, 383 et 38/ ),

CW.DP zz CosZl),Cos,Z?+$in.ZD.SmZ?,CosfZ j

SinZVCotZD se CosZY.Cos Z+SinZ.CotZ£D *
ce qui revient à
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S\II.I~CO$,ICQSJ , Cot (A—0=*SinJCotJ •

Ces deux équations très-simples serviront à trouver sur le globe
la situation du lieu D , par sa longitude A et sa latitude Z, II
ne s'agira donc que de décrire un cadran horizontal , pour ce lieu
D , à l'aide de nos échelles. Mais il y aura ici deux précautions
à prendre.

J9° Le style devra être dirigé parallèlement à l'axe OP ; et
l'ombre de OF devra indiquer les heures. La méridienne sera donc
la projection de OF sur le plan BZC du cadran ; projection qu'on
nomme soustylaire « 20° une fois les lignes horaires du cadran ho-
rizontal tracées , il faudra en changer les dénominations , attendu
que les lieux Z et D comptent une heure de plus ou de moins
l'un que l'autre pour chaque 15° de différence en longitude; ainsi ,
par exemple 5 la ligne de X heures deviendra celle de XI ou de
I X , s'il y a précisément i5° de différence, à Test ou à l'ouest.

On ne peut donc appliquer nos échelles à ce tracé , sans avoir
d'abord placé le style parallèlement à l'axe du monde. Il y a, pour
y parvenir ; divers moyens , que nous avons exposés dans l'ouvrage
déjà cité : on peut, au reste, y parvenir par le calcul que voici.
Le plan DOP est le méridien du point D 9 puisqu'il passe par ce
point et par le pôle ; si donc V est l'intersection des arcs PD ef
ZGi ce point V sera l'un des points de la soustylaire-méridienne,
et il ne s'agira consdquemment que d'en fixer la position, Or , 1%
triangle sphérique PVZ , rectangle en Y ? a pour élémens

Z P = 9 o 0 - / ; Z= 9 8<W , V= 9 o° ;

l'angle ZV , formé par la soustylaîre et la méridienne sera donc
donn4 par la formule



$4 C A D R A N S
Ainsi ? après avoir tracé la verticale CM { fig. 6 ) sur le plan

déclinant proposé , pour représenter la ligne de midi : en un point
quelconque G de cette droite % pris pour centre % on fera l'angle
MGS égal à la valeur trouvée de ZV ; CS sera le soustylaire y

au-dessus de laquelle f dans un plan SCT , perpendiculaire à celui
du cadran, devra être élevé le style CT , formant sur CS l'angle
SCT=L. Sur CS comme méridienne, et sa perpendiculaire CO ;
comme ligne de VI heures , on tracera , à l'aide des échelles , un
cadran horizontal 9 pour la latitude L -, ce sera le cadran demandé,
du moins après y avoir changé les dénominations des lignes horaires
ainsi qu'il a été dit ci-dessus.

Supposons 9 par exemple , que la latitude du lieu étant 48°.*2/?
la déclinaison du plan soit ioo.i2 /5 on fera le calcul que voici;

Log.Cot, / =9.9513876

Log. Sin.J =9.248181 ï

Lo£.Tang.ZY=9* 1995687

Donc ZV=8°.59 /5o / / ( sensiblement 90 ) ; on fera donc Pangle
MCS = 9* ; à droite ou à gauche de CM f suivant que le plan dé-
clinera à l'ouest ou à Test. CS sera la soustylaire , ou la méridienne
d'un cadran horizontal, pour le lieu dont les longitude et latitude
A ? L sont données ainsi qu'il suit»

Los.Cos. / = 9.82382i3 Log.Sin. 7=9.8724337

?= 99930814 Log,Cot,*/=o. 7449008

I*og.Sin.Z= 9.8169027 Log,Cot.(A—^=0.6173340



SOLAIRES.' g5
On fixera le style dans un plan perpendiculaire au,cadran , et élevé
au-dessus de CS ; l'angle SCT , formé par ce style a devra ctre
de 410. Sur l'angle droit SCO „ en prenant CS pour méridienne,
on décrira un cadran horizontal pour cette latitude de 4l° * c* ^e

cadran demandé sera tracé. Riais 9 aptes avoir marqué les lignes ho-
raires 7 îl faudra reculer toutes leurs dénominations de l'intenalle
,A—A y réduit, en temps, savoir 54m* La ligne CS , qui était méri-
dienne , deviendra ainsi la ligne horaire de 54m

 5 avant ou après
midi, et ainsi des autres.

Au surplus ; comme cette manière de procéder aurait l'inconvé-
nient de donner souvent des heures que l'on n'a pas coutume d'in-
diquer sur les cadrans , il sera plus convenable de tracer sur le
cadran considéré comme horizontal des lignes horaires telles qu'en
changeant les dénominations , ainsi qu'il vient d'être dit , elles s%
trouvent être celles des heures et de leurs divisions d'usage.

Venons présentement aux cadrans inclinés»

Faisons tourner le plan vertical BZC ( fig. 5 ) autour de sa section
BG avec l'horizon , pour lui donner une position oblique ; Tazïmuth
ne changera pas ; et , la droite OD supposée mobile, demeurant
constamment perpendiculaire à notre plan , le point D décrira le
cercle vertical DZ. Supposons que le mouvement angulaire du plan
BZG soit tel que , quand il sera fixé dans sa nouvelle situation t

le point D se trouve situé en Z/ ( fig. 8 ) 5 ce point Zf sera ainsi
le zénith du lieu pour lequel notre cadran Incliné serait horizontal»
Dans cet état de choses , l'angle Z'ZA sera toujours la déclinaison d\
en outre, ZO , Z'O seront perpendiculaires l'un à l'horizon AD1
et l'autre au cadran incliné ; de sorte que l'angle ZOZ/ de ces
deux droites sera celui des deux plans , ou l'inclinaison /du cadran ;
ainsi , ZQZ'—ÂrcZZ'^î. Le triangle sphérique Z7ZP aura, d'après
cela , pour élémens ZP^go 0 — / , Z 'P=9oô—L 9 ZPZ '—A-* ,
Z Z ^ / , Z ^ P ^ i S o 0 — d ; en conséquence, les équations qui nous
ont déjà servi, dans le premier cas , deviendront, pour celui-ci t
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Sîn.Z=CosiSin./—SîniCos./Cos.J ;

Cos./CoU=Sîne^Cot(A—x)—SinJGosJ 5

ce sont précisément les équations de la page zfë du tome VlII.e ,
desquelles il faudrait tirer les valeurs de L et A—J\ , pour en faire
le même usage que précédemment ; mais il est préférable de résoudre
notre triangle sphérîque , à l'aide des procédés qui rendent les for-
mules finales propres au calcul par logarithmes (Voyez Uranographiif

pag. 386 ) ; il vient ainsi

Cos.zSin.(Z-

Cos.4»

Tang .(A~^=
Cos.(Z—<£>)

L*angle auxiliaire Q est donné par la première équation ; on trouve
L par la seconde , et A par la troisième. L'usage de ces grandeurs
est le même que ci-dessus ; mais il est nécessaire , avant tout ? de
donner au style la situation convenable.

Soient Z le zénith ( fig. 7 ) , P le pôle , ZPV le méridien , VE
le plan incliné du cadran ; soient les arcs Zï , PO perpendiculaires
à ce plan. Il est visible que l'angle Z en est Tazimuth =90°—^,
que DI en est l'inclinaison / ; le point D est supposé sur la ligne
de plus grande pente , V sur la méridienne , O sur la projection
de Taxe , c'est-à-dire , sur la soustylaire ; Tare PO est l'angle Z
du style avec le cadran. Il s'agit donc, en premier lieu ? de résoudre
le triangle sphérique rectangle ZVD , où Ton connaît ZD~go°—/
et Z = go°-—d\ on calcule le côté VD , qui est l'angle formé par
la méridienne et la ligne de plus grande pente ; ou calcule aussi
l'angle Y \ et Ton a , de cette manière >

Tang%
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CoLdCosJ , CosY=zS\n.iCos.d .

Ensuite , dans le triang'e rectangle V P O , on calcule VO , connaîss nt
l'angle V et le côté PO = L • ce qui donne

S//i.VO = Tang ACol.V.

Ces trois valeurs remplissent îe but proposé.
En effet, après avoir tracé sur le plan incliné ÀC ( fig. q ) une

horizontale ÂB et sa perpendiculaire ÉF , ligne de plus parure
pente; on mesureia les ang'es d et / ; savoir , l'angle i que ff.ru e
E F avec sa projection sur le plan horizontal , et l'angle OAB que
forme AB avec une méridienne horizontale AO ; ce qui donnera
d~QO°—OAB. Ces valeurs introduites dans nos équations ( Consultez
l e s f i g . 7 , 8 ) font connaî're ,

ï.° L et A—x ;

2.0 L'angle VD que fait E F avec la méridienne F<VXII) ; ce
qui détermine la position de cette dernière ligne ;

3.° L'angle V 7 qui sert ensuite à trouver VO 7 angle que fa't
la méridienne avec la soustylaire , et qu'on formera en GF (Xîl, 7

à droite ou à gauche de F^XII) , suivant le côté où le cadran déclina.
Cela fait , sur F G , comme méridienne , et sa perpendiculaire

FR comme ligne de VI heures , d'nn cadran horizontal , pour la
latitude L , on décrira ce cadran } a l'aide des échelles. Le proposé
sera ainsi tracé 9 sauf à changer les dénominations des lignes horaires ,
à raison de i5° par heure de la différence A—A des longitudes
réduites en temps, ainsi qu'il a été expliqué ci-dessus.

Je pense , Monsieur , et vous penserez sans doute comme moi t

que ces développeinens ne sont pas sans utilité ? et qu'ils complètent
ce qu'on peut dire sur cette matière.

Agréez , etc.
Par i s , le 16 de juillet i8x8,

Tom. IX, i^
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QUESTIONS RÉSOLUES.

Solution du problème de dynamique propose à la
page 72 du VIII? çolume de ce recueil ;

Par M. TÉDÉNÀT , correspondant de l'académie royale des
sciences (*)•

JLROBLEME. Donner la théorie des petites oscillations d'un
corps pesant terminé dans sa partie inférieure par une surface
courbe , et posé sur un plan horizontal ?

Solution. La théorie demandée est implicitement exposée dans
la Mécanique analitique ( II.e partie , section VI ) , et \\ ne peut
être question ici que d'en faire l'application au cas particulier que pré-
sente la question proposée*

Soit un corps quelconque, terminé par une surface courbe, un
segment de sphère ou d'ellipsoïde , par exemple, posé sur un plan
horizontal ÀB ( fig. 10 ) , et le touchant en P. Soit G le centre
de gravité de ce corps ; pour qu'il soit en équilibre , il sera néces-

(*) La solution publiée h la page 298 du YIILe volume n'avait pa§ escort
paru lorsque celle-ci nous est parvenue•

J. B, G.
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âaîre et suffisant que la droite GP soit perpendiculaire au plan ÀB,
et conséquemment verticale ; e t , si l'équilibre est stable, le centre
de gravité G sera * comme Ton sait , le plus bas possible 7 ou , en
d'autres termes , sa distance au plan sera un minimum.

Si Ton change la position du corps sur le plan , de telle sorte
que la perpendiculaire élevée à ce plan , par son nouveau point
de contact V/ ne contienne plus son centre de gravité ; il cessera
dès-lors d'être en équilibre , et pourra prendre 7 en général , les
lïiouvemens que voici : i.# il pourra avoir un mouvement de rotation
autour de la verticale menée par le point de contact variable P7 ;
2.0 il pourra glisser sur le plan, par un mouvement de translation,
commun à toutes ses parties , vers A ou B ; 3.° enfin , si le corps
est libre , son centre de gravite' descendra suivant une verticale. Il
s'agit donc de déterminer ces trois sortes de mouvemens.

Lorsqu'un système quelconque de corps en mouvement s'écarte
très-peu de la position d'équilibre, les équations différentielles qui
expriment le rapport des forces accélératrices sont toujours inipgrables;
et l'on peut alors déterminer rigoureusement les oscillations et les
autres sortes de mouvemens. C'est pour cette raison que nous sup-
poserons 7 dans tout ce qui va suivre , que le corps s écarte très-peu
de la position d'équilibre»

Pour fixer l'attention, par une figure très-sîmp!e5 nous supposerons
une demi-sphère dont les trois axes , passant par le centre C , soient
a , b y c. Les coordonnées dune molécule quelconque, rapportée à
ces trois axes seront x , y , z» Ko us aurons donc à déterminer les
oscillations de cette demi-sphère par rapport aux trois axes o , b , c.

La méthode qui détermine les oscillations pour rhaque axe en
particulier étant toujours la même , quel que soit l'axe que l'on
considère, nous ne nous occuperons que de l'un d'eux seulement,
ou plutôt , pour plus de simplicité , nous ne prendrons qu'un df-mi-
cercle , dont l'axe vertical passe par le centre G et par le centre
de gravité G j ce sera celui des y ; l'axe horizontal sera celui
des x.



rco QUESTIONS
II Importe ici de distinguer deux systèmes d'axes ; l'un immobile

sur le plan EPF ; l'autre mobile avec le corps , et prenant la po-
sition E'P'F'* lorsque le point de contact primitif passe de P eu
V'* Toutes les quantités qui varieront par le mouvement du corps
se rapporteront aux axes fixes : celles qui dépendront de la figure
de cç corps se rapporteront aux axes mobiles. Dans la position d équi-
libre 7 les deus systèmes 6e confondront.

Nous avons dit plus haut que le mouvement d'oscillation se faisait
autour du point de contact P ; mais il est visible que l'angle FCP/

formé par la rencontre àes rayons de courbure CP , CP/ étant égal
à BPB', rien n'empêche que nous ne considérions le corps , dans
ses petits mouvemens , comme oscillant autour du point P.

Cela posé , soit une molécule quelconque àm , située en o , dans
la position "d'équilibre -, soit menée la perpendiculaire oi sur CP ,
et soit l'angle ico représenté par «, Dans la nouvelle position E /P /F /

du corps EPF , cette molécule passera de o en o/ duquel nous
supposons une nouvelle perpendiculaire o'V sur CP. Soit <P l'angle
cCo/ décrit par la molécule autour du point C ; angle qui est évi~
demment le même que BïB /^:PCP / ;on aura l'angle /CV = « + ^ '
si donc Ton fait C0=C</ = r , on aura , pour les coordonnées

u mouvement donnent} pour la molécule o f

En développant s , y , suivant les puissances de Ç ; en s'arrêtanl
aux termes du second ordre , on a
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d'où

- àt '

et par suite

En conséquence ? Fdquation générale deviendra, en divisant par $4 s

Pour qu'elle convienne à toutes les molécules du corps , il faut
affecter tous ses termes du signe d'intégration , et intégrer en re-
gardant r , & et dm comme variables; c'est-à-dire, en prenant
rinîëgrale par rapport aux axes mobiles qui oscillent avec le corps
dont il s'agit. On écrira donc

Jr%àm. —

pouvons remarquer actuellement que ? puisque
on doit avoir
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or j Jxàm est l'expression de la somme des momens ou du moment
de la résultante des forces parallèles à Taxe des y f pris par rapport
à un plan passant par le centre de gravité ; ce moment est donc

y au moyen de quoi l'équation ci-dessus se réduit à

or P puisque rCos,*:=j, on doit avoir

mais Jyàm est le moment de la résultante des forces parallèles à
Taxe des # -, il doit donc être égal a #z.CG=/72(CP— GP) ; si donc
nous représentons par R le rayon de courbure et par fi la distance
du centre de gravité G au plan ÀB, nous aurons

yd/72.rCos.«=m(iî—fi) ;
e» posant done

gm(R—fi)=B et fr%dm=Â „

l'équation, exprimant le mouvement de rotation , deviendra

Ci u) H

d/<* si

Dans cette équation , la quantité Â , qui est le moment d'inertie,
sera toujours positive ; mais la quantité B sera positive ? négative ou
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nulle, suivant qu'on aura /2> /3 , R^s^ ou / ! < £ • Sî , comme nous
l'avons d'abord supposé , le corps oscillant est un srgment de
sphère homogène , c'est évidemment le premier cas qui aura lieu ;
alors rintégrale de l'équation (i) sera

K, h étant deux constantes arbitraires.
Si B eût été négatif, l'intégration aurait présenté /hors du signe

sinus ; d'où Ton voit que , dans ce cas , 9 doit croître indéfiniment
avec le temps. Les oscillations ne sauraient donc alors être très-
petites, comme on le suppose dans J'énonce du problème.

On voit, par ce détail, que , lorsque le centre de courbure du
point de contact est au-dessus du centre de gravité , les oscillations
ont lieu ; mais si , au contraire, il était au-dessous , le corps ; une
fois écarté de sa position d'équilibre , culbuterait tout-a-fait.

On trouve un exemple des deux cas dans une ellipse qui, ayant
son plan vertical, se trouve appuyé sur une droite horizontale;
elle ne peut être en équilibre qu'autant qu'elle pose sur l'un de
ses sommets ; mais , en l'écartant un peu de l'équilibre , elle tendra
à reprendre sa situation primitive ou à s'en écarter, au contraire 9

de plus en plus ? suivant que ce sommet appartiendra à l'extrémité
du petit axe ou à l'extrémité du grand»

Poux savoir donc si un corps , d'abord mis en équilibre sur un
plan ? puis 9 déplacé d'une petite quantité , doit revenir dans sa
première situation ou s'en écarter de plus en plus, il suffit d'exa*
miner si le centre de courbure du point de contact est plus ou
moins élevé que le centre de graviîé (*)•

(•) C'est aussi 3a conclusion k laquelle on est parvenu dans l'article de
pr.ge 3^9 <2u VIIIe volume de ce recueil.
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L'équation (i) > multipliée par d<?> , donne, en intégrant,

a$ Y-+-JL

d'où on déduit

équation se'parée qui , intégrée de nouveau ^ fera connaître la durée
de chaque oscillation.

On a déjà dit que le centre de gravité G descendait dans une
droite verticale ; et il est visible que la force avec laquelle il s'ap-
proche du plan n'est pas la pesanteur toute entière 7 puisqu'une
partie de cette pesanteur est détruite par la résistance du point de
contact. Le centre de gravité ne s'approche du plan horizontal qu'en
vertu du mouvement de rotation* Or ? la pesanteur en un point
quelconque 0 décomposée donne, pour le mouvement de rotation
^Sin.^ qui , décomposée de nouveau , suivant le sens vertical et
Suivant le sens horizontal 9 donne, pour ses deux composantes,

Puisque le centre de gravité n'a point de mouvement horizontal
effectif 7 on aura pour la force accélératrice , dans le sens vertical f

multipliant par

dy=

intégrant et déterminant convenablement la constante, on aura
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ce qui donnera, pour la vitesse verticale ;

Quant a la force accélératrice, comme le corps n'a pas de mouvement
effectif dans ce sens , c'est une preuve que îe centre de gravité avance
autant dans un sens , par !e mouvement progressif, qu'il recule r'ans
l'autre par le mouvement de rotation ; et , comme le premier de
ces mouvemens est le môme pour toutes les molécules du corps,
il s'ensuit que , pour chaque molécule, on a 9 pour la force accé-r
lératrice horizontale;

d2x _. _
— =^Sm.fCos.? ;

multipliant par d^rrJ?d?Cos.f et intégrant, on a

II est d'ailleurs évident que le mouvement progressif s'exécutera
dans un sens opposé à celui du mouvement de rotation.

D'après le principe de la conservation des forces rires % on doîf
avoir , pour un point quelconque

2.d£*

qui est conforme aux valeurs trouvées pour dya ,
Tom, IX.
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Dans tout ce qui précède , on a supposé le plan parfaitement

poli et exempt de frottement ; on pourra donc déterminer toutes
les circonstances du mouvement d'un corps pesant qui fait de petites
oscillations sur un plan horizontal où on le suppose situé.

La même théorie pourrait servir a déterminer le mouvement d'un
pareil corps qui aurait reçu une impulsion quelconque ; mais on
tomberait dans des calculs très-compliqués et les équaiions dernières
ne seraient pas intégrabics. On ne' pourrait donc déterminer le
mouvement que par approximation.

Solution du problème proposé à la page 200 du VIII?
volume de ce recueil ;

Par M. TÉDENAT y correspondant de l'académie royale
des sciences.

JLROBLÈME. Donner la théorie du mouvement d'une échelle %

posant ? par son extrémité inférieure, sur un pape horizontal, et
appuyant y par son extrémité supérieure, contre un mur vertical^
en ayant égard au frottement ?

Solution* Soit une ligne pesante AB ( fig. 11 ) représentant uno
échelle , appuyée par son extrémité B sur une ligne horizontale
CB , et par son extrémité A sur la verticale CA. A moins que AB
ne fût dans une situation horizontale ou dans une situation verticale ,
elle glisserait nécessairement sans l'effet du frottement qui a lieu
en B et en A, Pour estimer cet effet ? aux deux lignes GA , CB
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substîtuons-en deux autres CA7 , CB7 , perpendiculaires entre elles,
convrne les premières ; et faisant avec elles un angle j6 tel que la
partie de l'effort de la gravité perdue, à raison de sa décomposition
dans le sens des deux nouveaux axes CA' , CW , soit équivalente
à l'effet du frottement dans le sens des premiers CA , CB. I/augle
ACA /=BCB /=^ , est ce qu'on appelle , pour cette raison , l'angle
du frottement*

Supposons tout le ĵ oids de la verge > que nous représenterons
par gm , réuni en son centre de gravité O que , pour plus de géné-
ralité , nous supposerons différent de son milieu. Soient OB/=za ,
Qk<=b et l'angle A 'NC=f , d'où A /B /C/=f /=f+i8.

L'effort de la pesanteur en O peut être dccoinposé en deux autres
agissant en A? ? B ^ lesquels sont respectivement

Ce dernier, décomposé parallèlement à B'G et A ;C7 donnera pour
ses composantes

gm . - — Sin./3 ; gm
0 a-f-b **

Ce dernier effort , perpendiculaire à la ligne ou plan CB; , est
détruit par la résistance de ce plan ; et on en pourra dire autant
de l'effort exercé en A'* Cela posé ;

L'équation générale de l'équilibre ( Voyez la Mécanique ana-
lit ique)

donnera, en faisant A/C=zu 9 B7C=
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gm

mais

partant

donc

ce qui donne

comme on Ta trouvé, par une méthode tout-à-fait différente, à la
page 199 du précédent volume.

Pour appliquer au mouvement de l'échelle la formule générale
de l'équilibre , il suffit d'ajouter aux termes ci-dessus les deux suivans

d2y d2a?

"T~ ? -;— * exprimant les forces accélératrices des deux extrémités

de l'échelle , dans le sens des axes CA , CB , c'est-à-dire 9 en n'ayant
d'abord aucun égard à l'effet du frottement.

Si Ton fait 7 dans cette hypothèse,

•n aura
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ou

(A)

Maïs, la ligne AB=a+h=r étant constante , l'équation de condition
donnera, dans un instant quelconque

ou

y-—+^? — r=o;

Cette équation, combinée avec l'équation (A), donne

Ainsi , la force accélératrice des deux points extrêmes sera variable;
ils parcourront respectivement les deux droites CA 9 CB. Le milieu
de AB décrira un arc de cercle dont le diamètre sera égal à cette
même droite. Les autres points décriront des arcs d'ellipses qui
auront leur grand axe suivant CB , pour la moitié inférieure , et
suivant CA. pour la moitié supérieure.

Si l'on veut connaître les vitesses des points extrêmes > on les,
trouvera en intégrant les équations suivantes
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— =—g'rdfCos.^Sin.2? ,

La première donne

f
et on tire de la seconde

ce qui s'accorde avec le principe des forces vives

Pour avoir égard au frottement , îl suffit de rapporter le mou
vement aux axes CA/ , CB^ Conservons les deux lettres y , oc
pour les deux axes CA , C B , et prenons u , z pour GA7,
en posant ; pour abréger ,

nous aurons

nais

" ~ Cos.£ *

l'équation, ramenée aux premiers axes , deviendra
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*)Cos.(4> -HO-(j^ V'Sin./iCos.^Sin^+iS) = o

faisant, pour abréger ,

et conservant l'angle ? ' , on aura

Cette équation a la même forme que l'équation, (A) déjà traitée;
elle donnera

dv ^

— = {/Sin

OQ déduit de Ja première

^ ut

«t de la seconde

—

En faisant 0^=0 , ces deux dernières formules deviennent celles qn/on
a déjà trouvées ci-dessus ; lorsqu'on n'a pas égard au frottement*
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On déterminera d'ailleurs les constantes k , PJ par les conditions

qu'au commencement du mouvement on a — = o , — ~ o .
* " dt àt

On doit avoir aussi, au commencement du mouvement ~ = o ^

T—= 0. Cette dernière condition donne

ou

comme cela doit être-, parce que, lorsque l'angle p est tel , TefFet
du frottement détruit TefFort de la pesanteur 9 ou la foi ce accélé-
ratrice , comme on Ta vu ci - dessus et en l'endroit déjà cité de
ce recueil,

I Les diverses positions que prend dans son mouvement la ligne
pesante AB , se coupent consécutivement en une suite de points
formant une courbe continue 2 dont on peut être curieux de connaître
l'équation.

Soient ÀB , A/B/ ( fig. 12 ) deux positions consécutives infiniment
voisines de la droite mobile , dont M soit le point d'intersection-? ce
point sera l'un de ceux de la courbe cherchée. Faisons ÂB = # ,
l'angle CB.4 = ^, et désignons respectivement par ^ , y les perpen-
diculaires MP , MQ abaissées du point M sur les droites CA ; CB
prises pour axes des coordonnées j nous aurons

Cos.<p Sin

c*est-à-dire >

Or.-
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O r , au point d'Intersection N , l'équation doit convenir également

aux deux droites ÀB , A'B' ; îl faut donc qu'elle soit Indépendante
de l'angle <p , et qu'elle ne soît composée que des seules quantités
Gj oc , y qui sont communes aux deux positions ; il faut donc que
x et y demeurent constans tandis que <p varie 7 c'est-à-dire , que la
différentielle de l'équation ci-dessus, prise pôr rapporta $ seulement,
doit avoir lieu en même temps qu'elle. Cette diflérentielie étant

il ne s'agît plus que d'éliminer ç entre elle et Pe'quatîon primitive.
Pour y parvenir, regardons x , y comme les deux inconnues

de ces équations ; nous en tirerons aisément

donc

donc enfin Féquation de la courbe cherchée est

(*) C'est précise'ment la courbe de la page 3j6 du YIII,e volume de ce
recueil, si ce n'est que la droite mobile qui y était représentée par ac Test
ici par a.

Si l'on compare cette équation avec celle que nous avons trouvée à la page 288
du V.e volume de ce recueil, et qu'on pourrait mettre sous cette forme

Tem. IX. ,6
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II est facile de s'assurer que cette courbe ( fig. i 3 ) a quatre

points de rebroussement situés sur les deux axes à des distances de
l'origine égales à a ; et qu'elle est symétrique non seulement par

on en pourra conclure que la courbe dont il s'agit est , par rapport à la déve-
loppée de l'ellipse ce que le cercle est lui-même par rapport à l'ellipse. On
ne saurait pourtant en conclure que cette courbe soit la développée d'un cercle %

puisqu'une telle développée se réduit à un point.
Mais on est conduit à soupçonner que celte même courbe pourrait bien être

la développée d'une ellipse dont les deux axes , infinis l'un et l'autre , auraient
néanmoins une différence finie.

Pour vérifier ce soupçon prenons Téquatio»* . . ^

de la développée de l'ellipse •, équation dans laquelle a , h sont les deux demi-
axes ; soit fait

, d9où £=0—e et a2—h%=-

l'équation! deviendra ainsi

•u encore

équation qui se réduit en effet à

lorsqu'on suppose a infini,
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rapport à ces axes , maïs encore par rapport aux deux droites qui
divisent en deux parties égales les angles des coordonnées. On en
concevra facilement la raison en remarquant ( fig. i3 ) que, théo-
riquement parlant 7 les droites CA>, CB devant être considérées comme
s'étendant Indéfiniment de part et d'autre du point C , le mouvement
des extrémités A et B de la droite mobile AB n'est pas borné à
ce point ; maïs que l'extrémité B peut passer à gauche et l'extrémité
A au-dessous suivant les proîongemens de CB et GA.

Il est d'ailleurs évident que la courbe est à la fols circonscrite
à toutes les ellipses décrites par les points de AB ; et , en particulier f

au cercle décrit par son milieu.



QUESTIONS PROPOSÉES.

QUESTIONS PROPOSEES.

Théorèmes de Géométrie*

1. U N point P étant pris arbitrairement dans l'Intérieur d'un triangle
rectilîgne ABC et kf , B/ , C/ étant les points où ses côtés sont
respectivement rencontres par les prolongcmens des droites menées
respectivement à ce point P des sommets A , B , G 5 on doit avoir

PA' PB' PC

II. Un point P étant pris arbitrairement dans Pïntérieur d'un
tétraèdre ABCD, et A^ B ; , C ; , D7 étant les points ou les pro-
longemens des droites menées à ce point P respectivement des sommets
À, B , G , D , rencontrent les faces opposées , on doit avoir

PA' PB' PQ PD' _
AA' "• BB' CC' "" ÏÏD' ~ X *



J.V.Ç.Jecit
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ASTRONOMIE.

Calcul de Véclipse de soleil du 7 de septembre 1820 9

pour 26 des principales villes de l Europe ;

Par M. KRÀMP > professeur doyen de la faculté' des sciences
de Strasbourg , correspondant de l'académie royale des
sciences , Chevalier de l'Ordre royal de la Légion
d'honneur.

AVERTISSEMENT DU RÉDACTEUR DES ANNALES,

•LYA. le professeur KRAMP , qui a adresse, il â quelque temps , à l'acade'mie
royale des sciences , un mémoire de plus de ioo pages in-4»e, conteuant le calcul
des circonstances de l'éclipsé de soleil du 7 de septembre 1820 , pour 16 de&
principales villes de l'Europe , ayant bien voulu nous confier la minute de ce
mémoire , nous en avons extrait les principaux résultats que nous ayons consignés
dans le tableau suivant.

Dans ce tableau , les villes se trouvent classe'es suivant l'importance plus ou
moins grande (fie l'éclipsé doit j avoir ; et les époques y sont exprimées en?
temps solaire vrai du méridien de Paris. En leur ajoutant donc les longitudes
en temps , telles qu'elles se trouvent dans le même tableau , on obtiendra les
époques telles qu'elles doivent être comptées dans chaque Tille en particulier,

D'après les calculs de M. Kramp , la seule de ces villes paar laquée
l'éclipsé doive être annulaire est celle de Strasbourg, On trouvera le calcul détû.i.s
pour cette ville à la page Z^ du VIÏI.e volume du présent recueil*

Tom. IX>n.° IV, i .e r octobre 1818. %n



1 i EGLÏPSf BE SOLEIL

Noms

des

Villes.

Latitudes

boréales.

Strasbourg. . .
Gotha. . . . . .
Rome.
Prague
Berlin. . . . . .
Palerme
Brein^n
Milan
Ofeo
Vienne
Copenhague. . .
Greemvich. • .
Edimbourg, . .
Paris
Warsovie. . . .
Stockholm. . . .
Konigsberg. • .
Montpellier. . .
Wilna
Brest. . . . . .
"Wardhuus. . -
Pétersbourg. • .
Moseow. • . . .
Madrid
Cadix. . . • • .
Lisbonne» • • •

48.
5o.
4r.
5o.
52.
38.
53.
45.
47-
48.
55.
5i.
55.
48.
52.
5g.
54.
43.
54.
48.
70.
59.
55.
4o.
36.
38.

34.
56.
53.

5.
3i.

6.
4-

28.
29.
12.

4'.
28.
57.
5o.
14.
2O-
42.
36-
4».
23-
22.

56.
45.
24-
32.
42.

Longitudes

en temps

de Paris.

Commenc.1

de

Téclipse.

56
8

54
•9
45
44
38

2
44
40

4
40
57
»4
28
3i
12
16

2

i4
36
23
45
57

o
18

h. m. s*
+ o, 2J. 36
-H o. 33. 35
- j - o. 4°- ^ 2

-+• o. 48. 20
+ o. 44. S
:+• o. 44 -7
+ o. 25. 5i
-+• o. 27. 26
+ 1. 6. 49
+ o. 56. 10
+ o. 40 59
— o. 9. 21

O. 22. 2

;J2 o. o. o
4- 1. 14. 5o
4- 1. ' a . 53
4~ 1. 12. 36
+ o. 6. 10
~h 1. 3i. 49
— o. 27. 16
-+- 1. 55. 7
+ 1. 5i. 54
•4- 2. 20. 5r
— o. 24» I O

— o. 3 | 3*

o. 47. 5
0. 4— 2

1. 9. 20

o. 53. 25
0. 47- 4°
1. 17. 54
o. 4Ï- 9
0. 55. 5o
1. 4. 8
o. 5g. 35
o. 4y z$
o. 33. 21
6. 23. 2
o. 4o* 3£

o. % . 6
o. 4i- 18
o. 5i. 5i
o, 54. 36
o. 56. 53
o. 32. 53
o. 33. 35
0. 5 i . 34
1. 5. 4^
o. 5o. 26
o. 57 . 18
o. 43. 48

Époque

de la plus !

grande

phase.

h. m, 5,

2. i3. i3
2. 11. 4-
2. 32. 33
2. i5, 41
2. i5. 0

2. 46. 26
2. 6. 35
2. 25. i3
2. 29. 52
2. 20. l()

2. 2. 34
1. 58, i5
x. 48. 5o
2. 10. 58
2. 16. 46
2. 0, 0

2. 14. 49

2. 22 4;
2. 18, -4
i . 58. 21
1. 45. M
2. 7. 18
2. 18. 19
2. 21. 0

2. 27. 3o
2 . 18. 7
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Fin

l'eclip

h. m.
3. 36.
3. 3o.
3. 54.
3. 36.
3. 3o.
4. ».
3. 27.
Ô, i+L±-

3. 43.
3. 4'-
3. 23.
3/24.
3. i3.

,3. 33»
j 3. 33.

3. 17.
3. 28.
3. 45.
3. 29.
3. 29.
2. 5 7 .
3. 18.
3. 27.
3. 45.
3. 5o.
3. 41.

1

se.

s.

56
4

3o
46
54
i3
25
48
17
2 0

5i
0

29
4«
8

34
i 3

9
28

5
32
4o
11

26
43

Mo" ..dre

distance

des centres.

1

0 .

1 .

1 .

1 .

1 .

1 .

2 .

2 .

2 .

2 .

2 .

3.
3.
3.
3.
3.
3.
4-
4-
5.
6.
6.
7-
8.

1 0 .

1 1 .

(f

%

27
48
53
54
%
5

I "?

23
35
37

1

6
i4
46
47
52

5
5o
38
4

5o
1 0

6
44
18

Nombre

h

doigts.

d.
Annulaire.

1 0 .

J O .

1 0 .

1 0 .

I O .

1 0 .

I O .

1 0 .

1 0 .

I O .

1 0 .

1 0 .

1 0 .

1 0 .

1 0 .

1 0 .

IO.

9-
9-
9-
8.
8.
8.
7*
7-

52

49
49
47
45
40
38

33

2.2,

' 9
7
6
4
0

53
24
i 5
58
5o
29
2 9
'7

Epoque

de ]la

conjonction.

h
2

2

2

2

2

2

2

2

2

1.

1.

2 ,

2 .

2 a

2 .

3,
2 .

I .

I .

2 .

2*

2 .

2 .

2.

. 772.

. 14.
• 9-
. 33.
1 '9-
. i3.
. 42.
• 7-
. 22.

. 29.

. 25.
• 6 .

49.
. 47-

7-
2 0 .

3.
i 5 .

. 6.
18.
5 7 .
49-
I O .

2 2 .

1 2 .

14.
4-

s.
5 i

2

/|5
18
33
5 i
2 2

47
4
9

-9
1 2

5r
8

44
53
i 3
16
33
34
2 1

36
i 5
36
56
36

Époque

du passage

par

h
2

. 2

2

2

2

3
2

2

2

1

2

i .

1 .

1 .

2 .

1.

2

0 .

o«
0«

3.
3.
3,

l'écliptique.

. m.

. 25.

. 17.

. 45.

. 4.
• 29-
. 2.
. 3.
. 36.
. 5.
• 7-
• 45.
• 39.
. 17.
. 35.

4 i .
2 O .

3 2 .
57.
23.
53.
24.
54.
54.
29«
54.
5o.

s.
17
4

4o
I I

43
5 i
46

0

26

58
'7
36
i 5
56
16
53
37

0

Î 3

24
34
37
2 9
36

9



ECLIPSE DE SOLEIL

Calcul de Véclipse de soleil du 7 de septembre 1820
pour Strasbourg et Montpellier ;

Par M. BENJAMIN VÀLZ.

Au Rédacteur des Annales;

MONSIEUR ,

VJONFORMÉMENT à la promesse que je vous en avais faîte et qu'une
petite absence m'a empêché de réaliser plutôt , j'ai l'honneur de
vous adresser mon calcul de l'éclipsé de soleil du 7 de septembre
1820. Permettez-moi d'y joindre les courtes observations que voici
sur le calcul de la même éclipse pour les mêmes lieux , donné
par M. le professeur Kramp , à la page 331 de votre VIIL*
volume.

i.a La parallaxe solaire ( pag. 33 ï ) , cotée avec cinq décimales
doit être purement fictive. L'on s'accorde à peine sur la première
décimale -, et, très-certainement 9 il n'y a pas deux astronomes d'accord
sur la seconde.

2.0 La quantité B ( pag. 332 ) a été obtenue en employant la
tangente de la parallaxe , tandis que c'était de son sinus qu'il fallait
faire -usage ; cela donne

5=63,7827 > ïaO^Bzz 1.8047029
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3.° Il y a 6" d'erreur (même page) sur la longitude du se!/;!

le 7 à rnîdl ; suivant la connaissance des temps elle doit "être
î64°.4-/*47//- Cette erreur , introduite dans les de termina lions
subséquentes les a rendues fautives.

4-° il y a , je croîs , sur les longitudes lunaires ( pag. 334 ) y

des erreurs en plus , savoir : de 6/; a deux heures -, de if/ à trois
heures; de i / ; à quatre heures. II y a aussi sur la latitude lunahe
à trois heures une erreur de \/; également en plus.

5.° Il n'a point été tenu compte ( pag, 338 ) de l'aplatissement
de la terre > dans la détermination de X > Y y Z. On a d'ailleurs
employé simplement la parallaxe équatorîale de la lune ? qui pourtant
aurait du être diminuée de 5 à G/;, pour les deux villes dont il
•'agit.

6.° Pour trouver p, q (même page ) , on a considéré ce comme
Infiniment petit par rapport à A \ et il est très-vrai , en effet, que
Terreur de cette supposition affecte à peine les dixièmes des secondées.
Mais , pour compléter l'exposition théorique de la méthode , il
aurait fallu justifier cette supposition.

7.0 Enfin , on a tout-à-faît oublié l'augmentation du diamètre
de la lune qui 5 dans ce cas , s'élève toutefois à 2O;/.

J'espère que toutes ces remarques expliqueront suffisamment les
différences suivantes , peu considérables d'ailleurs , qne j'ai trouvées
entre les résultats de mes calculs et ceux des calculs de M. Krarap,

i.° Les valeurs de q ( pag. 34o ) seraient fautives de 11 à i4;/ >
et celles de r de 7 à icv7.

2.0 Les distances des centres ( page 341 ) seraient fautives de
i5 à I7 / /. Celles de une heure est cotée \^on -, maïs la marche
des différences Indique que ce doit être i695 / ;. Cette erreur de
plume paraît provenir d'une autre , commise sur q , noté iS'jo^
au lieu de IS IO" . Malheureusement c'est cette première quantité
qui a servi à calculer le commencement de l'éclipsé qui , par ce a
môme se trouve en erreur de im.4os> à peu près.

3.° En ayant égard à cette correction , et ajoutant la différence
Torri. IX% 17 2*e
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des méridiens en temps , afin de lédu're les temps au méridien du
lieu; les déterminations que j'ai obtenues seraient plus fortes de 6* su?
le commencement , de 87* sur le milieu et de ^5S sur la fin da
de l'éclipsé, ainsi que vous le verrez dans le tableau ci-joinU

4 * Les résultats précédens sont relatifs a Montpellier ; ceux do
Strasbourg présentent à peu prés les mêmes différences , en corrigeant
toutefois l'heure du commencement, qui parait devoir être o*.47mâ5%
Mais ce pourrait être une faute d'impression,

5»° L'heure de la plus grande phase différerait bien de 3^ d i mes

déterminations, mais Terreur se découvre à la simple inspection du
tableau ( pag. 345 )-, car la marche des différences indique visible-
ment que cette plus grande phase doit avoir lieu après 2 / t.i5m %t
non avant, comme le donne l'interpolation, où il faut ; au reste ,
dans la valeur de B , remplacer 202 par 702,

7.0 La moindre largeur de Vanneau (pag* 3 4 6 ) est i^'fi
Mais il faut en retrancher pour l'augm. du diani. • • 8'',4

E t le surplus, . , • • • . • , • , . . • • , « . , • , • £>//>4
est absorbé par l'aplatissement et les autres erreurs que j'ai signalées*

Je borne la , Monsieur , ces observations , que vous trouverez
peut-être assez minutieuses. Quelques secondes de plus ou de moins
semblent en effet une vétille ; mais vous voye& cependant qu'en
résultat on finit par atteindre jusqu'aux minutes. Au surplus , le
désir de remonter à la source de mon défaut d'accord avec i'estiniablû
doyen de Strasbourg ? en me poussant plus avant dans ses calcula
qu§ je n*en avais le dessein , m'a procuré en même temps sur le§
miens une nouvelle sécurité qui pourtant, je l'avoue, pourrait bleu
n'être que simplement relative.

Agréer , etc.

? le i3 da septembre
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PREMIER TABLEAU,

Résultats communs aux deux villes de Montpellier et de Strasbourg.

Ternps vrai de Parî§,

ParalU horïsont. (î—€>)s=^

164 ,17.44 ,1

0 47 .24 , a

0 .53.39 >7

o.h, o m . o5 .

164 4 7 - i l , 3

0 4442 ,4

0 .53 .39 56

166 . 0 • 0

1640.50'. 4", 4

i65 .16.38 ,4

0 .4^ • o? 5

0 ,53 ,3g ,5

166 . a . i 5

4^. om. 0 .̂

i65 4 6 , 5 ,5

0 .3g ,18 ,7

0 .53 ,3g ,4

166 . 4.3o

Aplatissement de la terre = —•-

pjmi-diaixiëtre diî soleil

i, de long, ~ n ™ a

» i ] S i n ^ 5
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1 DEUXIÈME TABLEAU.

Résultais particuliers à la pille de Montpellier.

Latitude corrigée =4a°.25/.46// .

Longitude en degrés = + i°.32/.3o/^ ; Longlt. en temps =6m , io*.

i l

Si Temps vrau

Ij Àsc. dr.mil. du ciel
II Long, du nonag..
Il Haut, du nonag..
il Parall. de long. .
Il Parall. de lat. . .
|i Long. app. c . .
11 L a t i t . a p p . £ . . .

Il Long (C—©) .
| j Dist. des centres
|l Demi-diam. d .

8a°.3o'.
l6l .2t .

49 -n
O . 1

0.34
164 .19

—0 .26
0 .1%
0 .14

, o '

i 5 "
B9
3o
7

11

ST

. 1
. 2 1

.3o
.5 i

»5

fi

fi

173
44

—O ,
O

l64
O

—0
0

0

1 O 5 .

,32'.3o"

6 .
.38
41

. 6

. 6
q

•M

6
5o

1 ,

. 8
1 ':

79
. O

.5©

4
y

,7
,8
,7
,8

$K 6

2I2°.I

, 8 7 .
38 .

—-0 .

0 .

iftt
— 0

0

0

0

H'.
4 .

! 2 •

42
3

. 0

1 0

. i 3

te*. \ 4b-

la an4

52 5^ —O
, 1 2 , 8 . O

45 ,8 i6S
.12 ,3 1—0
4 i , 4 0
4i ,5 0
•49,i J «

. 3 7 '

. 1 7

.v8
. 6
.3S
.36

m*. !

b i

47
56 4 i!
i> t .6 j

. n ,0

• 9 >4 i1

•47 ,1

11 Temps

11 Coiïi»^ -o^

fi ^
IPl.g.pK.3

11 Fin. 3

vrai.

*&*

. O

• OO

•5i
.52
.5a

. 1 0

.10

.10

.34
.10
.10
. 8
.10

Long. (C— ©)

— 27
x
1
1

3o

10 ,9
3 ,8

.11,8

.23 8

.21 >i

Latit

i 3 '
i3
3
3
3

— 4

. c

f\f\!f

42
43
4 0

.38

•44

'•!
,6
,7
,5

'x

Dist. des cent.

3o'.46",
*3o .46
3o ,26

3.52

3o .19
3o 4 2

3o43

R

il

>4
*̂

Demi-diam. j |

3o 8 S
> 1 1

il
11

3° 44 >9 II
II

3o .4^ ,4 1

, 1
Plus grande phase de 10 ,̂ Ï 36 , dans la partie boréale du solelU

La première impression du disque lunaire aura Heu vers 6o° a droite
de l'extrémité supérieure du diamètre vertical du soleil.

TROISIÈME
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TROISIÈME TABLEAU.

Résultais particuliers à la ville de Strasbourg.

Temps vrai.

Âsc. dr
Long.
Haut.
Parai!
Parall
Lon-.
LatiU
Long,
Dist. (

.mil. du ciel
du nonag. .
du nona^. .
. de long. .
. de lat. . .
app. C . .
app. c . . .
(<D—0) . .

les centres.
Demi-diam. d . .

„
i86<
160

44
O

O

164
O

— O

O

O

« T

45
. 2 0

. 2

.38'

. 2 0

• 9

.26

.14

. 38*.

'31"
,5 7
. 0
20 ,o

'17 ,3
. 4 11

. 6 ,q
. 8 ,7
44 18
.5o ,9

->oi
i 7 3

38
—«0

0

r64
O

— 0

0

0

,3o
. 4
.41
.42
. 2.

. 5
» 5
.14

». 38*.

/36"
.49
.3o
.5o ,8
^58,i
.20 ,5

44 ,3
i 8 , i

.58,1
•49,8

ZK 2 i m . 3SJ.

Ï86 .49.57
3a .32 . 0

—>o . ÎO .41 ?3
0 .45 .16 ,1

i65. 5.57 ,1
—0 . 3 .15 ,6

0 .i5 .52 ,7
0 .16.12 ,5
0 .14.48,2

4*-

2 3 l
ao3
^6

—0
o-

i65
—0

0

0

0

2im . 38*.

46
.14
47

. 8
.38

'. 6"
.38
. 0
.5o ,0
.58 ,0
.i5,5
.39,3
45,3

.3q4a ,5
•i4 .46,2

Temps vrai.

lh, 9m.38s

Com.* 1 . 9 44
1 .11 .58
2 .36 .38

PI. g. ph. 2 .37 .57
2 ,39 .3o
3 .57 .38

Fin. 3 .59 . 7
3 .59 .38

Long, (c—0)

— 28/.59//,o

— 28 .20 ,8
- 0 . 8 ) 9

0.19 ,i
o.53 ,7

sg .22 ,8

30.9 ,i

Laîit. c

10 .11 ,9
I . I I ,6
1. 3,4
0 .53 ,2

- 6.34,8

- 6-45,7

Dist. des cent.

3o '48V
3o .46 ,0
3o. 7 ,5

I . 6 j2

3o , 6 ,5
3o .41 ,7
3o .54 >o

Demi-diam.

3o'.46/r,o

3o 44 Î 2

3o .41 ,7

Grandeur de Fëclipse 1 1 ^ 1 ^ 3 , dans la partie boréale du soleiL
La première impression du disque lunaire aura lieu vers 6j° à droite
de l'extrémité supérieure du diamètre vertical du soleil,

IX. 18



QUESTIONS PROPOSÉES^

QUESTIONS PROPOSÉES,

Problèmes de Géométrie.

I. IJuELLE est la courbe enveloppe de l'espace parcouru par un
cercle mobile d'un rayon donné > dont le centre décrit une ellipse
donnée ?

II. Quelle courbe doit décrire le centre d'un cercle d'un rayon
donné , pour que Penveloppe de l'espace parcouru par ce cercla
soit une ellipse donnée ?
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GEOMETRIE ANALITIQUE»

Théorie élémentaire de la courbure des lignes et des
surfaces courbes \

Par M. G E R G O N N E ,

XjONG-TEMPS encore après la découverte du calcul différentiel, Ies>
géomètres se confiaient à ses méthodes , par une sorte d'instinct ,

- et sans trop se rendre compte des principes théoriques qui pouvaient les
justifier et Jeur servir d'appui. Bien que souvent ils n'en fissent usage
que par pure élégance , ils n'en regardaient pas moins cette nouvelle
branche de calcul comme étant d'une nécessité indispensable dans cer-
taines recherches ; qui alors étaient réputées être essentiellement de
son domaine.

Mais , à mesure que ? par les travaux de quelques hommes
supérieurs , et notamment par les méditations de notre illustre
Lagrange, la métaphysique du calcul diiFcrentiel a été mieux connue,
cette branche de calcul est aussi devenue , peu à peu , de moins
en moins nécessaire ; et on est parvenu , par degrés , à soustraire
à son empire une multitude de questions 9 soit d'analise , soit de
géométrie , que pourtant, avant qu'elle tût connue , on eût à peine
osé~ aborder. 11 est digne de remarque qu'en particulier le problème
des tangentes, qui lui avait donné naissance, en soit devenu, des-
premiers > tout-à-fait indépendant ^ du moins pour le$ courbes*
algébriques-
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La vérité est qu'on ne saurait rencontrer aucune question , con-

sidérée individuellement f pour la solution de laquelle le calcul diffé-
rentiel soit d'une nécessité Indispensable. Tout le service que nous
retirons de ce calcul se réduit au fond à nous permettre ? au moyen
de la symbollsation d'une nouvelle opération ( la dérivation ) , d'en-
fermer la solution d'une infinité de questions particulières dans une
formule unique , où nous pouvons lire dune manière distincte la
série des calculs à effectuer , dans chacun des cas individuels qu'une
question générale peut offrir. Ainsi ? par exemple , on n'a pas besoin
du calcul différentiel pour mener une tangente ou une normale à
telle ou telle courbe dont on a l'équation ? mais il est nécessaire
pour écrire l'équation de la tangente à une courbe quelconque 3

4 par
Fun quelconque de ses points.

Si , dès le temps de Descartes et de Fermât ? les géomètres avaient
remarqué avec plus d'attention combien souvent l'opération appelée
dérivation se représente dans les calculs ; s'ils eussent eu dès-lors
Tidée, fort simple et fort naturelle d'ailleurs 5 d'affecter un symbole
à cette nouvelle opération , ainsi qu'ils l'avaient déjà fait pour toutes
les autres , il y a tout lieu de croire que Leibnitz et Newton n'eussent
pas eu à se disputer l'invention des nouveaux calculs • et l'on n'eût
pas été près d'un siècle à en chercher la métaphysique Mais ce
n'est pas d'ordinaire d'une allure si aisée que l'esprit humain s'achemine
vers les découvertes. Parmi une multitude de routes qui se présentent
devant lui, une seule est la bonne; maïs, comme, avant de s'y
engager , elles lui sont toutes également inconnues , ce ne' pourrait
être que par ]e hasard le plus heureux qu'il se déterminerait
pour celle-là.

Ce serait, sans doute une puérilité d'évité1; constamment l'usage
du calcul différentiel , sur-tout lorsque son secours peut introduire
dans les récherches des simplifications de quelque importance ;
cependant, il ne peut être que très-utile à celui qui veut entreprendre
des études mathématiques sérieuses et profondes de ne recourir aux
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procèdes de ce calcul qu'après avoir épuisé toutes les ressources

de l'analise ordinaire.

D'un autre côté, beaucoup de gens pour qui les études mathématiques

ne sont qu'accessoires , et qui n'ont pas conséquemrnent le loisir Je

les pousser fort loin , peuvent désirer néanmoins de ne pas demeurer

tout-a-fait étrangers à certaines théories , sans Rengager dans

l'étude des brauches de calcul desquelles on a coutume de

les faire dépendre. Ainsi , c'est travailler également dans l'intérêt

des uns et dans celui des autres que de ramener aux simples élé-

inens le plus grand nombre de ces théories , sur-tout lorsqu'il est

possible de le faire sans en accroître la complication d'une manière

très-notable.

Parmi les théories que Ton regarde communément comme le plus

essentiellement dépendantes du calcul difFérentiel, celle de la cour-

bure des lignes et surfaces courbes tient sans contredit un des premiers

rangs , soit en elle-rnème , soit par la multitude des importantes

applications dont elle est susceptible. II peut donc n'être pas sans

intérêt de montrer comment cette théorie peut être rendue indé-

pendante des méthodes différentielles ; et tel est l'objet que nous

»ous proposons dans l'essai que Ton va lire.

S E C T I O N I.

Des contacts du premier ordre.

Dans cette première section , nous ne nous occuperons uniquement

que des contacts simples ou du premier ordre ; c'est-à-dire que nous

traiterons successivement des tangentes et normales aux courbes

planes , des tangentes et plans normaux aux courbes à doubla

courbure , £t enfin des plans iangens et dos normales aux surfaces

courbes.

s- «•
Du contact dans les c ourle s planes.

En prenant pour origine des coordonnées rectangulaires l'un

quelconque des points du périmètre d'une courbe plane quelconque 9
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son équation peut toujours ^soït immédiatement, soit, s'il est ûéees
saire t par le développement en série, être amenée à cette forme

co

A la vérité , lorsque le second membre de cette équation sera une
série indéfinie, elle ne pourra êtie employée , avec sécurité, que
pour des portions de la courbe assez voisines de l'origine pour
que la petitesse de x et de y rende la série convergente ; mais
ce n'est justement que pour de telles portions de la courbe que
nous nous proposons d'en faire usage».

Lorsqu'on ne considère donc que des pomts de la courbe très-
voisins de l'origine, on peut, sans erreur sensible, néghger ? dans
Téquation (i) , les termes de plus d'une dimension en x et y; d'où
îl suit que , plus la portion de courbe que l'on considérera, h
partir de l'origine , sera petite , et plus aussi cette courbe approchera
de se confondre avec la droite ayant pour équation

Ax-\-By—o - (2)

la courbe se confondra donc rigoureusement à l'origine avec cette*
droite , qui en indiquera alors exactement la direction ; c'est donc
une tangente à la courbe , en ce point, (j*)

(*) Nous avons choisi les notations de manière à lier ce qui concerne les-
courbes planes avec ce qui est relatif aux courLes à double courbure et aux.
surfaces courbes.

(**) Cette manière simple et naturelle de parvenir k îa tangente paraît tout-
à-fait conforme à l'idée qu'on doit se faire d'une telle droiLe. Si cependant
quelques esprits pointilleux n'en étaient pas pleinement satisfaits 7 ils pourraient-
la remplacer par ce qui suit.

Soit naene'e par l'origine une sécante à la. courbe ; elle pourra généralement
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On voit donc que , lorsqu'une courbe passe par Vorigine > on

obtient Véquation de sa tangente en ce point, en égalant simplement
à zéro 7 dans Véquation de la courbe, Vensemble des termes dune
seule dimension par rapport aux coordonnées»

Àydnt ainsi la tangente à la courbe par l'origine , rîen n'est plus
facile que d'obtenir sa normale par le même point ; l'équation de
cette normale sera

rencontrer cette courbe en plusieurs autres points. Soient x , y les coordonnées
de celui d'entre ces points qui est le plus voisin de Porigine , et soit r sa dis—
tance à cette origine > on la corde interceptée. Soient posés

x=ar ,

à cause de

nous aurons
©*-fJ*=ri ; (y)

€ï l'équation de la sécante sera

JEn mettant les valeurs (#) dans l'équation (i) , elle devient , en divisant par r y

équation qui nous donnerait les diverses valeurs de r ; maïs pour que la se'cante
devienne tangente , il faut que r soit nu] ; on doit donc avoir alors

•quî p combinée avec (?) , donne, comme dans le texte f

Bien ne serait plus facile que de ramener à cette méthode la théorie de
ints singuliers des courbes ; mais cela nous entraînerait beaucoup trop loin.
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S'agît-il de mener une tangente ou une normale à une courbe
donnée , par l'un quelconque (x' 7 y

;) de ses points ; on y transportera
d'abord l'origine , en changeant respectivement, dans l'équation de
la courbe , x , y en x/+x, yfm\-y ; l'ensemble des termes indé-
pendans de x, y , dans l'équation résultante , égalé à zéro , sera
l'équation de condition , exprimant que le point (a?/, y(} est sur
la courbe ; et l'ensemble des termes d'une seule dimension % par rapport
aux mêmes variables , égalé pareillement à zéro , sera l'équation de
la tangente à la nouvelle origine , rapportée aux nouveaux axes;
on la rapportera aux axes primitifs , en changeant respectivement,
dans son équation x , y en #—x /, y-y'.

On remarquera, au surplus , que , dans le développement des puis-
sances et produits de puissances des binômes x^x , y!-\*y , on peut
rejeter les termes de plus d'une dimension en x 7y , attendu qu'on n'est
point dans le cas d'en faire usage. Si Ton rejette également les termes
indépendans de ces deux variables, et que , dans ce qui restera , on
change respectivement x , y en x—xf

 7y—yf, on aura immédiatement
l'équation de la tangente au point {xf , y') , rapportée aux axes-
primitifs > et de laquelle on conclura facilement celle de la normale
par le même point*

Appliquons ce procédé à l'ellipse ayant pour équation

Nous aurons d'abord

h9 en développant^
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a* b* J x a* l

Parce que le point (V,jfO est sur la courbe, on aura

et l'équation de la tangente> rapportée aux axes primitifs, sera

x'(x—xQ , y'(Y—yO _

ou simplement ^ en vertu de la relation (5)

f'- «0
On en conclura, pour celle de la normale par le même point

x—~xf , y—y' , .

Nous ne disons rien du cas où il s'agirait de mener a une courbe
une tangente ou une normale par un point qui lui serait étranger f

attendu que ce second problème se ramène facilement au premier.
On voit , par ce qui précède , que si les équations de deux

courbes qui passent par roriginè se ressemblent seulement dans les
termes du premier ordre , quelque différence qu'elles puissent pré-
senter d'ailleurs , ces courbes auront en ce point la même tangente
et la même normale. Il n'est pas même nécessaire pour cela que
les deux équations se ressemblent dan$ leurs premiers termes $
car , si

Tom*
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(8)

est l'équation d'une courbe, l'équation de sa tangente par l'origine
sera

aûc+by=o ; (9)

de sorte que cette courbe aura la même tangente en ce point que
la courbe (1) , si seulement l'équation (9) a lieu en même temps
que l'équation (2) ; c'est-à-dire , si l'on a seulement

A B

Deux courbes qui ont une même tangente en un même point
sont dites elles-mêmes tangente Tune à l'autre en ce point. On
voit , par ce qui précède , qu'une infinité de courbes différentes
peuvent avoir la même tangente et la même normale au même point.

Si Ton veut mener une tangente à la courbe (1) par le point
(xf

} y*) , on écrira d'abord

puis , en développant,

'+ + A
'*+ -+- Fy'

' B

• Fxf

on aura donc , en premier lieu , Téquation de condition
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o=Ax>-\-Fx>y'-\- Gx>%-\>....

00

et l'équation de la tangente sera

o u , en ajoutant le double de l'équation ( n ) et réduisant

Quant à l'équation de la normale, par le même point, elle sera (3)

«-* ' y-y / 3 »

$. 2.

Des contacts dans les courtes à double courlure.

En prenant pour origine des coordonnées rectangulaires l'un
quelconque des points d'une courbe quelconque à double courbure ,
on peut toujours , soit immédiatement soit , s'il est nécessaire , par
le développement en série, amener îa courbe à être donnée par le
système des deux équations

o=Ax+Dyz-\"Gx*+«z,

(0
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o = A'x+D'yz-k-G'y*+-~-

ou pnr toutes autres équations déduites d'une combinaison quelconque
de ces deux-là. A la vérité , lorsque les seconds membres de ces
équations seront des séries indéfinies , elles ne pourront être em-
ployées , avec sécurité , que pour des portions de la courbe assez
voisines de l'origine pour que la petitesse de $ • y et z rende les
séries convergentes ; mais ce n'est justement que pour de telles portions
de la courbe que nous nous proposons d'en faire usage..

Lorsqu'on ne considère donc que des points de la courbe très-
voisins de l'origine, on peut, sans erreur sensible , négliger, dans
les équations (i , i;) , les termes de plus d'une dimension en oc, y ? z;
d'où il suit que , plus la portion de' courbe que l'on considérera ?

à partir de l'origine , sera petite } et plus aussi cette courbe approchera
de se confondre avec la droite ayant pour équations

Âx+Bf+Cz—o , (2)

=o -, (2')

elle se confondra donc rigoureusement à l'origine avec cette droite,
qui en indiquera exactement alors la direction ; c'est donc une
tangente à la courbe , en ce point. (*)

(*) En posant

xz=zar , y=br

avec la condition

qui donne
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On voit donc que , lorsqu'une courbe à double couîbure passe

par l'origine, on obtient les équations de sa tangente en ce point,
en égalant simplement à zéro , dans les équations de In courbe,

ensemble des termes d'une seule dimension par rapport aux
coordonnées

Ayant ainsi la tangenîe à la courbe ; par l'origine , rien n'est
plus facile que d'obtenir son plan normal, par le même point;
l'équation de ce plan sera

{BC/—CB/)x+{CA/—Aa)y+{AB/—BA^)z=o . (3)

Tout plan qui passe par une tangente à une courbe a double
courbure est dit tangent à celle courbe ; et toute droite tracée sur

+f (y)
les équations

seraient celles d'une sécante quelconque , menée par l'origine, et r serait la
longueur de la corde interceptée , à partir de ce point. Mettant ensuite le«
valeurs O) dans les équations ( i , iO et divisant par r ; elles deviendraient

o==(^ a+B b+Cc)+(D bc+E ca+Fab+G a>

niais , pour que la sécante devienne tangente , il faut qu'on ait r = o ; on a donc
aussi alors

Aa+Bb+Cc

équations qui, combinées avec (i) f donnent , comme dans le texte $
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son plan normal, par le point où ce plan coupe la courbe , en
est dite une normale ; d'où Ton voit qu'une courbe à double cour-
bure a , en chacun de ses points, une infinité de normales et de
plans tangens.

S'agit-il de mener une tangente ou un plan normal à une double
courbure , par l'un quelconque {x;

 9 y
f, z;) de ses points ; on y

transportera d'abord l'origine, en changeant respectivement, dans
les équations de la courbe , x , y , z en x'+x , y'-f-y , z'-\-z ;
l'ensemble des termes iadépendans de x ? y , z dans les équations
résultantes , égalé à zéro, donnera les deux équations de condition,
exprimant que le point (# ' , y/, zf) est sur la courbe ; et l'ensemble
des termes d'une seule dimension y par rapport aux mêmes variables
égalé pareillement à zéro , dans les mêmes équations , donnera les
équations de la tangente à la nouvelle origine, rapportée aux nouveaux
axes ; on la rapportera aux axes primitifs , en changeant respectivement
dans ses équations , a ? , j , z en x—x/

1 y—y/
9 z—z/.

On remarquera encore ici que f dans le développement des puis-
sances et produits de puissances des binômes x;-±-x ? y

/+y , z/t+-z ,
on peut rejeter les termes de plus d'une dimension en x , y , z ;
et que ? si Ton rejette en outre les termes indépendans de ces variables ,
en changeant respectivement, dans ce qui restera, x, y , z en x—ÛC/,
y—r~yf , z~z/, en aura immédiatement les équations de la tangente
au point (x;

} y
f , z') , rapportée aux axes primitifs, et desquelles

on conclura facilement celle du plan normal , par le même point.
Appliquons ce procédé â la courbe intersection de deux ellipsoïdes

de même centre dont les diamètres principaux coïncident. Soient
leurs équations

nous écrirons d'abord
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—~ £

(y'+y)a

puis , en développant ;

Parce que le point {xl, y7
 f z;) «st sur la courbe > nous aurons

d'abord les deux équations de condition.

et les équations de la tangente 7 rapportée aux axes primitifs
seront

""j""" ——————— • ' ! • —————— ^ , Q j

ou simplement , en vertu des condilions (5 , 5')

JS + ï ^ . (6)
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On en , conclura (3) , pour celle du plan normal par le même
point

r""^=o

On voit, par ce qui précède 9 que , si les équations d'une courbe
passant par l'origine ressemblent seulement à celles d'une autre
courbe , passant également par l'origine , dans les termes du premier
ordre ; quelque différence qu'elles puissent présenter d'ailleurs , ces
deux courbes auront en ce point la même tangente et le même
plan normal. Il n'est pas môme nécessaire pour cela que les deux
couples d'équations.se ressemblent dans leurs premiers termes;

car, soient

-\-cz-\-fxy+#za 4-.

o =

(80

les deux équations d'une courbe, les équations de sa tangente par
l'origine seront

z=o , (9)

, = o ; (90

de sorte que cette courbe aura , en ce point ? la même tangente
que la courbe (i) ? si seulement les équations (9 , g7) ont lieu
en même temps que les équations (2 ; 2/) • ce qui entraîne la
double condition

B(f
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CAf—AO AB'—BJJ

bcf-~~( bf aàf—u
(10)

Deux courbes qui ont une même tangente en un même point sont
dites elles-mêmes tangentes l'une à l'autre en ce point. On voit ,
par ce qui précède , qu'une infinité de courbes différentes peuvent
avoir la même tangente et le même plan normal au même point.

Si l'on veut mener une tangente à la courbe (i , i') par le
point (x', y1 , z') y on écrira d'abord

o = A{x'-\-x)-\-D(y>+

Développant et posant les équations de condition

o =

+By >-\-Ez/x/-\-Hy> *+....

•+-C'z>+F/x'y/+K/z"-{-

les équations de la tangente , rapportée aux axes primitifs f seront
Tom. IX. 20
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o =

.....)(y~f)

)(z—z')

#M-.....) {x-x?)

ou ', -glus simplement, en leur ajoutant respectivement les produits

par 2 des équations ( 1 1 , 1 1 ' ) , et réduisant

(.2)

(«0

Quant a l'équation du plan normal par le même point , elle
(3)
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v—KBi)—{CBf—1

—[2(CH>—HC>

-\<(CA'~AC')+[ {CF'-FC^—tAD'—

—l2{AK'—KAr)—(CE'—EC'f\z>-\-.-,

[y-y') =o

«AB'-BA')+[ (z-z>

—[•2(BG'—GB>)—(AF'—FA/)~\x'+....

S. 3.

Des contacts dans les surfaces courbe s *

En prenant pour origine des coordonnées rectangulaires Tun quel-
conque des points d'une surface courbe quelconque , on peut tou-
jours, soit immédiatement soit, s'il est nécessaire , par le dévelop-
pement en série , amener cette surface à être donnée par l'équation

(0

A la vérité , lorsque le second membre de cette équation sera une
série indéfinie ? elle ne pourra être employée , avec sécurité , que
pour des portions de la surface courbe assez voisines de l'origine
pour que la petitesse de x , y et z rende la série convergente^
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mais ce n'est justement que pour de telles portions de la surface
courbe que nous nous proposons d'en faire usage.

Lorsqu'on ne considère donc que des points de la surface très-
votsins de l'origine , on peut 3 sans erreur sensible , négliger, dans
l'équation ( i ) , les termes de plus d'une dimension, en a;, y,z;
d'où îl suit que , plus la portion de surface que Ton considérera ,
à partir de l'origine , sera petite , et plus aussi cette surface approchera
de se confondre avec le plan ayant pour équation

Jx+By+Cz = o • (2)

elle se confondra donc rigoureusement à Torigine avec ce plan ,
qui en indiquera alors exactement la direction -, c'est donc un plan
tangent à la surface courbe en ce point.

Soit une autre surface courbe quelconque , passant aussi par
l'origine , dont l'équation soit

o = ax-\-dy'
• )

Cette surface coupera la première suirant une courbe plane ou à
double courbure , dont la tangente à l'origine sera ( §, 2 ) donnée
par le système de l'équation (2) et de l'équation

a v+by-\-cz m o • (2)

Or , que la surface ( i ' ) varie comme on voudra, OQ passant tou-
jours par l'origine, la section qu'elle détermine sur la surface (1)
•variera égarement ; maïs , des deux équations {p. , n') , il n'y aura
au plus que la dernière qui variera -5 d'où Ton doit conclure que
si , par l'un quelconque- des points d'une surface courbe , on trace ,
à volonté , tant de courbes qu'on voudra , sur cette surface , les
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tangentes à toutes ces courbes en ce point seront toutes situe'es sur
le plan tangent à la surface courbe en ce même point.

De là on peut conclure encore que si 9 par un même point d'une
surface courbe , on trace sur cette surface deux courbes quelconques ,
et qu'on leur mène ensuite des tangentes en ce point , le plan
qu'on fera passer par ces deux tangentes sera le plan langent à la
surface courbe en ce même point.

On Toit , par ce qui précède , que , lorsqu'une surface courbe
passe par l'origine , on obtient Véquation de son plan tangent, en
égalant simplement à zéro y dans son équation , Vensemble des ternies
d'une seule dimension , par rapport aux coordonnées.

Ayant ainsi le plan tangent à la surface courbe par l'origine ,
rien n'est plus facile que d'obtenir sa normale par le même point ^
les équations de cette droite sont

~^=:~. (3)
A B C V J

Toute droite menée sur le plan tangent à une surface courbe ,
par son point de contact avec elle , est dite tangente à cette surface
en ce point ; et tout plan passant par sa normale en est dit un
plan normal 7 pour le même point ; d'où Ton voit qu*une surface
courbe a , en chacun de ses points 7 une infinité de tangentes et
de plans normaux.

S'agit-il de mener un plan tangent ou une normale à une surface
courbe , par l'un quelconque {x/ , y/, z1) de ses points ; on y trans-
portera d'abord l'origine , en changeant respectivement , dans son
équation x, y , z en x'Arx, yJ-\~f > zfA^z ; J'ensemble des termes
indépendans de oc 9 y , z , dans l'équation résultante , égalé à zéro ,
donnera l'équation de condition ; exprimant que le point ( x' , y/ , z/ )
est sur la surface courbe ; et l'ensemble des fermes d'une seule
dimension 7 par rapport aux mêmes variables , égalé pareillement à
zéro ; dans la même équation f sera FéquaVion du plan tangent à
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la nouvelle origine , rapporté aux nouveaux axes ,• on le rapportera
aux axes primitifs , en changeant respectivement, dans son équation ,
x 9 y , z en x—x/ , y—yf , z—zf*

On voit > au surplus , que , dans le développement des puissances
et produits de puissances des binômes x;\-x , yl\y $ z'+z , on
peut rejeter les termes de plus d'une dimension en x , y , z ; si
Ton rejette , en outre , les termes indépendans de ces variables ; en
changeant respectivement, dans ce qui restera , x , y , z en %—xê,
y—y1 , z—z/, on aura immédiatement l'équation du plan tangent
au point (x' , y', zf) , rapporté aux axes primitifs , et de laquelle
on conclura facilement celles de la normale au même point.

Appliquons ce procédé à l'ellipsoïde ayant pour équation

Nous écrirons d'abord

^_ (z'+z)

puis , en développant,

Parce que le point (a;7, y/, z') est sur la surface courbe , nous
aurons d'abord l'équation de condition

f l + Ç + *!«,; (5)
a* £* £a

du plan tangent, rapporté aux axes primitifs % sera
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«'(*—x') .y'(y—y1) , z'{z—z') _ ^
• • •} • ' ' • — m'\ ' — — — — — — _ O «

ou simplement, en vertu de la condition (4) •

on en conclura (3) ^ pour les équations de la normale , par le
même point

x—x' , r—•>'' ^—z!

a* —h*—— ~c* . (7)

On voit , par ce qui précède , que , si les équations de deux
surfaces, passant l'une et l'autre par l'origine, se ressemblent seu-
lement par les termes du premier ordre , quelque différence qu'elles
puissent présenter d'ailleurs ? ces deux surfaces auront en ce point
le même plan tangent et la même normale. Il n'est pas même
nécessaire pour cela que les deux équations se ressemblent exac*
ment dans leurs premiers termes; car, soient (1 , i ; ) les équations
dont il s'agit ; (2 , 2') seront respectivement les équations des plans
tangens aux deux surfaces/ et pour que ses plans se confondent,
il suffira qu'on ait

a b c v '

Deux surfaces courbes qui ont un même plan tangent en un même
point sont dites elles-mêmes tangentes Tune à l'autre en ce point;
et il en est de même pour les courbes résultant de leur section
par un même plan quelconque conduit par ce point. On voit donc
qu'une infinité de surfaces différentes peuvent avoir le même plan
tangent et la même normale au même point*
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Si l'on veut mener un plan tangent à la surface ( i ) , par le

point {x1, y' , z') , on écrira d'abord

Développant et posant l'équation de condition ,

o =

(9)

L'équation du plan tangent , rapporté aux axes primitifs , sera

)(y—y')

Il- 1O

ou , plus simplement , en lui ajoutant le double de l'équation (g)
et réduisant

o =z

+B(y+y>)+E(ix'+xl>)-{-2Hyy'+ ( 1 o)

Quant aux équations de la normale, par le même point, elles seront (3)

SECÏTON IL
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SECTION IL

Des contacts du second ordre.

Dans la précédente section , nous n'avons présenté aucun résultat
qu'on ne sache aujourd'hui obtenir sans rien emprunter au calcul
différentiel; et nous n'avons fait simplement qu'offrir, pour parvenir
à ces résultats , des méthodes qui nous paraissent , à la fois , plus
simples et plus naturelles que celles qu'on a coutume d'appliquer
à leur recherche. Il n'en sera pas de même , dans la présente section,
où il sera question des centres et rayons de courbure , cercles et
plans osculateurs, développées et lignes de courbure; et il n'est pas
à notre connaissance que ces divers objets aient été traités jusqu'ici ,
d'une manière simple , par les procédés de l'analise ordinaire.

Nous suivrons d'ailleurs ici la même marche que dans la section
précédente ; c'est-à-dire , que nous traiterons successivement de l'os-
culation dans les courbes planes , dans les courbes à double courbure
et dans les surfaces courbes.

§. x.

De F osculation dans les courbes planes.

Si Ton conçoit qu'une droite indéfinie se meuve sur le plan d'une
courbe plane donnée quelconque , de manière à lui être constamment
normale ; la courbe enveloppe de l'espace parcouru par cette droite,
c'est-à-dire, la courbe à laquelle , dans son mouvement, elle ne
cessera pas d'être tangente , est ce qu'on appelle la développée de
cette courbe donnée, laquelle, à l'inverse, en est appelée la déve-
loppante. On les a ainsi nommées parce que , si Ton conçoit qu'un
fil soit d'abord appliqué le long de la développée , et qu'on le
développe ensuite en le tenant toujours tendu, l'un de ses points
parcourra évidemment la développante. Quant à ses autres points ,

Torn. IX,n.° V', i.€r novembre 1818. 31
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ils parcourront aussi des courbes qui auront la même développée
que la courbe donnée ; d'où Von voit qu'à une même courbe donnée
doivent toujours répondre une développée unique et une Infinité
de développantes.

En considérant sous ce point de vue la génération des courbes
planes , on voit qu'en chaque point d'une courbe , le point décrivant
se trouve dans le même cas que s'il allait décrire un cercle ayant
pour centre le point de contact de la développée avec la normale
au point dont il s'agit, et pour rayon la distance entre ces deux
points. Ce cercle est ce qu'on appelle le cercle oscillateur de la
courbe en ce point : son centre et son rayon sont dits le centre
et le rayon de courbure de cette courbe pour le même point ;
parce qu'en effet la courbe a en ce point une courbure égale a
celle de son cercle osculateur.

On est donc ainsi conduit à considérer toute courbe plane comme
formée d'une infinité d'arcs de cercles infiniment petits se touchant
consécutivement 3 et variant sans cesse de rayon ; auquel cas la
développée est le lieu des centres de ces arcs. Cela revient encore
à considérer la courbe proposée comirïe l'enveloppe de l'espace par-
couru par un cercle mobile , de rayon variable, dont le centre parcourt
sa développée et dont le rayon croit ou décroît constamment d'une
quantité égale à la longueur parcourue sur cette dernière courbe
par son centre.

Lorsqu'un cercle est simplement tangent à une courbe en l'un
de ses points; c'est-à-dire, lorsque le cercle et la conrbe ont en
ce point une même tangente , ce qui exige que ce cercle ait son
centre sur la normale ; si d'ailleurs ils sont situés du même côté
de cette tangente commune , ou , en d'autres termes , s'ils ont leurs
courbures tournées dans le même sens ; le cercle passera entre la
courbe et sa tangente , ou bien ce sera au contraire la courbe qui
passera entre lui et cette tangente , suivant que la courbure de
cette courbe , en ce point , sera plus grande ou plus petite que
celle du cercle , c'est-à-dire , suivant que le rayon de courbure dé
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la courbe en ce point sera moindre ou plus grand que celui du
cercle ; mais ? lorsqu'il s'agit du cercle oscillateur , la courbure
variable de la courbe se trouvant , au point de contact , exactement
égale à la sienne , cette courbure devra lui être supérieure d'un
côté de ce point et inférieure de l'autre ; ainsi , tandis que 7 d'un
côté du point de contact, le cercle passera entre la courbe et sa
tangente , de l'autre côté de ce point , ce sera la courbe ? au
contraire, qui passera entre cette tangente et lu i ; c'est-à-dire, que
le cercle osculateur de l'un des points d'une courbe coupe et touche
a la fois cette courbe en ce point (*) ; il est évident , en outre ,
qu'il est le seul , entre les cercles tangens , qui puisse être dans
ce cas.

Soient menées à une courbe quelconque deux normales , Tune fixe et
l'autre mobile; elles toucheront sa développée en deux points distincts et
se couperont elles-mêmes en un troisième point. Mais , à mesure que la
normale mobile se rapprochera de la normale fixe ? deux de ces points
tendront sans cesse à se confondre avec le troisième, et ils se confon-
dront, en effet, en un seul qui sera le centre de courbure répondant à la
normale fixe , lorsqu'enfin la normale mobile se confondra tout-à-fait
avec elle. Le calcul 7 appliquée ces considérations, va nous conduire
simplement à la déterminatiou du centre de courbure d'une courbe
quelconque en l'un quelconque de ses points ; d'où il nous sera
facile de conclure le rayon de courbure et le cercle osculateur.

Reprenons l'équation

(*) II faut en excepter les points de la courbe où sa courbure est maximum
ou minimum ; mais ceci rentre dans la théorie des points singuliers, que nous
avons précédemment écartée.
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exprimant une courbe plane quelconque , passant par l'origine des
coordonne'es. Nous avons vu ( SECT, I , §. I . ) que les normales à
cette courbe par l'origine et par le point quelconque (#' , y1) 7 avaient
respectivement pour équations

x y

sous la condition

On aura donc l'intersection des deux normales en considérant comme
équations d'un même problème déterminé en # , y , soit le système de
deux équations (3 , i3) soit tout système de deux équations déduites
d'une manière quelconque de la combinaison de ces deux-là. En y
chassant les dénominateurs elles deviennent respectivement

Jy—Bx=o, (14)

)x

dont la dernière , en vertu de l'autre , se réduit à

)Y —(

on pourra donc , dans la recherche de l'intersection des deux
normales , substituer au système des équations (3 , i3) le système
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des équations (14 > i5) , lesquelles , pour ce point, ont lieu en même
temps qu'elles.

Mais , à mesure que le point ( x/, y/ ) se rapprochera de l'origine ,
la dernière tendra sans cesse à se réduire à

ou

d'un autre côté* dans les mêmes circonstances, l'équation de con
dition (12) tendra de plus en plus à devenir simplement

tu moyen de laquelle on pourra éliminer à la fois x' 7 y
/ de l'autre

qui se réduira ainsi à

ou bien

(2 AH—BF)x+(2BG—AF)y+(A>-{-B*)=o . (16)

Ainsi , lorsque les deux normales seront fort voisines , leur point
d'intersection sera sensiblement donné par le système des deux équa-
tions ( i4? Î 6 ) ; il le sera donc rigoureusement , lorsque ces deux
normales se confondront, puisqu'alors x/

 7 y
/ seront rigoureusement

nuis ; il est donc vrai de dire que le centre de courbure à l'origine
est donne par le système des deux équations (i4> 16). On en
tire ; pour les coordonnées de ce centre

B(A*+B*) , .
Af —— - . f i 1 ? )
J 2(GB*—FAB+HA>) ' v u

Ce sont donc là aussi les équations du point de contact de la dé-
veloppée avec la normale à l'origine.
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Si Ton représente par R le rayon de courbure de la courbe ( i ) f

pour le même point ; on aura

c'est - à - dire , en substituant

En conséquence , le cercle osculateur aura pour équation

(*) Si l'on mène une sécante à une courbe plane par deux de ses points
et si Ton conçoit que l'un de ses points se rapproche sans cesse de l'autre ,
en suivant le cours de la courbe, et en entraînant avec lui la sécante qui tournera
ainsi autour de ce dernier; lorsqu'enfin ces deux points se confondront, la sécante
deviendra tangente.

Pareillement , par trois points quelconques pris sur une courbe , soit fait passer
un cercle ; et concevons que le second de ces points vienne joindre le premier,
en suivant le cours de la courbe , et entraînant avec lui Je cercle qui consé-
quemment variera à la fois de situation et de grandeur ; lorsque ces deux points
se confondront, le cercle sera simplemnte tangent à la courbe. Si ensuite le
troisième point vient joindre les deux autres , sous les mêmes condition*, lors-
qu'il les aura atteints , le cercle tangent sera osculateur.

Voilà pourquoi on considère la tangente et le cercle tangent comme ayant
avec la courbe deux points communs qui se confondent en un seul ; et voilà
aussi pourquoi on considère le cercle osculateur comme ayant avec la courbe
trois points communs qui se confondent également en un seul.

Cela revient évidemment à considérer la courbe comme un polygone d'une
infinité de côtés ; sa tangente comme le prolongement de l'un de ses côtés ;
ses cercles tangens comme des cercles qui ont ce côté pour corde commune ;
et erifin son cercle osculateur comme un cercle qui passe par trois de ses sommets
consécutifs.
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Veut-on présentement avoir le centre et le rayon de courbure

d'une courbe quelconque , en l'un quelconque (xf, y') de ses points ;
on y transportera d'abord l'origine , en changeant respectivement ,
dans l'équation de cette courbe x , y en x'+x , yf-\*y\ on fera ensuite
le développement des puissances et produits de puissances de ces
deux binômes , dans lequel on pourra négliger d'ailleurs les termes
de plus de deux dimensions en x, y. Égalant ensuite à zéro l'ensemble
des termes indépendans de ces deux variables, on aura l'équation
de condition qui exprime que le point (x/ , y') est sur la courbe ;
le surplus de l'équation transformée se trouvant alors de même forme
que l'équation ( i ) , on égalera séparément , dans l'une et dans
l'autre, les coefficiens des termes correspondans ; ce qui donnera
les valeurs de A , B y F > G > H , en fonction de x/ , y/ et des
constantes renfermées dans l'équation de la courbe dont il s'agit.
Ces valeurs étant enfin substituées dans les formules ( 1 7 , 18) , le
centre et le rayon de courbure de la courbe pour le point (z', y;)
se trouveront détermines. Mais 7 comme le centre de courbure se
trouvera rapporté aux nouveaux axes , il faudra ? pour le rapporter
aux axes primitifs , changer respectivement , dans ses équations ;

x f y en x—a* 9 ^—y ' .
Appliquons ce procédé à l'ellipse déjà considérée précédemment ;

et ayant pour équation

a:2

T.
Nous aurons d'abord

développant et posant, comme alors , la condition

il viendra
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IX1 I

0 = —x-4-— x*
a* a3

Comparant cette dernière e'quation 7 terme à terme > avec l'équa-
tion ( i ) , nous aurons

d'où

<•+*•=< 9 + £

—
a*

ou simplement, en vertu de la relation (5)

substituant enfin ces valeurs dans les formules (17 , 18) nous au-
rons , d'abord pour le rayon de courbure,

et ensuite pour les équations du centre de courbure ; rapporté aux
axes primitifs ,
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de ces dernières > on tire , en transposant 9

y= r /{ 1— a* ( —-f ^1 )( ;

mettant pour i , dans l'une et dans l'autre , sa valeur donnée par
la relation (5) , elles deviendront, en réduisant,

«2—b2-

et telles sont les ëquations du centre de courbure , pour le point
(#'> Y;) ^e ^a courbe (4) , réduites à leur forme la plus simple.

Ayant ainsi obtenu les équations du centre de courbure d'une
courbe, pour Tun quelconque (x*, yf) de ses points, rien n'est
plus aisé que d'obtenir l'équation de la développée de cette courbe 5
il ne s'agit en effet pour eeJa que d'éliminer xf , y/ entre les équa-
tions de ce centre et l'équation de corrdition qui exprime que le
point [xf> Yr) e s t s u r ^a convbc.

Ainsi , dans l'exemple qui vient de nous occuper , on tire des.
équations (22)

valeurs qui, substituées dans l'équation (5), donne pour Féquatioa;
de la développée de la courbe (4),

Si Ton prend pour axe des x la tangente même à la courbe par
l'origine ; auquel cas l'axe des y en sera la normale , l'équation

Tom+ IX 22Tom+ IX.
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o (2)

de cette tangente devant alors se réduire à y = o , on devra avoir
A=o ; ainsi , si l'équation d'une courbe passant par l'origine est
de la forme

l'axe des # sera une tangente à la courbe , le centre de courbure
répondant à l'origine sera sur Taxe des y ,-et le rayon de courbure
répondant au même point aura (18) pour expression

a-JL. (»»

Si Ton veut savoir comment la courbe est coupée par une paral-
lèle à la tangenie très-voisine de cette droite , il faudra supposer
y sensiblement nul dans l'équation (24) * ce qui , en ne faisant
attention qu'aux daux plus petites valeurs de # , réduira sensible-
ment cette équation à

ce qui revient a dire qu'une corde infiniment petite > parallèle à la
tangente , a son milieu sur la normale (*).

Les principaux points de la théorie que nous venons de développer
sont un des résultats les plus importais des travaux géométriques
de Huygens.

(*) On aurait pu parvenir immédiatement et d'une manière très-simple à la
formule (^5) , en supposant dès l'abord Taxe des 0c tangent à la courbe ^
ou ^4=o.



ET D-ES SURFACES COURBÉS.

De rosculaiion dans les courtes à double courbure.

Concevons que , par la tangente en l'un des points d'une courbe
à double courbure , et par un autre quelconque des points de cette
courbe l'on conduise un plan s lequel sera tangent à la courbe au
premier de ces deux points ; concevons que le dernier de ces deux
points se rapproche peu à peu du premier, en suivant le cours de
la courbe , et en entraînant avec lui le plan tangent 7 qui tournera
ainsi sur la tangente. Lorsqu5enfin le dernier' point aura atteint le
premier , le plan tangent se trouvera avoir acquis une position dé -
terminée très-remarquable , et dépendant uniquement de la courbure
de la courbe au point de contact. C'est dans cette position qu'il est
dit le plan oscillateur de la courbe en ce point.

On voit par la génération du plan osculateur que , plus un arc
àc la courbe, prjs à partir du point de contact , sera petit et plus
aussi cet arc approchera de se confondre avec ce plan ; et consé-
quemment d'être un arc de courbe plane tracé sur le plan oscu-
lateur ; cet arc se confondra donc tout-à-fait avec ce plan , lorsque
sa longueur sera nulle.

On est donc conduit *par-là à considérer toute courbe à double
courbure comme formée d'une infinité d'arcs de courbes planes y

consécutivement tangens les uns aux autres , et situés dans des plans
variant sans cesse de position. Les plans de ces arcs sont les plans
osculateurs de la courbe en ses différens points. Il est évident , d'après
cela, qu'une courbe piano n'a ? pour tous ses points fi qu'un seul et
même plan osculateur, qui est le plan même de cette courbe.

Appliquons le calcul à la recherche du plan osculateur , suivant
le mode de génération que nous lui avons assigné. Reprenons les
deux équations générales
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+Cz

( i )

o =

d'une courbe a double courbure passant par l'origine des coordonnées;
et dont nous avons trouvé la tangente au même point donnée par
tes deux équations

A x+B y+C z=o 9 (2)

Par cette tangente et par un point quelconque {xf, y/ , zf) pris
sur la courbe 5 soit fait passer un plan 5 l'écjuation de ce plan
sera évidemment

En effet , il est d'abord évident que cette équation est celle d'un
plan ; il n'est pas moins évident que ce plan contient la tangente
à l'origine , puisque le système des équations ( 2 , 27 ) satisfait à
l'équation (22) ; enfin , cette équation (22) est encore satisfaite par
les valeurs xf , yJ , zJ de x, y, z \ ce qui prouve que le plan
qu'elle exprime contient le point (x/ , y/, z').

Or , comme ce point est sur la courbe (1 , i') , on doit avoir,
comme nous l'avons déjà observé, dans la précédente section, les
deux équations de condition
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o—Ax'+Dy'z'+Gx'*-)-....

au moyen desquelles l'équation (22) pourra être changée en celle-ci

M- )(.Ax+By+Cz)
(23)

Mais , à mesure que le point (xf, y1 , z') se rapprochera de
l'origine , celte équation tendra sans cesse â se réduire à

(nyz<+Efz'x'+F>xy+G'x>z+Hy*+K>z>z) {A x+By+C z) J

d'an auire côte , dans les mêmes circonstances, les conditions (11, 11')
approcheront de plus en plus de pouvoir être remplacées par les
suivantes

' = 0 . (a5)

tirant donc de ces dernières les valeurs de x' , y', pour les substituer
dans l'autre , qui deviendra ainsi divisible par z'1 , et posant ,
pour abréger,
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^ a , CA'-~AC'=b , ABf—BÀ'=c , (26)

ï=.L , (27)

= L' ; (27O

ce qui donnera

Aa+Bb+Cc^o ; (28)

(28O

on aura enfin , pour l'équation du plan esculateur de la courbe
(1 ; J/) , à l'origine des coordonnées

ou encore

(kAL'~LAO*+(BL'--LB')y+(CL'~LC')z=o . (39)

On peut donc, à l'origine, considérer la courbe (1 , \/S) comme
une courbe planç située dans ce plan ; sa normale , pour le même
point , sera donc l'intersection du même plan avec le plan normal
(3) dont l'équation 9 au moyen des abréviations (26) , devient

ax-\-by-\-cz~o ; (3o)

éliminant donc successivement x , y , z entre les équations (29, 3o) ,
on pourra prendre pour équations de cette normale

b{CU—LC')—c(BL/—LB')
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S'agît-ïl présentement d'obtenir le plan osculateur de l'un quel-

conque (x/ , y1
 y zr) des points d'une courbe à double courbure

quelconque , on transportera d'abord l'origine en ce point , en chan-
geant respectivement dans les deux équations de la courbe , # , j* t z
en xf\x 9 y

fJty, zf-±z. On développera les puissances et produits
de puissances de ces binômes , négligeant, dans le développement,
les termes de plus de deux dimensions en x9 yy z. Egalant ensuite
à zéro , dans chaque équation l'ensemble des termes îndépendans de
ces variables , on obtiendra ainsi les deux équations de condition
qui exprimeront que le point {pc*, y ' , z') est sur la courbe. Les
équations transformées se trouveront ainsi réduites à la forme des
équations (i , i'). Egalant donc respectivement les coefficiens des
unes à ceux des autres , on obtiendra ainsi les valeurs de

Af , B* , a , & , E< , P , & , H' , K' ,

en fonction de xf, y', z; et des constantes des équations de la courbe ;
on en conclura ensuite les valeurs de a , b , c 9 L , i 7 ; et substituant
le tout dans l'équation (29) , elle deviendra celle du plan escu-
lateur demandé , rapporté à la nouvelle origine ; de sorte que , pour
le rapporter à l'origine primitive , il faudra changer respectivement
x , y , z en x—xf , y—y/ , z—zf.

Appliquons ce procédé à la courbe donnée par les deux équations

4#3+4£3—4rz~3ra = o f (3a)

C'est la courbe suivant laquelle se coupent les surfaces de deux*
cylindres droits égaux > d'un rayon égal à r 7 et qui se pénètrent
de telle sorte que leurs axes sont à angles droits, et que l'axe de
chacun est tangent à l'autre. Nous aurons d'abord
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*'+*)-3r* =* o ;

développant et posant les deux conditions

, (33)

^ (330

les équations transformées seront

o = 2

qui , comparés respectivement aux équations ( i , i;) 7 donneront

de là on conclura

et , par suite, en ayant égard aux relations (33 , 33X) ?

d'où encore
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en conséquence, l'équation du plan osculateur au point \xf

 9 y
f
} z;)

rapporté à l'origine primitive sera (29)

4*/3(*—x>)—4>''3(y—y'H 8r(4z'*—r>)(z—z') = o . (34)

SI la courbe e'taït plane , le plan osculateur devrait toujours être
le même, quel que pût être le point {x*, y/, *') > dont consé-
quemment les coordonnées ne devraient point paraître dans l'équation
de ce plan ; il faudrait donc qu'elles pussent en être chassées , au
moyen des seules conditions qui expriment que le point (# / , y / , zf>)
est sur la courbe ou , ce qui revient au même 9 il faudrait qu'en
y substituant pour #y , y/ leurs valeurs en z;, tirées de ces mêmes
équations , les termes en z; disparussent d'eux-mêmes par l'égalité
de leurs coeiïîcîens à zéro. Ce serait donc aussi par un pareil calcul
que l'on parviendrait à assigner les relations qui doivent exister
entre les coefHciens des équations de deux surfaces, pour qu'elles
se coupassent suivant des courbes planes.

Si Ton conçoit qu'une droite indéfinie se meuve dans l'espace Je
manière à demeurer constamment tangente à une même courbe à
double courbure , cette droite décrira une surface développable donf
la courbe donnée sera l'arête de rebroussernent ;-cette surface serait
aussi évidemment Penveloppe de l'espace que parcourrait un plan?

• indéfini, constamment osculateur de la courbe } c'est-à-dire , que ce
plan , dans toutes ses positions , ne cesserait pas de lui être tan-
gent ; cette même surface , lieu des tangentes , peut aussi être dite le
lieu des développantes r attendu que les développantes de la courbe r

qui sont comme elle à double courbure y s'y trouvent toutes situées*
Lorsque la courbe donnée est plane , il est évident que les deux

nappes de la surface développable doivent se confondre en un seul
plan qui sera le plan même de la courbe , ou du moins celui de
Fune de ses parties , si elle en a plusieurs ; l'équation de cette-
surface devra donc être décomposable en facteurs du premier degré 9

ou du moins admettre un ou plusieurs facteurs de ce degré ? ee
Tom. IX. 23
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qui offre un nouveau moyen de reconnaître si une courbe est plane 5

du moins lorsqu'on a l'équation de la surface développable dont
elle est l'arête de rehaussement.

Or , lorsqu'on a les équations d'une tangente en un point quel-
conque (o?/, y' > z') d'une courhe , rien n'est plus aisé que d'obtenir
Féquation de cette surface ; il ne «'agît en effet , pour cela , que
d'éliminer xi, y1, 2' entre ces deux équations et les équations de
condition qui expriment que le point ( # / , y /

? £ / ) est sur la courbe.
Ainsi , par exemple , les deux équations de la tangente à la

courbe (3s , 3^) au point . ( y , ^ , z1) étant

z—r){?zf—r)—4^=0 ,

si Ton en tire les valeurs de xf, y/, pour les substituer dans les
équatiofis (33 , 33') lesquelles deviendront ainsi

{(2Z_r)(W—r)—4r2

TéUmination de zf entre ces deux dernières conduira à l'équation de
la surface développable dont la courbe (3s, 32;) est Tarêtô de
rebroussement,

Puisqu'au point de contact une courbe quelconque est sensible-
ment une, courbe plane , tracée sur son plan osculateur , elle doit
avoir, en ce point, un centre de courbure et un cercle osculateur
situés sur ce plan et qu'on peut désirer de connaître : cherchons-le
d'abord pour la courbe (1 , i ' ) , a l'origine des coordonnées. Pour
cela 1 concevons qu'un plan indéfini se meuve dans l'espace , de
manière à demeurer constamment normal à une même courbe a
dçuble courbure ; l'enveloppe de l'espace qu'il parcourra ou , ce qui
revient au même, la surface développable k laquelle il sera cons-
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tamment tangent pourra être nommée le lieu des axes de courbure
de la courbe proposée > parce qu'en effet ses élémens rectiUgnes
seront les axes des arcs de cercles infiniment petits dont cette courbe
pourra être conçue comme formée. Chacun de ces élémens rectilignes ,
lequel sera , en même temps , la ligne de contact de la surface
développable avec le plan normal > coupera donc le plan osculateur
au centre de courbure cherché.

Imitons cette génération par le calcul , et cherchons , pour la
courbe ;r5 i'} quel est Taxe de courbure quï répond à l'origine;
le plan normal en ce point , au moyen des abréviations (26), a pour
son équation, comme nous l'avons déjà observé r

ax-\rby-\-cz = o (3o)

Au moyen Je ces mêmes abréviations , l'équation (i3) du plan normal r

en un aulre point quelconque {x1 , y', z') r devient ( SECT. I , §. 2 ),,
sous, les conditions ( n t nO>

(Y—yOï^0 "

—l(BF'—FB')—2(AH'~-HA/)]yf+.... T

Ces deux plans- se coupent suivant une droite déterminée par ïe
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système de leurs équations, laquelle doit devenir Taxe de courbure
à l'orfgine , lorsque les coordonnées xf, y9, z9 deviennent nulles.

Maïs , dans la recherche de l'intersection de ces deux plans on
peut substituer à Tune ou à l'autre de leurs équations, toute équa-
tion résultant de leur combinaison. On pourra donc, en particulier,
ôter de l'équation (3i) les termes de l'équation (3o). Si ensuite on
transpose , et qu'on suppose le point (x9, y9 , z9) très-voisin de
l'origine , ce qui permettra de ne conserver que les termes d'une
seule dimension en x', y7 , z9 ; cette équation deviendra

'—DO)—a(BK'—KB')1 z>

<—EB>)— {CF'—i

-I)B<) -2(CH'-HC')]y*)

'—FC')— {AD'-DA')1y'

>-ECt)—z(AK'-KA')\ z>

-HA'jjy'

; (3'a)

—FA^—^BG'—GB1)]*'

naaîs , dans les mêmes circonstances , les équations de condition
( n , n ' ) deviendront sensiblement

Asc'+Bf-\-Cz'=o , (25)

desquelles tirant les valeurs de ce9 , yf en z9
 y pour les substituer

dans (3a) , (^Ile-ci deviendra ; après la division par zA ,
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?/)_ (CFt—FO)1a

+\(BDf—BBt)~z(CH'—HC')\h

—tUE/~~EA/)—2(CG/—GC/)']a

+ [(CF'—FC')~ (AD'—DA'ty (33)

Voilà donc Tc(quation d'un plan , coupant le plan fixe (3o) suivant
une droite qui, lorsqu'on supposera X*, yf, zf nuls, deviendra Taxe
de courbure qui répond à l'origine ; mais cette supposition* ne change
rien à l'équation (3o) ; donc le plan qu'elle exprime contient déjà
Taxe de courbure ; il contient donc aussi le centre de courbure ;
puis donc que ce centre est d'ailleurs, ainsi que nous Favons déjà
dit sur la droite dont les équations sont

II est vrai de dire qu'il est à l'intersection de ce plan et de cette
droite.
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Résolvant donc les équations (3i , 33) par rapport à x~, y\ £ >

en ayant égard aux relations (26 , 27 , 27') , nous aurons , pour les,
coordonnées du centre de courbure qui répond à l'origine

) rc(AL>—

ea désignant par R̂ le rayon de courbure^ on a

il viendra donc ^ en substituant , et ayant toujours égard aux re-
lations (26)

Kir (tf-Wz+ci)^ (AL[--AtLy4-(BLf--BtL)**î-(CLt—OL))ï /g^
a\$4b-A'JJ) {AU-A!L)+&L,&D) &LJ-WL,+{&L-UU) (CX'-OL)} ^ J

E&t-il question5 présentement d'avoir le centre et le rayon de
courbure d'une courbe quelconque à double courbure , pour un point
quelconque (x* > y/

 f z*) de cette courbe ; on changera,, dans ces-
équations x>y* z en xf\x r Y

/m\"y y- ztJrz\ 0 I t développera en sup-
primant les termes indépendans de x , y , z r et négligeant ceux
de plus de deux dimensions par rapport à ces variables j comparant
alors les équations transformées aux équations (ry iy) ; et supposant
<|u,'elle& sont les mêmes, on en conclura les valeurs de A ? A''> B ,

B/ * C % C'% et par suite ( 2 6 , 2 7 , 2 7 ^ celles de a ̂ h>c, L yL/ .
ces valeurs r substituées dans la formule (35) /feront connaître la
longueur du; f ayon de courbure j en les substituant ensuite dans
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les formules (34) , et y changeant x , y, z en x—x/

 7 y—y* % z—z',
on aura la position du centre de courbure, (*).

Si , par le centre de courbure , on conçoit une droite perpen-
diculaire au plan osculateur , cette droite sera Taxe de courbure,
pour le point (x* , y/ , z') , si , entre les équations de cet axe et
les équations qui expriment que le point est sur la courbe ? on
élimine xf , y/ , zf , l'équation résultante en x, y, z sera celle
de la surface développable lieu des axes de courbures, (**)

(*) Si Ton mène une sécante à une courbe à double courbure par deux
quelconques de ces points dont l'un soit fixe, et que l'autre se rapproche peu
h peu de celui-là en suivant le cours de la courbe , et en entraînant avec lui
la secunle , qui tournera ainsi autour du premier de ces deux points , lorsque
ces deux points se confondront en un seul, la sécante sera alors pne tangente»

Par troiŝ  points pris arbitrairement sur une courbe à double courbure , et
dont un est suppose' fixe , soit fait passer un plan , et sur ce plan soit décrit
un cercle , par ces trois points ; si l'on conçoit que l'un des points mobiles
se rapproche peu à peu. du point fixe , en suivant le cours de la courbe et
en entraînant avec lui le plan, ainsi que le cercle qui , sans quitter ce plan ^
variera sans cesse de grandeur et de situation ; lorsque les deux points se con-
fondront , le plan et le cercle seront tangens à la courbe. Si le troisième point
vient' joindre les deux autres , sous les mêmes conditions , lorsqu'il les aura
atteints , le plan et le cercle se trouveront oscillateurs de la courbe.

Voilà pourquoi on a coutume de considérer la tangente et le plan tangent
à une courbe à double courbure, comme ayant avec celte courbe deux points
communs qui se confondent en un seul ; et c'est pour cela aussi que l'on con-
sidère le plan et le cercle osculaleurs de la même courbe comme ayant avec
elle trois points communs qui se confondent également en un seul»

Cela revient évidemment à considérer la courbe comme un polygone gauche
d'une infinité de côtes : le prolongement de l'un d'eux est la tangente ; te t
plan qui passe par cette tangente est un plan tangent ; et le plan et le cercle
qui passent par trois sommets consécutifs sont le plan e| le cercle osculateurs.

(**) Si la courbe est plane, cette surface sera cylindrique ; si la courbe est
tracée sur une sphère , cetfe surface sera conique et aura pour centre le centre
même de la sphère ; généralement parlant , son arête de rebroussement sera
le lieu des centres des sphères osculatrices de la courbe ; c'est-à-dire, des
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Si , entre les équations du centre de courbure pour le point

(&* , y/, z') et les deux équations qin expriment que ce point appar-
tient à la courbe , on élimine xf , y/, ^ , les deux équations en
& > X * z qu 'on obtiendra seront celles d'une courbe à double cour-
bure lieu des centres de courbure qu'on appelle encore ici la
développée (*) de la courbe proposée , parce que si Ton conçoit
qu'un fil , d'abord maintenu sur toute sa longueur , se développe
de manière à lui demeurer constamment tangent, un des points
de ce fil tracera dans l'espace la courbe dont il s'agit»

§• 3.

De Vosculation dans les surfaces courtes.

Reprenons l'équation ( SECT. I , §.. 3 )

(0

fl\me surface courbe quelconque passant par Porîgîne 9 pour la-
quelle nous avons trouvé l'équation du plan tangent en ce point

sphères qui ont avec cette courbe quatre points communs se confondant en ira
seul? ou encore des sphères qui passent par quatre sommets consécutifs de
la courbe, considérée comme polygone d'une infinité de côtés ; maïs la recherche
de cette arête exige la considération des termes du troisième ordre des équa-
tions de la courbe.

(*) À proprement parler , une même courBe à double courbure a une in-
Enité de développées , toutes situées sur la surface deveioppable lieu de ses
axes de coupure ; mais nous ne mentionnons ici que la développée principale r

en renvoyant P pour le surgUÎS t h ïApplication de VanalisQ à la géométrie de
M

As
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Jx+By-\-Cz=o ,

et celles de la normale correspondante

x y z
~2 ~ F""" C* '

(3)

Nous avons vu en outre que f pour un autre point quelconque
' > y' > z') de la même surface, l'équation du plan tangent était

(10)

et celles de la normale

X—X*

y—y1

(11)

tout sous la condition

(9)

SI d'abord nous supposons que le plan tangent passe par Taxe
des x y auquel cas cet axe sera une tangente quelconque à la surface ?,

Torn* /X 34
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x ne devra point entrer dans l'équation (2) , et par conséquent on devra
avoir A=o; l'équation ( î ) deviendra donc

celle du plan tangent

et celles de la normale

B 04)

Faisons tourner le système des plans coordonnés autour de la tan
gente, c'est-à-dire, autour de Taxe d e s # ; en posant

p étant l'angle de l'axe des u avec celui des y. Il viendra en substituant
dans (12) et ordonnant,

-f £#'
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Si, dans cette équation, nous faisons w=o , l'équation résultante en
v et x sera celle de l'intersection de la surface par le plan des vx,
c'est-à-dire, par un plan quelconque passant par la tangente x} si
nous laissons p indéterminé. Cette équation est

. / 7 — B S i n . p y - { - ( E C o s p p y
0 ? )

+ ( H S \ n . 2 p + K C o s . 2 p — D $ \ C y +

en la comparant aux formules (24, 25) du premier § de la présente
section , et désignant par r son rayon de courbure a l'origine nous
aurons

CCos./?—BSin.p
r = — . (18)

Quant à son centre de courbure, ses équations seront évidemment

CCos. z7—B.Sin.p

Mais des équations (i5) on tire

( (20)
-yS\n.p ; 1

donc , en repassant au système primitif, on pourra dire que le centre
de courbure» à l'origine, d'une section faite par un plan passant par
Taxe des x, supposé une tangente à la courbe, et faisant un angle
quelconque p avec le plan des xz 9 est donné par les trois équations

# = 0 , zSin.p-f-yCos.pzzo, zCos.p—ySin.p= ^— ; (21)

desquelles on tire

CCos»—BSin.» CCos.p—BSînp
x~o, y= Sln.p , z=+~ ^ Cos./?. (12)
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Si, entre les deux dernières on élimine/? , l'équation résultante

en y et z sera , sur le plan des yz , celle du Heu des centres de COUJV

bure , à l'origine, de toutes les sections planes iaites par la tangente
ce : cette équation est

c'est-à-dire , celle d'un cercle passant par l'origine , ayant pour
tangente en ce point l'intersection de son plan ayee le plan tangent
> 1 c t. * \ / B 2 4 - C 2

a la suriace ; et ayant pour diamètre - — •

Ainsi , de toutes les sections faites à une surface courbe quel-
conque , par des plans passant par une même tangente quelconque
à cette surface, celle qui a , au point du contact de cette tan-
gente , le plus grand rayon de courbure est celle qui est faite par
lé plan normal. De plus, les centres de courbure de toutes les autres
pour le même point, sont sur une même circonférence , ayant pour
tangente 9 en ce point, une nouvelle tangente à la surface perpen*
dicul aire à la première ; d'où il suit que les cercles osculaieurs de
toutes ces sections y pour le point de contact de la tangente f appar-
tiennent à une même sphère, tangente en ce point à la courbe.

De ce beau théorème , dû à Meusnier, xi résulte en particulier,
que connaissant seulement y pour un même point quelconque d'une
surface courbe9 les centres 4e courbure de deux sections faites dans
cette courhe, par des plans passant par une même tangente , on
peut facilement avoir le centre de courbure de toute autre section
faite par un nouveau plan passant également par cette tangente*
Ce centre sera , en effet, l'intersection du plan coupant avec une
circonférence passant par le poînt de contact et par les deux centres
déjà donnés.

Nous venons d£ voir de quelle manière les sectlçns planes obliquas
sont liées entre elles et à la section normale , lorsque les plans
coupant passent par une mémo tangente* Examinons présenlemeot
la relation qui existe entre les diverses sections normales*
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Nous pouvons , dans cette nouvelle recherche , admettre une sim-
plification de plus : nous pouvons supposer qu'on a pris pour plan
des xy le plan tangent lui-même , en prenant son point de contact
pour origine ; ce qui fera coïncider la normale avec Taxe des z ;
l'équation (2) devra donc simplement se réduire à z = o , on aura

j à la fois A*=zo, B^o, ce qui réduira l'équation (1) à

Afin d'obtenir une section normale quelconque, faisons tourner le
système des plans coordonnés d'une quantité indéterminée p autour
de Taxe des z. Posons pour cela

(25)
yzztSm.p^-uGos.p )

d'où

par la substitution des valeurs (25) dans Péquation (%4) y ta surface
se trouvera rapportée aux axes des /, z/, z\ si ensuite on veut avoir
son intersection avec le plan des /£, que l'on peut considérer ici,
à raison de l'indétermination de/?, comme un plan normal quelconque,
il faudra, dans cette équation transformée , supposer /=Q; mais il
revient au même , et il est en même temps plus court de faire im-
Tnédiatement cette supposition dans les formules (^5)^ c'est-à-dire,1

de faire dans (^4)

ce qui donne, en ordonnant f
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telle est donc l'équation de la section faite dans la surface (24) par
un plaa normal tz , faisant avec le plan des tx un angle quelconque/?.

En comparant cette équation (27) aux formules (24, 25) du pre-
mier § de la présente section, on aura pour le rayon r de courbure de
cette courbe à l'origine,

r = - . (28)
a(GCos2/?+JfSin2/?+FSinpGos/?) v '

Si Ton fait varier la valeur de p } celle de r variera aussi ; afin
donc de savoir comment ces deux variables sont Fiées entre elles 7 con-
cevons que, pour chaque position du plan normal, on porte sur la
tangente correspondante , dont l'équation est

m yGos. p—x$m.p=o y (29)

de part et d'autre du point de contact 7 des parties proportionnelles
à la racine quarrée de r , c'çst-à-dire, des parties moyennes propor-
tionnelles entre r et upe longueur constante et arbitraire x ; et cher-
chons la courbe sur laquelle les points ainsi déterminés se trouveront

, situés ; en désignant par 4? , y les coordonnés de cette courbe , nous
devraps avoir les deux équations

#=y^.Cos- /> , y—\/x?.Sin.p , (3o)

exprimant a la fois que le point (x, y) est sur la tangente (29) et
que sa distance au point de contact ; c'est-à-dire , à l'origine est
égale à \/l^ .

Prenant donc, dans ces deux dernières équations, les valeurs de
S*ou p, Cos./?, pour les substituer dans la formule(28) ? nous aurons
pour l'équation de la courbe demandée
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équation d*une ligne du second ordre rapportée a son centre.
Ainsi, Si ayant fait à une surface quelconque, par un quelconque

de ses points, une suite de sections normales 9 coupant le plan tan-
gent suivant une suite de tangentes à ces sections , on prend sur
chacune de ces tangentes 7 de part et d'autre du point de contact y
des longueurs proportionnelles aux racines carrées de rayons de
courbure quont au point de contact les sections qui leur correspondent ;
lés points ainsi déterminés sur le plan tangent appartiendront à une
ligne du second ordre, dont le point du contact sera le centre.

Cette courbure a été remarquée pour la première fois par M. Dupîn 9

qui l'a nommée indicatrice; il a appelé tangentes conjuguées et tan-
gentes principales, les tangentes dirigées suivant ses diamètres con-
jugués et principaux, et il a de même appelé sections conjuguées
et principales, rayons de courhure conjugués et principaux les sections
et rayons de courbure qui répondent aux tangentes conjuguées et
principales.

Il suit de cet élégant théorème que tout ce qui est vrai du rapport
des quarrés des diamètres conjugués ou principaux d'une ligne dû
second ordre et des angles que forment entfe eux ces diamètres doit
être vrai aussi du rapport des rayons de courbure dfes sections nbr-
males , conjuguées et principales, et des angles que forment entre
eux les plans de ces sections; ainsi, i.° les rayons de courhure qui
répondent aux sections principales sont Vun plus grand et Vautre
plus petit que tous ceux qui répondent aux autres sections normales ;
2.° la somme de deux rayons de courhure conjugués , pris avec
leurs signes , est toujours constante et égale à la somme des rayons
de courhure principaux ; 3.° le produit de deux rayons de courhurô
conjugués et du quarrè du sinus de Vangle des plans qui les con-
tiennent est aussi constant et égal au produit des rayons de courhure
principaux. 4«° Les rayons de courbure des sections qui font, de
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part et d'autre, avec les plans des sections principales des angles
égaux sont égaux ; etc 7 etc , etcu

II avoît déjà été remarqué par Euler que les sections normales de
plus grande et de moindre courbure se coupaient perpendiculaire-
ment ; il avait même montré que les rayons de courbure de ces
deux sections étant connus , on en pouvait déduire celui de toute
autre section normale donnée de position ; mais il était réservé à
M. Dupîn de ramener toute cette théorie à une autre extrêmement
simple et beaucoup plus généralement connue.

A raison de l'indétermination de A, une même surface a, en F un
quelconque de ces points, une infinité d'indicatrices différentes; mais
ia forme de l'équation (3r) montre que toutes ces indicatrices sont
semblables et concentriques ; et conséquemment elles ne cessent pas
d'avoir leurs diamètres proportionnels aux racines quarrés des rayons
de courbure des sections correspondantes. Si en particulier on suppose
* = 0 , l'équation (3i) devient simplement

€x*+Hy*+Fxy = o

et exprime alors un point ou deux droites, c'est-à-dire, une section
eonique de dimensions infiniment petites ; mais > comme c'est aussi
II cela que se réduit l'équation (24)? lorsqu'après avoir supposé ç
tout à fait nuls, on suppose ensuite x , y infiniment petits, il en
faut conclure que le point de contact d'une surface quelconque avec
son plan tangent est une section conique de dimensions infiniment
petites9 dans laquelle les diamètres sont proportionnels aux racines
quarrèes des rayons de courbure des sections normales correspon-
dantes* Cette remarque est due à M. Dupin^

Si l'on prend les deux sections principales poufc plans des xz et
des y^, le terme en xy ne devra point se trouver dans l'équatioa
(3 i ) ; on. devra donc avoir JFS=OJ en sorte que l'équation (24) àô
a surface deviendra
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o =

dans les mêmes circonstances le rayon r de courbure d'une section
normale formant un angle p avec le plan des xz> aura (28) pour
«xpressîon

r=== 2(GCos*p+HSin*p) ' ( '

on en conclura les deux rayons principaux en y faisant sueces-
sîvement/? = o , /> = r** ; désignant donc ces deux rayons par a, b,
on aura

enëlîmînant donc ^ , jffde la formule (33) , au moyen de ces deux-là;
il viendra

— Cos.y>+"rSin.>= - ; (35)
a 6 r

équation donnée par Euler. (*)

(*) Tant que G , H sont inégaux et de mêmes signes , l'indicatrice étant une
«îlipse , toutes les courbures sont plus grandes que la moindre et moindres que
la plus grande des deux courbures principales» Si G=H, l'indicatrice devient un
cercle et conséquemment toutes les courbures sont égaies , comme il arrive au
pôle d'un sphéroïde ; l'origine est dite alors un ombilic. Si G et H sont de
signes contraires , l'indicatrice devient une hjper&ole , les deux courbures pria-*

Jom* IX. 25
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Dans le cas de l'équation (32) f l'équation (to) du plan tangent par

le point (xl, y/ , z1) devient amplement

o = zy') -\-zGxxf+

(36)

ce plan tangent coupe le plan tangent à l'origine, c'est-a-dire, le
plan des xy , suivant une droite dont on-obtiendra l'équation, en
égalant z à zéro dans celle-ci; cette équation sera done

)y+Cz'=*o , (37)

S >us la condition

o =

(38)

mais, à mesure que le point {xf, y' , z') se rapprochera de l'origine,
elle tendra à se réduire à

(39)

cîpales ont leur convexité tournées en sens inverses ; les courbures des autres
sections normales peuvent prendre tous les degrés possibles de petitesse ; et en
particulier ces courbures sont tout - à - fait nulles , lorsque les sections sont
faites suivant les asymptotes de l'hyperbole , qui sont ainsi oscuîatrices de la
surface. Enfin , si l'un des deux coefficiens G , H est nui , l'indicatrice SÔ
réduit au système de deux parallèles, et la courbure minimum ? parallèle à
ses droites, est seule nulle.
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et, dans les mêmes circonstances , lequation de condition tendra à
se réduire à C ^ - o ou z/=o ; donc à mesure que le point ( ^ /

; y
/ , z')

tendra à devenir l'origine , les deux plans tangens en ce point et
à l'origine tendront à se couper suivant une droite ayant pour
équation

mais en même temps la droite joignant ces deux points fendra con-
tinuellement vers sa projection sur le plan des ccy 5 c'est-à-dire ; vers
la droite, ayant pour équation

<r~y'x—o > (40

désignant donc par p et q les angles de ces deux droites avec Taxe
des x on aura

- _ ;

d'où

©u (34)

£+aTang./?Tang.$r=o j (43)

relation entre deux tangentes conjuguées.

Ainsi, deux points marchant Vun vers Vautre sur une surface
courbe, la sécante qui joint ces deux points et Vintersection des plans
tangens dont ils sont les points de contact tendent sans cesse à
d&venir deux tangentes conjuguées ? et le deviennent en ejfet lors*
qu enfin ces deux points se confondent, quelle que puisse être d'ailleurs 7

sur la surface courbe, la route suivie par Vun d'eux pour joindre
Vautre. Cette remarque est encore de M. Dupin.
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Cela revient, au surplus, à dire que deux courbes qui se coupent

sur une surface courbe ne peuvent être Vune et Vautre des lignes
de contact de cette surface avec deux surfaces dèveloppabîes , cir-
conscrites qu'autant que Vêlement rectiligne de chaque surface dève~
loppable au point d'intersection des deux courbes est tangent à la
ligne de contact de Vautre. Ce qui avait déjà été implicitement remarqué
par Monge.

La surfacç étant toujours située par rapport aux axes des coordonnées
comme le comporte l'équation Çiz), les équations de sa normale par
le point (xf, jr ' , zf) sont (i i)

(U)

de sorte que l'équation de la projection de cette normale sur le
plan des &y e s t

ou encore

( 2 V * 2 # j ' + ^ > ~ ( £ 2 ^ ^ (45)

Puisque , g&iéralement parlant, cette projection ne pa3se pas par
l'origine, U faut en conclure que la normale au point (xf

 % yf, \f) ne
rencontre point l'axe des \ , qui est ici la normale à l'origine. Ainsi,
généralement parlant, deux normales à une surface courbe-ne sont
pas dans un même plan.

Pour que la normale par le point (#' , y', &0 coupât l'axe de$
Z$ il faudrait qu'on eût la condition

Ton peut conclure que Féquatioa
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est celle d'une surface qui coupe la surface (32) en tous les pointa
desquels les normales rencontrent Taxe des z.

Or, cette équation est celle d'une surface conique passant parles
trois axes 7 d'où Ton peut conclure que la courbe dont ii s'agît a
deux branches qui se coupent à l'origine suivant les directions des
axes des # et des y* Ainsi , plus deux normales qui se coupent
approchent de se confondre et plus aussi le plan normal qui les
contient tend à se confondre avec le plan de l'une des sections
principales , et il se confond rigoureusement avec lui lorsqu'enfin
la seconde normale a atteint la première.

Cela revient évidemment à dire quV« partant de Vun quelconque
des points d'une surface courbe9 il n'y a, en général, que deux
directions suivant lesquelles on puisse cheminer sur cette surface
de manière que la normale en ce point soit rencontrée par celle
qui la suit immédiatement ; et ces deux directions, toujours per-
pendiculaires l'une à l'autre, sont celles des sections principales
qui répondent à ce point. Cette remarque est due à Monge,

Concevons que Ton traoe ? sur une surface courbe , une courbe telle
que la tangente en chacun de ses points soit dirigée suivant la
section principale de plus grande courbure qui repond à ce point ;
une telU courbe sera dite une ligne de plus grande courbure de
cette surface ; et il est clair qu'on peut concevoir de telles lignes
par chacun de ses points» Si 9 au contraire , la tangente en chacun
des points de la courbe e t̂ dirigée suivant la section principale
de moindre courbure , cette courbe sera dite ligne de moindre
courbure ; et on pourra également en concevoir une pareille par
chacun des points de la surface proposée, Les lîgn^ de plus grande
et de moindre courbures d'une surface courbe sont appelées d'un
pom commun les lignes de courbure principales ou simplement
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les lignes de courbure de cette surface. Celles d'une série coupent
donc perpendiculairement toutes celles de l'autre série ; de sorte
qu'en quelque nombre qu'elles soient , elles divisent toujours la
surface dont il s'agit en quadrilatères courbes dont tous les angles
sont droits.

Si, sur une surface courbe , on trace une courbe quelconque ,
les normales menées à la surface par tous les points de cette courbe
appartiendront généralement à une surface gauche ; mais , si la
courbe dont il s'agit est une ligne de courbure, la surface 'gauche
se changera en une surface developpabe , ayant pour arête de
rebroussement l'ensemble des centres de courbure qui répondent à
cette ligne. L'ensemble des arêtes de rebroussement des surfaces
gauches qui répondent à toutes les l'gnes de courbure d'une surface
donnée forme une nouvelle surface à deux nappes , lieu des centres
de plus grande et de moindre courbure de tous les points de cette
surface 7 et à laquelle toutes ses normales sont tangentes.
. Après avoir ainsi étudié la courbure d'une surface , en la rapportant
à la normale et aux deux tangentes principales de l'un de ses points,
il ne nous reste plus qu'à généraliser nos résultats, afin de les rendre
facilement applicables à tout point d'une surface courbe quelconque ,
autre que l'origine des coordonnées.

Reprenons pour cela l'équation générale

(0

d'une surface passant par l'origine; celle

de sa normale par ce point; et enfin celle
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X*

y—tf

<3e sa normale par un autre quelconque (jx* , y' , &') de ses points,
soumis à la condition

o =

(9)

Concevons que, par un point (je } y , z) de la normale qui répond
à l'origine , distant de cette origine de la quantité R y on mène
à la surface courbe une seconde normale , dont le pied soit (# ' , y;, z')
et la longueur JR /; pour les deux, points dont il s'agit, les équa-
tions (3 j 9; Ï I ) auront lieu, et Ton aura en outre

(47)

(48)

ee qui fera en tout sept équations au moyen desquelles une des
huit quantités qu'on y considère étant connue , on pourra déterminer
les sept autres. Eu outre , le plan qui contiendra les deux normales
M, IV 1 aura pour équation
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ou | ce qui revient au même ,*

(Bz—Cy)x'-\-(Cx-.Âzy+(Ay—Bx)z>=o : (49)

Enfin, en chassant les dénominateurs , dans les équations (3, n ) ,
-et supprimant dans les dernières les termes qui se détruisent en
Tcrtu des premières , on aura

Cx^Az ; Cy—Bz , (5o>

Cela pose , si l'on conçoit que le point (x , y, z) glisse sur
R , de manière à se rapprocher de plus en plus de l'un ou
l'autre des deux centres de courbure qui répondent à l'origine ,
Rf

 y que nous supposons dans ce mouvement , demeurer toujours
normale , se rapprochera de plus en plus de cette première normale.
Son pied (x' , y/, zfy), qui se rapprochera continuellement de l'ori-
gine , décrira sur la surface , d'après ce que nous avons dit pré-
cédemment , une courbe passant par cette origine et ayant pour
tangente en ce point Tune des deux tangentes principales ; d^ù il
suit que pareillement le plan normal (49) tendra sans cesse à devenir
celui de l'une des sections principales.

Mais lorsque mf, yf, zf sont très-petits ; on doit avoir sensiblement
R*
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R R z * } (5a)

de plus, on peut alors, sans erreur sensible, remplacer les équa-
tions (g, 5r) par les suivantes

A x'+By'+C z'= o ; (53)

=Cx>—Az>
} (54)

y{Dy'-\-Ex>-\-2.Kz<)—zÇFx'+D'^H^C'B' j

en y joignant les deux équations (5o), on aura en tout six équa-
tions entre lesquelles on pourra néanmoins éliminer x , y , z , x1,
y' , z' , puisque ces dernières se trouvent affecter tous les termes
des équations où elles entrent.

En chassant d'abord x, y des équations (5a , 54) r au moyen des
équations (5o) , elles deviennent

{(JE - 2 CG)z - C*\xt+{AD~CF)zy>—{(CE-2AK)z—AC}z<= o,

{(BD—2 CH)z—Cy-i- (BE—CF)zx'—{{CD—2BK)z—BC}z<=o.

En représentant par x nue Indéterminée , on satisfait aux deux
dernières , en posant

Tom. IX. 26
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I I = {(^E—zCG)z-~O) {(CD—aBKîz—BC}—(BE-CF)\(CE-2AK)z-AC}

c'est-à-dire, en développant , réduisant et ordonnant

~- B( £*
(56)

substituant toutes ces valeurs dans l'équation (53) et y introduisant

pour— sa valeur, on aura, toutes réductions faites,
C

— 2.DG)—£'(£'—4KG)

BCD—A\H+K)

-hCAE—B*(K+G) *-\Oy=A. (57)
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équation qui donnera rigoureusement pour la surface ( i j les valeurs
4es deux rayons de courbure principaux qui répondent à l'origine ,
puisque x/, y* ? z/ ayant disparu, peuvent être supposés tout à fait
»u!s.

R étant déterminé , par cette équation , on tirera des équations
( 5o ? Ô2 )

AR BR CR

V' ' ^

q'ii seront les roordornees du centre de courbure. Quant aux plani
des denx section" ;, :;aoipa!es on en obtiendra la double équation , en
introduisant c,-..** (49; le >̂ valeurs (56) , et y mettant ensuite pour

—7- la valeur ( i5 ) ; cela donne7 toutes réductions faites,

Bz-Cy)

=o.(59)

S'agit-il présentement de déterminer, pour un point quelconque
{xf

 y yf , zf) dune surface quelconque y les centres et rayons de
courbure et les plans des sections principales, on changera respec-
tivement x, y y z en x'-^x , y/m\-y% z'-{-z -, on développera , en arrêtant
le développement aux termes de deux dimensions en x, y, 2,
inclusivement ; on égalera a zéro t'eftseroble des termes incfépen-
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dans de ces variables , ce qui donnera l'équation de condition ; on
comparera terme à terme l'équation restante à l'équation (i) ; afin
d'obtenir les valeurs de ses neuf premiers coefficiens -, on substituera
enfin ces valeurs dans les formules ( 67 , 58 , 5g ) » en changeant
dans les dernières, x 7 y, zf en x—xf , y—y1 % z—z/*

Si, entre les trois équations du centre de courbure pour le point
(*?', y/, z;) et l'équation de condition qui exprime que ce point
appartient à la surface courbe , on élimine x/, y ' , j ' , l'équation
résultante en x , y, z sera celle du lieu des centres de courbure de
cette surface ou de sa développée, c'est-à-dire , de la surface a la-
quelle toules ses normales sont tangentes.

Appliquons ce procédé k l'ellipsoïde donnée par l'équation

* h*;—I = = i ; (60)

u z b* c%

nous aurons d'abord
Xf% y 11 zt%

«t ensuite
ZXf 1

O ss — # A X*

b*

qu'il faudra comparer à l'équation ( i ) ,

INous aurons donc, en premier lieu
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au moyen de quoi la formule (5y) deviendra simplement

(62)

Nous aurons ensuite

4'où nous conclurons, en ayant égard à la condition (61)

En conséquence, l'équation qui donnera les deux rayons de courbure

9U point (# ' , y', z' ) sera
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c*

y'2 ztx \*

Tout ce qui précède pourrait être susceptible de déveîoppemens
beaucoup plus amples -, mais nous les abandonnons à la sagacité
du lecteur, en le priant de considérer que nous n'avons pu ni dû
flous proposer ici d'écrire un traité élémentaire ; mais seulement de
montrer comment Taaalyse élémentaire pouvait être employée à
traiter des questions pour la solution desquelles on a coutume de
recourir au calcul différentiel. La vérïié est qu'il n'y a proprement
d'un peu compliqué ieî que ce qui concerne les courbes a double
courbure; mais cela tient à la nature même du sujet.

À la vérité nos formules finales sont moins simples que cellef
que fournit le calcul différentiel \ maïs on doit remarquer que la
simplicité de ces dernières est plus apparente que réelle ; elle tient
uniquement à ce que ces formules ne sent au fond que des sym-
boles d'opérations à effectuer, tandis que les nôtres au contraire
n'exigent que de simples substitutions r dans chacune des applications
qu'on se-proposera & en faire.

Nous pensons toutefois qu-e la manière très-simple dont nous
sommes parvenus aux beaux résultats d'Euler , de Monge s de
Meusnier et de M. Dupïn, sur la courbure des surfaces courbes,
n'aura pas échappé au lecteur. Si donc quelqu'un désirait seulement
de se mettre à peu de frais au courant de ces résultats, il pourrait
passer , à 1$ lecture , les deuxièmes § tant de la première que de
la seconde section, qui sont tout-à-fait indépendans de tout Ve
reste» II pourrait eu outre supposer , dès l'abord , dans le § premier
4Ê U second^ seetioj* , cjue Va.$e des. o§2 est tangept à la courbe, ou
que A=.o j et ne lire ensuite que la première parue $\x présent §.
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Nous n'ajouterons plus qu'un mot, et ce sera pour faire remar-

quer Fanak>gte entre les principes qui nous ont dirigés dans ce qui
précède et ceux que nous avons exposés à la page i83 du V.e vc-
lume de ce recueil. Ici, comme là , tout se réduit, en dernière analise $

a obtenir d'abord du problème proposé une solution approximative>

dont la précision soit subordonnée à la petitesse de certaines quantités,
à éliminer ensuite du résultat ces mêmes quantités qui , du moment
qu'elles ont disparu , ne sauraient plus influer sur ce même résultat qu'on
doit dès-lors regarder comme tout-à-fait exact. Il n'est probablement
aucune des questions dans lesquelles on emploie la doctrine des in-
finiment petits ou toute autre doctrine équivalente qui ne puisse
être ramenée à ces principes qui nous paraissent non moins simples
quils sont luminaux.
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QUESTIONS PROPOSÉES.

Problèmes de géométrie transcendante.

N sait que le lieu de toutes les tangentes à une courbe à double
courbure est une surface développable dont cette courbe est l'arête
de rebroussement.

La courbe étant donnée, la surface déveinppable Test aussi, et,
si on l'étend sur un plan, son arête de rebrousseràent deviendra une
courbe plane qui sera également donnée.

Mais si, au contraire , la courbe plane est donnée , elle pourra être
considérée comme Tarcte de rebroussement d'une infinité de surfaces
développables toutes différentes les unes des autres ; mais ayant tou-
tefois un caractère commun, et que, par leur développement on a
appliqué sur un plan.

Ces remarques donnent lieu aux deux questions suivantes i

I. Quelle courbe plane devient une courbe à double courbure
donnée, lorsqu'on applique sur un plan la surface développable dont
cette courbe est l'arête de rebrou&sement ?

II. Quelle est l'équation générale de toutes les surfaces développabîes
telles qu'en les appliquant sur un plan , leur arête de rebroussemeat
devient une courbe plane donnée ?
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ANALISE ALGÉBRIQUE.

De la résolution de Véquation générale du 3.rae degré ;

Par M. de STAINVILLE , répétiteur d'analise à l'école royale
polytechnique.

méthode que Ton suit ordinairement pour résoudre les équations
du 3.me degré diffère peu de celle que les analisles du XYl.e siècle
ont imaginée les premiers pour parvenir au but ; et on peut apporter
pour raison de la ressemblance entre leurs procédés et les nôtres
la simplicité des calculs qu'exigent leurs méthodes , simplicité que
sans doute les modernes n'ont pas espéré de pouvoir surpasser. Mais
on peut , sans rien perdre de cette simplicité , parvenir aux formules
finales par une route un peu différente , et cela sans rien supposer
au-delà de ce que savaient les aneiens géomètres , tant sur la com-
position des équations que sur la grandeur et la nature de leurs
racines. La méthode que nous nous propobons d'indiquer ici & de
plus l'avantage de porter une plus grande lumière dans l'esprit, de
mieux faire voir sous quelles conditions les parties qui composent
l'expression générale des racines sont réelles ou imaginaires, et de
mieux faire concevoir enfin pourquoi le cas où les trois racines sont
impliquées d'imaginaires est précisément le seul où elles puissent
être toutes trois réelles.

. Si Ton considère l'équation

y3+j4y2+BY"hC=^o ,
Tom. IX,n.Q FI, i.er décembre 1818. ^
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on pourra regarder les deux premiers ternies du premier membre
comme étant les deux premiers termes du cube d'un binôme , dont

A
y serait la première partie et — la seconde. Si donc il arrivait qu'il

existât entre les coeffieiens la relation nécessaire pour que les deux

autres termes complétassent le cube de y-\ , on pourrait , par

une simple extraction de racine cubique en déduire une équation
du premier degré qui donnerait y en fonction des coeffieiens. Cela
aurait encore lieu , quand bien jmême le premier membre ne diffé-
rerait du cube d'un binôme que par une quantité constante ; car,
en ajoutant à chaque membre ce qu'il manquerait au premier pour
le rendre un cube, l'extraction de la racine cubique des deux membres
ramènerait également l'équation au premier degré (*).

Si l'équation ne se trouve dans aucun des deux cas que nous
venons d'examiner, on pourra la mettre sous la forme suivante

ou encore sous celle-ci

AB

Par conséquent, si l'on pose

A A* AB

la question sera réduite à résoudre l'équation

(*) C'est le cas résolu par les ïndous ; voyez à ce sujet un article de M.
Terquem, dans le III.e volume de h Correspondance sur Vécole polytechnique t

page 275.
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Pour résoudre cette équation , nous partirons d'un principe fort
simple , et qui consiste en ce que la somme de deux cubes se com-
pose du double du cube de la demi-somrne de leurs racines et du
triple de la somme de ces mêmes racines , multiplié par le quarré
de leur demi-différence ; ce qui résulte évidemment de l'équation

Cela posé 9 si Ton fait passer le terme tout connu du premier
membre dans le second , on aura

Or , le premier membre de cette équation étant composé de deux
parties, on peut faire en sorte qu'il devienne la somme de deux
cubes; c'est ce qu'on voit aisément, car on a

x

or y le dernier membre de cette double égalité est, d'après ce qui
précède , égal à la somme de deux cubes ; et , comme le premier
est d'ailleurs égal à —q > on aura, en formant les deux cubes,

Mais , le premier cube du premier membre de cette dernière équation
étant égal à

sera aussi égale à

D'ailleurs , la partie rationnelle est égale à ——', et la quantité, sous

le radical ; revient à
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4 * . 7

ainsi, puisque la partie affectée de s sous le radical est le quarn?

de la partie rationnelle 7 qui est elle-même égale a > il en
2

résulte que le radical est égal à —-q-\~ M/ -~- + ~ 5 e t *

comme le second cube ne difière du premier que par le signe

du radical 7 ce second cube sera égal à —— — a / 7" "̂ """"7 *

SI Ton tire les racines cubiques de chacun des deux cubes dont

il s'agit , on aura les deux équations

•Y

2.

étant a'outées donneront

Oite formule présente neuf combinaisons , parmi lesquelles trois
seulement se rapportent à l'équation proposée. Il est facile de dis-
tinguer celles qui représentent le$ racines de cette équation , et
quelles sont les équations auxquelles les six autres satisfont -, et pour
cette raison , nous nous dispenserons d'entrer dans cette discussion,

II y a un cas qui a beaucoup exercé les géomètres , et qu'on
désigne sous le nom de cas irréductible : c'est celui où chacune des
deux quantités dont il faut extraire la racine cubique est imaginaire.
Lorsque cette circonstance a lieu , les trois racines sont réelles*
CÎ'est ce qu'on peut démontrer très-facilement. Désignons , en effet,
par a p b , respectivemeat , les racines cubiques des quantités qui
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sont sous les radicaux, cubes , et qui sont propres f par leur addition,
à donner une quantité réelle , en désignant par « Tune quelconque
des deux racines cubiques imaginaires de l'unité ; les deux autres
racines de la proposée seront

*a4f*?b , ara-\-xb .

En mettant pour a sa valeur 7 ces deux racines prendront la forme

a-{-b a—b a-\-b a—b

mais a-\-b est supposé une racine réelle de la proposée ; et nous
avons \u ci-dessus que

a—b=y/x*+±p ;

en représentant donc par r la racine déjà supposée réelle ; on aura

a—b-s/ÏHliï î
maïs on a vu plus haut que

Ainsi y l'une des racines étant r 9 les deuis autres, seront donnes
par la formule

tt par conséquent elles seront toutes trois réelles.
Si Ton veut avoir une idée bien nette du cas irréductible , om

observera que la quantité qui est sous le radical quarré 5 et qui
tit égale à
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ne peut être négative qu'autant que le second facteur Test lui-
même, puisqu'on peut toujours supposer que l'une des valeurs de
x est réelle. Ainsi, II faut que p soit négatif, ce qui est d'ailleurs

évident, et que cette valeur de x soit moindre que 2 i / -~ . On

pourra donc toujours représenter cette valeur de x par 2 g/ -^ Cos. <p.

Si l'on substitue cette expression pour x dans l'équation

on aura une équation^ui, étant divisée par 2 f / JL , deviendra

or ,
4CQS.3<P«— 3Gos.p = Cos.3<p ;

donc

cette équation servira à trouver l'angle £, et par suite Cos.p.
L'équation entre Cos.p et Gos.3<p ayant lieu encore en rempla-

çant 3^ par 3<p-f~^ ou $ par ç + -~-c% n étant un nombre entier
* * * 3
quelconque , positif ou négatif , et c désignant la circonférence ;
il s'ensuit que les .valeurs de x peuvent toutes être représentées
par la formule

laquelle p par les diverses suppositions faites pour n 5/ ne donne
que ces trois formes distinctes
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les valeurs de x% au nombre de trois, sont donc toutes réelles ?

et peuvent s'obtenir par les tables de sinus.
Nous terminerons ici ce que nous nous étions proposé de dire

sur les équations du troisième degré ; nous y ajouterons seulement
qu'on aurait pu évaluer les deux cubes qui composent le premier
membre de l'équation

eu fonction des coefficiens p, ç9 d'une autre manière que naus .ne
l'avons fait ; car le produit des deux cubes qui composent le pre-
mier membre, étant égal au cube du produit des racines , sera

conséquemment égal à 5 et 9 comme leur somme est égale

à —q , il en résulte que ces cubes sont les racines d'une équation
du second degré dont le coefficient du second terme est égal à q%

et dont le dernier ternie est égal à « — ; maïs nous n'avons

point voulu faire usage de ce moyen, afin d'éviter l'emploi d'une
équation auxiliaire.
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GÉOMÉTRIE APPLIQUÉE.

De la résolution des équations numériques du 3*me degré
parla parabole ordinaire;

Par M. GERGONNE*

V/N a souvent besoin de résoudre des équations numériques du
troisième degré ; et il est très-utile dans ce cas de savoir 5 au moins ?

à l'avance, si l'équation proposée a deux racines imaginaires ou si,
au contraire , ses trois racines sont réelles. Dans ce dernier cas ,
les formules générales réfusant le service , il peut être commode
d'avoir quelque procédé graphique qui fasse connaître les signes des

: racines , et qui en donrie à peu près les valeurs* Mônge (*) et
antérieurement M. Bérard (**) , ont indiqué , pour parvenir à ce but*
l'usage de la parabole cubique ; la méthode que je vais exposer ,
et qui n'emploie que la parabole ordinaire » ne paraît pas être
connue.

On sait que , par un point donné comme on voudra sur le plan
d'une parabole, on ne peut jamais lui mener que trois normales
au plus*, que deux de ces normales peuvent se confondre en une

(*) Correspondance sur Vécole jiol^Udtnique , tom. III 5 n.° 2. > mai 1815 ;
page 201.

(**) Opuscules mathématiques et Méthodes nouvelles pour déterminer les racines
des équations numériques ? page 33.

seule 1
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seule , et qu'enfin elles peuvent être toutes deux imaginaires -, de
sorte qu'alors il n'y a , par le point dont il s'agit , qu'une seule
normale possible et réelle. Ainsi, les trois normales à une parabole
présentent exactement les mêmes circonstances qu'offrent les trois
racines d'une équation du troisième degré.

Ces circonstances dépendent, comme Ton sait, de la situation du
point de départ des normales , par rapport à la développée de la
courbe -, c'est-à-dire que les trois normales sont réelles et inégales,
ou que deux d'entre elles se confondent , ou enfin que CCSL deux
sont imaginaires , suivant que ce point de départ est dans l'intérieur
de l'angle curviligne formé par les deux branches de la développée
ou sur un des côtés de cet angle ou enfin hors de ce même angle.

D'un auîre côté; de même qu'en la supposant privée de second
terme, ce qui est permis , une équation du troisième degré ne dépend
que de deux données seulement, arbitraires Tune et l'autre ; la po-
sition du point de départ des normales à la parabole dépend éga-
lement de deux données arbitraires ; savoir , les deux coordonnées
de ce point.

Ainsi , tout concourt à établir la plus parfaite analogie entre le
problème des normales à la parabole par un de ses points et la
recherche des racines d'une équation numérique du troisième degré ;
voici la méthode qui nous a paru la plus propre à ramener la
solution du dernier de ces deux problèmes à celle du premier.

Soit
(f)

l'équation d'une parabole rapportée à la tangente à son sommet et
à son diamètre principal , comme axe des x et des y ; on sait que
l'équation de sa développée sera

de sorte qu*un point (a, b) sera dans l'angle curviligne formé par
Torn. IX g
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les deux branches de cette développée ou hors de cet angle ,
suivant qu'on aura

ou

( a V /l—ic

de sorte que , dans le premier cas , on pourra , par le point {a , V)
mener à la courbe trois normales réelles, tandis que , dans le second ,
deux de ces norfnales seront imaginaires ; en particulier , deux des
trois normales réelles seront égales , si l'on a précisément

c(i\=(hr^. (5)

Cela posé , cherchons les normales par le point {a , h). La tan-
gente à la courbe s par un point (V , y') pris sur son périmètre , a ,
cpmme Ton sait , pour équation

(6)

avec la condition

*"=4*r / • (7)

La normale par le même point aura donc pour équation

Si donc on veut que cette normale soit la normale partant du
point {à y h) , il faudra que l'équation (8) soit satisfaite par les
coordonnées de ce point, ce qui donnera

-f) =0 • (9)
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Nous aurons donc , entre les coordonnées xf, yf du pied de la

normale les deux équations (7 , g) au moyen desquelles il sera facile

de les déterminer , et par suite, de construire ces normales.

On peut présentement supprimer les accens , dans ces deux
équations, lesquelles deviendront ainsi

#a = 4ry , *(y—£) + zc{x—a)-o , (10)

et remplacer l'élimination par la construction des courbes exprimées

par les équations (10) ; or , la première est la parabole donnée

elle-même ; donc la seconde est une courbe qui coupera la parabole

donnée en trois points qui seront les pieds des normales partant du

point (a 5 b). On voit d'ailleurs que cette seconde courbe est une

hyperbole équilatère 9 ayant pour asymptotes Taxe des y et une

parallèle à Taxe des x ôituée à une distance b—ic de cet axe.

Celte hyperbole coupe d'ailleurs l'axe des x en un point pour lequel

2-ac . e

on a . #= ~ - ; ainsi on a tout ce qu il taut pour la construire

par points ^*).

Si Ton élimine^ entre les éqnations (10) on obtiendra l'équation

(¥) Dans la recherche des pîeda des normales partant du point (#,&), l'Hy-
perbole peut être remplacée par une infinité d'autres courbes. Les équations
(ro) , en effet, ayant lieu en môme temps pour ces points , toute combinaison
qu'on ea pourra faire aura lieu en même temps qu'elles , et exprimera conse'-
quernment une courbe coupant la parabole donnée aux points cherchés.

On peut , en particulier , remplacer l'hyperbole par un cercle. Si, en effet , on
multiplie la dernière des équations (10) par x , en remplaçant x2 par 4CX?
en vertu de la première , et divisant par l±c, il viendra

ajoutant à cette équation la première des e'quations (10) , il viendra enfia
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$)*—8c%a=o -7 ( I I )

qui fera connaître les abscisses des pieds des normales (*).
Cette équation étant du troisième degré et sans second terme, on

peut la comparer à l'équation générale

:O; (12)

ee qui donne

d'où on tire

équation d'un cercle qui passe par l'origine , c'est-à-dke , par le sommet de
la courbe , et dont le centre est donné par les deux équations

# = l a , y=of -{£ .

Cette solution est exactement celle qu'a donnée M. BÊRARD , dans ses Opuscules
mathématiques, page 109, et à laquelle il est parvenu d'une manière un peu
différente.

(*) De ce que cette équation est sans second terme il en résulte que les
trois normales partant d'un même point du plan d'une parabole ne sauraient
jamais se terminer d'un même côté de son axe , et que la somme des distances
à l'axe des pieds des normales qui tombent dun même côté, de cet axe est égale
à la distance à Vaxs du pied de la troisième normale. On pourra donc ,
avec la règle et le compas seulement , résoudre ce problème : Étant données
deux normales à une parabole , mener, par leur point de concours , une troi-
sième normale à la courbe ? Si deux des normales se confondent, auquel cas
elles doivent être tangentes à la développée , la distance de leur pied à l'axe
sera moitié de la distance de la troisième au même axe ; ce qui fournit un
moyen simple de résoudre ce problème ; Étant donnée une normale à la
parabole , trouver en quel point elle coupe la développée de cette courbe »
de'veloppée que Ton suppose d'ailleurs n'être point encore tracée, On a donc
ainsi une méthode fort simple pour déterminer rigoureusement tant de points
qu'on voudra de la développée d'une parabole donnée , ainsi que la tangente
à cette développée en chacun de ces points»
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Àïnsî j on pourra facilement construire le point duquel menant des
normales à la parabole , les abscisses de leurs pieds seront les trois
racines de Péquatïon (12).

Suivant que ce point tombera dans l'angle formé par les deux
branches de la développée , ou sur Tune de ces deux branches
ou hors de cet angle , l'équation (12) aura ses trois racines réelles
et inégales ou deux racines égales ou enfin une seule racine réelle.
En substituant les valeurs (i3) dans les Inégalités ( 3 , 4) e t dans
l'équation (5) , on trouve d'ailleurs , en transposant

-rH <o , —H >o , —H = 0,
4 27 4 27 4 27

conformément aux théories connues.
Une fois le point de départ des normales déterminé , si Ton veut

connaître à peu près les valeurs et les signes des racines , il faudra
mener ces normales , et déterminer les abscisses de leurs pieds qui
seront les racines cherchées. Ces normales seront faciles à tracer
par tâtonnement 9 puisqu'il ne s'agira que de chercher à décrire
de leur point de départ , comme centre commun , des arcs de
cercles tangens à la parabole ; leurs points de contact seront les
pieds des normales. S'il arrivait que Pun d'eux touchât et coupât
*à la fois la courbe , l'équation (12) aurait deux racines égales; et
il n'y aurait plus qu'une seconde normale à chercher. Au surplus;
si la développée était tracée, en remarquant que les normales cherehe'es
doivent lui ôtre tangentes, on lèverait tout-à-fait l'espèce d'incertitude
qui pourrait rester sur le point de contact de la parabole avec
chaque arç de cercle (*),

(*) On pourra aussi meneic ces normales par le procédé direct de l'avant-
dernière note.
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Pour faire usage de ce procédé , il faut avoir une feuille de

carton ou de cuivre sur laquelle on tracera avec soin une parabole,

dont la distance c du sommet au foyer soit divisée en 10 , i o o ,

1000 , parties égales suivant sa grandeur; et Ton prendra pour

unité Tune de ces divisions. On fera bien de tracer aussi sur le

même carton ou cuivre la développée de la courbe (*) ; et il ne

s'agira plus alors que d'opérer ainsi qu'il a été prescrit ci-dessus.

Au surplus, comme, dans des cas particuliers, le point {a, h)

pourrait tomber hors du carton , ou avoir des coordonnées trop

petites; on fera bien de substituer à l'équation (12) l'équation

a,*-\-K*px+>}<] = o , (14)

dans laquelle K est une indéterminée, plus grande ou plus petite

que l'unité ; on aura alors

b

on disposera de. l'indéterminée A de manière à rendre a et b d'une

grandeur telle qu'on les désirera , e t , lorsqu'on aura obtenu les

racines de l'équation (i£) ? il ne s'agira que de les diviser par A ,

pour en conclure celles de l'équation (12),

Pïous ne donnons , au reste , cette méthode qu'en faveur des

géomètres à qui ces sortes de spéculations offrent quelque intérêt,

INous estimons que de toutes leŝ  méthodes de résolution des équa-

tions numériques du 3.m e degré , celles qu'on déduit de la consi-

dération des fonctions circulaires sont incomparablement les plus

courtes et les plus simples.

(*) On pourra la tracer par points 3 par le procède de la dernière note»
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ANALISE INDETERMINEE.

Théorème sur les puissances des nombres ;

Par M. FREGIER , professeur de mathématiques au collège,
de Troye , ancien élève de l'école polytechnique.

_L HÉORÈME. « Tonte puissance am d'un nombre quelconque a

» est égale à la somme des termes d'une progression par différences;

» dont le premier terme est i , dont le nombre dès termes est a ,

y> et dont la raison est égale à la somme des termes de la pro-

» gressîon géométrique 2+2tf-4-2#a~f~2#3-{~ ~{-2am~z. »

Démonstration. Désignons par S la somme des termes de la

progression arithmétique dont il s'agit, et par d la raison de cette

progression ; puisque son premier terme est i , et le nombije de

ses termes a f son dernier terme sera i-\-{a—i)d , d'où il suit

qu'on aura

mais , par hypothèse , on a

+ = 2

donc

ce qui donne , en substituant



a*a PUISSANCES.DES NOMBRES.
S=am ,

comme l'énonce le théorème.
Si OT=2, on aura 24-2û4* ~\-2am"*=a , d'où

ô'=! 14-34-54-74" + ( 3 « - 0 »
propriété connue.

Mais, si 7^=3, ce qui donne 2+2*2+.•.1.+2#m**:=2(î+tf) 5

on aura

propriété curieuse des nombres cubes , qu'il est d'ailleurs facile de
yérifîer immédiatement.

lin faisant successivement tf = i ; 2 ? 3 , 4» » o n a

Chacun de ces cubes forme donc une progression arithmétique tfonf
le premier terme est l'unité, dont le nombre des termes est la racine
du cube, et dont la raison est double de cette racine augmentée
«Tune unité*

ANALISE
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ANALISE ALGÉBRIQUE»

[Sur ta méthode de M. WBONSKÎ > pour la résolution
générale des équations ;

Par M.

A la page 5i an troisième volume êe ce recueil y jTaî denné
idée succincte de la méthode proposée par M. "Wronski , pour la
résolution générale des équations â& tous les degrés. J'ai remarqué
que la forme que ee géomètre supposait devoir erre celle des racines
était exactement celle que Bezouî 7 long-temps avantlur, leur aTaît
déjà assignée ; et qu'en conséquence son procédé ne présentait autre
chose de nouveau sinon que , pour parvenir à la réduite, il subs-
tituait à la méthode de Bezout une méthode à pea près impraticable
au-defà du troisième degré. J'ai indiqué > pour parvenir à cette
même recuite , un procédé fort simple qui permet de la former
directement sans aucune élimination:, et par des caïcuFs constam-
ment symétriques. Ce procédé mettant dans îe pîus grand jour tout
le mécanisme du calcul, il mra été facile d'en déduire cette con-
séquence que la méthode dé M. W r on ski devait 9 comme ceffe àe
Bezout , se trouver en défaut dès îe quatrième degré , rfu moins
tant qu'on ne faisait pas entrer en considération qu'une quatrième
puissance est le quarré (Tun qnarr£»

A la page iSj du même volume, fal dît qu'an contraire „ en
ayant égard à cette circonstance, particulière au quatrième degré-*
la méthode de M» TVYoosîd pourxalt bien s'étendre jusque-là , et

Tom.
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j'ai même donné la réduite à laquelle je pensais que son application
à ce degré devait conduire.

Enfin , à la page 206 du même volume , j'ai employé un troi-
sième article à repondre à une réclamation contre les deux premiers
que M. Wronski avait fait insérer dans plusieurs journaux.

J'ai reconnu postérieurement que mes calculs de la page *38
étaient fautifs ; et que les coefficiens

8 1 Î 2 Ï , ;

pe sauraient être tous trois des fonctions symétriques de xl , #2 ,
&\ y ^r4 , et , comme tels , exprimables rationnellement en p , q , r;
que dans le seul cas où 0=1 \ ce que je n'avais dû ni eu l'intention
d'admettre.

La vérité est que je n'avais point exécuté les calculs indiqués en
,cet endroit , et que , trop prévenu en faveur de la méthode de
M. "Wronski , j'avais voulu tout au moins la signaler comme appli-
cable au quatrième degré. Je m'étais figuré que , substituant , comme
il le fait , dans l'expression des racines , des racines quatrièmes à
des racines quarrées , il devait obtenir une réduite ayant pour ses
racines les quarrés des racines de la réduite ordinaire. Cela arriverait
en effet, s'il n'y avait que cette unique substitution ; mais l'intro-
duction de la quantité f empêche qu'il en soit ainsi.

Voilà donc cette méthode si fastueusement annoncée qui ne saurait
seulement soutenir l'épreuve jusqu'au 4«me degré •, même en ayant
égard à des circonstances individuellement propres à ce degré. Tout
en continuant donc de rendre hommage à la vaste érudition de
M. "Wronski en mathématiques , il faut attendre , pour lui accorder
quelque confiance, à titre d'inventeur, qu'il ait prouvé sa mission
par d'autres prodiges.
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QUESTIONS RÉSOLUES.
Démonstration de la fausseté dun théorème danalise,

énoncé aux pages 36 et 71 de ce volume ;

Par M. TÉDENAT , correspondant de l'académie royale
< des sciences.

Au Rédacteur des Annales ;

MON CHER PROFESSEUR ,

JLOTJR occuper les loisirs que me laisse abondamment , sur-tout
dans cette saison > ma résidence dans un pays qui ne saurait offrir
de nombreux sujets de distraction , je m'étais imposé , par forme
de tâche, la démonstration du théorème énoncé aux pages 36 et 71
du présent volume ; mais un examen un peu sérieux de son énoncé
m'a bientôt convaincu que, du moins au-delà du quatrième degré,
lors même que les sommets de la courbe parabolique qui corres-
pond à l'équation proposée sont tous réels , ce théorème peut se
trouver en défaut dans un si grand nombre de cas que Ton serait
tout aussi bien fondé à -adopter la proposition contraire. Persuadé
comme je le suis, et comme vous Têtes sans doute vous-même,
qu'on ne sert pas les sciences d'une manière moins utile en repoussant,
dès leur abord , les doctrines erronnées qu'en établissant des vérités
nouvelles , je m'empresse de vous administrer la preuve de mon
assertion.

Le théorème dont il s'agit de démontrer la fausseté , réduit à
son énoncé le plus simple , revient à ce qui suit ;
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Soit X = o une équation en x d'un degré quelconque m, et soit

X ^ o sa dérivée. Si , entre X = y et X/==o , 0/2 élimine x , 0»
parviendra à une équation Y = o en y , dont le degré sera m—*i ;
soient v */ p , respectivement, /*? nombre de ses variations et celui
de ses permanences \ ce qui donnera y-4-p = m—1.

5/ /# proposée X = o ^ / ^ /̂̂ r^* impair ^ le nombre de sas
racines imaginaires sera

et si, nu cêntraire, elle est d\un degré pair , le nombre de ses
racines imaginaires sera

Cela posé , soît l'équation du cinquième degré

-25621 = 0 , (X= o)

elle peut être mise successivement sous les diverses formes que
voici :

(̂ r— 1) (^—2#— 149+6 j / ^ 5 ) (^r*—5^— 1 &Q—6 v/^95)=0 ;

ainsi, elle a bien incontestablement une seule racine réelle et quatre
racines imaginaires. Âppllquons-lui le procédé indiqué dans l'énoncé
du théorème en discussion.

Sa dérivée est

pu , en simpliiiaat ,

a*—4**~i74^3

équation qui revient à
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les abscisses =des quatre sommets de la courbe parabolique

sont donc + i 3 , -{-7 , —-5 , —11 ; on aura donc les ordonné
de ces mêmes sommets, en mettant successivement ces valeurs pour
x dans l'équation (X=y). En conséquence , ou trouvera pour le»
«quations des quatre sommets , tous réels ,

4T=+ 7 ?

# = — 5 ,

l'équation (Y=o) sera donc

(T—

ê'est-à-dire ;

y=+i 6417 :

y=+ 6913 j

—317260794,/*

+1287848730020865

On a donc ici ^ 2 , p~%\ puis donc que le degré de la préposée
est impair , le nombre de ses racines imaginaires , suivant le théo-
rème , devrait être
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tandis que nous avons vu que les racines de cette sorte y sont
au nombre de qualre.

Nous pourrions très-bien terminer ici ; car II y a entre la dé-
monstration de la vérité d'une proposition et celle de sa fausseté
cette différence très-remarquable que la première ne saurait être
établie que par un raisonnement général , très-souvent difficile à

-découvrir, et souvent plus difficile encore à énoncer clairement;
tandis qu'au contraire , pour prouver qu'une proposition est fausse,
il suffit simplement, ainsi que nous venons de le faire , de la trouver
en défaut dans un cas particulier quelconque. Cependant, pour ne
rien laisser à désirer sur ce sujet, nous allons montrer que , sans
exécuter aucun calcul , rien n'est plus aisé que de s'assurer que , passé
le quatrième degré , le théorème dont il s'agît sera en défaut tout
autant et tout aussi souvent qu'on le voudra.

Soit l'équation X = o d'un degré impair quelconque ; et supposons
que la courbe parabolique dont l'équation est y ~ X ait le cours
qu'on voit ici ;

S".

%à

A • • - •' 1 B

AB étant Taxe des x , et ^origine étant quelconque sur cette droite.
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Kous n'avons pu figurer que quatre sommets positifs et quatre
négatifs ; mais les uns comme les autres peuvent être en nombres
pairs quelconques. Soient donc , en général, 2p le nom? re des pre-
miers 3 et 2^ le nombre des derniers; le degré de la proposée sera
ainsi 2/?-4-2^-|-i ; et , comme elle n'aura évidemment qu'une seule
racine réelle , le nombre de ses racines imaginaires sera nécessairement

D'un autre côté , l'équation Y = o du degré 2/?+2^ ayant ip racines
positives, et 2g racines négatives, aura conséquemment 2p variations
et iq permanences ; donc 5 suivant le théorème 5 le nombre des racines
Imaginaires de la proposée ? X = o, devrait être

nombre qui pourra différer du véritable autant qu'on le voudra;
Mais la courbe , toujours supposée de degré impair , après avoir

coupé Taxe des %, et avoir eu , au-dessous de cet axe , un nombre
impair quelconque de sommets négatifs , pourrait , en remontant ,
le couper de nouveau , avoir au-dessus un nombre impair quelconque
de sommets positifs, redescendre encore t en coupant une troisième
fois l'axe des x , et ainsi de suite. Supposons qu'elle le coupe 2/2+1
fois ; nous aurons ainsi sn séries de sommets positifs dont ceux dô
la première série seulement seront en nombre pair ; de manière que
nous pourrons représenter les nombres de sommets successifs dô
ces séries par

JSfous aurons pareillement zn séries de sommets négatifs dont ceux
de la dernière série seulement seront en nombre pair , de sorte
que nous pourrons représenter successivement les nombres dei
sommets de ces dernières séries par

le nombre total des sommets des deux séries sera donc
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le degré de la proposée X~G sera donc

et puisqu'elle est supposée n^avoîr que s^-^1 racines réelles > îe
nombre de ses racines imaginaires sera

Maïs, d'un autre edté, le nombre dès variations de l'écputtion
étant Ici

le nombre de ses permanences

le nombre des racines imaginaires de la proposée X ~ ô 9 devrait
être ^ suivant le théorème

nombre qui pourra différer du véritable autant qu'on Fe youdrav
Dans les degrés pairs, ïes eîioses se passeront encore- à peu

ée la mêmje raanLère, Seulement le» branches extrêmes âe la courbe
seront toutes deux situées au-dessus de Taxe des & ; de sorte qu?ea
désignant par 2n le nombre des racines réelles^ de la proposée , on
aura /2-J-1 séries de sommets positifs teUes q;ue ceux des deux,
séries extrêmes seront en nombre pair et tous les intermédiaires ea
«ombre impair; on aura ensuite n séries de sommets négatifs r em.
sombre knpaïr dans chaque série; de manière que le&nombres dfr
ïa première, séria gourroût êtee, représentés par
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et ceux de la seconde par

le nombre total des sommets , tant positifs que négatifs , sera donc

de sorte que le degré de la proposée X = o sera

puis donc que nous lui avons supposé 2/2 racines réelles 7 le nombre
de ses racines imaginaires devra être

D'un autre côté r le nombre des variations de l'équation Y =
étant ici

et le nombre de ses variations

le nombre des racines imaginaires de la proposée devrait être
suivant le théorème 9

nombre qui différera dn véritable tout autant qu*on îe voudra»
. IX. ^0



22z Q U E S T I O N S
Nous pensons qu'en voilà bien suffisamment pour établir qu'au-

delà du quatrième degré , ce théorème ne saurait pas plus être
admis que toute autre règle arbitraire et de pure imagination que
Ton voudrait lui substituer.

La moralité à déduire de tout ceci 5 car , pourquoi les fables en
seraient-elles seules susceptibles ? c'est que les plus habiles peuvent
faillir , tout aussi bien que les plus faibles ; que conséquemment on
ne doit jamais refuser à autrui l'indulgence que Ton peut être
bientôt dans le cas de réclamer pour soi-même ; qu'il faut soigneu-
sement se garder de toute précipitation et bien mûrir ses idées
avant de les faire éclore ; et qu'enfin on ne doit jamais affirmer et
admettre comme fait certain que cela seulement qui est rigoureuse-
ment et généralement démontré.

Agréez, etc.
St-Geniez ( de PAveyron ) , le 25 d'octobre x8i8.
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Examen du même théorème, pour les quatre premiers
degrés ;

Par M. SERVOIS , conservateur du Muséum d'artillerie.

O N ne saurait se refuser à regarder le théorème énoncé aux
pag's 36 et 71 du présent volume des Annales , comme étant
d'une importance tout-à-fait majeure ; et, s'il e'tait vrai 9 son in-
vention ferait époque dans l'histoire de la résolution des équations
numériques ; car 7 malgré la longueur des calculs qu'il nécessite ,
îl réduit à 772—1 les conditions de réalité des racines d'une équa-
tion du degré m; tandis que Lagrange, par deux voies différentes >

m m — i
trouve que le nombre de ces conditions est .

x 1 2.

J'élimine x entre X~y et X/=-o : le résultat, Y~o, est , sans
contredit, une équation dont les racines sont les ordonnées des diffé-
rent sommets ( points auxquels la tangente est parallèle à l'axe
des x ) de la courbe parabolique qu'exprime l'équation X~y;
points dont les abscisses sont les racines de l'équation X/=ro.

Supposons que les racines de X = o soient toutes réelles l
celles de l'équation Xf~o seront toutes, réelles aussi ; ainsi
que celles de Y=o qui , dans ce cas , seront alternativement
positives et négatives. Supposons ensuite que les racines de Jf=o
ne soient pas toutes réelles : celles de X' — Q seront ou ne seront

(*) Ceci est extrait d'une lettre de M, Servoîs au Rèàaeteur des ANNALES
et n'avait point été destiné pour l'impression,

J. D. G.



224 QUESTIONS
pas toutes réelles. Dans le premier cas , la discussion que présente
le mémoire de la page 60 est lumineuse et me satisfait ; ainsi
j'admets le théorème jusqu'ici.

Dans le second cas ? c'est-à-dire , lorsqu'à la fois la proposée et
sa dérivée X' — o ont toutes deux des ruines imaginaires , la chose
me semble encore problématique , pour ne pas dire plus.

i.° Quand Ar/ = o a des racines Imaginaires , généralement parlant ,
Y=zo en a aussi et autant qu'elle ; car à des sommets imaginaires
doivent répondre en général des coordonnées imaginaires (*).

2.0 L'application du Théorème de Descartes à une équation sup-
pose , comme Ton sait , que cette équation a toutes ses racines
réelles ; on s'impose donc ici le travail d induction ou de démons-
tration à priori qui puisse établir la correspondance entre les cas
de réalité de toutes les racines de JT=o et ceux de la non réalité
de tout ou partie de ces mêmes racines : c'est un travail de la
première sorte que paraît avoir commencé l'auteur du mémoire déjà
cité : suivons le un instant.

Au troisième degré \ supposons que X=o ait deux racines Ima-
ginaires ; et admettons d'abord que X/=o ait ses deux racines réelles ;
il est visible que Y— o aura ses deux racines réelles et de même
signe, c'est-à-dire, toutes deux positives ou toutes deux négatives;
et par conséquent, par le théorème de Descartes ou deux variations
ou deux permanences. Si , au contraire, les deux racines de l'équa-
tion .X'^o sont imaginaires, celles de Yzzo le seront aussi , et
parce que l'équation est de degré pair , son dernier terme sera po-
sitif ; on n'aura donc , pour la succession des signes de ses termes ,
que les deux formes possibles

(*) II ne pourrait guère y avoir d'exception que pour le cas où l'équation
X = o ne renfermant que des puissances paires de x, l'équation X ; =o aurait
quelques racines imaginaires de la forme a?=a^ZT7 j mais , en posant x2zzzz ,
on ferait sortir l'équation de ce cas d'exception , et l'on en ramènerait la dis-
cussion à celle d'une équation d'un degré moitié moindre,

J . D, G.
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qui donnent encore deux variations ou deux permanences, comme
dans le cas des racines réelles de X/=^o ; donc le théorème vaut
pour le troisième degré.

Au quatrième degré. Supposons d'abord que X~o ait deux racines
imaginaires, et admettons en outre que X'—Q ait ses trois racines
réelles ; Y=o aura aussi ses trois racines réelles , deux positives
et une négative, ou bien trois négatives; ce qui sera indiqué par
deux variations et une permanence, ou bien par trois permanences ;
si , au contraire , nous admettons que X! ait deux racines imagi-
naires ; JT=o en aura en même nombre ; mais sa racine réelle est
négative ; et , comme d'ailleurs le produit des deux racines imagi-
naires est positif, le produit de ses trois racines sera négatif ; le
dernier terme de Y~o doit donc être positif, ee qui ne permet,
pour la succession des signes de ses termes, que les quatre formes
suivantes

+ * + > + > + * trois permanences \

•— > "^ > *t* 1 deux variations et une permanence ;

donc encore le théorème a lieu jusqu'ici.
Supposons présentement que .X=o ait ses quatre racines imagi-

naires , et admettons que .X7 = o a ses trois racines réelles : celles de
J^rrzo le seront aussi et seront de plus toutes trois positives, ce qui
correspond à trois variations, et justifie conséquemment le théorème.
Admettons ensuite deux racines imaginaires dans X'=>o. 11 y en aura
également deux dans JT=o ; et sa racine réelle sera positive • ce
qui exige que son dernier terme soit négatif; on aura donc, pour
les formes possibles ; dans la succession des signes de ses termes
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une variation et deux permanences ;

+ # ~ > + > ""*' > *ro*5 variations \

Ces indices sont donc plus étendus que ceux du cas précédent ;

car l e . premier, une variation et deux permanences est celui de

la réalité des quatre racines de la proposée JSL = O ; donc, si je ne

m'abuse ( e t je désire tjne cela soit) le théorème est en défaut dès

le quatrième degré» Du moins est-il certain que l'induction qui est

l'objet du mémoire cité n'est ni assez développée ni assez prolongée ,

et qu'elle n'arrache pasTassenûrnent du lecteur j our le cas général (*)•

(*) Tout se réduit évidemment , dans cette question , à savoir si les trois pre-
mières formes sont purement hypothétiques , ou s i , au contraire, quelqu'une
d'entre elles peut réellement s'offrir au calculateur ; or , pour cela , il suffit;
d'un seul exemple ; car c'est ici , et ici seulement qu'il est permis de s'appuyer
des faits , el d'invoquer en sa faveur le te'moiguage de F expérience.

Soit donc prise l'équation

quî revient à

(x*+i 6^+5878) (*2—i
ou encore a

{C*+8)a+58i4H(tf—8)2+1970 ] = 0 ;

et qui a aibsî , bien certainement ses quatre racines imaginaires ; sa dérivée est

a?3+3828x—15376=0 , (X'=o)
ou

©u encore

{ 0*>4-2)H-384o î (*—4)=° *

abscisses des sommets de la courbe parabolique dont l'équation est
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Au surplus ? ïl me semble que le théorème serait encore assez

important quand on lui imposerait pour limite ou condition de
ve'rité la réalité des racines de l'équation A7s=o ; car je crois qu'on
pourrait traiter X'—o comme la proposée , par le moyen de Xn~o t

et ainsi de suite ; et recueillir de l'ensemble des résultats les carac-
tères de réalité des racines de la proposée j cette vole serait encore
plus courte que celle que propose Lagrange, d'après de Gua , dans
la note VIII de la Résolution des équations numériques (*).

sont donc

i'oà l'on conclura, pour les ordonnées des mêmes sommets

^=11832588 , j"=—2.656100 ±982040V—1% >

l'équation (Y=:o) sera donc ici

ou

(r2+52722oqr4.2z444537834oJoo)(j—n83a588)=ao;
ou enfin

(T=o)

•«•253744381040134392000

équation qui répond à la troisième des quatre formes du texte , et d'où , par
l'application du théorème , on se trouverait faussement induit à conclure que
la propose a ses quatre racines réelles.

ïl demeure donc avéré que le théorème dont il s'agit ici ne saurait même
se soutenir au-delà du troisième degré.

(*) Malheureusement il demeure établi par la discussion à laquelle s'est livré
M* Te'denat, dans le précédent article , que , même avec cette limitation, le
théorème ne saurait être admis au-delà du quatrième
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QUESTIONS PROPOSÉES.

Problèmes de Géométrie.

I. v^UEL est Te l'eu des centres de toutes les sections circulaires
faites dans une surface donnée du second ordre ?

II. Quel est le lieu des foyers de toutes les sections faites dans
une surface donnée du second ordre par des plans parallèles à un
plan fixe donné ?

III. Quel est le lieu des foyers de toutes les sections faites dans
une surface donnée du second ordre, par des plans parallèles à une
droite fixe donnée ?

IV. Quel est le lieu des foyers de toutes les sections faites dans
uri.e surface donnée du second ordre par des plans passant par un
poiat fixe donné ?

Problème ctan&lise indéterminée*

Démontrer que la formule (i+2a)*"<k-~i , dans la quelle le
nombre entier n n'est pas nul, est toujours exactement divisibles
par a1*-*"* t
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ALGEBRE ELEMENTAIRE.

Démonstration d'un fait de calcul algébrique très-
important et très-remarquable f et des principales
conséquences qui en résultent ;

Par M. de STAINVJLLE , répétiteur d'aoalise à l'école royale
polytechnique.

la série indéfinie

I 1*2

et soit une autre série

ne dîiFérant uniquement de celle-là qu'en ce q̂ ue h y a pris la
place de a. Fous nous proposons , en premier lieu , de démontrer
que le produit de ces deux séries est une série composée en ia-^-b)
de la même manière que la première Test en a et la seconde en b^
c'est-à-dire , que ce produit est

Tom. IX, n* Fil, i .€r janvier 1819, 3s



THÉQREME8

~

Pour y parvenir , èssurôns-nous d'abord de la forme des premiers
termes du développement de ce produit ; nous trouverons , pour
ces premiers termes

-{- aal

~

Zab(b+k)

On voit d'abord que le coefficient de — est a+h. Celui de — peut

se décomposer m ces deux parties

ou a(a+b+k) ,

ou

dont la somme sera consequemment

€oefi*ci0iit de — - cent également 4e 4écomfm&c m CÙS



a (a+k)}

or , le multiplicateur de a, dans la première partie , est évidemment

ce que devient le coefficient de — ? lorsqu'on y change a en a\k\

et le multiplicateur de h dans la seconde est ce que devient ce
même coefficient , lorsqu'on y change b en b+k ; puis donc que

nous avons trouvé que le coefficient de — revenait à (tf-f-3)

(a-\~b-+-k) , il en résulte que le multiplicateur de a, dans la pre-

miére partie du coefficient de -—~ et celui de b dans la seconda
r 1.2.3

sera également

l'ensemble de ces deux parties , ou le coefficient de , sera donc
1.2.3

c'est-à-dire ,

Il demeure donc prouvé, par ce qui précède , que du moins la
loi dont il s'agit se soutient pour les quatre premiers termes du
produit de nos deux séries ; et il ne serait pas difficile de s'assurer
qu'elle a également lieu pour un plus grand nombre de termes
de ce produit.

Il n'est donc plus question, pour compléter notre démonstration?
que de prouver que si cette même loi se soutient jusqu'au coefficient de

.— — inclusivement , elle aura lieu également pour œlui de
i 2 ( / ? - ~ i )

*~Z—

i)

; or , on trouve , pour le premier de cç$ deux coefficiens ;



a3a T H É O R È M E

I

-h

4- — - a.i{

et pour le second

I

X

:+

«+(/»—3;*]

Or , en. remarquant que
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I 2 I 2 * I W

3 i a 3 i a *

on verra que ce coefficient peut se décomposer en deux parties
dont la première est

a(a+k)(a+2k)(a+3k)

et la seconde

Tom. IX,
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Or , ïi est aisé de voir que le multiplicateur de a , dans la première

de ces deux parties • est ce que devient le coefficicient de< ,

lorsqu'on y change a en a-\-k, et que le multiplicateur de b, dans
la seconde , est ce que devient ce même coefficient, lorsqu'on y
change b en b+Jc ; si donc, comme nous le supposons , le coeiïx-

«iejit de * est en effet réductible à la forme
( )

le multiplicateur de a > dans la première de ces deux parties , et
celui de b dans la seconde, sera également

ea réunissant donc ces deux parties , et ayant égard au facteur

commun qui les affecte , on aura , pour le coefficient de r
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somme nous l'avions annonce. Il est donc protfvé ^ par ce qui
précède , que , si la loi dont il s'agit se soutient jusqu'à un terme
quelconque du produit , elle aura lieu également pour le terme
qui le suivra immédiatement ; puis donc que nous nous sommes
assurés de son existence pour les quatre premiers termes , il s'ensuit
qu'elle a lieu pour tous ? et qu'ainsi le théorème est déjnontré en
toute rigueur.

Pour abréger , désignons par fa notre première série , c'est-à*
dire, posons

ia= i+a 1 +(+k) +(+iï)(+k)
x

nous aurons pareillement

encore

en conséquence , le théprçme qui vient d?être démontré pourra
écrit gous cette forme très-simple

(I)

On remarquera que , d'après cette notation , on doit évidemment
avoir fossj.

Si dans Féqyation (I) on change h en i+c, elle deviendra

mais, en vertu de là môme équation

f

substituant donc, on aura
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En supposant qte c se change en e+d, et se conduisant de la
même manière , on prouvera pareillement que

fa.fb.fc.fd=î(a+b+c+d) ;

et en poursuivant toujours ainsi, on se convaincra qu'en général

c'est-à-dire, que le produit de tant de série qu'on voudra , de la
forme de la série ia ; et ne différant les unes des autres qu'en ce
que a s'y trouve successivement changé en b , c 9 d, est une
série composée exactement en a~\*b-\*C'\-d**r •—• de la même manière
que Test la première en a , la seconde en b , la troisième en c , la
quatrième en d 9 et ainsi de suite.

Si dans la dernière équation ci-dessus on suppose les quantités
a9 b% cy df...... égales entre elles et à la première at et leur
pombre égal à m ; elle deviendra

(îa)m=ima ; (II)

c'est-à-dire qu'une puissance entière et positive quelconque m â&
la série fa, est une série composée en ma de la même manière
que celle-là l'est en a.

Suivant l'équation (l) on a

posons b-ArC^a, d'où c~a—l ; il viendra $ en substituant
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d'où

t- = î(a—h) ; (III)

c'est-à-dire que le quotient de la division de la série ia par la série
ib est une série composée en (a^-b) de la même manière que le
dividende Test en a et le diviseur en b.

Par l'équation (II) , on a

posant mb~a ; d'où 3 = —, il viendra

d'où on tirera, en extrayant la racine et renversant

a (IV)
m

e'est-a-dire que la racine d'un degré quelconque 772 , entier et
suif, de la série ïa n'est autre chose qu'une série composée

— de la même manière que la puissance Test en a*
m

On aura , d'après cela

m

e'est-à-dire,

Tom* / X 3a
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m et m «tant deux nombres positifs quelconques, LMqnation (lî)

a donc lieuy quelque nombre positif , entier ou fractionnaire qu'on
représente par m» II serait ensuite aisé de prouver ? à l'aide des
raisonnemens usités ^n pareil cas , qu'il en sera encore de même
lorsque 772 sera un incommensurable positif quelconque.

On aura encore, quel que soit le nombre podiif rn ,

ou , d'après ce qui précède et le théorème (II)

=r(o—772^) = f(— m'a .
îma v / \ /

Ainsi , quelque nombre entier ou fractionnaire , positif ou négatif,
€ommensurable ou incommensurable qu'on représente par m , il
est toujours vrai de dire qu'on a

c'est-à-dire ,

cela quels que soient d'ailleurs a et &.
Si, dans cette équation ? on fait # = 1 et À:=—1 , elle deviendra

fît 7ft^mm\ TYl T7lmmm>X 7Ttmm^*^
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la formule du lînoma se trouve donc ainsi démontrée f quel que
soit l'exposant m.

Si , dans la même équation , on suppose k=o T a — i * 2 = 1 ?
m~dx f elle deviendra

I 1.2, I.2sd / I 1.21.2 J.2.J

Î a série du premier membre est y comme Ton sait , un
incommensurable (*) , compris entre 2 et 3 : c'est la base du sys-
tème de logarithmes népériens y en le représentant par e , suivant
l'usage, on aura

1 i.a 1.2.3

Sï Ton fait eArza, auquel cas ^ sera le logarithme népérien de
0 9 on aura

= H
t i.a 1.2

formule qui donne le développement âes exponentiels en sérfes
ce qui revient au même r le développement d'un nombre a r

fonction de son logarithme.
Si , dans cette dernière* formule, on change x en m et a en 1 -f

elle deviendra

mais on a, d*un autre côté,

(f); Vojres la page 5o du1 présent
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i+rn — +OT(JW—i)— +m(m—Ï)(/?2—2) 7 " j y + « "

égalant donc entre elles ces deux valeurs , en supprimant l'unité
de part et d'autre , et divisant par m , il viendra

+ +_

I " V ' 1 .2 V ' X 7 I .2 .O

faisant enfin, dans cette dernière équation , 772:=o , on aura

X X* 5C3 X** ,

J ( + ) 4 +

formule qui donne le logarithme népérien de i + # , en fonction
du nombre x.

Ceux qui désireront de plus amples détails sur ce sujet pourront
consulter nos Mélanges banalise algébrique et de géométrie ( veuve

cier, Paris, 1815).
Dans un prochain article, nous nous occuperons du développement

f i circulaires ep séries.
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GÉOMÉTRIE ANALITIQUE.

Théorèmes nouveauoc , sur les lignes et surfaces de
tous les ordres ;

Par M. FRÉGIER 5 professeur de mathématiques au collège
de Trêves > ancien élève de l'école polytechnique.

J Ai démontré aux pages 229 et Z21 du VL e volume de ce recueil,
et à la page 95 du VII.e , quatre théorèmes assez remarquables
sur les lignes et surfaces du second ordre. J'avais dès-lors entrevji
que ces théorèmes avaient leurs analogues dans les lignes et surfaces
des ordres supérieurs : ce sont ces çlerniers dont je vais m'occuper
Ici.

f THÉORÈME I. « Soit une ligne quelconque de Tordre m et
J> une ligne du second ordre , ayant son centre en un quelconque
» des points du périmètre de la première. Soient menés à cette ligue
» da second ordre deux, diamètres conjugués , dont l'un soit tangent
» à la ligne de Tordre 772 ; ce dernier coupera cette courbe en
» m-—2 points. Par chacun de ces points > concevons une parallèle
5> au conjugué de ce diamètre , chacune de ces parallèles pouvant
» couper la ligne de Tordre m en 772—1 nouveaux points , elbs
» auront avec cette ligne (m~*mi)(/n—2) points d'intersection
a non situés sur la tangente,
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n Cela pose 9 soient menés à la ligne du second ordre deux nouveaux

» diamètres conjugés quelconques , chacun d'eux aura , avec la ligne
» de Tordre m , outre le centre de celle du second ordre m~i f

» points d'intersection; ce qui fera, pour les deux 2(m—%) nou-
» veaux points, variables avec la direction des diamètres conjugués
n arbitraires.

* On aura donc en tout> sur la ligne de Tordre m% (m—i)(m—2)
» +2(/72—1) ou 772(/72—1) points , dont (/7z—1 X#z—2) fixes et
» 2(/?2—1) variables*

» Or , Lien qu'une ligne da Tordre m—t se trouve complètement
sît déterminée par f (m — i)(/72-f-2) points seulement de son périmètre»,
» II arrivera néanmoins que les m(m—1) points dont il s'agit, soit
n réels , soit Imaginaires , se trouveront constamment appartenir à
n une ligne de cet ordre. En outre , cette ligne variable d̂  Tordre
» T?2—1 , qui ne passera pas par le point pris arbitrairement suc
» la ligne de l'ordre m > coupera constamment le conjugué du dia*
J> mètre tangent à cette dernière ligne eu ce point , aux 772̂—1
a mêmes points; de sorte que toutes les lignes de Tordre m—1 qui
s> pourront naître ainsi des changemens de direction des diamètres
» conjuguée dfr celle da second , passeront constamment par un
» même nombre (jn—i)(rn—2)-\*(jn—1) ou (m—i)2 de points fixes.

» Et 9> attendu que deux, lignes de cet ordre ne sauraient se
»> couper ca un plus grand nombre de points , ces lignes n'aurobt
a* aucune autre intersection que ces points fixes eux-mêmes ».

Ainsi , par exemple % s'il s'agît d'une ligne du 3.e ordre , le dia-
mètre, tangent la coupera ea un seul point , par lequel menant une-
parallèle k son conjugué, cette parallèle déterminera deux nouveaux
points fixes, sur la courbe, les deux diamètres conjugués arbitraires
ea détermineront quatre autres variables et ces six points , quelles
que soient d'ailleurs les directions des deux derniers diamètres, ap-
partiendront constamment à une ligne du second ordre , ne passant
pas parle point de contact de la tangente, mais coupant constam-
ment cette, tangente aux deux mêmes points qui, joints, aux deux.
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points fixes de la ligne du 3.c ordre seront les quatre points communs
à toutes les lignes du second ordre auxquelles les changements de
direction des diamètres conjugués arbitraires pourront donner naissance»

démonstration* Soient pris pour origine le centre de la ligne du
second ordre , pour axe <les x le diamètre de cette courbe tangent
à la ligne de l'ordre m , et pour axe des y le conjugué de ce
•diamètre.

Pour que Taxe des x soit une tangente à une courbe ayant son
point de contact à l'origine , il est nécessaire et il suffit que l'équa-
tion de cette courbe ne renferme ni le terme tout connu ni le terme
du premier degré en x ; afin qu'en y posant y=o , elle devienne
divisible par xz. Ainsi , d'après les conventions énoncées ci-dessus ,
l'équation de notre ligne de l'ordre m ne saurait être <[ue de la
Iprine suivante :

(0

En y faisant y = o , et divisant par x* l'équation résultante

axmm7--\-a'xm~ } + Û ' V 2 - 4 + -\-p"=zO (2)

sera celle des parallèles menées à l'axe des y , par les 772—2 points
où la tangente à l'origine, c 'est-à r dire ; l'axe des x, coupe la
courbe (r).
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Si présentement on mène à la ligne dû second ordre deux dia-

mètres conjugués quelconques , les équations de ces diamètres
seront de la forme

$—gy = o , ûc—hy^o ; (3)

g, h étant deux nombres arbitraires , dépendant des directions de
ces diamètres , mais liés entre eux par la condition

«*=* , (4)

dans laquelle le nombre constant k ne dépend uniquement que des
dimensions de la ligne du second ordre , et de sa situation par
rapport aux axes des coordonnées.

Si l'on prend le produit des équations (3) , en ayant égard à la
condition (4), on obtiendra, pour l'équation du système de deux,
diamètres conjugués quelconques

*a—(g+h)sy+ky»rz0 . (5)

Si ensuite on multiplie l'équation (2) par cette dernière , il viendra
pour l'équation du système tant des diamètres conjugués que des
parallèles à Taxe des y menées par les 772—2 points ou l'axe
& coupe la courbe (1)

0. (6)

Si présentement on veut savoir en quels points le système de
droites exprimé par l'équation (6) , coupe la courbe exprimée par
l'équation (1) ; il faudra considérer ces deux équations comme celles
du même problème déterminé en x, y. Mais , il est clair que ,
«dans cette recherche , il sera permis de substituer à l'une ou à
l'autre des. écjuations (1 ? 6) une combinaison quelconque de ces dent

équations
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£giîâtîons ; on pourra donc, en particulier, remplacer l'équation (1)
par sa différence avec Péquation (6), laquelle étant divisée par yf

*" qui revient à en ôter l'équation de Taxe des x, devient€e

(7)

Cette équation est donc celle d'une courbe qui est coupée par fa-*
système des droites (6) aux mêmes points où ces droites coupent
la courbe (i) ; or , cette courbe est du degré 772—i , quels que-
soient g , Â ; ainsi la première partie du théorème se trouve démontrée»-
II est d'ailleurs évident que la courbe (7) ne passe point par l'origine*

Si, dans la vue de savoir où cette courbe est coupée par l'axe*
des y , c'est-à-dire , par le conjugué du diamètre tangent à l'origine,:
on fait, dans son équation, ^-=o; elle deviendra

(S)

équation qui fera connaître les ordonnées des Intersections demandées;
mais, puisque cette équation est indépendante de g, h9 ces m-— 1
points d'intersection seront toujours les n»êmes, quelles que soient
les dirrétions des deux diamètres conjugués donnes par les équa-»
ûons (3), ce qui démontra la seconde partie du théorème.-
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Remarque. Supposons présentement que les axes des coordonnées

soient rectangulaires -, c'est-à-dire , supposons que le diamètre de la
ligne du second ordre tangent à l'origine à la courbe (i) en soit
un des diamètres principaux ; alors l'axe des y sera une noraiale
à cette courbe (i) et contiendra conséquent ment son centre de
courbure répondant à l'origine ; soit R le rayon de courbure pour
ce point ; il est facile de se convaincre qu'on aura

Supposons présentement que Ton ait/72 = 3 , l'équation (8) deviendra

o ; (IO)

on trouvera les intersections de la courbe proposée avec Taxe des
y y en faisant , dans cette équation # = o ? ce qui donnera , en
divisant par y ,

sy*+ry+i~o ; ( n ) rr

de sorte qu'en désig jant par Y> Y/ les distances de ces intersections
à l'origine ? on aura

d'où on tirera

d'un autre côté l'équation (7) devient , clans la même hypotlièse ,

i*) Voyez sur cela la page JL 54 du présent volume.
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en y faisant # = 0 , l'équation (8) se trouve remplacée par celle-ci

si nous supposons de plus que la ligne du second ordre qui a son

centre à l'origine soit un cercle > nous aurons £ = — 1 , ce qui ré-

duira cette dernière équation à

maïs la formule (9) donne p"— - ; substituant donc cette va-

leur , ainsi que les valeurs (12) de s et r , dans l'équation (i3)y,

elle deviendra

d'ott

M~~ * Y-y Y'-y ' {H)

formule qui va nous fournir 9 pour la construction du rayoîï

de courbure > en un quelconque des points d'une ligne da

troisième ordre , un procédé tout-à-fait analogue à celui que nous

avons déjà indiqué- pour celles du second y à la page 202 du VI.e

Yolume de ce recueil 1 voici en quoi il consiste^

On mènera d'abord la tangente et la normale au point dont if

s'agit ; la normale coupera la courbe en deux nouveaux points dont

onj prendra les distances au point de contact de la tangente pour

Y, Y'.

La tnngente coupera la courbe en un point par lequel on mènera?

\ la normale une parallèle qui 7 par sa rencontre avec la courbe3,
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déterminera deux points sur son périmètre. On mènera aussi,
le point de contact , deux droites arbitraires et indéfinies, perpen-
diculaires entre elles déterminant 3 par leurs intersections avec la
courbe , quatre nouveaux points sur son pcrimètre.

Par cinq de ces six points on fera passer une ligne du second
ordre, laquelle passera aussi par le sixième, et coupera la normale
en Ai ux points . ia distance de l'un ou de l'autre de ces deux
points au point de contact pourra être prise pour y.

Tout sera alors connu dans la formule (*4) qu'il ne sera plus

<j lestîon que de construire.

THÉORÈME II. « Par un quelconque des points d'une ligne
» quelconque de Tordre 772 , soit fait passer deux droites Tune
» tangente %l l'autre non tangente et de direction arbitraire mais
» fixe ; la première coupera de nouveau la courbe en /72~2 points,
» par chacun desquels menant une parallèle à la droite non tan-
» gente , cette parallèle déterminera , par sa rencontre avec la
» tourbe , m—i points sur son périmètre ; de sorte qu'on aura sur
i> cette courbe (m—1)(/?2—2) nouveaux points fixes, non situés sur
» sa tangente.

» Soit construit ensnite arbitrairement un triangle dont le somme! .
» soit au point de contact, dont la base soit parallèle à la tangente,'
f> et qui ait le milieu de cette base situé sur la droite non tangente ;
» ses deux autres côtés , considérés comme droites indéfinies , déter-
» mineront sur la courbe 2.{rn—1) points de son périmètre , variables ,
» comme le triangle arbitraire qui aura servi à leur détermination.

» On se trouvera doac avoir en tout 9 hors de la tangente ,
3o (jn—i)(jn—2)+2(/72*—1) ou m (m—1) points delà courbe, dont
» (m—1)(/72—2) fixes et 2(772 — 1) variables,

» O r , bien qu'une ligne de Tordre 772—1 se trouve complètement
» déterminée par f (772—1)(772+2) points de son périmètre , il arri-
J> vera*néanmoins que les 772(772—1) points dont il s'agit , soït
y xèeh , soit imaginaires , se trouveront constamment apparteoijr
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* h tme Kgna de cet ordre. En outre , cette ligne variable de Tordra
» m—t 9 qui ne passera pas par le point de contact, coupera la
» tangente en m—i points fixes; de sorte que toutes les lignes
s> de l'ardre/72—i qui pourront naître du changement de grandeur
» et de dimensions du triangle arbitraire , passeront constamment
» par un même nombre (jn—1)(/72—• 2)+(m—i) ou (/TZ—I)* de
j) points fixes.

» Et , attendu que deux lignes de cet ordre ne sauraient se
i» couper en un plus grand nombre de points ; ces lignes n'auront
$ aucune autre inrtersection que ces points fixes eux-mêmes. »

Démonstration. Ce théorème ayant beaucoup d^nalogie avec le
précédent ? se démontre d'une manière à peu près semblable.

D'abord, en prenant respectivement les deux droites tangente et
non tangente pour axes des ce et des y ; pour les mêmes raisons
que eUdessus , on pourra prendre pour équation de la courbe pr©*
posée réquatioji (i) , c'est-à-dire f

Cette courbe coupera encore Taxe des x, c'est-à-dîre, la tangentf
à l'origine, en des points déterminés par l'équation
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laquelle sera aussi Féquation commune des parallèles à l*axe des y
menées par ces points*

D'un autre côté , l'équation commune aux deux côtés du triangle
qui passent par le point de contact ; sera ^ d'après les conditions
de la construction de ce triangle ,

Jt] étant une quantité variable et tout-à-fait arbitraire..
Voilà donc en tout m droites dont on aura l'équation commune

en multipliant les deux dernières ? ce qui donnera

= o ^

Si présentement on veut connaître en quels points ces m droites*
coupent la courbe (1), il faudra considérer comme équations d'un
même problème déterminé à deux inconnues œ9 y , soit les deux
équations (1 , 16) ? soit umta combinaison qu'on voudra faire de ces,
deux-là..

On pourra donc , en particulier 5 substituer à l'équation (1) sa
différence avec l'équation (16) qui est, en divisant par y , ce qui
revient à ôter l'équation de Taxe des x du résultat,.

Hh .

= 0 ; (17)
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On 3ura donc les points d'intersection demandés en combinant entre
elles les équations ( i 6 ? 1 7 ) ; ce qui prouve que l'équation (17) est
celle d'une ligne de Tordre m—1 , qui passe par ces jn(jn—1) pointa
quel que soit k ; ee cjui démontre déjà la première partie du théorème.

Si , pour savoir en quels points la ligne (17) coupe l'axe des &,
c'est-à-dire , la tangente à Torigine ; on fait, dans son équation ) ' = o ,
£lle deviendra

3/xm~l^b"xm~*+,t.,..+y"a;*+ç/x+i—o ; (18)

équation indépendante de Ti ; ee qui prouve , conformément à la
seconde partie de Ténoneé du théorème , que ces points , dont aucun
n'est l'origine , sont fixes sur la tangente , quel que soit d'ailleurs
le triangle construit sous les conditions indiquées,

THEOREME III. « Â une surface quelconque de Tordre m,
» soit mené un plan tangent, par un point tel que la ligne inter-
y section de ce plan avec la surface ne passe pas par ce point. Par
» ce même point, soient menées, sur le même plan tangent, les
» deux tangentes principales»

y> Considérons la courbe intersection de la surface donnée avec
» son plan tangent comme une section faite par ce plan à une
» surface cylindrique , ayant sa génératrice parallèle au diamètre
» coiijugué de ce plan tangent ; cette surface cylindrique coupera
y> la surface proposée suivant un certain nombre de courbes fixes.

» Soit fait du point de contact le centre d'une surface quelconque
» du second ordre ; le plan tangent en sera un plan diamétral ; soif
» mené 5 à la surface du second ordre le diamètre conjugué de
y> ce plan ;

» Soit ensuite construite arbitrairement une surface conique du
» second ordre, de manière pourtant qu'elle ait son sommet ou centre
55 au point de contact; qu'elle passe par trois diamètres conjugués
m de la surface du second ordre qui a son centre en ce point ; que
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9 ses sections parallèles au plan tangent aient leurs diamètres
• cipaux respectivement parallèles aux tangentes principales dont
*> il a été question ci-dessus , et en outre proportionnels aux racines
» quarrées des rayons de courbure répondant à ces mêmes tangentes
*> principales ; cette surface conique coupera la surface courbe dont
» il s'agit suivant plusieurs lignes courbes , variables comme la
» surface conique qui leur aura donné naissance,

» Or , tant ces courbes variables que les courbes fixes dont il a
* été question ci-dessus , se trouveront toujours appartenir à une
» même surface de Tordre m—i qui , dans toutes les variations
» qu'elle pourra subir , coupera toujours le diamètre conjugué dut
v plan tangent en TZZ—i points fixes, differens du point de contact. »

Démonstration^ Soient pris le point de contact du plan tangent
pour origine et les deux tangentes principales pour axes des x et
des y, lesquels seront ainsi perpendiculaires l'un à l'autre; le plan
des. xy sera un des pion diamétraux de la surface conique qui a
son centre à l'origine.. Soit pris le diamètre conjugué de ce plan
pour axe des z * l'équation de la surface donnée de Tordre m sera
$U la forme

FQ(x,y)z=o ; (19)

iâ'ans laquelle nous supposons que , en général, F^Cr, y) désigne une
fonction rationnelle et entière en # , y du degré k ; de sorte que
^*{x > 7) doit être une quantité indépendante de ces deux variables.

Si, pour savoir suivant quelle ligne la surface (19) est coupée-
par le plan des xy , on fait , dans son équation , £ = o ; il viendra,,
four l'équation de cette ligne

F m ( * > r ) = ° y (20)

puisqu'on.suppose que Le plan des xy est tangentfa l'origine-;1

les



DE TOUS LES ORDRES. -53
les axes des % et des y doivent être respectivement fangens aux.
nterseetions de la surface (ig) par les plans des xz et âes yz ; d'où
îl suit que la fonction F m ne doit renfermer ni le terme constant
ïai les termes du premier ordre en x ei y.

De plus, puisque nous supposons que la courbe intersection de
la surface avec son plan tangent ne passe pas par le point de
contact ; le premier membre de l'équation (20) doit renfermer un
facteur du second degré, en or, y> exprimant ce point de contact,
e'est-à-dire, l'origine des coordonnées.

Enfin , puisque les axes des os et des y sont supposé dirige's
suivant les tangentes principales ; ce facteur du second degré , qui
me doit d'ailleurs contenir ni termes constans ni termes cfu premier
ordre 7 ne doit pas non plus renfermer de terme en ccy (*) 9 et
doit conséquemment être de la forme Pa;*-{-Qy2 • au moyen de
quoi l'équation (20) devient

j^m-4 désignant une fonction rationnelle et entière en x ef y àa
degré 772—2 j d'où Ton voit que

/ m - 2 ( ^ ; r ) = O , (22)

sera l'équation de l'intersection de la surface (19) par son plan
tangent ; ce sera donc aussi l'équation d'une surface cylindrique
ayant sa génératrice parallèle à l'axe des z 7 et coupant le plan
des xy suivant cette courbe.

Supposons que , dans Fmml 9 le terme indépendant de x et y
soit Punilé , ce qui est permis , puisque nous donnons des coefficiens
à tous" les autres termes ; si alors nous représentons par M , R' le

<(?) Voyez là dessus la page 179 de ce
Tom. IX. Z4
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plus grand et le moindre rayons de courbure à l'origine ^ non*
aurons (9)

•d'oi

on aura donc

au moyen de quoi l'équation (19) deviendra

./x, y)

= o. (

Considérons présentement la surface du second ordre que nous
avons supposé avoir son centre à l'origine. Puisque nous avons
supposé que l'axe des z était le conjugué du plan diamétral qui
coïncide avec le plan des xy, il s'ensuit que les sections de cette
surface par les plans des az et des yz doivent être des lignes du
second ordre rapportées à leurs centres et à leurs diamètres con-
jugués ; et que par conséquent l'équation de cette surface ne saurait
être que de la forme

k y (24)
Soient

les équations de trois de ses diamètres 7 conjugués les uns aux
autres. L'équation de son* plan tangent en un point (jx;

 9y', z;) sera
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2k , (26)

sous la condition

et le plan diamétral parallèle à ce plan tangent aura pour équation

Pour que le premier des diamètres (25) soit conjugué au plan des
deux- autres 7 il suffira que , ces deux-ci étant dans le plan (28) f

le premier passe par le point {x;, yf
 7 z') , ce qui donnera les quatre

conditions'

Eliminant %*, yf des deux dernières , au moyen des deux premières
et divisant par z/\ il viendra

Pour que les trois diamètres fussent conjugués les uns aux auïrc*y
il faudrait qu'on eût trois systèmes de deux pareilles équations ;
mais il est aisé de voir que les six équations qu'on obtiendrait ainsi
seraient deux à deux identiquement les. mêmes j d<£ sorte qu'elles*
se réduiraient aux. trois suivantes^
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=o , ' (29)

g = 0 ; J

Ce sont donc là les équations nécessaires et suffisantes pour ex-
primer tjue les diamètres (25) sont conjugués les uns aux autres.
On voit que des six quantités g f g

/
y g

n , h* 9 h
f
 7 h

u , il y en a
trois qui demeurent tout-à-fait indéterminées.

Considérons présentement la surface conique du second ordre ,'
àjant pour équation

:o i (3o)

Cette surface conique a évidemment son sommet ou centre à J'orî-
gïne; en outre, puisque son équation ne renferme point le terme
*en xy ? toutes ses sections parallèles au plan des xy sont des lignes
du second ordre ayant leurs diamètres principaux parallèles aux
axes des x et des y 7 c'est-à-dire, aux tangentes principales menées
à la surface (ig)çar l'origine; enfin, à cause des coefficiens R',
R9 de x% ̂  y* les longueurs de ces diamètres principaux sont pro-
porjfiOAnelles aux racines quarrées des rayons de plus grande et de
moindre courbure de la surfacs (19) à l'origine.

Remarquons présentement que , quels que soient p , q 7 r , que
ïious supposons ici toutrà-faît indéterminés , on pourra toujours assu-
jettir la surface conique (3o) à passer par trois diamètres conjugués
-de la surface (24) , puisque , pour déterminer les $ix coefficiens
g > g* > gN i h 1 h' 9 h

u des équations (25) de ces diamètres, on
seulement, outre les trois équations (29) § les trois équations

Bfg *
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cpdî expriment que les diamètres (26) sont sur la surface (3c)
Ainsi; en supposant, dans l'équation de cette surface conique;

q̂ ue p , q , r sont tout-à-fait indéterminés , cette surface sera exac-
tement conditionnée comme l'exige l'énoncé du théorème. Elle
coupera la surface (19) suivant un système de courbes ^ variables
comme les eoefficiens p , q, r , qui la déterminent.

Veut-on avoir l'équation commune à cette surface conique et à
la surface cylindrique (22) ; il ne s'agira pour cela que de prendre
le produit des équations de ces deux surfaces; ce qui donnera

(R'x*+Ily>+rz*-hpxz+qyz)Sm»%{x, r)mo . (3a)

Si l'on veut présentement savoir suivant quelles courbes le sys-
tème de ces surfaces conique et cylindrique coupe la surface donnée
de Tordre m ? il ne s'agira que de considérer comme équations d'un
même problème indéterminé à trois variables, soit les deux équa^
tions ( 23 , 32 ) , soit toutes combinaisons de ces deux équations
qu'on voudra leur substituer ; on pourra donc ; en particulier 9 subs-
tituer à l'équation (28) sa différence avec l'équation (3^) 7 qui est ,
en divisant par z , ce qui revient à exclure le plan des xy y

%(x9y) = o ; (33)

d'où il suit que ces courbes seront toutes situe'es sur la surface
(33) , ^'est-à-dire , sur une surface du degré m — 1 , laquelle ne
passe ni par l'origine ni par la courbe ( 2 2 ) , conformément à
l'énoncé du théorème.

Si, dans la vue de savoir en quels points cette surface coupe
l'axe des z 7 on suppose , à la fois , dans l'équation (33) ^ r=o ;

y = o , l'équation résultante en z ne renfermera plus les indéter-
minées p , q , r, ce qui prouve que ; la surface conique variant,
ces points restent fixes sur Taxe des z ; ce qui est encore conforme
à l'énoncé du théorème , qui se trouve ainsi camplètement démontré.

Il est aisé de voir , au surplus , que , pour chaque surface co-
lique ; en particulier, la condition de passer par les intersection^
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tant de cette surface que de la surface cylindrique avec la surface*
proposée déterminera complètement la surface (33)- Concevons , en
effet 7 un plan quelconque passant par Taxe des z ; ce plan coupera
la surface proposée suivant une ligne de Tordre m , et la surface
(33) suivant une ligne de l'ordre m— i ; il coupera de plus la
surface cylindrique (22) suivante—2 droites , toutes parallèles à Taxe
des z 9 lesquelles couperont la courbe de l'ordre m en (m—i)(jn—2)
points ; il coupera enfin la surface conique suivant deux droites
qui seront deux diamètres conjugués de la section faite dans la.
surface du. second ordre qui a son centre à l'origine -, et ces deux
droites détermineront, sur la ligne de Tordre m , 2(772—1) nouveaux
points-, ce qui fera en tout m{m—1) points, lesquels se trouveront aussi
sur la ligne de, Tordre m—1. Or, nous avons va ( Théor.l) que , par la
condition de passer par ces m(m—1), points, cette courbe est complète-
ment déterminée ; toutes les sections faites dans la surface (33) sont
donc déterminées , cette surface est donc elle-même déterminée..

THÉORÈME IF. « A une surface quelconque de Tordre m ;
», soit mené un plan tangent , par un point tel que la ligne 5 in-
» tersection de ce plan avec la surface , ne passe pas par ce point.
», Par ce même point, soient menées , sut le même plan tangent f
» les deux tangentes principales..

» Considérons la courbe insersection de la surface donnée, avec
s> son plan tangent comme une section faite par ce plan à une surface
» cylindrique ayant sa génératrice parallèle à une droite fixe , menée
» par le point de contaot , dans une direction quelconque ; cette
» surface cylindrique coupera la surface proposée suivant un certain
T> nombre de courbes fixes»

» Soit ensuite construit arbitrairement une surface conique du
», second ordre , de manière pourtant qu'elle ait son sommet ou
» centre au. point de contact ; et que ses sections, par des plans
» parallèles au plan tangent , aient leur centre sur la droite fixe
ik{ dont il vient d'être question , leurs diamètres principaux parallèles.
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^ aux tangentes principales, et les longueurs de ces diamètres propor-
» tionnelies aux racines quarrées des rayons de plus grande et de moindre
» courbure qui repondent au point de contact; cette surface conique
» coupera la surface proposée suivant un certain nombre de courbes,
» variables comme la surface conique qui leur aura donné naissance.

y> Or , tant ces courbes variables que les courbes fixes dont il
» a été question ci-dessus, se trouveront toujours appartenir à une
» surface de Tordre m—1 qui, dans toutes les variations qu'elle pourra
7» subir, coupera toujours le plan tangent suivant une même ligne
» fixe de l'ordre m—1 , qui ne passera pas par le point de contact. »

Démonstration. Soient pris encore, comme ci-dessus , pour axes
des x et des y les deux tangentes principales ; et soit prise pour
axe des z la droite fixe , menée par le point de contact ; si l'on
représente toujours par R , R/ les deux rayons de plus grande el
de moindre courbure en ce point, on pourra prendre de nouveau pour
équation de la surface proposée l'équation (^3) , c'est-à-dire, l'équation

et le plan des #y, c'est-à-dire , le plan tangent à Porigine sera encore
coupé par cette surface suivant une ligne de Tordre m—2 , ayant
pour équation

fm-2(*>y) = O , (22)

laquelle sera aussi Téquation d'une surface cylindrique ayant sa di-
rectrice parallèle à Taxe des z , et coupant le plan tangent suivant
cette courbe.

Quant à la surface conique du second ordre , ayant les centres
de toutes ses sections parallèles au plan des ocy sur Taxe des z ,
et les diamètres principaux de ces mêmes sections respectivement
parallèles aux axes des x et desy, et proportionnels aux racines quarrées
des rayons de plus grande et de moindre courbure de la surface (23) à
l'origine ; il est clair que Téquation de cette surface conique sera

o ; (34)
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dans laquelle r sera une quantité tout-à-fait arbitraire. L'équation du
système de cette surface conique et de la surface cylindrique (22)
sera donc

rz*).fmm , ( * , j ) = 0 . (35)

Si , présentement , on veut savoir suivant quelles courbes ce
système de surfaces conique et cylindrique coupe la surface pro-
posée , tout se réduira à considérer comme équations drun même
problème indéterminé à trois variables , soit les deux équations
(23 , 35) soit toute combinaison qu'on voudra faire de ces deux-là.
On pourra donc, en particulier , dans cette recherche, substituer
à l'équation (^3) sa différence avec l'équation (35) , qui est, en
divisant par %, ce qui revient à exclure le plan des ocy,

%{x ,y)—o ; (36)
d'où il suit que ces courbes seront toutes situées sur la surface (36).
c'est-à-dire , sur une surface de Tordre 772—1 > laquelle ne passa
ni par l'origine ni par la courbe (32) , conformément à l'énoncé
du théorème.

Si , dans la vue de savoir suivant quelle ligne cette surface coup®
îe plan des xy , c'est-à-dire le plan tangent, on fait , dans cette
équation 7 £ = 0 ', l'équation résultante en # , y , qui sera*

FfflHi(^, y)—o r

ne renfermant plus l'indéterminée r 7 sera.celle d'une ligne de Fordrê"
m— 1 tout-à-fait fixe , quelle que soit la surface conique (34), et
ne passant pas par le point de contact ; ce qui est encore conforme
à, l'énoncé du théorème qui se trouve ainsi complètement démontra.

En se fondant sur le Théurème II, on démontrera aisément.,
comme nous l'avons fait pour le Théorème 1117 que } pour chaque
surface conique en particulier^ la condition de passer parles inteî>-
sections tant de cette surface conique que de la surface cylindrique
kZ2tl avec la surface proposée f détermine complètement la surface
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ALGÈBRE ÉLÉMENTAIRE.

Recherches sur les fractions continues ;

Par M. GEKGOKNE.

IVJÀLGRÉ les travaux d'un grand nombre d'Illustres géomètres,
la théorie des fractions continues est loin encore d'être aussi avancée
que son importance pourrait le faire désirer. Nous savons développer
une fonction en fraction continue ; nous savons , dans quelques cas^
revenir d'une fraction continue à la fonction génératrice ; nous savons
aussi, dans quelques cas, reconnaître qu'une fraction continue est
incommensurable; mais personne encore n'a établi la limite précise
qui sépare les fractions continues rationnelles de celles qui ne le
sont p#s. On ne saurait douter non plus que les fractions continues^
ne doivent affecter certaines formes particulières , suivant qu'elles sont
racines d'équations de tel ou de tel autre degré, mais, passé le second de-
gré , pour lequel nous savons que les racines se développent en fractions
continues périodiques, nous ne connaissons plus les caractères qui distin-
guent les racines soumises àun pareil développement, ce qui serait pour-
tant d'autant plus important qu'à cette connaissance se rattacherait
immédiatement la recherche des diviseurs commensurables de tous
les degrés des équations numériques. Nous ne savons pas même
former immédiatement la somme ou la différence de deux fractions
continues , leur produit ou le quotient de leurs divisions ; et , à plus
forte raison 9 ne savons-nous pas en assigner les puissances et les*
racines»

Xorn. IX, n.* FIJI, i**février 1819, 35
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Dans cet état d'indigence où nous nous trouvons relativement a

ce genre de fonctions, toute recherche qui les concerne semble
devoir être accueillie avec quelque intérêt,' et c'est, en particulier*
ce qui doit recommander aux yeux des géomètres le mémoire de
M. Bret, à la page 3^ de ce volume; mémoire dans lequel, après
avoir donné plus de généralité à des théorèmes qu'on ne démontre
communément que pour les fractions continues dans lesquelles les
numérateurs sont e'gaux à l'unité, il a donné, pour le développement
des fonctions en fractions continues , une méthode qui lui est
propre et qu'il a appliquée ensuite à la recherche de plusieurs ré-
sultats non moins curieux qu'ils sont élégants.

Ces résultats , au surplus , ainsi que beaucoup d'autres du même
genre, avaient déjà été déduits par Lagrange de l'application de*
fractions continues a l'intégration par approximation des équations
différentielles à deux variables (*). Mais , la méthode de Lagrange ,
comme celle de M, Bret, peut paraître longue et laborieuse ; et
ni l'une ni l'autre n'ont une marche assez uniforme et régulière
pour qu'il soit permis d'asseoir solidement une induction sur les
résultats qu'on en obtient.

Il nous a paru qu'on pouvaiît parvenir simplement à ces mêmes
résultats 3 de manière à ne laisser aucun doute sur la loi qui les
régît , et qu'on pouvait en même temps établir plusieurs théorèmes
curieux sur certaines classes de fractions continues ; en développant
en fraction de cette sorte la série très-remarquable dont M. de
Stainvîlle s'est occupé à la page 229 du présent volume. C'est ce
que nous nous proposons de montrer ici.

Soit donc la séria

C) Voyez les Mémoires de Vacadémie de Berlin , pour 1776, page
voyez aussi le Traité de calcul différentiel et de calcul intégral 9 de M» LACROIX ,

édition , tome H 1 pag, 4^7«
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I.2.O

'11 soit question de développer en fraction continue ; pour pro-
céder à ce développement, nous emploîrons la méthode indiquée par
Euler ; -c*est-àdire que nous poserons successivement

I 1.2 1.2.3 1.2.O.A 1—,

> 3 - 3 — ( a ~ " ;

>—

I O 1,2 4 1*2.

^ r \ 7 / \ ? l £ * * # - I ? A r J 3 ^ f I ^ / 1 7W t 5 t \ / t /L\ Z

T + Ë | t+3D(+W
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Hous remarquerons qu'il n'y a point d'induction dans tout ceci %.
attendu que , d*une part , on peut toujours calculer le terme générai
soit du numérateur , soit du dénominateur de chacune de ces
fractions et que de l'autre on peut prouver que , si la loi qui se
manifeste pour les valeurs successives de À , B , C , D , . . . . . . se
soutient jusqu'à une quelconque de ces quantités, elle aura égale-
ment lieu pour celle qui la suivra immédiatement.

En représentant donc , comme Ta fait M. de Stainville, par ia la
série proposée, nous tirerons de tout cela

formulé fondamentale pour toutes* le$ re£her£Ke& qui vont
occuper.

i.° On a vû  ( pag* 235 ) que

donc ! si Ton a lès deux fractions continues

L «

3 "T
4 — .

kur produit sera la fraction continue
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voîlà donc du moins des fractions continues dont on sait immédia-
tement assigner le produit.

s.° On a vu aussi ( pag. ^36 ) que

donc, la m.mt puissance de la fraction continue

az

4 — - + ^

est la fraction continue
i

—. tnaz , ..
j _ ^ (ma<~k)z

x T « —̂ %(ma—2Jt)z

voilà donc du moins une fraction continue dont nous savons assigner
immédiatement une puissance d'un degré quelconque,

3.° Nous avons vu encore ( pag. 287 ) que

îa c L\

donc , si l'on a les deux fractions continues

3 +
4 5 + ;

%om,. IX. 35 bis
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le quotient de la division de la première par la seconde sera

JL (a—b)z
* _ (a—b--k)z

yoilà donc du moins des fractions continues que Ton sait i
tement diviser Tune par l'autre.

4»° Nous avons vu enfin ( pag» zSj ) que

5=f—

donc la racine m.me de la fraction continue

3 j>±

la fraction continue

k ]z f a

encore , en réduisant

_ GZ
1 Jr—+™ia~~m . m<a^-mfe^
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voilà donc du moins une fraction continue dont nous savons assigner
immédiatement une racine d'un degré quelconque.

5.° Si , dans notre série , on fait # = 1 , £ = —1 , elle se réduira
a i-\*z ; faisant donc les mômes substitutions dans la fraction continue
équivalente à sa m.mt puissance; il viendra, en changeant z en x ,

* > 2 —

de là on conclura

ce qui ; en changeant le signe de m, donnera cette autre expression

,0 Si, dans notre série, on suppose simplement £ = 0 elle devient
changeant az en a?

^ue Ton sait être égal \ e* > e étant la base des logarithmes né-

périens ; faisant donc la même substitution dans la fraction continue,

équivalente * nous aurons
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a?

«-7+..,
o u , en simplifiant

+
de là on conclut

£

a f

" 7 +••
oe qui, en changeant le signe de x , donne cette nouvelle expression.

X
— X*
A '

3 i * ^
3 ~ 5 . 5&

•••.
on en conclut; en posant # = 1 ,

- - 1

5 . H — «•
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7 — ••••

résultats déjà obtenus par M, Bret, à la page oo de ce volume j
maïs dont notre procédé rend la loi beaucoup plus manifeste.

7.0 On sait que

égalant celte valeur de (i-f-^)m au dernier des deux développe
mens que nous en avons obtenus ci-dessus , il viendra f en suppri
mant l'unité de part et d'autre et divisant ensuite par m

!(,+*) ml»(i+*) _jnx

4 •+-

faisant enfin l'indéterminée #2=0 , nous aurons

X

2f 9*
6——

7 ^ 8 .
9 +•.•.'

et par conséquent

i

T — - . x

Tom. IX. 3 6
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8.° Si dans notre série fondamentale et dans le développement

de sa m.me puissance, on fait &=o , û = — i ; on aura

C -I -J- *- zi _L z* Y
1 î—" mrm •—- »4— —- — -f». J
V. * i.a 1.2.3 • i •2.3-4 /

1
— . mz

1 a -+~r smg

Si, au contraire, on fait , à la fois ,a=-i , ^c=i , il viendra

(1 - z - f z'—z3-l-z»-z54- )m

I -\ (m—ï)z

3 - 4

Comme ces reclberches ne présentent rien de difficile , nous croyons
pouvoir nous dispenser de les pousser plus loin.
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GEOMETRIE ELEMENTAIRE.

Démonstration de quelques propriétés de Vangle plan
du triangle, de l'angle trièdre et du tétraèdre ;

Par un ABONNÉ.

Cr e

J J A N S ce qui va suivre , nous adopterons les idées de Bertrand de
Genève , sur la nature de l'angle ; c'est-à-dire , que nous considé-
rerons l'angle plan comme la portion indéfinie du plan où il est
tracé comprise entre ses côtés ; et l'angle dièdre ou trièdre comme
la portion indéfinie de l'espace comprise entre ses faces. Nous
dirons , en conséquence , qu'une droite tracée sur un plan le divisa
en deux parties égales , qu'un plan tracé dans l'espace le divise
aussi en deux parties égales , que tout plan vaut quatre angles droits
plans , et que l'espace vaut quatre angles droits dièdres ou huit
angles droits trièdres.

I. Soient A, B les deux côtés d'un angle plan que nous dé-
signerons par {AB) ; soient y, g les prolongemens de ces côtes
au-delà du sommet de l'angle ; désignons par (yg) l'angle de ces
prolongemens, et par {AQ) , (yB) lès angles formés par chaque
côté avec le prolongement de l'autre.

Parce que chacune des deux droites Ay, Bff divise le plan où
elle est traeée en deux parties égales, on aura
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prenant snccessivement la demi-somme et la demi-différence de
ces deux équations , il viendra , en réduisant,

{AB)=[rs) , (Jg)=(yB) ;

<€*est-à-dire f deux droites qui se coupent sur un plan forment des
angles opposés par le sammet, égaux entre eux. C'est la XV,C pro-
position d'EuCLlDE , de laquelle on peut facilement conclure que
deux plans qui se coupent dans l'espace forment des angles opposés
par Varête , égaux entre eux*

IL Soient trois droites indéfinies , tracées sur un même plan,,
et se coupant deux à deux ; elles diviseront ce plan en sept régions;
dont une seule limitée et triangulaire, que nous désignerons par 2 ;
trois autres seront les opposés au sommet des trois angles du triangle,
nous les désignerons par A , B , C ; enfin , les trois derniers seront
les espaces indéfinis compris entre chaque côté du triangle et les
prolongemens des deux autres ; nous les représenterons par A*+
B/ , Cr

y respectivement opposés a A , B % C.
Exprimant que les angles opposés au sommet sont égaux , noua

aurons d'abord

B-B'+T,

d'où , en ajoutant,
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représentant ensuite par A l'angle droit plan j et exprimant que
tout le plan en vaut quatre , nous aurons

prenant la demi-somme de ces deux équations et transposant , ïl
viendra , en réduisant et divisant par A ,

A B C T
1 -4 = a H .

A A A A

T
mais la fraction — dont le numérateur seul est fini, peut être négligée
vis-à-vis du nombre entier 2 ; en la supprimant donc et chassant le
dénominateur A , il viendra finalement

J+B+C-zA ;

k'est-à-dîre , la* somme des trois anghs de tout triangle vaut deux
angles droits. C'est la axxik* proposition d'EuCLlDE.

III. Soient A , B , C les trois arêtes d'un même angle trîèdre
Ty dont les angles dièdres soient respectivement désignés par (A ,
{B) y (C). Soient désignés par f , g" , 0 ' e s prolongements de ces
arêtes au-delà du sommet de l'angle. Les trois droites Ay, Bff, Cj9

seront les arêtes de huit angles trièdres que nous désignerons , d*après
leurs arêtes, par

(ABC) , (ABD) , (JgC) , {FBC) t

et qui seront tels que ceux de la seconde ligne seront les opposés
au sommet de leurs correspondans dans la première , et leur seront
tonséquemment égaux par ce qui précède ; de sorte qu'on aura
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(ABj)=(FSC) ,

Présentement, chacun de nos trois angles dièdres (A) , (B) f (C) f

considéré comme indéfini , se trouvant composé de deux angles
trièdres , on doit avoir , en ayant égard aux relations ci-dessus,

(ABC)-{-(ABJ) ou

d'où , en ajoutant,

mais , la somme des angles trièdres de même sommet situés d'un
môme côté d'un plan devant valoir quatre angles droits trièdres/
en aura , en représentant l'angle droit trièdre par A

retranchant cette équation de la précédente , il viendra en divisant
par 2A

(ABC) _ (A) (B) (C) ^
A 2. A 2. A 2A

SI l'on représente par D Tangle droit dièdre, on aura 2A~D$

et par conséquent

(ABC) (A) (B) (C)
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c'est à-dire, en prenant respectivement les angles droits dièdre et
trièdre pour mesures des angles dièdres et îrièdres , un angle irièdrc
quelconque a pour mesure la somme de ses trois angles dièdres
diminuée de deux unités : C'est le théorème de CÂYALLERT , sur
la mesure du triangle sphérique.

IV. Soit présentement ÀBCD un tétraèdre quelconque. Désignons
par {A) 5 (B) , {€) f (D) les rapports de ses angles trièdres à l'angle
droit trièdre , et par(JB) , (JC) , (BC) , (AD) , (£D), KCD) les rap-
ports de ses angles dièdres à l'angle dièdre droit; nous aurons , par
ce qui précède ,

=(AC)+ (BC)+(CD)—2 ,

En ajoutant d'abord toutes ces équations et transposant , nous
aurons

c'est-à-dire, la somme des angles dièdres d'un tétraèdre , moins
la somme de ses angles trièdres vaut huit angles droits trièàres,
ou l espace entier.

Si Ton ajoute seulement les trois premières équations , il vien-
dra , en transposant ,

G'est-à-dire , l'excès de sia? angles droits trièdres ou des trois
quarts de l'espace sur la somme des trois angles dièdres d'un même
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angle d'un tétraèdre est égal à l'excès du double de la somme
des trois angles dièdres ad/acens à la face opposée sur les angles
trièdres de la même jace.

Si. Ton prend seulement la somme des deux premières, II v'e.idia

c'est-à-dire , le double de lexcès de l'un des angles dièdres Jun
tétraèdre sur les deux angles trièdres ad/acens est égal à l'excès
de huit angles droits trièdres ou de Vespace entier sur la somme
des quatre angles dièdres ad/acens à celui-là.

Si de la somme des trois premières on retranche le triple de
la dernière , il viendra

= ^ î —(-4D)—(BD)—(CD)} ;

c'est-à-dire , Vexcès de la somme de trois des angles trièdres d'um
tétraèdre sur le triple du quatrième est égal à l'excès de la somme
des trois angles dièdres adjacens à la jace opposée à ce dernier
sur la somme des troir autres.

Si de la somme des deux premières on retranche celle des deux
dernières., il viendra

c'est-à-dire , la différence entre deux angles dièdres opposés d'un
tétraèdre est égale à l'excès de la somme des deux angles trièdres
ad/acens au premier sur la somme des deux angles trièdres adjacens
au dernier.

La plupart de ces propositions ont été démontrées par l'abbé DE
GtJA , dans les Mémoires de l'académie royale des sciences de
de Paris, pour 1783 ; on pourrait en augmenter indéfiniment le
nombre ; mais toutes celles qu'on obtiendrait se trouvent implici-
tement comprises dans les quatre équations fondamentales d'où nous
avons déduit celles que nous venons d'énoncer.

QUESTIONS
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QUESTIONS RÉSOLUES.

Démonstration des deux théorèmes de géométrie énoncés
à la page 116 de ce volume ;

Par MM. VECTEN , licencié es sciences ,
DuRRANDfî , professeur de mathématiques au collège

royal de Cahors,
FRÉGIER , professeur de mathématiques au collège de Troyes ,

ancien élève de l'école polytechnique ,
FABRY , aussi ancien élève de l'école polytechnique,
Et GERGOJNKE.

JUES démonstrations données par MM. Durrande, Vecten et Frégier
de ces deux théorèmes étant exactement les mêmes , nous allons
les confondre dans une seule rédaction.

THÉORÈME I. Un point P étant pris arbitrairement dans
f intérieur d'un triangle quelconque ABC ; et A/ > B' , 0/ étant
respectivement les points où les côtés BG f GA , AB de ce triangle
sont rencontrés par les prohn^emens des droites AP, BP p CP #

menées des sommets opposés au point P , on aura

PÀ' PB' P a

^Démonstration. Des sommets A , B 9 C , soient abaissées das-
perpendiculaires AA", BB^ f CG" sur les directions des côtés res-

Zom* IX* 3j



7 Q U E S T I O N S
pectivement opposés *, et du pomt P soient abaissées , sut les mêmes
directions, les perpendiculaires PA'" , PBW , P C " .

A cause des parallèles , on a les trois équations

PA' _ PA"' PB' __ PB"' PÇf PC"

mais , d'un autre côte , les triangles BPC , CPA , APB se trou-
vant avoir une base commune avec le triangle ABC , le rapport
de leurs aires à la sienne doit être le même que celui des hau-
teurs ; c'est-à-dire , qu'on doit avoir i

BPC . PB'" CPA VC>"APB

CC^"" ACB '

,au moyen de quoi les équations ci-dessus deviennent

P V __ BPC PB' _ CPA P C _ APB
AA/ "" BAC "* ' BÏÏ"' " CBÂ" * CC? ~~ ACB J

ajoutant donc ces trois dernières équations merîibre à jEnernljr«
>«n obbervant que

BPC-t-CPA+ÀPB=ABC #

on aura

PA PB' va __
AA' il"' ' CC"' ~ l '

c'est-à-dire le théorème énoncé*
On a évidemment

AA' , BB̂  . CC
AA' ^ BW ~ CC f

retranchant donc dé cette équation celle du théorème, il viendra
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PA PB PC

équation qui peut aussi avoir son utilité. Cette remarque est due
à M. Vecten.

THÉORÈME IL Un point P étant pris arbitrairement dans
Vintrrieur d'un tttraèdre quelconque ABCD ; et A/ , B / , C , D7

étant respectivement les points où les faces BCD , CDA , DAB ,
ABC de ce tétraèdre sont rencontrées par lesprolongemens des droites
AP, BP, CP ; DP , menées des sommets opposés QU point P ; on aura

PV PB' PC PD'
h ; 1 - ~ T = I •

AA' BB' CL.' DDf

Démonstration. Des sommets A , B , C , D , soient abaissées,"
sur les plans des faces opposées, les perpendiculaires AA'' , BB / ; ,
CCX/ , DD7/ ; et du point P soient abaissées , sur les mêmes plans,
les perpendiculaires PA / / ; , PB//V , VC/// , PD ; / / .

A cause des parallèles 7 on a les quatre équations

PA' PA'" PB' PB'" PC' PC"' PD' PD"'
AA' AA" * BB' BB" ' CC CC" * DD' DD" s

mais , d'un autre côté , chacun des tétraèdres PBCD , PCDA , PDAB ,
PABC se trouvant avoir une base commune avec le tétraèdre ABCD,
le rapport de leurs volumes doit être le même que celui de leurs
hauteurs ; c'est-à-dire qu'on doit avoir

PA'" PBCD PB"' PCDA PC"' PDA.B PD"' PABC
AA" ABCD ? BB" BCDA ' CC" CDAB* DD" DABC '

au moyen de quoi les équations ci-dessus deviennent
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FA' PBCD PB' _ PCD A PO PDAB PD> _ PABC
AA< = ABCD s BB'"~ BCDA ' CC CDAB 9 DÏP "" DABC '

ajoutant donc ces dernières membre à membre , en observant que

PBCD+PCDA+PDAB+PABC=ABCD ;

on aura

PA' PB' PC , PD'

c'est-à-dire ie théorème énoncé*
On a évidemment

>retranciiant donc de cette équation celle du théorème, 11 viendra

PA PB PC PD
JLA! ^ BW CC DD' '

équation qui peut aussi .avoir -son utilité. Cette remarque est due
à M, Vecten.

Les démonstrations de M. Fabry ne diffèrent de celles-ci qu*en
06 que , par le point P , il mène une droite ou un plan parallèle
à l'un des côtés du triangle ou à Tune des faces du tétraèdre, ce
qui établit des proportions faciles a reconnaître , et dont la com-
binaison conduit au résultat cherché ; ses démonstrations >̂nt ainsi
l'avantage de ne dépendre aucunement des théorèmes sur la mesure
des aires et des volurfîes.

Nous sommes tombés très-simplement sur ces deux théorèmes ,
en cherchant à décomposer une masse , supposée réduite à un point,
*n trois ou quatre autres situées aux sommets d'un triangle ou d'<an
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«tétraèdre , dans l'intérieur duquel la masse dont II s'agît se trouve
située. Cette manière d'envisager les deux théorèmes en fournira ufâe
«nouvelle démonstration fort simple, ainsi qu'on va le voir,

I. Soit p une masse située en P , dans l'intérieur d'un triangle
ÀBC , et qu'il s'agît de décomposer en trois autres masses a, b , c ,
situées k ses sommets. Le problème est évidemment déterminé ; et
conséquemment, de quelque manière d'ailleurs qu'on le résolve, on
doit constamment parvenir au même résultat.

Or, la manière la plus simple et la plus naturelle de résoudre ce
problème est la suivante : soit menée PA , prolongée jusqu'à la
rencontre de BG en A' ; et soit décomposée la masse p en deux
autres, l'une a située en Â , et l'autre af située en A'',* il ne
s'agira plus alors que de décomposer cette dernière en deux autres
b , c , situées en B , C,

Or, par le principe des Forces parallèles ou des centres de gra-
nité , on aura

d'où Ton voit qu'en menant T B , P C , dont les prolongemens
contrent respectivement CA, AB en B / , G' > on aura

donc 9 et remarquant que a-\~b+cz&p , il viendra

PA' PB' PC;

IL Soit p une masse située e n P , dans l'intérieur d'un tétraèdre
ÀBGD , et qu'il s'agisse de décomposer en quatre autres masses
a} à,cf dt situées à $e$ gommets, Le problème est évidemment
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détermine l et conSéxjuemment , de quelque manière d'ailleurs qu'on
le résolve , on doit constamment parvenir au même résultat.

O r , la manière la plus simple et la plus naturelle de résoudre
ce problème est la suivante : soit menée PA dont le prolongement
rencontre en Kf le plan de la face BCD ; et soit décomposée la
masse./? en deux autres a et af situées respectivement en A et A / ;
il ne s'agira plus ensuite que de décomposer cette dernière en trois
outres b^ e9 d, situées respectivement en B , C , D,

Or , par le principe des forces parallèles ou des centres de gra?-
yité , on aura

PA'

d'où Ton voit qu'en menant PB , P C , PD , dont les prolongement
rencontrent respectivement CUA , DAB , ABC en W , O , D / ,.
on aura

PA' PB' T PC PO'

ajoutant donc, et remarquant que a-\-b-\>-c-\- d^p } il viendra.

PA' PB' PC PD'
BB' "*". CÎC' 55"'

IIT. Cette manière d'envisager les deux théorèmes , nous permet
de trouver facilement l'analogue du premier pour le triangle sphé-*
rique. Soit , en eiFet, une puissance p agissant sur le centre S
dune sphère , et dont la direction passe par un point P de la sur-
face de cette sphère, situé dans l'intérieur d'un triangle sphérique
ABC • et proposons nous de décomposer cette puissance en trois
autres a, b , c , ayant respectivement les directions SA , SB , SC.
Soit mené par A et P un arc de grand cercle coupant en A7 le
côté BC -7 et soit d'abord décomposée la puissance p en deux autres
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&> a* respectivement dirigées suivant SA , SA/; il ne s'agira plus
ensuite que de décomposer cette dernière en deux autres le , di-
rigées suivant SB, SC,

Or, par le principe du parallélogramme des forces, on aura

P'TÏZ

d'où Ton voit qu'en menant les arcs de grands cercles PB , PC t '
rencontrant respectivement en B/ , G7 les côtés CA, AB , on aura

Sin VA' Sin.PW Sin.VC
r s;n A A/ ' r .v,v» TÎP/

 } ' S i n QQ

Mais , par le principe du paralleliplpède des forces , on a ( Voyer,
la pag. 55 du présent volume. )

substituant donc, et divisant par p*, on aura,

'Sin. P V \ » Sin.PB7 Sin.VO
) ~H>.—— • —r-Gos.BC

Sin.BB' Sin.CU

Sin^PO Sin. P A'

/ Sin ,BC\a «>/i

V Stn.C P. * J SL

Sin.PA' Sin.VW

Sin.AA' Sin.BB*
GosAB

— * 9

équation d'où il serait facile ensuite de déduire celle qui est re-
lative au triangle rectiligne 7 en supposant le rayon de la sphère
infini.

IV. Dans tout ce qui précède , nous avons formellement supposé
que le point P était intérieur au triangle ou au tétraèdre. S'il lui
était extérieur, il en résulterait de simples changemens de signes
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dans nos formules ; e t l o n trouverait, soit par lesraisonnemens ié
MM. Vecten et Durrapde , soit par les nôtres que ces changemens
de signes sont assujettis à cette seule règle , savoir qu'un terme
du premier membre de l'équation relative, soit au triangle recti-
ligne , soit au tétraèdre, doit être positif ou négatif, suivant que
le point P regarde l'intérieur ou l'extérieur du côté eu triangle ou
de la face du tétraèdre auquel ce terme se rapporte.

V. D'après cela , si dans le cas du triangle , et du point P ^
toujours supposé intérieur, on considère successivement et respec-
tivement les points A > B , C comme points extérieurs aux triangles
BPC , CPA, APB i outre l'équation

PÀ' PB' PC'

devra encore avoir

AA' A© AB'
PÀ7 BC/

BB' BÀ' BC
TBL ÛJ TÔ

CO CB' CA' _

équations auxquelles on peut joindre d'ailleurs toutes celles
donne la théorie des transversales.

On pourrait parvenir, pour le tétraèdre a des relationi analogues

Démonstration
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Démonstration du théorème danalise indéterminée
énoncé à la page 228 de ce çolume ;

Par M. FRÉGÏER , professeur de mathématiques au collège
de Troye , ancien élève de l'école polytechnique.

THEOREME. Toute puissance paire d'un nomlre impair ,
diminué d'une uni lé , est toujours divisible par une puissance de
deux supérieure de deux unités à celle qui divise son exposant.

Démonstration. Tout se réduit évidemment à démontrer que,
quels que soient d'ailleurs les trois nombres entiers positifs a, k,n>
l'expression

est toujours un nombre entier.
D'abord, comme on a

et comme d'ailleurs (i*+-2a)k est nécessairement un nombre impair ?

que Ton peut représenter par i ~ { - 2 ^ tout se réduit à démontrer
que l'expression

est un nombre entier.
On a ? en second lieu 8

Tom. IX.
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maïs
(1+2J)* = ï

et comme , quel que soit ^4, -^(1+-^) est nécessairement un nombre
pair, <jue Ton peut représetiter par zB, on aura

t\ 1 par suite

tout se réduit donc à démontrer que la formule

(1+8 g)'"-—i

est un nombre entier.
Cela est d'abord évident $/ jK>tir le'cas où « = i ; puisqn'alors

ae réduit à j5. On trouve de pliis

que Von peut représenter par

que Ton peut représenter par i+32fî / ; , et ainsi de suite , ce qui
est déjà conforme à l'énoncé du théorème. Or , si , en général,
suivant cet énoncé , on a

on aura
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pu

ou encore

( 8 # * G)

quantité de la forme i + s A + ' Ç ' . Il demeure donc établi que , si
la puisssance 2*"*"l de 1+8Z? f diminuée d'une unité, est divisible par
2 ^ + t , sa puissance 2*, diminuée également d'une unité, le sera
par zk~*~5 , pub donc que ces puissances 2 0 , 21 , 2a

 ? diminuées
d'une unité, le sont respectivement par 23 , 24 , 2 5 , il s'ensuit que
sa puissance du degré 2"""1 , diminuée d'une unité ; le sera par
a""4"2 ; l'expression

es! donc un nombre entier ; Texpressïon

en sera donc un aussi, e t , conséquemment y il en sera de même de

le théorème est donc démontre' en toute rigueur.
So'ent les deux formules

elles seront l'une et l'autre des nombres entiers 7 par ce qui précède.
Si p n'est pas moindre que q 5 à plus forte raison la formule
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sera aussi un nombre entier, d'où il suit que sa différence avee
la seconde des deux ci-dessus sera également un nombre entier*
Ainsi , la formule

2*-+-*

dans laquelle on suppose /?>y—-i est nécessairement un nombre
entier; et Ton prouverait évidemment la même chose de la formule

dans laquelle on aurait q>p—i.
Si Ton suppose/?=^=. i , on aura la formule

_

ou , plus simplement , la formule

S '
qui devra être un nombre entier; c'est-à-dire , que la différence
de deux quarrês impairs est toujours divisible par huit.

Donc 7 la somme de deux nombres impairs multipliés por leur
différence donne un produit divisible par huit; d'où il suit encore
que la somme ou la différence de deux nombres impmrs doit né-
cessairement être divisible par quatre (*).

(*) Cette vërité s'aperçoit immédiatement en observant que tout nombre
Impair e&l compris daus la double formule ^n±i ; ou y ce qui revient au
même , que tout nombre impair , augmenté ou diminué d'une unité ? devient
divisible par quatre.

J. D. G.
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QUESTIONS PROPOSEES.

Théorèmes appartenant à la géométrie de la règle.

I. CROIENT pris arbitrairement, soit sur un plan , soit dans l'espace-,
n points que Ton numérotera et désignera par (1) , (2) , (3)#...(>?\

Soit joint chacun de ces points à celui qui porte le numéro im-
médiatement supérieur par n—1 droites indéfinies , dont chacune
soit désignée par les deux points qui la déterminent en cette manière :

(0(2) , (2) (3) , (3)(4) , (72 — !)(«).

Sur la direction de chacune de ces droites , soit pris arbitraire-
ment un point ; et soit désigné chacun des n—1 points ainsi choisis
par les numéros qui désignent la droite sur laquelle il se trouve
situé; ainsi qu'il suit : (12), (28) , (34) , .... (/2 —-1 , ri).

Soient joints deux a deux , par des droites 7 ceux de ces points
et des premiers dont les indices ne portent ni la répétition d'un
même nombre ni interruption dans les nombres 7 du plus petit au
plus grand ; et soient désignées ces droites par l'ensemble des in-
dices des deux points qui les déterminent , en cette manière
(i)O3) , (12X3), (2)(34) , (23)(4). ; les droites dont les indices ren-
fermeront les mêmes nombres se couperont en un certain point que
Ton pourra simplement désigner par l'ensemble de ces nombres ;
ainsi, par exemple, l'intersection de (i)(^3) avec (i2)(3) sera désignée
par (i23) ; celle de (2)(34) avec (^3)(4) le sera par (284) ; et ainsi
de suite ; et ces nouveaux points seront un nombre de n—2.

Soient de même joints deux à deux , par des droites, ceux des
points de ces trois séries dont les indices ne portent ni la répétition
d'un même nombre , ni interruption dans les nombres , du plus
petit au plus grand ; et soient désignées ces nouvelles droites par
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l'ensemble des indices des deux points qui auront servLa les dé-
terminer en cette manière (7)(Ï34), (12)(34) , (i23)(4), (2)(345), (23X4?) 9

(^34)(5) , ...... ; il arrivera que les droites dont les indices renferme-
ront les mêmes nombres f lesquelles seront au nombre de trois ,
pour chaque série de nombres , se couperont en un même point y

que Ton pourra simplement désigner par l'ensemble de ces nombres;
ainsi, par exemple , l'intersection des trois droites (7)(l34) , (i2)(34),

sera simplement désignée par (1284) 7 e t ainsi des autres;(41
ils seront au nombre de n—3.

En continuant le même procédé , on obtiendra des points , au
nombre de n—4 » dont l'indice portera cinq nombres 7 et qui seront
les points de concoure de quatre droites ; puis des points au nombre
de n—5 > dont l'indice portera six nombres, et qui seront des points
de concours de cinq droites , et ainsi de suite ; et enfin , un point
unique qui sera le point de concours de n—1 droites , et sera
désigné par ( Ï23 . . . , . / 2 ) .

1T. • Soient n droites arbitraires indéfinies numérotées dans un
ordre quelconque et désignées par 7 , ^ , ^ , iï, se coupant con-
sécutivement. Désignons l'intersection de chaque droite avec celle
qui porte le numéro immédiatement supérieur par l'ensemble de
leurs indices , en cette manière (7 ,2) , (2*, 3) , (3 , 4) , .... (râ—1\ n)-

Par ces points, d'intersection 7 soient menées des droites indéfinies t

que nous, désignerons simplement par l'ensemble des deux nombres
qui forment l'indice de chacun d'eux r en cette manière : 17 ,2? ,

Considérons les intersections deux à deux > au nombre de n—2 f.
de celles de ces droites dont les indices ne présentent ni répétition
ni discontinuité de nombres, du plus petit au plus grand ; et soient
désignés ces points par l'ensemble des indices des deux droites qui
les déterminent en cette manière (7,a3), (12, 3), (2, 34), (a3, 4).....;
les points dont les indices renfermeront les mêmes nombres appar-
tiendront à certaines droites, au nombre de n—2 > que Ton pourra
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-simplement designer par l'ensemble de ces nombres ; ainsi, par
exemple, la droite passant par <7fâ3) et (7^,3) sera désignée pat
1̂ 3 ; celle qui passera par (2, 34) et (23,4) sera désignée par a34 ;
et ainsi des autres.

Soient de même considérées les intersections deux à deux de
celles des droites de ces trois séries dont les indices ne portent ni
répétition ni discontinuité de nombres, du plus petit au plus grand;
«t soient désignés ces nouveaux points par l'ensemble des indices
des deux droites qui auront servi à les déterminer , en cette ma-
nière (7,2*34), ("12,34) , (7, 234*) ,.....••; il arrivera que les point*
dont les indices renfermeront les mêmes nombres , lesquels seront
au nombre de trois 1 pour chaque série de nombres , appartiendront
à une même droite ? que l'on pourra simplement désigner par l'en-
semble de ces nombres ; ainsi , par exemple , la droite qui con-
tiendra les trois points (1,224), (TJT? 34) > (^23,4) sera simplement
désignée par 1234 ; les droites de cette série seront d'ailleurs au
nombre de n—3.

En continuant le mêmje procédé., on obtiendra des droites , au
nombre de n—4> dont l'indice portera cinq nombres , et sur cha-
cune desquelles quatre points se trouveront situés ; puis des droites,
au nombre de n—5 , dont l'indice portera six nombres , et sur
chacune desquelles cinq points se trouveront situés, et ainsi de suite;
et enfin , une droite unique , sur laquelle 72—1 points se trouveront
situés ; et qui sera désignée par i23 n.

Ces deux théorèmes ont également lieu sur la sphère , pourvu
qu'on substitue aux droites des arcs de grands cercles , il arrive
seulement que les points y sont , dans les mêmes circonstances,
-en nombre deux fois plus grand que sur un plan.

Problème d'analise algébrique*

Soit X=o une équation numérique d'un degré quelconque, dont
x soit l'inconnue.
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Soit / la limite inférieure des racines positives de cette équation-;

«o'ït changé x en # + / , ce qui donnera une nouvelle équation
X

Soit l' la limite inférieure des racines positives de cette équation;
en y changeant x en x+l; , on aura une nouvelle équation

Soit Vf la limite inférieure des racines positives de cette équa-
tion ; en y changeant a? en x+lff

 9 on aura une quatrième équa-
lion Xy//zzo 7 et ainsi de suite.

Cela posé ,
i.° On demande de démontrer que , si la proposée J = o a une

ou plusieurs racines positives , la série /+/ / +/ / / +. . . . . sera conver-
gente , et aura pour limite de la somme de ses ternies la plus
petite de ces racines ?
t 2.° On demande ce que deviendrait cette même série , dans le
cas où la proposée , n'ayant aucune racine positive , aurait néan-
moins des variations (*).

(*) La résolution de ces questions est nécessaire pour compléter la théorie
de la méthode publiée récemment par M. Bérard , pour la résolution des équations
ïuiraériïjues.



THÉORÈMES ET P R O B L È M E S > E GÉÔMÉT.e ÉLÉM.e s93

GÉOMÉTRIE ÉLÉMENTAIRE.

Recherches diverses de géométrie plane ;

Par M. VECTEN , licencié es sciences , ancien professeur
de mathématiques spéciales.

JLRO^LÈME. Etant données les trois hauteurs d'un triangle ;
construire le triangle ? (*)

Solution. Ce problème a été traité par M. Carnot dans sa
Géométrie de position ( pag. 371 et suiv. , prob. XXXVI ). Ort
va voir qu'on peut en obtenir une solution beaucoup plus simple
que la sienne.

Pour parvenir à cette solution , consîde'rons les deux trian:les
ABC , abc ( fî . 1 ) , dont le premier est supposé le triangle in-
connu qu'il s'agit de construire y au moyen de ses trois hauteurs
connues AA/ , BB/ , CC7 , tandis que l'autre est un triangle de
dimensions arbitraires 7 supposé seulement semblable à celui-là ; el
dont les trois hauteurs sont aa'9 bb/, ce'.

À cause de la similitude des deux triangles , et parce que , de
plus , dans un même triangle 7 les hauteurs sont en raison inverse
des hases , on aura

(*) Ce problème est un des g5 qui ont été proposes a îa page 3 i5
!VIII.e volume de ce recueil.

J . D. G.

Pom* IX, n.° IX,, 1 .er mars 1819. 3 g
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ce

Kk'.GQ ::eta'iecf \: ah.be^.ab.-— ,
AÀ'
CCf

BB' : CC: : W \etf\'.àb\ ac-ab . —- ;

€C' C<7
or , les rapports —~ , — sont connus; prenant donc arbitrairement

le côté ab du triangle acb , on pourra , par des quatrièmes pro-
portionnelles , déterminer les deux autres -, ce triangle acb pourra
donc être construit 5 et , par suite , on pourra construire ses trois
hauteurs aaf

 7 bb1 , ccf ; ces hauteurs , une fois connues , on dé-
terminera IÔS trois côtés du triangle ABC par ces proportions ,

— ,
aaf

hbf

le problème se trouvera donc ainsi complètement résolu (*).

(*) Soient ^ 9 a* % a*! les 4 w s haurt^urs *Ji>wées f et & , x*, »ff les trois côlëft
inconnus dij triangle cherché. Nous aurons

ces troW hauteurs 9 prises comme cèles , soit ccmpteçml un irfe

àgut les bautsçurs &oknt b, bf
} hlf \ ^o^ls aurons

Enfin « avec les trois hauteurs b, bf
 f 5" de celui-ci , construirons - en un

soieat c , cf, rc
ff
 t ̂
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THÉOtiÈM E. Soitnl A , A /, A" les trois sommets d'un triangle •

€t AP f A'f', tVJP/f ses trois hauteurs, se coupant, comme ton
sait 7 en un même point C , on aura cette suite de rapports égaux

AA' A'A".A"A AC.A'CV'C AC.A'C.A"C

A"P".AP.A'P' A"P'.AP".A'P

Démonstration. Les triangles

APA' , APA" , AT'À» f A'P'A ,

sont respeclivement semblables aux triangles

En divisant l'une par l'autre , les deux prenirères suites d'égalitcs * on aura

b b' b» *'

îe triangle b¥hft est donc semblable au triangle xxrx^\ ses hauteurs e>cr
tc

f!*£
doivent donc être proportionnelles aux hauteurs aùtof* de celui-là, an doil donc avoir

x __ b x' __ bf ^ #" £"

ah of-b* u&b***
a~~ ~ ' * ~~ c' * * "" 1"~ *

ce qui fournît une construction assez elé*gante. Au surplus , la
peut être réduite à ce qui suit :

Avec les trois hauteurs données , prisés pour côtés f formez un triangle, dont
vous mènerez les trois hauteurs ; avec ces trois nouvelles hauteurs 9 prises éga*~
lement pour cétés , formez un second triangle , dont vous mènerez une sêuip
hauteur quelconque ; et prolongez-là au-dessous de la base 9 de manière qiSdbz
devienne égale à la hauteur correspondante du triangle cherché. En menant ^
par l1 extrémité de ce prolongement $ une parallèle à la base 9 elle formera ?

les deux outras i4th prolongés, h triangle demandé*
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ÀP"C , ÀP'C , A'PC , A'P"C , A"P'C , A"PC,

(fig. 2 ) .puisque les uns et les autres sont rectangles et ont de
plus un angle commun ; on a donc

* AA/ _ AC ' A"À _ AC ' A'A" _ À'C
AP "~ AP" * ~AP ~~ A F ' A'P' """ Â P '

jAA' Â C Â A A;'C A'A'' Â C

équations qui, étant multipliées membre à membre^ donneront

AU .A'A" .AA" AC Â C .

mais , d'après un théorème connu ( Voyez , en particulier , la
Théorie des transversales de M. Carnot ) , on a

donc

AA^17A7'*.PA* ÂcM^cM^c* ACMC'.A^C*

d'où , en extrayant la racine quarrée ; on conclura le théorème
<énoncé,

THÉORÈME. Soit pris arlitrairemtnt sur le plan d'un triangle
ABC un point P , par lequel soient menées les droites AP ? BP,
CP , dont les prolongemens rencontrent respectivement en A/, B/ \
O les directions^ BC , CA , AD ; soit formé le triangle A'B'C
dont les côtés B'C' , C/A/ , A ^ , sont coupés respectivement en
*À" t B^ , 'Qf, par PA , PB , PC -, soit formé le triangle M'WW ,
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dont hs côtés WfOf , C 'A", A^B" , sont coupés respecthnmnt
en A-'", B '" , Qf» % par les dioiies PA , P B , P C , et ainsi de
suite.

1.* Les droites 1SC, B'O , B"C", B ^ ^ concourront en
un même point a ; / ^ droites CA , C/A/ , C ' A " , C^A^,......
concourront en un même point b ; */ / ^ droites AB , A'B' , A/yB/; ,
A w , B 7 ' , concourront en un même point c.

2.Q Z^s /TWV points de concours a , b , c , appartiendront à
une même ligne droite*

Démonstration. Par un théorème connu , $\a} b > c sont respec-
tivement les points de concours de BG et B ' C , de CA et C'A' , de
AB et A'B' , ces trois points a , b , c seront en ligne droite. Eu
outre , chacun des triangles de la série indéfinie ABC , A'B'C',
A^B^O7, A///B///G///, ....• se trouvant dépendre de la même manière de
celui qui le précède ? tout se réduira a prouver que B / /C / / passe par a f

QfhJJ par h , et A^B^ par € ; ou plutôt à démontrer simplement
que B^G7 passe par a , puisque les trois côtés du triangle A^B^C'7

se trouvent dans des circonstances absolument semblables*

II s'agit simplement de prouver qu'une droite menée par W1 et
par a ( fig. 3 ) doit passer par A / ;. Pour y parvenir , remarquons
que les deux droites CB# et B/C/a 9 qui s»e coupent en a , d'après
l'hypothèse , forment, avec les deux droites BBX , C^A', le qua-
^lilatère complet B/C//zBA/B//B/, dont les trois diagonales sont Wa,
BCy , hJW ; or , il est connu que l'une quelconque des diagonales
d'un quadrilatère complet est coupée haimoniquement par les deux
autres ( Voyez la Théorie des transversales de M Carnot ) ; donc
le point de rencontre c de BC7 ou BA a\ec A'B', et le point de
rencontre du prolongement de ÛJ}// avec la même droite K'W , sont
ceux où la diagonale A/B/ est divisée harmoniquement. Mais la figura
AB/CA/BPA est aussi vu quadrilatère complet, dont les trois dia-
gonales sont A;B , A ^ , CP ; par conséquent , la diagonale A'B'
M&t divUée harmoniquemeut aux points c «t O 7 \ donc la droite
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tfB" doit passer par le poitit kjf , et l'on demonircrait la même chose
pour les deux autres (*\

THÉORÈME. Soit un quadrilatère complet dont les quatre côtés
Soient ABC'', BCA/, CÂB' , A'B'C, et dont les trois diagonales
soient conséqnemment À A' , BB/ , CC. Soient de plus , a tinter ~
section de BB' et CG / , h f intersection de C C et A A ' , c celle
de ÂA' et BB' \ concevons , en outre , que les tt ois diagonales
so/ent indéfiniment prolongérs ; et soit enfin une droite Jixe et
indéfinie MN , donnée arbitrairement sur le plan du quadrilatère.

Par les deux extrémités de chacune des diagonales soient menées
des parallèles à la droite Jixe MON , prolongées jusqu'à leur ren~
centra avec les deux autres diagonales.

Chaque diagonale , les parallèles pariant de ses deux extrémités'
0t l'une quelconque de s deux autres diagonales seront quatre droites
dont l'ensemble formera un quadrilatère simple , dont on pourra
mener les deux diagonales > lesquelles se couperont en un certain
point*

<*) On j>£tit aussi parvenir ^ assez simplement * à la démonstration de ce
théorème à l'aide des canoide'rations suivantes»

Soient considérés le triangle ABC comme la perspective d'un triangle equi-
latéral , et le P comme la perspective de son centre, ce qui est permis ;.
les droites BC, B'C' , B"C#,.... seront des perspectives de droites paraLlèles,
et devront con$é<juemment concourir en un même point a. Pour la même
ïaison , lés droites G A , C'A', O'A." r.— concourent en un même point b *9 et
les droites AB , A'B7 , A'̂ B" , concourent en un même point €•

Soient présentement considérés les deux triangles ABC y A^B^C" comme le*
perspectives des deux bases dJun tronc de tétraèdre , à bases non parallèles ;
P étant la perspective de son sommet. Alors les points a % b , c seront les
£e¥apeetives de ceux oà les côtés de la base supérieure dfo tronc rencontrent
leurs eoprés pond ans dans fa- basé inférieure; ce sera donc les perspectives de
trois points de l'intersection des plan* des d$ux I a,ses ; et conséquemmenl U$

être çn ligne droite, comme ces Uois poiuls eux-mêmes.
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, Or y comme chacune des trois diagonales AA', BB' , CC'
du quadrilatère complet, combinée tour-à-iour avec les deux autres,
donnera naissance à deux de ces quadrilatères simples ; il arrivera
qu'ils seront en tout au nombre de six.

Cependant les intersections des diagonales de ces six quadri*
laières simples ne seront quau nombre de trois seulement } c'est*
à-dire , que pour les deux quadrilatères dont un côté sera segment
d'une même diagonale et dont les côtés opposés seront les deux
autres diagonales entières % les quatre diagonales se couperont au
même point.

Soit x le point commun d'intersection des quatre diagonales des
deux quadrilatères simples qui , s*appuyant sur AA/ , ont pour
leurs côtés opposés BB/ , CC/.

Soit y le point commun dHntersection des quatre diagonales des
deux quadrilatères simples qui y s'appuyant sur BBy , ont pour leur$
côtés opposés CC' , AA/*

Soit enfin 2 le point commun d'intersection des quatre diagoiçahs
des deux quadrilatères simples qui 7 s*appuyant sur CC', ont pour
leurs côtés opposés AA /, BB7.

Si l'on mène les droites a s , hy , cz , elles seront par&lUleà
entre elles et à la droite fixe MN.

En outre , les points a , b f c seront respectivement tn ligne
droite avec yetz,zetx,xety (*}•

(*> M, Vecten aurait pa considérer aussi les trois quadrilatères simples que
forme chaque couple de diagonales avec les parallèles à MN menées par les
exttémîtes de la troisième.

Appelant xf l'intersection des diagonales de celui dont les côlés parallèles
passent par A, À* ; appelant yf l'intersection des diagonales de celui dont les
côtes parallèles passent par B , B' , et appelant enfin z* l'intersection des deux
diagonales de celui dont les côtés parallèles passent par CC' ; il arrive que xl

 %

y , z* sont respectivement sur les droites yza , zxb, xyc.
M. Ttclett aurait pu ajouter encore que tout ce qui précède ne cesse pas



3oo THÉORÈMES ET PROBLÈMES
Démonstration. On s'assurera facilement de la vérité de ce

théorème en remarquant que la détermination de chacun des points
x , y , z , du point x , par exemple , revient a celle que donne
M. Brianchon , dans son Mémoire sur les lignes du second ordre f

où il propose ( Art. LTV ) de décrire une hyperbole gui touche
quatre droites données ; et qui ait l une de ses asymptotes parai-
lèle à une droite donnée de position ; car , si nous supposons que les
quatre droites B C', CB', BG, BC' (̂  fig. 4) soient les tangentes données
à l'hyperbole cherch e , qui doit avoir en outre , une de ses asymp-
totes parallèle à la droite MN ; la parallèle à cette dernière droite
conduite par B , rencontrera la courbe cherchée en un point que
nous représenterons par U , et qui sera situé à l'infini ; on connaîtra
donc quatre tangentes et un po'nt de l'hyperbole cherchée j on pourra
donc la construire d'après 1 article LI de 1 ouvrage cité. Pour cela ,
il faudra joindre le point a au point U , c'est-à-dire t mener par a
une parallèle ax a MN , puis mener par B Tune des diagonales
du quadrilatère simple qui , ayant BB' pour l'un de ses deux côtés
non parallèles, a son opposé sur A A' ; et le point x de rencontre
de cette droite avec la première sera un des points de la courbe.
Or , on aurait tout aussi bien pu mener l'autre diagonale du qua-
drilatère ; et son intersection avec ax aurait été également un point
de la courbe ; or, cette cette courbe, ayant déjà un point U sur
€tx n'en saurait avoir deux autres sur cette droite ; done , l'autre
diagonale doit également passer par le point x , qui est évidemment
le milieu de la portion de la parallèle à MN conduite par a , in-
terceptée entre AA' et BB/ -, ce qui démontre la première partie de

«l'être vrai f lorsque les droites , au lien d'être parallèles à une droite fixe
concourent en un poinc fixe quelconque.

Tout cela parait pouvoir se démontrer facilement, au moyen, de ee qui
évè dit à la page i83 dit Y IL* volume de ce recueil.

J. D. G.
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îîofre théorème , et en même temps le théorème LiV de l'ouvrage
de M. Brianchon. II est clair , d'ailleurs , qu'on pourrait faire le
même raisonnement sur l'intersection des deux diagonales du qua-
drilatère simple qui , ayant CC' pour l'un de ses cotés , a aus>4î
son opposé sur AA' , et qu'ainsi cette intersection doit se confondre
avec le point x qui se trouve ainsi l'intersection des quatre diago-
nales de deux quadrilatères simples et d'une parallèle à MN con-
duite par a. On démontrerait évidemment des choses analogues des
points y , z. Quant à la seconde partie du théorème, on voit que
les trois points x , y , z appartenant avec le point U à la section
conique qui touche à la fois les quatre droites B/C/, B'C , BC
CB7, il résulte de l'article XXIII de l'ouvrage cité que deux quel-
conques de ces trois points sont toujours en ligne droite avec un
des trois points a, b , c.

f THÉORÈME. Si Von prolonge > dans un même sens > les trois
cotés d'un triangle ABC , des quantités B C , CA' 7 AB'7 respec-
tivement égales aux côtés consécutifs BC , CA , AB ; que l'on pro-
longe les mêmes côtés en sens inverse, des quantités ACX/, CB^ y

BA/7 respectivement égales aux côtés consécutifs AC 7 CB, BA ;
que l'on mène les six droites AA', BB' , C C , AA", BB", CC^,
et qu enfin on mène les trois droites Aa , Bb , Ce divisant les
angles du triangle en deux parties égales, et se terminant en a P

h y c 7 aux côtés opposés } on aura

AA'.BB'.CQ AA^BB .̂CC^ _ BC+CA CA+AB AB+BC
Aa.Bù.Cc ™ Aa.Bb.Cc " AB BG " CA #

Démonstration. Far la construction ( fig. 5 ) , les droites ÀÂ ; /
BB / , CC/ sont respectivement parallèles aux droites BB^, CC ; /

 >

AA7/ 5 d'où il résulte que les triangles ACA7, BAB7 , CBC7 sont
respectivement semblables aux triangles BCB ; / , CAC/(/, ABA;/

 3 et
qu'ainsi on a
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AA/ _ CA BB' _ AB CC _ BC
B&r "~ BC * CC" ~~ C£ ' AA? " " I l 1 '

ce qui donne f en multipliant,

ÀÀ'. BB'. CO _

AA".BB".CC" ~ r '

ou
AA'JBB'.CC'=AA".BB".CC// ,

et démontre ainsi la première partie de la double égalité cî-dessus.
Par la mêiçe construction, les droites A#, B ^ , C :̂ sont respec-

tivement parallèles aux droîtos BB / , GC' , AA/ ; d'où, il résulte
que les triangles GBB/ , BAA/

 ? ACC / sont respectivement sem-
blables au* triangles CaA, B^C, A^B, et qu'ainsi on a

BB' ^B' AA' __ BA' CO __ ACJ
A7 = = = CA ' "cT"""^ ' BT "" AB" ;

ce qui donne , en multipliant

AA'.BB'XC _ BA'.CB'.AO
' AaÙb.Qc ~ "AB.BC.CA 1

mais, d'après la construction , on a

BA'=BC+CA , CB^-CA+AB , AC'=AB+BC ;

donc enfin
AA'.BB'.CC _ BC+CA CA+AB AB+BC
~Âa.B£.C<T ~~ AB BC " CA '

ce qui démontre la seconde partie de notre double égalité.

Soient B , B ' , B / ; , respectivement, les points où les côtés A / A /
>

A-^A, AA7 d'un triangle AA'A" sont rencontrés par les droites
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q u i , partant de ses sommets, divisent ses angles en deux parties
égales. Suivant un théorème connu ( Yoyez la Géométrie de M,
LEGENDRE ) ; on auia

on aura de plus, par un autre théorème connu;

AA' : ÀÀ" i : A'B : A"B ,

et par suite

AA'+AA" : A'B+A"B : : AÀ' : A'B : : AA" : A"B ;

ou

AA'+AA" : A'A" : : AA/ : A'B : : AA" : A"B

de cette double proportion on tirera

AA'+AA" ' A ° AA'+AA" '

substituant ces deux valeurs dans la première équation
on en tirera

(AA'+AA*)* f

ou encore

(AAH-AA")2

(AA'+AA^+A'A'OCAA'+AA^— A'A'O

Ceîa posé , désignons simplement par e% cf > cf/ les trois aêlê&
fî'un triangle et par d y d;, dn les droites qui , divisant ses angles
aa deux parties égales, se terminent aux côtés opposés j nous au«*
ïons ; par ce qui précède
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/» — /
__cc.

prenant donc la racine quarrëe du produit de ces trois équations
il viendra

, .

équation qui donne , sous une forme élégante , le produit des
droites qui divisent les angles d'un triangle en deux parties égales,
en fonction des côtés de ce triangle.

On peut simplier cette équation en remarquant que le radical du
second membre est le quadruple de Taire du triangle* En repré-
sentant ainsi cette aire par ï , il vient

ccfcff (c'+c") (£"+£) (c-HO '

On peut, dans cette dernière expression , Introduire Je rayon du
cercle circonscrit; on sait, en effet , qu'en représentant ce rayon
par R , on a cc/c//~/tTR , ce qui donne, en substituant,

SI Ton veut y introduire f au contraire t le rayon du cercle Ins-
crit, en le désignant par r% il suffira de se rappeler que 2T^rsc
ee qui donnera
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(4)
r(c'+c«) (c"+O (c+c')

Si Ton désigne par p , pf , pu les trois hauteurs du triangle %

on aura

d'où

substituant donc , dans la dernière expression , elle deviendra

(5)

En comparant cette dernière formule à la formule (3) ; on
déduit

et par suite
; (6)

relation remarquable par sa simplicité.
Il est d'ailleurs connu qu'en désignant par r , rf, r ; / , r//y les

rayons des quatre cercles qui touchent à la fois les trois côtés du
triangle, on a rrtrt'rftizzTx ; substituant donc , dans cette dernière
formule ? elle deviendra

R ; (7)

formule également digne d'être remarquée.
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ARITHMÉTIQUE APPLIQUÉE.

Examen critique de quelques dispositions de notre code
d'instruction criminelle ;

Par M. GERGONNE (*).

JLJES ouvrages sortis, de la main dçs hommes t quelque soïn qu'îFs
apportent d'ailleurs à tes perfectionner, décèlent toujours , par quel-
que côté , les bornes étroites de l'intelligence de leurs auteurs.

La législation compliquée d'un grand état , d'un état parvenu à

(*) Le& réflexions ^ue Po» va Kre avaient été adressées à M. le baron Fasquier *
peu après son avènement au ministère de la justice i l'auteur n'en a eu depu s
aucune nouvelle. Il ne serait pas sans exemple que quelque commis se les fut
appropriées et les* eut présentées sous son nom au ministre. S'il en était: ainsi ,
Fauteur rien concevrait aucun Fegret 5 car r après tout , pourvu que le bien
s'opère , il importe assez peu que ce soit pap telle voie on par telle autre.

Cependant , comme il se pourrait, en toute rigueur, que la note adressée k
M* le garde des sceaux eut été égarée , on a pense' qu'à une époque où l'or*
paraît songer sérieusement h la réforme de notre législation criminelle > il pou-
vait n'être pas sans intérêt et sans utilité de la reproduire ici; non toutefois
que les hommes chargés de ce soin lisent des recueils de la nature de celui-ci ;
mais soit parce que ceux qui les lisent peuveot éclairer % sur l'objet en question,
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un très-haut degré de civilisation, doit peut-être, plus cjue toutes
autres créations humaines , offrir la preuve de cette vérité.

Toutefois , lorsque les Imperfections dont la législation d'un pays
se trouve entachée sont de nature à pouvoir être supportées , on
ne doit songer à les faire disparaître qu'avec une prudente lenteur 7

en ne perdant jamais de vue que le mieux n'est que trop souvent
l'ennemi du bien , et qu'à côté de Vavantage de perfectionner se
irowe aussi le danger dinnover.

Mais , lorsque des dispositions législatives offrent un caractère de
contradiction des plus manifestes ; lorsqu'elles font vouloir d'un côté
à la loi ce que d'un autre elle déclare formellement ne vouloir
pas ; lorsqu'il est évident que la discordance choquante qui se trouvé
exister entre ces dispositions n'a pu sérieusement entrer dans la
pensée du législateur, et n'a sa source que dans une de ces dis-*
tractions auxquelles il est presque Impossible de se soustraire , dans
un travail de quelque étendue ; lorsqu'enfin , et sur - tout là
partie de la législation qui se trouve entachée de disparates aussi
évidentes est celle qui décide chaque jour, sur tous les points d'un
vavSte empire , de la liberté, de l'honneur de la vie même des
citoyens y il est alors du devoir de l'autorité d'en provoquer la
réforme , dès qu'elles lui sont signalées ; comme il est du devoir
de chacun de les signaler à l'autorité dès qu'il les a aperçues.

C'est dans la vue de remplir ce dernier devoir , autant <|*i'iï est
en nous , que nous consignons ici les réflexions suivantes»

Le Code d'instruction criminelle statue ( art. 3^7 * 35o, 351 ) ,

ceux qui ne les lisent pas , soit encore parce que cet article , n'exigeant pour
être compris que les notions de calcul les plus éîe'mentaires , peut , à ce titre 9

être transporté » sans inconvénient, dans des ouvrages périodiques" plus accès*
au commun des lecteurs*



3o8 JUGEMENT

i.° Q u e , lorsqu'un accusé est déclaré coupable par un jury;
à la majorité de 8 voix au moins conire 4 a u plus , il y a lieu
à lui appliquer la peine.

2.° Que, dans le cas d'un partage égal de suffrages , dans le
jnry * pour et contre l'accusé, l'avis favorable à cet accusé doit prévaloir.

3.° Que, dans l'un et dans l'autre de ces deux cas , la décision
du jury ne peut être soumise à aucun recours.

4»° Mais que , dans le cas où l'accusé n'a été déclaré cou-
pable du fait principal , par le jury, qu'à la simple majorité de 7
Yoix contre 5 , les juges ( qui , comme l'on sait , sont , dans nos
cours d'assises , au nombre de 5 ) délibèrent entre eux sur ce
même fa t ; et qu'alors , si la simple majorité des juges et dos
jurés réunis eslime que l'accusé n'est point coupable , l'avis favorable
a cet accusé doit prévaloir.

Une conséquence forcée de cette dernière disposition est que >
lorsque la simple majorité des juges et des jurés réunis estime
l'accusé coupable , l'avis favorable à cet accusé ne doit point pré-
Taloir ; et telle est 7 en effet , la jurisprudence uniforme de nos
cours d'assises.

La loi statue donc que , dans Te cas du recours aux juges 9

l'accusé sera déclaré coupable , s'il réunit seulement g voix contre
lui, tant dans la cour que dans le jury.

Mais le recours aux juges ne peut avoir lieu que dans le s eu
cas où l'accusé n'a rencontré dans le jury que 7 voix seulement
qui lui soient contraires.

La loi statue donc que , dans ce cas , l'accusé sera déclaré cou-
pable , pourvu qu'il se trouve seulement dans la cour deux voix
contre lui.

Mais lorsque, dans le sein delà cour, deux voix seulement sont
contraires à l'accusé , trois voix lui sont nécessairement favorables ,
•t consécjuemment la cour doit être réputée le reconnaître innocent.
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La loi statue donc que* l'accusé sera reconnu coupable, si , ayant
été déclaré tel par le jury , à une majorité jugée d'abord insuffisante,
il est ensuite déclaré innocent par les juges , c'est-à-dire , par des
hommes à qui , à raison d'un trop grand penchant présumé à la
sévérité , la même loi n'a pas cru devoir confier exclusivement le
destin de cet accusé.

La loi statue donc qu'un premier jugement dont l'expression lui
semble trop équivoque peut recevoir d'un jugement tout contraire
le complément de force qui lui manque ; elle statue qu'un nouveau
poids , ajouté dans le bassin le plus élevé d'une balance inégale-
ment chargée , la fera pencher davantage du côté du bassin le plus
Bas.

La loi, en donnant son attache à une décision prononcée par
un jury , à la majorité de 8 voix contre 4? déclare par là qu'elle
trouve , dans cette majorité , une garantie suffisante de la culpabilité
de l'accusé. Mais, lorsqu'au contraire elle en appelle aux juges de
la décision de ce même jury, dans le cas où elle n'est rendue
qu'à la simple majorité de 7 voix contre 5 , c'est qu'elle ne trouve
plus, dans cette faible majorité , la garantie que l'autre lui offrait,
et qu'elle veut lui trouver ailleurs un supplément qu'elle juge lui
être nécessaire-

Mais , ce supplément de garantie , ce n'est , certes t pas dans
une décision toute opposée de la part de la cour qu'elle doit se
promettre de l'obtenir ; et c'est pourtant là qu'elle déclare le
rencontrer.

L'opinion des juges , à raison de leurs habitudes, peut bien
être suspectée, lorsqu'ils condamnent; mais, par là même, lors-
qu'ils absolvent, cette opinion doit recevoir de surcroit toute la
confiance qu'on aura cru devoir lui refuser dans l'autre ca$.

Et c'est pourtant par une sentence d'absolution d'un si grand
poids que la loi prétend corroborer une condamnation prononcée
par le jury, k une majorité équivoque.
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Lorsque les opinions sont également partagées dans le jury , il

peut souvent arriver que la cour , qu'on ne consulte pas alors t

soit unanimement d'avis que l'accuse est coupable ; cet accusé a
donc alors n voix contre lui, et 6 seulement qui lui sont favo-
rables , et cependant il est absout de droit ; d'où l'on pourrait in-
férer que la loi ne pense pas que même une majorité de n voix
contre 6 soit toujours suffisante pour condamner.

Et pourtant elle condamne , dans d'autres cas , à une simple
majorité de g voix contre 8.

Et qu'on ne dise pas que le cas du recours aux juges est une
sorte de cas d'exception , une sorte de hors-d'œuvre qui sort tout-
à-fait de la règle commune ; car , outre que lorsqu'il est question
des plus chers intérêts des citoyens , les cas d'exception nô doivent
pas être moins soigneusement combinés que le principe général
auquel ils dérogent ; il n'est malheureusement que trop connu au*
jourd'huî que , par l'effet d'une faiblesse tout au moins très-blâ-
mable , ce que le législateur avait pu en effet n'envisager que comme
une ressource pour des cas extraordinaires est devenu d'une appli-
cation presque journalière ; attendu que les jurés, en dépit de leur
conviction , arrangent communément leur déclaration de manière
à rendre obligatoire l'intervention de la cour,

Nous pressentons une objection ; et nous nous hâtons d'y répondre.
Oà dira pfeot-êfre' qu'un accusé déclaré coupable par un jury ne
peut que trouver avantageuse pour lui la ressource du recours aux
Juges , dont la décision qui , dans aucun cas, ne saurait aggraver
sa situation * peut quelquefois la rendre meilleure.

Ge raisonriiement pourrait tout au plus être admis , si , le recours
à la décision des jugés étant purement facultatif de la part de
Paccusé, la loi avait statué cjue , fatîte par lui d'en faire usage ,
la déclaration du jury, Bien que rendue à une faible majorité,
réglera Son sort ; mais , encore un coup , la loi, qui reconnaît une
majorité de j voix contre 5 trop faible pour condamner, doit, à
plus forte raison 9 lui refuser sa confiance , lorsque la déclaration
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qui en résulte se trouve infirmée par une déclaration contraire de
la cour.

On a peine à comprendre qu'une inconséquence aussi palpable
ait pu se glisser dans notre législation ; on doit présumer du moins
qu'elle n'aurait pas résisté à la lumière de la discussion , dans une
assemblée législative qui n'aurait pas été réduite au silence. Voici
pourtant de quelle manière elle aura pu passer sans être aperçue.

Si, comme nous venons de le faire, et comme on en a incontes-
tablement le droit , on avait considéré la déclaration de la cour et
celle du jury comme deux jugemens distincts et successifs relatifs
au même fait , l'inconséquence que nous venons de signaler aurait
probablement frappé tous les esprits. Mais on s'est sans doute con-
tenté d'envisager les choses en masse ; on a considéré la cour et
le jury comme formant un tribunal unique, composé de 17 juges;
et on s'est apparemment figuré qu'une majorité de 9 voix contre 8,
dans un tel tribunal, offrait plus de garantie que celle de 7 voix
contre 5 , dans un autre tribunal, formé de 12 juges seulement*

Mais il est pourtant visible que c'est précisément le contraire;
et que les nombres 9 et 8, étant plus voisins de l'égalité que ne
le sont les nombres 7 et 5 , décèlent p^r là même une plus grande
probabilité d'erreur dans le jugement qui en émane.

Ainsi, sous quelque point de vue que Fon veuille envisager la
question, on parvient toujours aux mêmes conséquences finales.

Mais, pour réparer une erreur si grave et si manifeste, faudra-
t-il donc bouleverser tout notre système de législation criminelle ?
non , sans doute. Le remède pourrait certainement être appliqué de
bien des manières diverses ; mais , si Ton veut atteindre au but par
le moindre changement possible , il suffira simplement de remplacer
l'article 351 du code, dont la rédaction est d'ailleurs d'une obscure
prolixité f par un article conçu à peu près en ces termes.

351. Si néanmoins l'accusé n'est déclaré coupable du fait prin-
cipal , par le jury , qu à la simple majorité, les juges délibéreront
entre eux sur ce même fait ? aussi à la simple majorité 5 et,
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si leur décision n'est pas conforme à celle du jury J Vans fapo*
table à laccusé prévaudra.

Au moyen d'une disposition si sage et si simple , la dignité de
la cour ne sera jamais compromise , puisque son avis, toutes les fois
qu'il aura été manifesté, sera inévitablement prépondérant; l'accusé,
dont le recours à la délibération de ses juges , pourra souvent amé-
liorer la situation , sans que , dans aucun cas , il puisse la rendre
plus fâcheuse, ne verra plus en eux qu'une autorité tutélaire et
protectrice ; et il ne courra pas le risque d'être condamné à
une majorité moindre que celle de 10 voix contre 7.

A la vérité , la garantie provenant de cette majorité se trouvera
un peu inférieure à celle qu'offre une majorité de 8 voix contre 4 j
qui interdit le recours aux juges \ mais rien n'empêchera de con-
sidérer la première comme la véritable limite que la loi s'interdit
àe franchir , et en dedans de laquelle il lui sera , à plus forte
raison , permis de se tenir dans certains cas. En un mot , on aura
fait ainsi tout ce que la raison et l'équité peuvent rigoureusement
exiger*

Que s i , méditant une réforme générale de nos lois criminelles,
on croyait pouvoir ajourner jusque là le changement partiel que
nous venons de proposer ; nous nous croirions fondés à observer
que les grandes réformes sont d'ordinaire et doivent même être
longuement méditées; tandis que tout délai, tout ajournement est
un crime contre l'humanité, lorsqu'il s'agit de réparer une erreur
évidente , qui peut chaque jour mettre en péril tout ce que les
citoyens ont de plus cher et de plus précieux (*).

Veut-on savoir ce que dit le calcul sur la question qui nous
occupe? M. Laplace va nous l'apprendre (**) : suivant cet illustre

(*) Ici se termine la note à M. le garde des sceaux.
{**) Théorie analitique des probabilités f premier supplément, page 33#
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géomètre, s i , dans un tribunal composé de p+>(] juges, un accusé
est condamné à une majorité de p voix contre q<p\ Terreur pro-
bable de ce jugement sera exprimée par la formule

v 1P+9+1 t H-y4-t p+g .

, p+ç+t p+g p+g—t p+g—2 ^ p+2
1 2 3 4 g

Cela posé, soît d'abord /? = 8 , f = 4 ; cette formule se réduira
à ^7

7V ; puis donc que la loi reconnaît la majorité de 8 voîx
contre 4 suffisante pour condamner , elle déclare tacitement qu'elle
consent à ce que , sur 131072 jugemens , pris au hasard, il puisse
s'en trouver 1747- qui soient erronés. C'est beaucoup , sans doute ,*
mais c'est un motif de plus pour ne pas s'exposer à des chances
d'erreur plus probables.

Soit ensuite /?— 7 , ^ = 5 ; la formule deviendra ^Y/TT ; puis donc
que la loi reconnaît insuffisante une majorité de 7 voix contre 5 ,
allé déclare tacitement qu'elle n'entend pas exposer les citoyens au
risque de 22064 jugemens erronés , sur 131072 jugemens pris au
hasard ; elle ne doit donc, dans aucun cas , exposer les citoyens
à un risque plus considérable.

Soit encore />=9 , ^ = 8 ; la formule deviendra rAVW '? PU1S d° n c

que, dans l'état actuel de notre législation criminelle, une condam-
nation est souvent prononcée à la majorité de 9 voix contre 8 ; il
s'ensuit que la loi , après avoir prétendu garantir les citoyens du
risque de 22064 jugemens erronés sur 131072 pris au hasard ,
les expose ensuite au risque , plus que double , de 53381 jtfge-
mens erronés, pris sur le même nombre.

Soit enfin /?= 10 ; ^ = 7 ; la formule deviendra r/r.Y* \ a*ns' ? dans
le système que nous proposons , le risque ne serait jamais ? dans
le cas même le plus défavorable, que celui de 3i5os jugemens
erronés ? sur 131073 jugemens pris au hasard,
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Nous devons observer , au surplus, pour rassurer ceux de nos

lecteurs qui pourraient être effrayés d'un semblable risque , que la
formule de M. Laplaee suppose que la probabilité de la rectitude
de l'opinion de cbaque juge peut avoir indistinctement tous les
degrés de valeur entre | et i ; tandis que , dans des matières cri-
minelles sur-tout , des hommes d'élite ne se décident guère à sa
prononcer contre un accuse, à moins que la probabilité de sa cul-
pabilité ne leur paraisse fort au-dessus de | et très-voisine de
l'unité; à quoi on peut ajouter encore que , fort souvent, les juges
ou les jurés font f dans l'intérêt de l'accusé, une déclaration con-
traire à leur véritable opinion , quelque fondée que cette opinion
puisse d'ailleurs leur paraître.

Il faut pourtant excepter de ceci les jugemens relatifs à ce qu'on
est convenu d'appeler délits politiques. Il n'arrive malheureusement
que trop, en effet, que, dans ces sortes de jugemens, l'esprit de
parti aveugle les juges et leur fausse la conscience à tel point que
tantôt les indices les plus fugitifs suffisent pour les déterminer , et
que tantôt, au contraire, les preuves les plus manifestes ne sau-
raient trouver accès dans leur esprit ; heureux encore lorsqu'ils ne
votent pas contre leur conviction. Si Ton joint à cette considération
que , dans de telles affaires , la crainte impose silence à la plupart
des témoins soit à charge soit à décharge , ou leur fait supposer
des faits, et que le moins qu'il puisse arriver est qu'ils exagèrent
ou pallient des faits réels; on sentira qnel fond on doit faire > en
général, sur des sentences, soit d'absolution soit de condamnation-,
prononcées au milieu des troubles civils.

On se tromperait grossièrement si l'on se figurait que la question
de législation qui vient de nous occuper est la seule où l'applica-
tion du calcul soit nécessaire ; ces sortes de questions sont , au
contraire , excessivement nombreuses. Pour en donner un nouvel
exemple, sans sortir toutefois de ce qu'il y a de plus élémentaire ?

arrêtons-nous uu moment sur la question des appels.
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Considérons une suite de tribunaux subordonnes les uns aux

autres , de telle manière que l'on puisse appeler devant chacun d'eux
d'un jugement rendu par le tribunal qui lui est immédiatement
inférieur. Soient an+i , 2/2/-f-i , an^-t-i » respectivement le
nombre des juges de ces divers tribunaux , du plus inférieur au plus
élevé; soient p , pf, p/;

 9 des nombres abstraits représentant le
poids moyen de l'opinion de chaque juge dans chacun de ces tribu-
naux , respectivement.

Si Ton suppose d'abord qu'il n'y ait qu'un seul tribunal, il est
clair qu'il sera suffisant, pour qu'un jugement soit rendu qu'il ob-
tienne une majorité de #-f-i voix contre n ; mais il se pourra aussi
que ce jugement soit rendu à l'unanimité.

Supposons , en second lieu , qu'il en soit ainsi ; mais que la
voie de Fappel à un second tribunal soit ouverte à la partie lésée. II lui
suffira , pour obtenir gain de cause devant ce nouveau tribunal, d'y

réunir une majorité de nf-\-i voix contre nf. Il y aura donc , en
faveur du second jugement, un poids (n/+i)p/, et contre ce même
jugement un poids (2n^i)p+n/p/. Afin donc de ne point tomber
dans l'absurde , il faudra qu'on ait

ou bien

étant une fraction positive si petite qu'on voudra. On tiré de

siîmi } quel que soit d'ailleurs le nomhre des juges du second tri-
bunal , iljaui que le poids de V opinion de chacun -des juges qui
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le composent soit supérieure à autant de fois le poids de F opinion
d'un juge du premier quil y a des juges dans celui-ci.

Si l'on suppose que le premier des deux tribunaux n'a qu'un
seul juge , on voit qu'alors , pour si peu que les juges du second
tribunal soient plus éclairés que ce juge unique , nos conditions
se trouveront remplies ; c'est le cas des appels, devant les tribunaux
de première instance, des jugemens rendus par nos juges de paix.

Nos tribunaux de première Instance étant eux-mêmes composé*
de trois juges, on voit, par notre formule que , pour qu'un juge-
ment rendu sur appel de ces tribunaux par nos cours royales
puisse, dans tous les cas , être réputé conforme à l'équité , il
faut admettre que les juges de ces cours ont une capacité plus
que triple de ceile des juges de première instance. C'est au lecteur
à décider s'il pense qu'il en soit toujours ainsi»

Nous avons eu, durant plusieurs années , en France , un système
de tribunaux civils, égaux en attribution , et tribunaux d'appel 7

les uns à l'égard des autres. Il est clair qu'alors on n'avait aucun
motif de préférer l'opinion des juges de l'un de ces tribunaux à
ceUe des juges de tout autre. Un tel ordre judiciaire était donc
essentiellement vicieux, bien qu'on eût pris la précaution , autant
que no&s pouvons du moins nous en rappeler , de faire prononcer
les jugemens sur appel par cinq juges. On voit, en effet , qu'après
avoir gagné un procès en première instance à l'unanimité de 3
voix , on pouvait ensuite le perdre en appel , à la simple majorité
de 3 voix contre 2 ; de sorte qu'on se trouvait condamné f bien
qu'on eût eu 5 voix en sa faveur, et 3 seulement contre soi. Voilà à
quoi peuvent être exposés les citoyens, avec des législateurs étrangers,
pour la plupart ; aux premières notions du calcul ; et il continuera d'en
être ainsi tout aussi long-temps qu'on persistera à ne considérer
l'étude des sciences exactes que comme propre seulement k former
des artilleurs, des ingénieurs, des astronomes et des marins.

J'ai supposé tout-à-l'heure que le jugement du second tribunal
n'était rendu qu'à la simple majorité. Supposons présentement qu'il

le
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le soît à l'unanimité, et dans le même sens que celui du premier,
mais que la voie de l'appel à un troisième tribunal soit ouverte
à la partie perdante. Supposons enfin que , devant celui-ci , elle
obtienne gain de cause à la simple majorité ; alors le poids de
l'opinion , en faveur de l'arrêt définitif , aura pour expression

(*"+!>" ,
et le poids de l'opinion contraire sera exprimé par

afin donc que l'opinion du plus grand poids ne se trouve pas être
l'opinion contraire à cet arrêt ; on devra avoir

qui devient, en réduisant 9

ou encore

J étant une nouvelle fraction positive si petite qu'on voudra»
minant donc p entre cette équation et l'équation

trouvée ci-dessus , on obtiendra

T*m. IX.
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272-

La fraction qui commence le second membre de celle équation
pouvant être si peu au-dessous de l'unité qu'on voudra , peut
être représentée par i—x , x étant une fraction positive si petite
qu'on vondra ; représentant ensuite *'—h par \f qui pourra être
une très-petite fraction , positive ou négative , ou même zéro f

on aura

ce qui nous apprend que le poids moyen de Vopinion de chacun
des juges du troisième tribunal doit être au moins autant de

fois plus grand que le poids de l'opinion de chacun des juges
du second qa'il y a d'unités dans le double du nombre des juges
qui forment la majorité de celui-ci.

Ainsi , par exemple , nos cours royales rendant communément
leurs arrêts à 7 juges, dont la majorité est 4 ; pour que , dans
le cas du recours en cassation ? on ne soit jamais exposé à
craindre que l'opinion contraire à l'arrêt définitif soit d'un plus
grand poids que celle qui lui est favorable , on est contraint d'ad-
mettre qu'un juge en cassation est communément 8 fois plus éclairé
qu'un juge en cour royale , et conséquemrnent au moins 24 fois
plus qu'un juge de première instance,

Nous ne pousserons pas plus loin cette analise , qui ne saurait
offrir de difficulté d'après ce qui précède. Nous nous bornerons
seulement à observer que d'une part nous avons tacitement sup-
posé que toutes les requêtes en cassation étaient indistinctement
admises , tandis que leur admission est le résultat d'un jugement
préalable, ce qui complique encore la question; et que dune autre,
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la cour de cassation jugeait , comme les cours royales } du fond
même de l'affaire, et en jugeait souverainement; tandis qu'elle ne
juge réellement que de la forme ; et que l'opposition de son opinion
avec celle d'une cour royale n'entraîne qu'un renvoi devant une
autre cour.

Ne négligeons pas cependant une dernière considération : c'est
qu'il ne suffirait pas? pour justifier le système des appels, système
très-coûteux pour le gouvernement et pour les plaideurs , d'orga-
niser les tribunaux de telle sorte que Fopinion en faveur du
dernier arrêt eût constamment plus de poids que l'opinion opposée;
îl faudrait , en outre, que ce dernier arrêt fût plus probablement
conforme à la vérité qu'aucun de ceux qui l'auraient précédé;
mais ceci entraînerait des recherches très-délicates f dans lesquelles
nous ne saurions nous engager pour le présent.
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QUESTIONS PROPOSEES

Problème de probabilité*

N doit projeter au hasard sur un plan horizontal un tétraèdre
donné, pesant et homogène ; quelle probabilité y a-t-il qu'il tombe
sur une face désignée.

Théorème cCanalise indéterminée*

Un nombre impair 2/2*4-1 est ou n'est pas premier, suivant
l'un des deux nombres 2n<jri est ou n'est pas divisible par n (*).

'(*) Si la méthode que fournit ce théorème , pour discerner si un nombre
est ou n'est pas premier , est laborieuse , elle l'est pourtant incomparablement
moins que celle qu'on déduirait du Théorème de Wilson*







RECHERCHES SUR LES POLYÈDRES.

GEOMETRIE ELEMENTAIRE.

Recherches sur les polyèdres , renfermant en particulier
un commencement de solution du problème proposé
à la page 266 du VIl.e volume des Annales j

Par un ABONNÉ.

*N donne le nom de polygone régulier à un polygone dont
tous les angles et tous les côtés sont égaux ; et il suit clairement
de cette définition que, même en faisant abstraction des polygones
étoiles de M. Poinsot, les polygones réguliers sont en nombre
infini , et que le nombre de leurs côtés peut être quelconque.

Il a d'ailleurs déjà étéremarqué, dans ce recueil ( tom. VI,pag. 199)*
qu'au nombre de ces polygones on ne peut se dispenser de com-
prendre la ligne droite, considérée comme double : c'est un polygone
de deux côtés, ayant deux angles nuls, et pour lequel le cercle
circonscrit a pour diamètre l'un des côtés , tandis que le cercle
inscrit se réduit à un point

Les limites extrêmes des polygones réguliers de cette sorte sont
d'une part le point , pour lequel les cercles inscrit et circonscrit
se confondent , et deux parallèles indéfinies qui ont un cercle
circonscrit d'un diamètre infini , tandis que le cercle inscrit a pour
diamètre la distance entre les deux parallèles.

Nous ajouterons qu'au nombre des polygones réguliers on doit
encore comprendre le cercle , considéré comme polygone régulier

Tom. JX?n.° X, i.er ami iBi§. 43
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d'une Infinité de côtés infiniment petits f et pour lequel , cômfne
pour le point, les cercles inscrit et circonscrit se confondent.

Nous dirons que deux polygones sont conjugués l'un à Vautre,
lorsque chacun d'eux aura autant de sommets que Vautre aura de
côtés ; et comme, dans tout polygone , le nombre des sommets est
égal au nombre des côtés ; il s'ensuit que tout polygone est conjugué
à lui-même.

Si Ton fait des côtés d*un polygone régulier les bases d'autant
de triangles isocèles et égaux , ayant leurs sommets hors du po-
lygone , ces triangles , avec le polygone donné, formeront un nou-
veau polygone , dont le nombre des côtés pourra indistinctement,
suivant la nature des triangles ajoutés , être égal au nombre de
ceux du premier ou en être double ; et qui , dans l'un et dans
Vautre cas , pourra être régulier comme lui.

Un polygone régulier étant donné , si Ton en retranche tous les
Sommets par des perpendiculaires aux droites qui divisent ses angles
en deux parties égales, de telle sorte que les parties retranchées '
soient des triangles isocèles égaux ; ce qui restera du polygone sera
un nouveau polygone, dont Je noynbj-e des côtés pourra indistinc-
tement, suivant la grandeur, des triangles retranchés > être égal au
nombre de ceux du premier ou en être double ; et qui, dans l'un
et dans l'autre cas , pourra être régulier comme lui.

On donne le nom $ angle polyèdre régulier \ tout angle polyèdre
dans lequel les angles pl^ns et les angles dièdres sont égaux entre
eux ; et il suit clairement de cette définition que , même en faisant
abstraction des angles pqlyèdres étoiles que Ton pourrait former ,
à l'imitation des polygones étoiles de M. Poinsot , les angles po-
lyèdres réguliers sont en nombre infini , et que le nombre de leurs
faces peut être, quelconque (*),

(*) II y a , au surplus, cette distinction à établir entre les angles polyèdres
l i s et les polygones réguliers que ces derniers sont donnés d'espèce, dès
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II faut remarquer qu'au nombre des angles polyèdres réguliers

on doît comprendre l'angle plan 7 considère' comme double ; c'est
en effet un angle polyèdre à deux faces , ayant deux angles dièdres
nuls, et pour lequel le cône circonscrit a un angle générateur,
moitié de l'un des angles plans , tandis que le cône inscrit se
réduit à une droite.

Les limites extrêmes des angles polyèdres réguliers de cette sorte
sont d'une part la ligne droite , pour laquelle les cônes ins-
crit et circonscrit se confondent , et l'angle dièdre dont le cône
circonscrit est un plan , tandis que son cône inscrit a un angle
générateur , moitié de l'angle dièdre.

Nous ajouterons qu'au nombre des angles polyèdres réguliers on
doit comprendre aussi le cône de révolution , considéré comme un
angle polyèdre ayant une infinité d'angles plans infiniment petits,
et pour lequel , comme pour le point, les cônes inscrit et circons-
crit se confondent.

Nous dirons que deux angles polyèdres sont conjugués Vun à
Vautre, lorsque chacun d'eux aura autant d'arêtes que l'autre auca
de faces ; et comme , dans tout angle polyèdre , le nombre des
faces est égal au nombre des arêtes , il s'ensuit que tout angle
polyèdre est conjugué à lui-même.

Si l'on fait des faces d'un angle polyèdre régulier les bases d'autant
d'angles trièdres isocèles et égaux , de même sommet que lui ;
ayant l'arête opposée à la base hors de l'angle polyèdre ; ces angles
trièdre , avec l'angle polyèdre donnp, fermeront un nouvel angle
polyèdre, dont le nombre des faces pourra indistinctement ? suivant
la nature des angles trièdres ajoutés , être égal au nombre de celles
du premier ou en être double ; et qui , dans l'un et dans l'autre
cas , pourra être régulier comme lui.

qu'on donne le nombre de leurs côtés ; tandis qu'avec un nombre de face*
donné on peut faire des angles polyèdres réguliers d'une infinité d'espèces
différentes
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Un angle polyèdre régulier étant donné , si Ton «n retranche

toutes les arêtes, par des plans passant par son sommet et res-
pectivement perpendiculaires aux plans qui divisent ses angles dièdres
en deux parties égales ; de telle sorte que les parties retranchées soient
des angles trièdres isocèles et égaux ; ce qui restera de l'angle po-
lyèdre sera un nouvel angle polyèdre , dont le nombre des faces
pourra indistinctement^ suivant la grandeur des angles trièdres re-
tranchés , être égal au nombre de celles du premier ou en être double ;
et qui , dans l'un et dans l'autre cas , pourra être régulier comme lui.

Les notions que nous venons de présenter , ou plutôt de rappeler,
sont extrêmement élémentaires , et pourraient même passer pour
triviales. Nous pensons toutefois qu'elles sont une utile introduction
à ce que nous nous proposons de dire sur les polyèdres.

Nous dirons , à l'avenir de deux polyèdres qu'ils sont conjugués
ïun à Vautre , lorsqu'ayant le même nombre d'arêtes , le nombre
des faces de chacun sera égal au nombre des sommets de l'autre t

et qu'en outre le nombre des côtés de chaque face de l'un quel-
conque sera égal au nombre des faces du sommet homologue de
l'autre,. Nous ne donnons , pour le moment , aucun exemple de
ces sortes de polyèdre , la suite devant en fournir d'assez nombreux.

On est convenu de n'appeler polyèdres réguliers que les polyèdres
dont toutes les faces sont des polygones réguliers égaux et dont,
en outre , tous les sommets présentent des angles polyèdres réguliers
égaux ; d'où Ton voit qu'un polyèdre régulier peut fort bien avoir
pour conjugué un autre polyèdre régulier.

Mais , attendu l'excessive exigeance de cette définition , on est
raisonnablement fondé à se demander s'il peut réellement exister
des polyèdres réguliers. Avant de traiter cette question , on peut
s'en proposer une autre moins circonscrite, et se demander s'il peut
exister des polyèdres , réguliers ou non , dans lesquels toutes les
faces aient le même nombre de sommets, et tous les spmmets le
même nombre de faces,
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La manière la plus naturelle de traiter cette dernière question

paraît être la suivante : Soient A le nombre des arêtes du pohèdre,
F le nombre de ses faces, et S le nombre de ses sommets ; sup-
posons , en outre , que chacune de ses faces ait s sommets et
conséquemment s côtés , et que chacun de ses sommets ait / faces
et conséquemment f arêtes.

Si Ton compte , tour-à-tour , les côtés de toutes les faces , oa
les trouvera au nombre de si ; mais , de cette manière , on aura
compté deux fois chacune des arêtes du tétraèdre f puisque chacune
d'elles sert de côté à deux faces consécutives ; donc

sF=2A .

SI ensuite , on compte , tour-à-tour, les arêtes de tous les sommets ;
on les trouvera au nombre de fS, mais , de cette manière , on aura
encore compté deux fois chacune des arêtes du tétraèdre , puisque
chacune d'elles sert d'arête à deux sommets consécutifs j donc

Enfin , par le théorème d'Euler ( Annales, tom. III, pag, i6$)i
on aura ; en outre

Voilà donc trois équations , au moyen desquelles on peut
A, F 7 5 , en fonction de f % s.

Avant d'aller plus loin , nous ferons remarquer que, ces équations
restant les mêmes lorsqu'on y permute à la fois^et s , F et 5 ; il s'en-
suit que y s'il existe des polyèdres dont toutes les faces aient le
même nombre de sommets et tous les sommets le même nombre
de faces ; à chacun d'eux il en doit répondre un autre , qui e$
sera le conjugué,

De ces trois équations oa tire
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A-

11 s'agit donc présentement de savoir s'il y a des nombres entiers
positifs , plus grands que l'unité > qui , mis pour f et s dans ces
formules, donnent pour F , S , A des valeurs entières et posi-
tives. Nous disons plus grands que l'unité , et non pas plus grands
que deux, puisque , suivant les remarques faites ci-dessus , un po-
lygone peut fort bien n'avoir que deux sommets , et un angle
polyèdre deux faces seulement»

II faut donc , en premier lîeu , que le dénominateur commun de
ces trois.formules ne soit point négatif -, or, si Ton pose 7 à la fois %

on aura

qui sera négatif, toutes les fois qu'on n'aura pas en même temps
j'zzQ) ^=0» Pareillement, si L'an pose, à la fols,

on aura

quantité quî est pareillement négative , toutes les fois que f* et $*
ne sont pas tous deux nuls.

Ainsi, les deux nombres f et s ont une limite de grandeur qui
est 6 , et encore ne faut-il pas , lorsque l'un d'eux a atteint cette
limite , que l'autre soit supérieur à X
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Si, dans le même dénominateur commun , on fait / ou s=z5,
il deviendra

ïo—3s ou io— 3/" i

et y pour qu'il ne soit point négatif, il faudra encore que s ou f^
ne soit pas plus grand que 3.

Si ; dans le même dénominateur , on fah/ou $=4 ; il deviendra

2{4-s) ou 2 ( 4 - / ) ;

et , pour qu'il ne soit point négatif, il faudra que 5 o u / n'excède
pas 4*

Si nous supposons/=?2 , nos formules deviennent

F = 2 , S = s , A—s ;

valeurs qui seront toujours entières et positives , quelque valeur
entière et positive qu'on donne à s» Cest qu'en effet, tout poly~
gone peut être considéré comme un polyèdre à deux faces, dans
lequel les faces ont le même nombre de sommets , et où les sommets
ont le même nombre de faces qui est ici deux ; mais c'est unpo-*
lyèdre qui renferme un espace nul.

Si nous supposons £~2 , nos formules deviendronÊ

valeurs qui seront toujours entières et positives J quelque valeur
entière et positive qu'on prenne pour/. Cest qu'en effet tout prisme
indéfini peut être comme un polyèdre a deux sommets , dans lequel
les sommets ont le même nombre de faces , et où les faces ont le
même nombre de sommets qui est ici deux\ mais c'est un polyèdre qui
renferme un espace infini.

On peut remarquer de plus qu*un polygone et un prisme tels
que le nombre des sommets du premier soit égal au nombre des
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faces du second , considérés comme polyèdres , sont des polyèdre*
conjugués l'un à l'autre.

Ces cas ainsi écartés , il ne nous restera plus a faire que les
suppositions suivantes*

/=3 ,/=3,/=4 ,/=4,/=3 ,/=5,/=3,/=6,

lesquelles donneront, pour les valeurs correspondantes de F , 5 , À f

5=4 , 5=8 , 5=6 , 5=oo , 5=2o , 5=ia > 5=«o f 5=

Àînsi, en écartant les valeurs infimes , sur lesquelles nous revien-
drons tout-à-rheure , nous trouvons

i>° Un polyèdre de 6 arêtes ayant 4 faees triangulaires et 4
sommets trièdres ; c'est le tétraèdre qui est ainsi conjugué à lui-
même,

2.° Deux polyèdres de 12 arêtes , dont l'an a 6 faces quadrao-
gulaires et 8 sommets trièdres, tandis que l'autre a 8 faces trian-
gulaires et 6 sommets tétraèdres. L'un est un tronc de pyramide
quadrangulaire , à bases non parallèles ; l'autre est formé de deux
pyramides quadrangulaires opposées base à base ; ils sont, conjugués
Tun à l'autre,

3.° Enfin , deux polyèdres de 3o arêtes , dont l'un a 12 faces
pentagonales et 20 sommets trièdres , tandis que l'autre a 20 faces
triangulaires et 12 sommets pentaèdres; ils sont donc aussi conjugués
l'un à l'autre.

Quant aux trois cas pour lesquels nous trouvons des valeurs in-
finies 7 il est clair que, si nous supposons les faces d'une grandeur

finie t
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finie, le polyèdre sera d'une grandeur infinie-, si donc on le suppose con-
vexe , une portion finie de sa surface pourra être considérée comme un
plan; ces trois cas nous indiquent donc de combien de manières on peut
couvrir un plan avec des polygones , de telle sorte que tous ces poly-
gones aient le même nombre de côtés et qu'ils soient réunis en même
nombre autour de chaque sommet ; on peut donc parvenir a ce
but , savoir ;

i.° En couvrant le plan , soit de triangles se re'unissant au nombre
de 6 autour de chaque sommet , soit d'hexagones se réunissant au
nombre de 3 autour de chaque sommet ; et ces deux systèmes de
polygones seront conjugués Pun a l'autre.

2.0 En couvrant le plan de quadrilatères, se réunissant au nombre
de 4 autour de chaque sommet; et un tel système sera conjugué
à lui-même.

On peut encore envisager /la chose sous un autre point de vue .
on peut supposer les polygones infiniment petits et alors le polyèdre,
qui sera d'une grandeur finie deviendra un corps terminé par une
surface courbe. Ainsi, une surface courbe se refermant d'elle-même
telle , par exemple y qu'un ellipsoïde peut être découpée en portions
infiniment petites , soit triangulaires se réunissant au nombre de
6 autour de chaque sommet , soit hexagonales se réunissant au
nombre de 3 autour de chaque sommet , soit enfin quadrangulaires
se réunissant au nombre de 4 autour de chaque sommet.

On voit donc que , s'il peut exister des polyèdres réguliers f ce
ne saurait être que parmi ceux que nous venons de rencontrer ; et
îa manière la plus simple de s'assurer qu'ils existent en effet , et
en même nombre , est celle qu'emploie M. le professeur LhuHier
( Annales 9 tom. I I I , pag. 233 ) , et qiû consiste à rechercher de
combien de manières on peut réunir , par leurs somn ets, des
pyramides régulières égales entre elles , assemblées en même nombre
autour de chaque arête latérale , de telle sorte que ces pyramides
remplissent l'espace entier autour de leur sommet commua , et

Tom. IX. 44
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forment ainsi f par leur réunion , un polyèdre unique qui sera
évidemment régulier.

Soit F le nomhre des faces du polyèdre , lequel sera en même
temps le nomhre des pyramides; soient S le nomhre de ses sommets
et A le nomhre de ses arêtes ; soient enfin s le nomhre des som-
mets de la base de chaque pyramide ; et f le nombre des pyra-
mides qui se réunissent autour de chaque arête latérale ; désignons
enfin par s chacun des angles dièdres latéraux de ces pyramides,
rapporté à l'angle droit dièdre ; l'angle polyèdre du sommet aura
pour expression ( pag. 276 de ce volume ) £#—-2 (,?•-— 2) ou
s(x—a)+4 > l'angle droit trièdre étant l'unité. Il faudra donc, d'une
part , que la somme des angles dièdres , autour de chaque arête
latérale t fasse quatre angles droits, ce qui donnera

et il faudra, en outre, que la somme des angles polyèdres autour
du sommet commun fasse 8 angles droits trièdres ; c« qui donnera
encore

éliminant x entre ces deux équations , on en tirera , comme ci-dessus,

et 1 comme d'ailleurs on aura encore, comme alors

le» valeurs de 5 et A seront aussi les mêmes que ci-dessus.

4uui t les polyèdres réguliers sont,
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î,* Le tétraèdre, conjugué à lui-même;

a.° IJ hexaèdre et Y octaèdre, conjugués l'un à l'autre;

3.° Le dodécaèdre et Yicosaèdre , conjugués l'un à l'autre ;
4-° La sphère divisée en compartimens triangulaires équilateraux

infinimens petits, et la sphère divisée en compartimens hexagonaux
réguliers infiniment petits , conjuguées aussi Tune k l'autre , et
auxquelles on pourrait substituer deux plans indéfinis , en donnant
aux compartimens une grandeur finie ;

5,° Enfin la sphère divisée en quarrès infiniment petits , conjuguée
à elle-même, et à laquelle on peut subtituer un plan indéfini, en
donnant aux quarrés une grandeur finie.

Mais il faut encore joindre à cela, i.° tous les polygones ré-
guliers , à partir de la ligne droite et à finir par le cercle ; 2.0 tous
les prismes réguliers, à partir de deux plans parallèles et à finir
par le cylindre de révolution ; ces derniers étant les conjugués des
premiers ; ce sont en effet de véritables polyèdres réguliers , dont
les premiers embrassent une étendue nulle , tandis que l'étendue f

embrassée par les derniers , est infinie*
II est donc vrai de dire que , rigoureusement parlant, et même

en faisant abstraction des polyèdres étoiles de M. Poinsot, les po-
lyèdres réguliers sont en nombre infini, et constamment conjugués
soit à eux-mêmes soit deux à deux , ce qui n'avait pas encore été
remarqué ; mais parmi ces polyèdres il n'y en a que 8 seulement
qui renferment un espace réel et fini ; et parmi ces 3 il en est 5
seulement dont les faces ont une grandeur finie*

Deux polyèdres réguliers conjugués peuvent être inscrits ou cir-
conscrits l'un à l'autre ; et même le problème de l'inscription ou
de la circonscription d'un polyèdre régulier à son conjugué est un
problème indéterminé, à moins pourtant qu'on ne demande le plus
petit des inscrits ou le plus grand des circonscrits ; auquel cas les
sommets de Tuu devraient être les centres des faces de Tautie*
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L'indétermination du problème dans les autres cas donne lieu aux
deux questions suivantes.

PROBLÈME 1. Quel est, sur les faces d'un polyèdre régulier
donné, le lieu des sommets de tous les polyèdres réguliers con-
jugués qui peuvent lui être inscrits ?

PROBLÈME IL Quelle est, pour un polyèdre donné, la sur-
face enveloppe de l'espace parcouru par les faces dun autre po-
lyèdre régulier, conjugué à celui-là , et variable de grandeur , qui
lui est constamment circonscrit ?

Le premier de ces deux problèmes , résolu seulement pour le
cas du cube et de l'octaèdre , par TVlairan , dans le volume de
l'académie royale des sciences pour 1726, a été déjà proposé dans
le présent recueil : l'autre nç Ta encore été nulle part.

Concevons que Ton érige sur chacune des faces d'un polyèdre
régulier quelconque, comme sur autant de bases , des pyramides
régulières et égales, ayant leurs sommets hors de ce polyèdre ;
ces pyramides , jointes au polyèdre donné 9 formeront un nouveau
polyèdre qui, généralement parlant, ne sera pas régulier. Si , dans
deux pyramides consécutives, on considère les deux faces latérales
qui ont pour base commune une même arête du polyèdre primitif ;
suivant la hauteur commune qu'on aura donné aux pyramides,
ces deux faces pourront être dans un même plan ou dans des plans
difïérens ; dans le premier cas, les faces du nouveau polyèdre >
en nombre égal à celui des arêtes du premier , et ayant ses arêtes
pour diagonales seront des rhombes ; dans le second y elbs seront
en nombre double de celui de ses arêtes et seront toutes triangu-
laires. Dans ce dernier cas , on pourra même donner aux pyramides
une hauteur telle que tous les sommets du nouveau polyèdre soient
réguliers ; mais ils n'auront pas tous , en général, un même nombre
de faces.

Concevons ensuite qu'au contraire on retranche tous les sommets
du polyèdre primitif , par des plans tellement dirigés que les parties
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retranchées soient des pyramides Régulières égales entre elles/ ce
qu* restera du polyèdre donné sera un nouveau polyèdre qui, géné-
ralement parlant, ne sera pas régulier. Les plans coupant s'avan-
ce ont ou ne s'avanceront pas jusqu'aux milieux des arêtes du po-
lyèdre primitif ; dans le premier cas , les sommets du nouveau po-
lyèdre , en nombre égal à celui des arêtes du premier seront
tétraèdres ; dans le second , ces sommets seront en nombre double
et seront tous trièdres. Dans ce dernier cas > on pourra même faire
en sorte que toutes les faces du nouveau polyèdre soient des poly-
gones réguliers; mais, en général, ces polygones n'auront pas tous le
même nombre de côtés.

Ces sortes de polyèdres, ou plutôt ceux de la première sorte y
car il n'est pas à notre connaissance qu'on se soit encore occupé
de ceux de la seconde 9 ont été désignés par quelques géomètres
sous la dénomination de Polyèdres semi-réguliers ; et nous adopte-
rons cette dénomination ; mais f puisque nous en reconnaissons de
àeuxsorte$9 afin de nous rendre plus facillement intelligibles , nous
dirons des premiers qu'ils sont semi-réguliers par excès , et des
derniers qu'ils le sont par défaut* En outre , puisque nous avons
distingué deux cas , pour les uns comme pour les autres t nous
en aurons de première classe qui auront le moindre nombre de
faces ou de sommets, et de seconde classe } pour lesquels le nombre
de ces faces ou sommets, sera double»

Gela posé , conservons aux lettres À , F, S , f , s , pour le
polyèdre primitif ? la signification qu'elles ont déjà reçue , et voyons
quels seront , en général , le nombre et la nature des faces, som-
mets et arêtes des quatre polyèdres semi-réguliers auxquels ua
polyèdre régulier quelconque pourra donner naissance.

SEMI-RÉGULIER PAR EXCÈS. Première classe.

A faces , toutes rhombes ;
F+S ou A-hz sommets, dont i*1 de.* faces et S de/ faces;
Fs ou zÂ arète$.
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Seconde classe.

2 A faces, toutes triangulaires;
F-hS ou A~\~2 sommets , dont F de s faces et 5 de 2/ faces ;

ou ZA arêtes.

SEMI-RÉGULIERS PAR DÉFAUT. Première classe.

A sommets, tous tétraèdres;
F-\rS ou A-\-2 faces , dont S de f sommets et F de s sommets]
Sf ou zA arêtes.

Seconde classe.

2A sommets , tous trièdres ;
F-\-S ou A+2 faces, dont S de f sommets et F de 2s sommets;
Sf-\*A ou 3 A arêtes.

Faisons d'abord l'application de ces formules aux cinq corps
réguliers qui, ayant des faces d'une grandeur finie, enferment une
portion finie de l'espace.

Pour le tétraèdre, on a A~Q > 5 = 4 , F = 4 , * = 3 t / = 3 ; ce
polyèdre fournira donc

i*° Un hexaèdre régulier.
2.* Un corps à 12 faces triangulaires, ayant 8 sommets dont 4

trièdres et 4 hexaèdres, et 18 arêtes.
3.° Un octaèdre régulier.
4*é Un corps à \2 sommets trièdres , ayant 8 faces , dont 4

triangulaires et 4 hexagonales, et 18 arêtes.
Pour Xhexaèdre% on a A=z\% , 5 = 8 , 2^=6 , J = 4 > 1 / = 3 ; ce

polyèdre fournira donc
i.° Un corps à 12 faces rhomï>es , ayant 14 sommets, dont 6

trièdres et 8 tétraèdres, et 24 arêtes*
3.0 Un corps à 24 faces triangulaires, ayant %4 sommets, dont

6 tétraèdres et 8 hexaèdres, et 36 arêtes.
3.° Un corps à 12 sommets tétraèdres, ayant i4 faces ? dont 8

triangulaires et 6 quadrangulaires , et 24 arêtes,
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*4d Un corps à 24 sommets trièdres , ayant i4 ^ a c e s » ^ o n t 8

triangulaires et 6 octogonales, et* 36 arêtes.
Pour Voctaèdre, on a ^ = 1 2 f S~6 % F~8 , J = 3 , / = 4 i c ô

corps fournira donc
i.° Un corps à 12 faces rhombes , ayant Ï 4 sommets f dont 8

trîèdres et 6 tétraèdres, et 24 arêtes.
2.° Un corps à 24 faces triangulaires , ayant i4 sommets, donc

S trîèdres et 6 octaèdres, et 36 arêtes.
3.° Un corps à 12 sommets tous tétraèdres , ayant \4 faces ,

dont 6 quadrangulaires et 8 triangulaires , et 24 arêtes.
4-° Un corps à 24 sommets trièdres , ayant 14 faces , dont 6

quadrangulaires et 8 hexagonales, et 36 arêtes.
Pour le dodécaèdre , on a A~3o , 5 = 2 0 , 2^= 12 , j = 5 , %/=3 ;

ce corps fournira donc
i.° Un corps à 3o faces, toutes rhombes, ayant 32 sommets ,

dont 12 pentaèdres et 20 trièdres, et 60 arêtes.
2.0 Un corps à 60 faces, toutes triangulaires , ayant Zz sommets *

dont 12 pentaèdres et 20 hexaèdres, et 90 arêtes.
3.° Un corps à 3o sommets , tous tétraèdres f ayant dz faces f

dont 20 triangulaires et 12 pentagonales, et 60 arêtes.

4*° Un corps à 60 sommets, tous trièdres, ayant 32 faces, dont
20 triangulaires et 12 décagonales, et 90 arêtes.

Enfin, pour Vicosaèdre , on a A=3o, 5 = iz, J P = 2 0 , $ = 3 ,y==5 ;
ce corps fournira donc

Ï.* Un corps à 3o faces, toutes rhombes 3 ayant 3a sommets *
dont 20 trièdres et 12 pentaèdres, et 60 arêtes,

2.0 Un corps à 60 faces , toutes triangulaires, ayant 3# som-
mets, dont 20 trièdres et 12 décaèdres, et go arêtes.

3.° Un corps à 3o sommets tétraèdres , ayant 3a faces, dont
12 pentagonales et 10 triangulaires, et 60 arêtes.

4.° Un corps à 60 sommets trièdres , ayant 32 faces , dont 12
pentagonales et 20 hexagonales , et 90 arêtes»

On aurait jm s'attendre que les corps réguliers que nous
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de considérer étant au nombre de 5 , et chacun d'eux pouvant donner
naissance à quatre corps semi-régulier f ces derniers auraient dû
être au nombre de 20 -, mais d'abord nous avons rencontré parmi
eux l'hexaèdre et Poctaèdre réguliers; de plus, en passant les autres
en revue , on en rencontre qui sont répétés ; de sorte qu'en ne
tenant compte que de ceux qui sont essentiellement différens, sans
être réguliers , leur nombre se réduit à dix ; de telle sorte que
ceux qui dérivent de polyèdres réguliers conjugués l'un à l'autre
sont les mêmes. De plus ces dix polyèdres semi-réguliers sont ? deux
à deux, conjugués l'un à l'autre-, de manière que le semi-régulier
par excès de Tune quelconque des deux classes est conjugué avec
le semi-régulier par défaut de même classe qui dérive du même
polyèdre régulier , ainsi qu'on en peut juger par le résumé que voici,

TT i x 1 \ ^ x ^ faces triangulaires )
i;° Un polyèdre à 18 arêtes . ayant 12 < >J J { sornrnets tnedres )
^ ( sommets ) , ( trièdres ) ( hexaèdres i

et 8 î > dont 4\ . . . 5 et 4 ] \ .
l faces ) ( triangulaires ) ( hexagonales \

( faces quadrangulaires }
2.* U n polyèdre à %4 arêtes 9 ayant 12 , >

* J ^ * J ( sommets tétraèdres. )
( sommets ) . - ( Irièdres ) ( tétraèdres }

et xA\ ) dont 6 < . . . J et 8 < > .
( faces ) ( triangulaires ) ( quadrangulaïres )

( faces triangulaires >
3.° Un polyèdre a 36 arêtes , ayant 24 s .xl >

r J J * ( sommets tnedres )
( sommets ) _ . Ç tétraèdres ) ( hexaèdres )

et i4< „ i dont 6 \ . _ . S et 8 { > .
^ ( faces ) ( quadrangulaires ) ( hexagonales J

o ( faces quadrangulaïres
/ ° U n polyèdre a 60 arêtes > ayant 00 < , , ,
^" r J J ( sommets tétraèdres

( sommets ) - ( trîèdres )
et32< >dont^o . , . et 12

I faces } ( triangulaires )

pentaèdre3

pentagonales
( faces triangulaires )

5.° U n polyèdre à 90 arêtes , ayant 60 \ . , . \
% / # r - ' ^ - • » 7 J { sommets trièdres 3

sommets ) , C hexaèdres Y ( pentaèdres i
> dont 20? . et 1 2 " J .

faces ) ( hexagonales ) ( pentagonales )

Si nous passons présentement aux trois cas de la sphère divisée
régulièrement
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régulièrement en polygones infiniment petits, ou du plan indéfini
divisé régulièrement en polygones finis ; nous rencontrerons des di-
visions semi-régulières analogues pour cette sphère ou pour ce plan f

ainsi qu'on va le voir
La sphère ou le plan , divisé en triangles, nous donnera,
ï.° Une sphère ou un plan divisé en rhombes, ayant leurs grands

angles réunis 3 à 3 et les petits 6 à 6.
2.° Une sphère ou un plan , divisé en triangles isocèles 9 ayant

leurs grands angles réunis 3 à 3 et leurs petits iz à 12.
3.° Une sphère ou un plan , divisé en triangles équilatéraux et

hexagones , présentant à chaque point de réunion deux angles de
triangles et deux angles d'hexagones alternés,

4«° Une sphère ou un plan , divisé régulièrement en hexagones.
La sphère ou le plan , divisé en hexagones, nous donnera
!.° Une sphère ou un plan , divisé en rhomhes , ayant leurs

grands angles réunis 3 à 3 et les petits 6 k 6*
2.0 Une sphère ou un plan , divisé régulièrement en triangles.
3.° Une sphère ou un plan , divisé en triangles et hexagones, pré»

sentant, à chaque point de réunion , deux angles de triangles et
d ux angles d'hexagones alternés.

4.° Une sphère ou un plan , divisé en triangles et dodécagones*»
présentant, à chaque point de réunion , un angle de triangle et
deux de dodécagones.

La sphère ou le plan , divisé en quarrés , nous donnera
2.0 Une sphère ou un plan , divisé régulièrement en quarrés.
a.0 Une sphère ou un plan, divisé en triangles rectangles isocèles

réunis 4 à 4 > Pa r leurs grands angles , et 8 à 8 par leurs petits,
3,° Une sphère ou un plan divisé régulièrement en quarrés.
4.° Une sphère ou un plan , divisé en quarrés et octogones , pré-'

sentant, h chaque poinl d^ réunion un angle de quarré et deux
angles d'octogones.

En examinant ces diffe'rens cas , on voit que nous n'avons pas
12 divisions semi-régulières , tant parce que , parmi elles , il s*e&

Tem. iX 4$
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trouve de régulières , que parce qu'il en est qui f bien que d'origîoe
différente , rentrent pourtapt les unes dans les autres. Elles se ré*
duisent toutes à six distinctes , conjuguées deux à deux , et telles
que les conjuguées sont de même classe, Tune par excès et l'autre
par défaut, et déduites de deux divisions régulières , conjuguées
elles-mêmes Tune à Pautre , comme on le voit par le tableau suivant*

n T , r , . ( compartimens ) C quadrangulaires 1
i.° Une surface dont les l > sont < >

( sommets ) f tétraèdres )
, . ( sommets ) . (trièdres et hexaèdres )

et dont les < , \ sont alternativement \ . . . >•
{ comparlimens v (triangulaires et hexagonaux)

ft _-. „ . ( compartimens ) \ triangulaires ) .
2 . Une surface dont les < • S sont < . > et dont

f sommets ) ( tnedres \

!
sommets ) , ( trièJres et dodécaèdres )

> sont alternativement \ } .
compartimens j ( triangulaires et dodécagonaux )

^ _ _ , ( compartimens ) ( trianeulaires )
3.° Une surface dont les l > sont < .,, > et dont

( sommets J ( tnedres \
(sommets ) > . (tétraèdres et octaèdres î

les? . > sont alternativement ( S •
I compartimens } ( quadrangulaires et octogonaux )

Passons enfin aux polyèdres réguliers à faces de grandeur finie,
enfermant un espace nul ou infini , c'est-à-dire aux polygones et
prismes réguliers ; chaque polygone régulier donnera , en désignant
par m le nombre de ses sommets

i.° Un prisme régulier indéfini de m faces.
s.° Un corps formé de deux pyramides régulières opposées base

à base , ayant 2m faces , Zm arêtes et 772+2 sommets.
3.° Un polygone du même nombre m de côtés.
4»° Un polygone d'un nombre de côtés double ou 2/72.
Quant au prisme régulier indéfini de m faces , on en déduira
i.° Un autre prisme régulier du même nombre 772 de faces.
2.° Un prisme régulier d'un nombre de faces double ou im.
3.° Un polygone régulier de m côtés.
4-° Enfin , un prisme régulier d'une longueur finie , ayant 2773

sommets , Zm arêtes et rn-\-2 faces dont m quadrangulaires.
On voit par là que ces deux dernières sorles de polyèdres réguliers
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Be donnent réellement naissance qu'à deux classes de polyèdres
semi-réguliers , conjugués les uns aux autres, savoir;

t faces triangulaires .
Des polyèdres de om arêtes , ayant 2772 \ \

* J J \ sommets Inedres )
/ sommets \ t { tétraèdres . ( faces \

et 772+2 l . > dont /?2 < ( et 2 de 772 ? J .
' ( faces > ( quadranguiaires ) ( côtes )

Voilà ce qu'on est convenu d'appeler jusqu'ici polyèdres semi-
réguliers , et Ton voit qu'en rigueur ils sont , comme les re'guliers
en nombre infini. Mais on pourrait concevoir d'autres polyèdres
qui , peut - être à plus juste titre que ceux-ci 5 pourraient être
appelés semi-réguliers ; on pourrait concevoir , en effet,

i.° Des polyèdres dont toutes les faces seraient des polygones
réguliers égaux , et dont les sommets, en nombre pair, présenteraient
aussi des angles polyèdres réguliers ; mais moitié d'une sorte et
moitié d'une autre sorte.

2.* Des polyèdres dont tous les sommets présenteraient des angle*
polyèdres réguliers égaux , et dont les faces , en nombre pair f

seraient aussi des polygones réguliers ; niais moitié d'une sorte et
moitié d'une autre.

3,° Enfin , des polyèdres dont à la fois les faces seraient des
polygones régulisrs et les sommets des angles polyèdres réguliers ;
n.als , où les uns et.les autres , en nombre pair, seraient moitié
d'une sorte et moitié d'une autre»

Parmi les polyèdres semi-réguliers précédemment considérés, noua
ep avons déjà rencontré quelques-uns de cette sorte ; et tels SOÏIÊ

rotamment, i.° le polyèdre à 18 arêtes , ayant 12 faces triangulaires
et 8 sommets , dont 4 trièdres et 4 hexaèdres ; 2.0 le polyèdre à
28 arêtes, ayant 12 sommets trièdres et 8 faces, dont 4 triangu-
laires et 4 hexagonales. Mais on conçoit qu'il est possible qu'il en
existe d'autres encore ; et le problème de la recherche de leur totalité
est un problème qui a été proposé à la page zSQ du VIL*
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lume de ce recueil. Voyons quelles sont les formules qui doivent
en donner la solution.

i.# Soient F le nombre des faces d'un polyèdre , toutes de s
sommets ; 25 le nombre de ses sommets, dont S de f et 5 d e y
faces ; et enfin A le nombre de ses arêtes ; en raisonnant comme
nous l'avons fait dans la recherche des polyèdres réguliers , nous
aurons les trois équations

desquelles nous tirerons

4C/+/0
4*—!

4*
4*—C»—a) ( /+ / ' )

(ï)

2.^ Soient S le nombre des sommets d'un polyèdre f tous de j
faces ; 2F le nombre de ses faces , dont F de s et F de s/ faces 5
et enfin A le nombre de ses arêtes -, nous aurons les équations

desquelles nous tirerons
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4/— (/—a

4/

(il)

3.* Soient enfin %F le nombre des faces d'un polytdre dont F
de s et F de J / sommets ; a5 le nombre de ses sommets , dont
S de f et 5 de y? faces ; et enfiu A le nombre de ses arêtes j nous
aurons les équations

desquelles nous tirerons

4C/H-/O

C

(ni)

II s'agît donc présentement de satisfaire à ces trois systèmes de
formules avec des nombres entiers positifs ; mais auparavant nous
remarquerons que les formules ( I , II) se changeant les unes dans
les autres, lorsqu'on y change F en S jfen s et f' en s/ ; chaque
solution des formules (I) nous donnera une solution des formules (II) ;
et , de plus , ces solutions correspondantes appartiendront ï deux



34a R E C H E R C H E S
polyèdres conjugues. En second lieu, les formules (III) demeurant
les mêmes lorsqu'on y permute simultanément F avec 51%/avec^ t '
f avec sf ; chaque solution de ces formules pourra être considérée
comme double , et nous fera connaître deux polyèdres conjugués.
On volt par là que le travail se trouvera réellement réduit à moitié.

Mais ce travail sera plus difficile qu'il ne le paraît-, il ne suffira
pas , en effet , d'obtenir des nombres entiers positifs satisfaisant
aux formules analitîques; il faudra savoir de plus si les polyèdres
que ces nombres Indiquent sont géométriquement possibles ; et, au
cas qu'ils le soient , il sera de plus nécessaire de ^savoir si les
polygones et les angles polyèdres dont ils se composeront devront
être réguliers ou irréguliers ; comment les faces ou sommets de
même nombre et d'espèces différentes devront être distribués et
répartis sur le polyèdre, et enfin si ce polyèdre devra ou ne pourra
pas être entièrement convexe.

Nous abandonnerons donc au lecteur cette discussion qui ne
pourrait être que fort longue ; et nous nous bornerons à indiquer
la marche qui paraît la plus facile à suivre pour résoudre le
problème numérique , qui est d'abord celui dont il convient d&
s'occuper.

Pour les formules (I) , en posant > pour abréger , f-\-f=.$ >

nous aurons

Si Ton veut des polyèdres effectifs , tels qu'on les conçoit ordi-
nairement , c'est-à-dire 7 des polyèdres dont les faces , d'une grandeur
finie et en nombre fini , n'aient pas moins de trois côtés, et dont
les sommets n'aient pas moins de trois faces , il faudra chercher
toutes les valeurs entières et positives de s , plus grandes que 2 ,
qui , jointes à des valeurs entières et positives de <p , plus grandes
que 3 , donnent pour A •> ï\ S des valeurs entières et positives;
«m pourra prendre, par exemple, ^ ^ 3 ; ? = y > ce qui donnera
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^ = 1 8 , F=i2 , 5 = 4 •

II s'agira ensuite de décomposer g , valeur de ^ , en deux parties
jf et p % dont aucune ne soit moindre que 3. Prenant , par exemple ,
/==6, à!oxi ff—5 ; on obtiendra un polyèdre de 12 faces trian-
gulaires, ayant 4 sommets hexaèdres et 4 sommets trièdres, et 18
arêtes, polyèdre possible ; car c'est un des deux que nous avons
cité ci-dessus pour exemple.

Pour les formules (II) , en posant j-J--y=:=<r> nous aurons

A=^—, S=r^—, F=^-H—;

«t il faudra trouver des valeurs entières et positives d e / , plus grandes
que 2, qui , jointes à des valeurs entières et positives de *•, plus
grandes que 3 , donnent pour À > S , F des valeurs entières et
positives : on pourra prendre ; par exemple , / ï = 3 j «-=9 > ce qui
donnera

Il s'agira ensuite de décomposer 9 , valeur de *, en deux parties
s et ̂ , dont aucune ne soit moindre que 3. Prenant, par exemplef

$~6 , d'où y = 3 , on obtiendra un polyèdre de 12 sommets trîèdres,
a^ant 4 fsces inangulaires et 4 autres hexagonales, et 18 arête».
C'est préeise'ment le conjugué du polyèdre que nous venons de
signaler ci-dessus ; et que nous aurions pu même en déduire imuié*
diatement.

Enfin, pour les formules (III) > en posant à la
s-^s'—r , nous aurons
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U faudra d'abord trouver des valeurs entières et positives de ç et rf

plus grande que 5 , qui rendent A , F , S entiers positifs ; on
peut poser, par exemple, ?£=7 , <r=7 ; il en résultera

Il s'agira ensuite de décomposer 7 , valeur de <p, en deux parties
y* et y5', et 7, valeur de *, en deux parties s et s/, dont aucune
ne soit moindre que 3. Prenant, par exemple > y = 4 > ^ = 4» d'où
^ = 3 , y = 3 ; on obtiendra un polyèdre ayant 4 faces quadrangu-
laires , 4 faces triangulaires , 4 sommets tétraèdres , 4 sommets trié—
dres et 14 arètest

Ce polyèdre est possible, et , pour s'en convaincre , on peut con-
cevoir d'abord deux prismes triangulaires égaux ayant des quarrés
pour faces latérales. En appliquant en effet ces deux prismes l'un
contre l'autre par deux faces latérales de telle sorte que les arêtes
latérales de chacun soient perpendiculaires aux arêtes latérales de
l'autre , on obtiendra ainsi le polyèdre dont il s'agit} et dont toutes
les faces pourront être régulière?.

QUESTIONS PROPOSEES.

Problème de Géométrie.

JL OUT polyèdre convexe a poi.r développement sur un plan un
polygone convexe ou non convexe, divisé en compartimens polygonaux.

Mais un tel polygone ne peut être le développement d'un polyèdre
que sous certaines conditions.

On propose d'assigner ces conditions ?
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ANALÏSE ALGÉBRIQUE,

Sur le nombre des racines imaginaires des équations ;
en réponse ouoo articles de MM. TEDENAT et SERFQÎS,

insérés aux*pages 2i5 et 220 de ce volume;

Par M. BÉRÀRD , professeur de mathématiques , membre
de plusieurs sociétés savantes»

.1 4F, problème de la détermination du nombre des racines imaginaires
des équations est un des plus importans et des plus difficiles
de l'analise. Ce problème est résolu depuis long-temps pour les
quatre premiers degrés , parce que, pour ces degrés, la forme des
racines étant connue , il a été possible d'assigner les conditions de
leur réalité.

De Gua donna ensuite une très-belle méthode pour parvenir
aux conditions de réalité de la totalité des racines , dans une équa-
tion de degré quelconque (*) ; mais cette méthode n'apprend rien
sur le nombre des racines imaginaires , dans le cas où les conditions
de réalité aie sont pas toutes satisfaites.

Lagrange résolut depuis , au moyen de son équation aux quarrés
des différences, le problème qui était échappé à de Gua y et dont
même il avait pour ainsi dire désespéré.

Enfin , M. Cauchy , ayant repris la méthode de de Gua et les
observations consignées <lans la note YIII de la Résolution des

Mémoires de Vacadèmie des sciences , pour 174**

Tom. IX, n.° XI9 i .e r mai 1819.
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équations numériques de Lagrange , en a déduit une solution gé-
nérale du problème où II s'agît d'assigner le nombre des racines
réelles et imaginaires , positives et négatives qu'une équation quel-
conque peut renfermer (*). Malheureusement cette solution est sî
compliquée qu'elle n'est guère applicable à la pratique. Les racines
nulles ou égales qui se rencontrent dans les équations auxiliaires
Ja mettent en défaut ; et il faut alors avoir recours à des artifices
particuliers d'anaîise. Aussi n'a t-ïl pas fallu à l'auteur moins de gi
p iî es in~4'° de recherches pénibles pour surmonter complètement
les difficultés que son sujet lui avait présentées (**).

J'ai cherché à mon tour une méthode qui fût plus simple que
celle de M. Cauchy. J'ai cru l'avoir trouvée dans mon théorème
énoncé à la page i6 de ce volume. A la page 60 , un abonné a
donné un semblable théorème , sous une forme un peu plus con-
ciào , et en a tenté la démonstration pour les quatre premiers degrés.

C'est ce même théorème que MM. Tédenat et Servois ont exa-
nuné, pages 2i5 et 220 du même volume ^ et qu'ils ont trouvé
en défaut dès le 4-me degré.

Je ne viens point contester l'exactitude des calculs de ces deux
savans géomètres : je confesse qu'en effet mon théorème est en
défaut dans les cas qu'ils ont énoncés et dans un grand nombre
d^autres. Que ce soit de ma part précipitation ou défaut de lumières ;
c'est un point assez indifférent à discuter. Il est d'ailleurs permis
de se consoler d'une erreur, quand, on songe que les plus grands
géomètres ne s'en sont point toujours su entièrement garantir ; et ,
qu'en particulier , l'illustre Lagrange lui-même s'est mépris sur le
sujet dont il s'agit , ainsi qu'on le verra plus loin (̂ ** .̂ Mais 9 ce qu'il

£*) Journal de ïécole polytechnique , XVII.C cahier , pag. 4̂ 7«
(**) Oui , mais aussi que de choses dans ces 91 pages î et quelle large et

exposition ! J . D* G.
On verra là en quoi consiste cette grave méprise.

J. D. G.
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tïrest pas indifférent de faire voir, c'est que mon théorème , tout
imparfait qu'il est r fournit encore, au moyen de certaines modifia
cations r une solution, moins simple , en effet , que je ne l'avais
pensé , mais du moins préférable , pour la facilité , à celle de M»
Cauchy , la seule praticable que je connaisse.

Il faut, au surplus^ distinguer, en mathématiques, trois sortes
Je propositions, i.° celles qui sont toujours vraies, ou qui n'ad-
mettent ni restrictions ni exceptions; telles 3 par exemple . que celic-ci :
La somme des trois angles de tout triangle rediligne vaut deux
angles droits ; 2.0 celles qui, reposant sur un faux principe , ne
peuvent en aucune sorte être admises. Par exemple, dans ses Sections
coniques , n.° 172 , Besout dit que si p est négatif, dans Téqua-
tion y*=:px r celte équation n'exprime aucune ligne possible; tandis
qu'il est évident qu'alors elle exprime une parabole qui 5'ctend du
côté des ce négatifs ; 3.° enfin , celles qui , bien qu'appuyée$ sur
des principes vrais, admettent néanmoins , dans certains cas ; des
restrictions ou exceptions*,

Les premières sont sans doute les plus précieuses : celles de îâ
seconde sorte doivent ,. au contraire , être soigneusement bannies ;
mais quant aux dernières , quoiqu'elles ne puissent pas prétendre
au rang des premières , elles ont néanmoins leur degré d'utilité ;
aussi les ouvrages de mathématiques en sont-ils remplis ; et les
géomètres en font journellement usage 7 sans le moindre scrupule ï
eu voici des exemples»

Les formules qui, dans certains cas. deviennent ~ , ne font rierr
connaître et sont conséquemment en défaut pour ces rûêrnes cas;
mais , par des considérations particulières , on leur rend leur utilité.

C'est, en particulier , le cas de la formule fxmàx~ xmJrl-\-C ,

lorsque m=.-x\ et cependant cette formule n'en est pas moins employée,
et même considérée comme fondamentale dans le calcul intégral.

Plusieurs des formules de la trigonométrie sphérique offrent des
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cas douteux : la trigonométrie rectiligne elle-même n'en est point
exempte. SI c % cf représentent deux quelconques des côtés d'uiï.

£t

triangle , et a, af les angles opposés; on a Sin.tf'rr— Sin.#: cette
~ c

formule présente un cas douteux , que quelques auteurs seulement
ont signalé ( V. Tn'g. rect. âe Bezout 5 n.* 267 ) : l'angle a1 peut
Être aîgu ou obtus \ et il faut une considération particulière pour
lever le doute* Ce n'est pas tout : l'incertitude cesse , et il n'y a
plus qu'une solution dans trois cas, savoir ; i.° si l'angle a est droit
ou obtus ; 2.0 si a étant aigu »af est droit; 3.° enfin , si a étant
aigu c n'est pas moindre que cf. Je rapporte ce dernier exemple }

de préférence à d'autres , parce que la discussion à laquella il donne
lieu ne se trouve dans aucun de nos traités élémentaires^ où ce-
pendant elle mériterait de trouver place (*).

(*} Nous prendrons la liberté d'observer à M. Be'rard que ces exemples ne
nous paraissent pas très-heureusement choisis relativement à ce qu'il se propose
ii'etablir. De même t en effet , qu'on ne saurait re'puter meilleur celui qui se
•se tait à certaines questions qu'on lui adresse j on ne saurait dire pareillement
qu'une formule n'est pas généralement vraie , parce que , dans certains cas ,
ÊÎÎe devient ~; puisqu'alors même elle ne cesse pas d'être vraie. On dit bien
que, pour de tels cas, elle se trouve en défaut; mais il n'en demeure pas
moins évident que > pour ces mêmes cas , elles ne sauraient induire en erreur
celui qui les consulte.

cf

Quant à la formule S ima^—Sin .a ? elle n'est jamais en défaut. Ce n'est
c

çoint , en effet , l'angle af qu'elle est destinée a faire connaître, mais seule-
ment son sinus ; et ce sinus, elle le donne toujours tel qu'il doit être. Mais ,
comme ce même sinus r#pond à deux angles distincts ; lorsque nous voulons
passer de lui à l'angle auquel il répond , nous nous trouvons dans le même
cas ^ue si nous voulions re'soudre une équation du second degré i c'est-à-dire,
jàans le î£*ême cas ou se trouve celui qui interrogeant quelqu'un en reçoit pour
réponse : ce que vous me demandez est telle chose ou telle autre ; et certes ,
ii n'y a encore rien là de contraire i la vérité',

J. D. G,
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Ces exemples suffisent pour prouver qu'on ne doit point confondre

un theoième faux avec un théorème sujet a restriction. D'Âlembôrt
a dit quelque part : Les exceptions confirment la règle, loin de la
détruire (*). Lagrange a dit ( Résolution des équations numériques ?

dernière édition, note IX, page io5 ) : Ce principe est générple-
ment vrai; mais j'ai remarqué depuis qu'il était sujet à de exceptions
gui powaient mettre la démonstration précédente en défaut (**).

(*) II est peu de maximes plus dangereuses , et en même temps plus fré-
quemment employées , qire celles dont M. Bérard cherche ici à s'étayer. Que
peut, en effet , signifier cette maxime , si Ton veut lui donner un sens raison-
nable? sinon que les hommes n'établissent des exceptions que là seulement où
ils ont posé des règles ; et il est très-vrai de dire qu'alors l'existence de Vexception
prouve celle de la règle, Que, par exemple , Ton soit en doute , dans deux mille
ans d'ici , si , au dix-huitième siècle , on pouvait être admis, à l'âge de 19 ans ^
à l'académie des sciences de Paris ; et qu'alors on découvre l'acte de l'autorité
royale qui autorise une exception en faveur de Clairaut ^ n'ayant 'encore que
cet âge ; dès -lors le doute disparaîtra , et il sera vrai de dire que Vexception
-prouve la règle, loin de la détruire. Mais , si quelqu'un soutenait que les français
ne sont pas propres à l'étude des sciences exactes , et qu'on lui objectât l'exempte
de M. Bérard ; je le demande à M. Bérard lui-même , serait-il fonde à répondre
que Vexception confirme la règle» II ne peut donc être ici question que d'ins-
titutions humaines } et non de principes naturels ou métaphysiques. Autrement,
autant voudrait dire que pour démontrer un théorème , il ne s'agit que de prouver
qu'il est faux dans certains cas; et que ce qui prouve invinciblement que tous
les nombres sont pairs 9 c'est qu'il y en a une multitude qui ne sont point
divisibles par deux ; ce qui n'est certainement pas la pense'e de M, Berard»

J. D. G.

(**) L'autorité de Lagrange , que M. Bérard invoque ici , nous paraît , au con-
traire , prononcer contre lui. Il s'agit, en effet, en l'endroit cité, d'une démonstration
de Foncenex que Lagrange rejette , uniquement parce que , quoiqu'exacle eu
général , elle est néanmoins sujette à certaines exceptions. E t , ce qui est très-
remarquable, c'est que ces exceptions ne portent que sur la démonstration elle-
même f et noa sur le principe qui iïen souffre aucune.

/ . D. G.
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J'espère prouver que mon thcorènie est de l'espèce de ceux qui ,

bien qu'ils soient vrais, en g^n^ral , sont néanmoins sujets à des
exceptions* II ne me restera plus alors que le tort , encore assez,
grave, je l'avoue, de n'avoir pas fait connaître ces exceptions (*) -7

mais du moins mon théorème n^ méritera plus la peine de mort
prononcée contre lui par M. Tédenat*

Qu'on me permette encore, avant d'entrer en matière, de relever
à moa tour certaines maximes avancées par M. Tédenat ? cl qui
me paraissent, tout aussi bien que mon théorème f sujettes à quelques
restrictions.

M. Tédenat dit : Pour prouver qu'une démonstration est fausse t

il suffit simplement de la trouver en défaut dans un cas parti-
culier. Oa voit, par ce qui précède > que cette maxime n'est rîert
moins que certaine (**)*

H ajoute plus loin : 11 faut soigneusement se garder de toute-
précipitation , et bien mûrir ses idées avant de les faire éclore.
Ce conseil est fort bon; car il est certain que le plus sûr moyen
de ne pas tomber est de ne pas marcher du tout (***) ; mais ce

(*) II nous paraît que le tort de M. Bérard ne serait pas tant de n'avoir
point fait connaître les exceptions nombreuses auxquelles son théorème est sujet
que de l'avoic donné comme n'en souffrant aucune.,

Ja D. G.
(**) M.. Tëdenat dit : Pour prouver qu'une proposition est fausse , il suffit

àe la. trouver en défaut dans un cas particulier quelconque ; ce qui est un peu
différent. C'est exactement comme si M. Tédenat avait dit : Pour prouver que
les nombres ne sont pas tous pairs ? il suffit d'en trouver un seul qui ne soit
point divisible par deux ; et nous ne voyons rien, dans ce qui précède qui puisse
infirmer cette proposition..

Au surplus , en admettant même la version de M. Bérard , M. Tédenat
aurait encore pour lui l'autorité de Lagrange , qui rejette une démonstration de
Foncenex , uniquement parce qu'elle ne s'étend pas à tous les cas.

J . D. G.
(***) Est-ce donc que ce serait ne pas marcher du tout que de chercher

si une proposition que Ton soupçonne être, \raie , Test en effet?
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principe , s'il n'était restreint , serait-il bien favorable au progrès
des lumières? On peut regarder l«s savans comme une société dé
voyageurs ? parcourant à l'envi , et dans toutes sortes de directions ,
les champs immenses de la science. Les découvertes les plus pré-
cieuses sont souvent faites, les mines les plus riches sont souvent
rencontrées par les plus heureux et non par les plus habiles. Ce
qu'il y a de faux est bientôt séparé de ce qui est bon ; et les erreurs
même ne sont pas sans quelque utilité , parce qu'elles provoquent din-
téressantes discussions. Ces erreurs n'ont pas d'ailleurs , en géométrie ,
les mêmes dangers qu'elles pourraient offrir en politique ^ \

PROBLÈME I. Trouver les conditions de réalité de toutes les
racines dune équation de degré quelconque ?

Solution. La première solution de ce problème est due à de
Gna. Soit X=o la proposée : la courbe X~y serpente de part et
d'autre de Taxe des x : ses points d'intersection avec cet axe déter-
minent les racines réelles ; on observe deux espèces de sommets :
les uns qui tournent leur concavité vers Taxe, et pour lesquels 3̂
est un maximum : les autres qui tournent au contraire leur convexité
vers le même axe, et pour lesquels, par conséquent, cette ordonnée
est un minimum.

Qui empêche d'ailleurs de publier , pour ce qu'elle vaut , une proposition dont
on n'a pu parvenir à se démontrer ni la vérité ni la fausseté ?

J. D. G.

(*) Chacun ici bas agît suivant son caractère e} avec son caractère. Ainsi, tandis que
M. Bérard ne déguise que difficilement quelque peu d'humeur contre M. Tédenat *
qui pourtant avait poussé le sentiment des convenances jusqu'à ne pas proférer
son nom dans Parlicle où il le réfutait ; à peine cet article a-t-il été connu
de Panonyme qui avait aussi rencontré le théorème en discussion , qu'il s'est
empressé de nous adresser des réflexions"tendant à corroborer les raisonnement
•de M, Tédenat contre la vérité de ce théorème. •

J, D. G.
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Cela pose , deux conditions sont nécessaires pour îa reaïïîe 3B

toutes les racines^ i.* îl faut qne tous les sommets soient réels ou
apparens, et par conséquent au nombre de m—i ; et cette pre-
mière condition est évidemment remplie , si la dérivés -Xy=o a
toutes ses racines réelles et inégales,

a,° II faut de plus que ions les sommets soient concaves vers
l'axe des x ? ou que tous les y de ces sommets soient maxima*
Or # on sait que , quand X est maximum , sa seconde dérivée X!1

a en signe contraire au sien ; donc, si l'on pose XX/;—z , et qu'on
élimine œ entre cette dernière équation et Ar /=o , on obtiendra une
équation Z~o en z , dont toutes les racines devront être négatives
et qui conséquent ment n'aura que des permanences ; c'est-à-dire ,
une équation dont tous les termes seront positifs.

La première condition exigera , à son tour , pour la réalité des
racines de X/=>o9 deux conditions semblables; d'où l'on conclut
que , pour la réajité des racines de JSC=o , il faut que les auxi-
liaires successives ^ = o , Z'—o , 2//=^o ,.«.. , au nombre de m—i ?

aient toutes tous leurs termes positifs.
En formant ces auxiliaires sur des équations littérales , on eu

déduit, en fonction des eoeiïiciens de la proposée , les conditions,
de réalité de ses racines , eonditiôns qui sont au nombre de

m—i
172.

2

La méthode de Lagrange exige la formation de son équation
aux quarrès des différences dès racines, laquelle , dans le cas dont
il s'agit, ne doit avoir que des variations de signes (*)•

La méthode de Lagrange n'exige , comme Ton voit , qu'une

(*) II nous paraît que cette méthode n?est point de Lagrange t maïs bien de
^Waring , comme cet illustre géomètre en convient lui-même , avec sa modestie
^ccouLumée. ( Résolut* des èquat. numêriq. ? dernière édition,note III, pag, I I Q . ^

J. D. G.

auxiliaire |
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auxiliaire; mais cette auxiliaire est du degré m . : celle de de

Gua en exige un nombre m—i ; mais la plus élevée n'est que an
degré w—~i , et les calculs en sont moins difficiles. Au reste, elles

conduisent toutes deux au même nombre 772 . de condi-»

tions. Lagrange s'étonne ( Résol. des èquat. numèriq. 7 dernière
édition , note VIII , pag. i65 ) de ce résultat; mais je ferai voir

que , parmi ces m . - conditions, il s'en trouve qui sont comportées

par le système des autres (*) ; et que , par exemple , pour le cin-
quième degré 9 ce nombre, qui devrait être dix 9 se réduit à m
ou à cinq.

Il résulte de la théorie de de Gua ce beau théorème : savoir;
que Quand toutes les racines de X = o sont réelles , si l'on fait
disparaître tun quelconque de ses termes , autre que les termes
extrêmes , les deux termes entre lesquels celui-ci se trouverait s il
n'était pas nul devront être de signes contraires ; d'où il suit que*
quand cette condition n'a pas lieu , la proposée a nécessairement
des racines Imaginaires (**)• {Résolut, des èquat* numériq., dernière
édition > note VIII , pag. 169 )•

(*) C'est ce que Lagrange avait déjà insinué à la fin de la note III cte
l'ouvrage cité.

J . D. G,

{**) Cette dernière partie du théorème se dëduit d'une manière tout auErc-
ment simple de la règle de Descartes. On en déduit, plus généralement, i.° que
toute équation dans laquelle il manque 2.n*\-i termes consécutifs , entre deux
termes de mêmes signes5 a nécessairement au moins 2(/z-f-i) racines imaginaires;
2.0 que toute équation dans laquelle il manque n termes consécutifs, a néces-
sairement au moins n ou n-\*i racines imaginaires , suivant que n est pair on
impair', 3.° enfin, que tonte équation qui présente, en plusieurs endroits s de
telles circonstances a au moins la. totalité des racines imaginaires annoncées pac
chacune d'elles en particulier* J . D* G*

gom, IX. ^7
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On peut parvenir , par des moyens plus élémentaires , *u résultat

de la méthode de Lagrange. Si , en efïet , -X = o n'a que des
jracines réelles -7 en la divisant par le facteur essentiellement réel

dans lequel V est supposé positif ; on aura un reste composé de
termes en x et des termes sans x. En égalant séparément à zéro
3a somme des uns et celle des autres, on aura deux équations en
« et F , enire lesquelles éliminant * , l'équation résultante en V
fie devra avoir que des variations , puisque V ne doit avoir que des

râleurs positives. Cette équation sera d'ailleurs du degré rn. - f

«ombre des diviseurs du second degré de l'équation .X=o.

PROBLÊME IL Déterminer le nombre des racines imaginaires
d'une équation d'un degré quelconque ?

Solution. Ce second problème est beaucoup plus difficile que le
premier , qui n'en est 3 au surplus , qu'un cas particulier. Il est résolu
depuis long-temps , pour les degrés inférieurs au cinquième , soit
par des considérations fondées sur la forme racine des racines , soit
par la discussion de l'équation appelée réduite. On peut encore le
résoudre , pour les mêmes degrés , soit par l'équation aux quarres
des différences de Lagrange ( Voyez, les numéros 3j , 38 , 3g de
son ouvrage ) , soit par la méthode de de Gua. Voici les conditions
auxquelles on parvient par ces diverses méthodes*

Premier degré. L'équation ne saurait, dans aucun cas , admettre
des racines imaginaires.

Deuxième degré* Soit la proposée x*~lt*4ix-\<b~Qt Ses deux ra-
cmes seront réelles si Ton a a*—*!\b positives ; elles seront égales
fi celle quantité est nulle 9 et imaginaires si elle est négatif. Ce
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sent là les trois seuls cas que ce degré soit susceptible d'offrir (•)..

Troisième degré. Soit la proposée #3-4-tf.#2+&#+£ = o ; elle aura
ses trois racines réelles , si la quantité 2fjc*-\~2ac(2a2—93)-H^*(4^-~#a)
est négative ou nulle \ dans ce dernier cas, deux de ses racines
seront égales ; et , si cette même quantité est positive , l'équation
aura deux racines imaginaires (**).

Je ferai, à ce sujet, une remarque qui ne sera pas inutile :

{*) II nous parait de beaucoup préférable d'admettre un coefficient au pre-
mier terme, et de prendre pour la proposée ax2-{-bx-}-c=:o ; la condition do
réalité des racines est alors #2—-£ac—o. Or , sous cette forme elle présente di-
vers avantages précieux ; car d'abord on peut y supposer a } b , c entiers , ce
qui facilite les substitutions dans les cas particuliers , sur-tout lorsque les coef-
ficiens sont polynômes. En second lieu , les erreurs de calcul ou de copie dans
Féquation de condition sont beaucoup plus faciles à découvrir ? attendu que ,
d'une part, cette équation devient homogène , et que de l*autre, les coefliciens
également distans des extrêmes doivent y entrer symétriquement. Enfin , sa forme
symétrique la rend plus facile à graver dans la mémoire , ce qui n'est pas
à négliger,

j ; D . G.

(**) Pour les mêmes raisons que dans îà précédente note 5 il nous paraît

préférable de mettre l'équation sous la forme

îa condition de réalité des racines se trouve alors très-symétriquement est

imée par l'inégalité

P

*e qui revient à dire qu'il faut que l'équation du second degré

(b*—3ac)£*+(£*>—§ad)x+(c*—3bd)=so ,

ait ses deux racines imaginaires*
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c'est que Lagrange s'est trompé en croyant que <3eux condition!
distinctes étaient nécessaires pour la réalité des racines du 3.m*
degré. Après avoir donné ces deux conditions ( Voyez n.° 38 de
son ouvrage), il ajoute même formellement : si ïune de ces con-
ditions manque , l'équation aura deux racines imaginaires. Il est
pourtant évident que , pour que les trois racines soient réelles, il
«uiRt que le radical du second degré qui entre dans leurs expres-
sions soit imaginaire ; ce qui ne fournit qu'une condition unique.
Cette condition, que Je viens de donner ? est précisément l'une de
celles de Lagrange -, d'où l'on doit conclure que l'autre doit y être
implicitement comprise (*).

(*) M« Berard donne cinq conditions pour la réalité des racines d'une équation
du cinquième degré , en ayant soin d'observer que peut-être elles se réduisent
,à un moindre nombre. Si donc demain quelqu'un, ayant trouvé que ces condi-
tions peuvent être réduites à quatre ou à un moindre nombre , s'en autorisait
pour dire grossièrement que M. Berard s'est trompé , M» Bérard aurait juste-
ment le droit de s'en plaindre.

C'est précisément là îe cas de Lagrange ; d'une part , en donnant deux con-
ditions pour le troisième degré , il a pu dire quelque chose de superflu , mais
du moins il iï*a rien dit de faux. En outre , il a observé qu'en général plusieurs
cies conditions pouvaient rentrer dans les autres ; il a donc prévenu le reproche
que lui adresse M. Bérard.

Au surplus , lorsqu'on entreprend de redresser unhomme tel que Lagrange, il fau-
drait du moins ne pas faire les choses à demi ; et en particulier , en cette rencontre ,
il eut été assez convenable de montrer qu'en effet sa première condition se trouve
comportée par la seconde : voici comment on peut s'en assurer»

Suivant nos notations, les deux conditions assignées par Lagrange deviennent

derrière peut être mise sous cette forme
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Q degré. Soit la proposée x^p^+qx^r — o. Les
quatre racines seront réelles ? si les trois conditions suivantes sont
satisfaites

p<o ; p*—4r>o ;

Les quatre racines seront imaginaires si Tune ou l'autre des deux
premières ou toutes les deux ne sont point remplies.

Enfin, deux racines seront réelles et les deux autres imaginaires,
-si la dernière condition n'est point satisfaite (*)

Cinquième degré. Soit la proposée &*-\-px*-\-qx*~\-rx~\-s=o. Sa

réciproque sera xs-\ xh-\ #3-} # a + — = o?ou,pourabreger,
s s s s

et l'on voit facilement alors qu'elle ne saurait être satisfaite qu'autant que la
première sera remplie, puisqu'autrement la somme de deux quantités positive!
«Sevrait être négative.

On pourrait également mettre cette seconde condition sous la forme

et on en conclurait que la première de Lagrange peut être remplacée par celle-oi

*a—3W>o .
J. D. G;

(*) En prenant l'équation axl*-\-bxî»\>C8*-\-dx*\-ei=z.o 9 et posant, pour abréger,

d=.A , 332—8ac—B f bd-~i§ae—C ,

dernière condition devient

U première
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D'après la méthode de de Gua, exposée plus haut, X = o aura*

toutes ses racines réelles , si X/=ty a toutes ses racines réelles f et
$i, en même temps, j£ = o ? résultat de l'élimination de x f entrée
X'~o et XXu = z, n'a que des permanences.

On a d'abord 5^4Hh4r/'a?34"3^/^î+2/?/a? = o 1 qui donne af=oett

©'après cela yXXu^z devient, en divisant Xi* par 2 ,

La racine # = 0 étant mise dans (1) donne <¥abord cette pre-
mière valeur de z , savoir z^=p/s/ ou z—p's'—o..

Si ensuite on substitue dans (1) , autant de fois qu'on le pourra r

four #3 sa valeur tirée de X ^ o ; en posant, pour, abréger,,

;V+375o^/a9/-9^

on aura

éliminant enfin 5r entre ( 2 ) et X ' Œ O ? et posant , pour,
abréger ,
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=$-* c*-2Àab-Bac-Bbd-2Ccd

ïl vient
Sm'd*Z*+a'z*+Vz+c'=O . (3)

Réunissant le facteur z—pts', trouvé plus liaut, à l'équation
ĉm a enfin , pour l'équation Z-=-o ,

Pour que la proposée ait toutes ses racines réelles, il faudra
i.° Que Z=o n'ait que des permanences, c 'est-à-dire qu'on

devra avoir f a la fois ^

2.® Qu'en outre .57=0 ait toutes ses raeines réelles J ce
txige qu'on ait

La proposée n'aura-que trois racines réelles dans deux cas ;
savoir d'abord si, X'=o ayant toutes ses racines réelles, iT=o a
une variation; ensuite, si JÇ;=:o ayant deux racines imaginaires >
i£=o n'a point de variations ou en a deux seulement.

; Enfin , la proposée aura quatre racines imaginaires dans deux
cas, savoir d'abord si, X'—O ayant ses trois racines réelles, Z~o
a deux variations ; ensuite , sif X / = o ayant deux racines imaginaires,
^T=O a une ou trois variations.
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Pour comprendre ce qui vient d'être dit , relativement aux cas

de deux ou de quatre racines imaginaires dans la proposée , il faut
faire attention qne nous l'avons délivrée de son pénultième terme >
pour faciliter l'élimination , et, en même temps, pour que la courbe
X~y aie toujours quatre sommets ou deux , et jamais aucun. SI
Von donne à Taxe des x toutes les positions dont il est suscep-
tible , on* se rendra facilement compte des conditions que nous avons
assignées pour les trois cas de o ? 2 , 4 racines imaginaires.

On voit 7 au reste 7 que les conditions de réalité de toutes les
racines sont ici au nombre de 5 ou m ; et non pas au nombre de

m. ou 10 , comme Ta trouvé Lagrange , dans l'ouvrage déjà

cité (note III) (*). Il est même à présumer , par Ce qui a lieu
pour le 3.me degré, que ce nombre de 5 peut encore être réduit.

Degrés supérieurs au cinquième* Les équations X; = o , Z=o ?

qui nous ont servi pour le 5.me degré , ne suffisent plus pour tous
les cas au-delà de ce degré. Mais , avant d'aller plus loin , fixons
bien les idées sur la signification de nos diverses équations.

X/=o donne les abscisses des sommets de la courbe X~y : r*™o
résultat de l'élimination de x entre ces deux-là donne les ordonnées
de ces mêmes sommets ; ses racines réelles positives ou ses varia-
tions indiquant les sommets en dessus de Taxe des x , et les né-
gatives ou les permanences indiquant les sommets en dessous du
même axe. L'auxiliaire Z~o , résultat de l'élimination de x entre
Xf~o et XX'-' — z, fait connaître, par ses racines réelles positives
ou par ses variations , le nombre des sommets convexes vers Taxe
des x , et par ses racines négatives ou par ses permanences} le

(*) Mais , encore un coup , Lagrange ajoute , à îa fin <3e la même note :
II est possible que quelques-unes de ces conditions se trouvent renfermées dans-
U système dès autres , ce qui en diminuerait U nombre , comme nous lavons
&u pour le quatrième degré*

J. D. G.
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nombre des sommets concaves vers le même axe ; enfin ; chaque
tariation vraie , ou chaque sommet convexe ; répond à un couple de
racines imaginaires dans A*=o.

Lorsqu'on demande le nombre des racines imaginaires de X~o,
du degré m , on est censé savoir déterminer le nombre de celles
d'une équation d'un degré inférieur. La courbe Xzzy a un nombre
m—i, m—2 y m— 3 ,...».. de sommets réels, suivant que A7 = o
a o , 2 , 4 >•••*• racines imaginaires.

La courbe X=y a des formes diverses, qu'on peut classer par
le nombre des sommets apparens. Ainsi y pour le 4-ms degré , il y
a deux formes possibles : la première qui oiTre trois sommets ? et
la seconde qui n'en oiîre qu'un seul. Dans toutes deux , Taxe peut
être placé de manière à laisser un sommet en dessus , en sorte que
JT~o a une variation dans les deux cas ; mais , dans le premier ,
l'axe coupant les quatre branches , il en résulte quatre racines
réelles ; tandis que } dans le second , l'axe ne rencontrant aucune
branche, les quatre rrcines sont imaginaires. Voilà donc un cas
douteux , dont rincertitude ne saurait être levée par l'équation T=ro:
c'est le cas de l'équation de M. Servois ; mais on voit en même
temps que le doute est levé par la dérivée A 7 = o ; car y suivant que
celle-ci aura on n'aura pas ses trois racines réelles , la proposée
aura zéro ou quatre racines imaginaires.

Dans le cinquième degré , la courbe a 4 > 2 ou o sommets. Le
cas de quatre sommets se subdivise en deux 7 dont l'un présente
deux sommets concaves en dessus et deux en dessous ? tandis que
l'autre offre deux sommets, l'un concave et l'autre convexe, tant
en dessus qu'en dessous. Ce dernier cas est celui de Féquation de
M. Tédenat ; Y~o a deux variations et deux permanences} et X/^=o
a toutes ses racines réelles ; de sorte qu'on ne sait si X~o doit
a^oir o ou 4 racines imaginaires. Pour lever le doute, il faut recourir
à i/ = o. La proposée aura cinq ou une racines réelles , suivant que
Z'zzo aura 4 olk % permanences. C'est ce qu'on vérifie facilement

Ton. /X 48
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sur l'équation de M. Tédenat, pour laquelle on trouve deux râleurs
positives et deux valeurs négatives de z.

Première méthode générale. À mesure que le degré de l'équation
s'élève , le nombre des cas douteux s'accroît aussi. J'ai trouvé > par
voie d'induction , que les seuls cas certains sont ceux qui répondent
à o y i 5 m—2 , m—i variations de Y-^o , pour les degrés impairs ,
et à o , m—a , m—i variations , pour les degrés pairs ; en sorte
qu'il n'y a que quatre cas certains dans les degrés impairs , et trois
seulement dans les degrés pairs. Dans ces cas , le théorème con-
testé (*) donnera , avec certitude le nombre cherché des racines
imaginaires : dans les autres , il faudra lever le doute, en consultant
les équations .X7=o , Z-=-G. Il est même quelque cas douteux où
Ces deux équations ne suffiront pas,

Deuxième méthode. SI Ton connaissait le nombre Rp des racines
réelles positives de iT = o , ce serait aussi le nombre des sommets
convexes de la courbe , dont chacun indique deux racines imaginaires
dans X—o. Donc , en appelant / le nombre des racines imaginaires
de X==o , ll celui des imaginaires de -X7=o? lequel est le même
pour Z~o y on aurait la relation / = / /+2i?p. Ce principe a aussi
été employé par M. Cauchy ( Journ. de l'école polytech. 7 cahier
XVII, pag. 462).

La question est donc ramenée à celle-ci : étant donné une équa-
tion ^ = 0 , dont on connaît le nombre / des racines imaginaires;
trouver le nombre Rp de ses racines réelles positives ?

J'ai donné une solution de ce problème préliminaire dans mon
ouvrage ( Méthodes nouvelles, etc., pag, 71), Les calculs en sont

(*) Personne n'a jamais prétendu contester la vérité du théorème de M,
Bérard , pour des cas particuliers. Ce que MM. Tédenat et Servois ont fait un
peu plus que de contester , c'est l'universalité que , dans son ouvrage 3 M»
Bérard avait cru devoir attribuer à ce théorème.

J. D. G,
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prolixes ; mai j'ai trouvé ( pag. 65 ) un théorème qui fournit une
solution très-simple pour les douze premiers degrés.

Remarquons d'abord qu'un facteur imaginaire du a.mC degré
£a;jl2«iz+(«1-+~£a) multipliant un polynôme réel P ; le produit Z
ne peut acquérir que deux variations ou deux permanences de plus
que n'en avait P, et jamais une variation et une permanence. Ainsi ,
par exemple , dans une équation du 3.m e degré , il y a toujours
ou trois variations ou trois permanences , ou deux variations et
une permanence , ou enfin une variation et deux permanences ; or,
dans le 3.m e cas , c'est la permanence qui indique la racine réelle ,
tandis que les variations répondent aux racines imaginaires : dans le
4>me cas c'est l'inverse.

En combinant ce lemme avec la règle de Descartes , on peut
assigner le nombre JRp des racines réelles positives de Z—o , et
celui des négatives ; à l'exception de certains cas douteux , pour
desquels il faut recourir au théorème suivant*

Lorsque, dans une équation

on connaît le nombre / des racines imagînaîrca , e'îl arriva que r

par la règle de Descartes y combinée avec le lernme précédent ,
on ne puisse discerner complètement le nombre des racines réelles
positives et celui des négatives, en sorte qu'il en reste deux dou-
teuses , qui soient toujours de mêmes signes , alors ces racines dou-
teuses seront toutes deux négatives ou routes deux positives, suivaat
que la fonction

*C (F)

sera positive ou négative.
Soit, par exemple , Téquatioa
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*?-K*«-h5,s5-~42*—i3z3-4z

qui revient k

et dans laquelle nous supposons qu'on ait reconnu deux racines
imaginaires. Comme elle a deux variations et cinq permanences, nous
en conclurons, par le précédent lemme , qu'elle doit avoir au moins
trois racines réelles négatives ; mais que, si elle en a davantage ,
elles doivent être alors au nombre de cinq ; cette équation a donc
deux racines réelles de même signe , douteuses par rapport à leur
signe commun , parce que le facteur imaginaire du second degré
a pu également introduire ou deux variations ou deux permanences ;
mais le doute est complètement levé par l'inspection du signe de
(F) qui , dans cet exemple , vaut —-664 > ce qui indique deux
racines positives. La proposée , outre ses deux racines imaginaires ,
a donc trois racines réelles négatives et àeu% positives , comme on
le voit d'ailleurs par sa seconde forme.

Revenons présentement au problème principal. Ayant trouvé,
£omme nous venons de le faire , le nombre Rp des racines positives
de JZzzo -> on 9«M' l<* nombre / des racines imaginaires de J = : o ,
par Féquation l~l/-\-2BP. Ainsi ? dans l'exemple précédent , on a
1-2+2.2=: 6.

Au surplus y rien ne sera plus facile qne de construire , pour
cîiaque degré , une table des valeurs de / qui répondent aux ûi-
yerses. valeurs de V et du nombre ç des variations de Z~o* Nous
avons construit , pour les douze premiers degrés , une semblable
table , qui ne nous a coûté que quelques heures de travail , et qû e
nous plaçons à la suite de ce mémoire. Les cases blanches se rap-
portent aux cas impossibles ; et celles qui renferment deux nombres
se rapportent aux cas douteux ; et pour lesquels on prend le plus
petit ou le plus grand des deux nombres ? suivant que (F) est posuii
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Ou négatif. On trouve une seule case qui renferme trois ncmbres ;
et c'est dans le I2.m ' degré. Ce cas échappe donc à la méthode,
puisqu'alors le signe de (F) ne suffit plus pour lever le doute. 11
est à croire que le nombre de ces cas se multiplierait , à mesure
que le degré de l'équation s'élèverait, et c'est pour cela que nous
nous sommes arrêtés au i2. ine.

Pour donner une îdée de la manière de construire cette table ,
prenons le cas particulier ou /?2 = 7. On tracera au crayon , ou , mieux
encore ; on formera ; avec un fil métallique flexible , la courbe X=y ,
en lui donnant successivement tous les aspects qu'elle peut avoir-, alors 7

i.° Pour le cas où les six sommets sont apparens, c'est-à-dire,
où P~o 9 on placera un axe mobile de manière à produire suc-
cessivement o , i , 2 , 3 sommets convexes ; et Ton reconnaîtra que
les valeurs correspondantes de 1 sont o , 2 , 4 9 &•

2.0 On fera ensuite l/=2 ; c'est-à-dire qu'on ne laissera à la
courbe que quatre sommets seulement ; on donnera à Taxe mobile
toutes les situations dont il pourra être susceptible ; et on se rappellera
que chaque sommet convexe , ou chaque variation de Z~o, vaut
deux imaginaires dans X=o P et que le nombre des intersections
de Taxe avec la courbe étant retranché de 7 donne /• Ainsi > quand
Taxe coupe toutes les cinq branches, on a V~Q , I~2+2.o~2 ;
ou bien on a cinq intersections ; et l~j—&— o. Quand V^=n ;
c'est-à-dire, lorsqu'on n'a qu'un sommet convexe, on a l~2\3L—%*
Quand 7^=2 , on a deux sommets convexes réels ou aucun; parce
que les deux variations peuvent être imaginaires ; et on a 7=;2
ou 6 ; ce qui forme un cas douteux ; et voilà pourquoi la case
relative à ce cas contient ces deux nombres. On fait ensuite V~3*,
c'est-à-dire qu'on présente a l'axe un seul sommet convexe ; parce
que deux variations sont nécessairement imaginaires ; attendu que
la courbe n'en peut plus offrir que deux au plus ; on a donc 1=4*
Enfin , pour F==4 , on a nécessairement 2F imaginaire, ce qui
donne / = 6 .

3.9 On fait / / = 4 t c'est-à-dire que la courbe nsa plus que
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sommets apparens ; et Ton discute les différentes positions de Taxe
comme nous venons de le faire.

4-° Enfin, on fait / ; ~ 6 ; c'est-à-dire que la courbe n'a plus de
sommets 5 et Ton raisonne comme dans les cas précédens.

Voyons donc, en résumé , ce qu'il y aura à faire pour détermiaer
le nombre des racines imaginaires d'une équation , du moins jusqu'au
douzième degré. La proposée étant X=o , on écrira ses dérivées
X'=o, Fso^Pso en s'arrêtant à celle qui sera du 5.me

degré seulement. On formera les auxiliaires Z=o9 Zf~o , 2 / ; = o ,
en éliminant successivement x entre X'~o et XXy/~z , entre A7/=o
et X'X'»=zzf, entre JEw=o et X»X""=z" >......... la dernière de
ces auxiliaires sera également du 5*mt degré»

/ étant le nombre des imaginaires de X~o , et V, ln , l'n>......
celui des dérivées , ainsi que des auxiliaires , on opérera comme
il suit ;

Supposons, pour fixer les idées , que la proposée soit du 8.me

degré. On déterminera, par les formules rapportées ( Prob* II ) 7

le nombre l/n des racines imaginaires de la dérivée l ; / / =:o et de
l'auxiliaire Z///=o } lesquelles ne seront que du 5.me degré* Par
le moyen de / / / ; et du nombre vN des variations de Z/;—o ; on
déterminera ln

% nombre des imaginaires de la dérivée Xn~® et de
l'auxiliaire JZ77—o* Par le moyen de lu et du nombre ?' des varia-
tions de j ^ z r o , ou déterminera V 7 nombre des imaginaires de la
dérivée X/=^oi et de l'auxiliaire Z'—o. Enfin, par le moyen de lf

et du nombre 9 des variations de Z = o , on déterminera le nombre
des imaginaires de la proposée. Dans toutes ces recherches , la
table dont il vient d'être question ci-dessus sera «Tua très-utiia
secours*

Au reste , M arrivera des cas ovt la méthode sera ea
défaut : ce sont ceux où , Z devenant zéro , les signes de
Z=zo ne peuvent plus fournir de solution* Ces cas arriveront
lorsque quelques - unes des racines des auxiliaires deviennent
nulles ou égales. Par exemple, si la proposée était #6«+i=o A
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en aurait 6x%—X; , et 3OJT*=À7 ' ; d'où XX/=slt+x- = Z0

Eliminant X entre cette dernière et 6^5=o , on aura simplement

On e'lude la difficulté en multipliant la proposée par un facteur
connu qui complète ses termes, et alors la méthode devient appli-
cable. Au reste , la première méthode n'est point en défaut dans
cet exemple.

M. Cauchy emploie deux espèces d'auxiliaires , qui ont une
signification différente des miennes : leur nombre est 2(772—1) ;
ainsi, pour m~8, ce nombre est 14 ; tandis que, pour la même
valeur de m , il ne m'en faut que 3 seulement. En second lieu ,
les racines égales ou nulles mettent la méthode de M. Gauchy plus
souvent en défaut que celle-ci ; et il faut alors recourir à des arti-
fices de calcul très-embarrassans, et beaucoup plus pénibles que
ceux qui suffisent à la nôtre (*). Nous pensons donc que ceux
qui prendront la peine de comparer les deux méthodes n'hésiteront
point à trouver celle-ci plus simple et moins laborieuse.

Au reste , il ne faut pas se dissimuler que la méthode de M.
Cauchy , et même la mienne , sont plus précieuses en théorie qu'en
pratique (**). Les calculs deviennent tout à-fait rebutans , quand

(*) D'accord. Mais la méthode de M. Cauchy conduit à des formules gener-
rales pour des équations littérales, tandis que celle-ci ne saurait guère s'appliquer,
telle qu'elle est , qu'à des équations numériques. Mais la méthode de M» Cauchy
conduit au but, dans tous les cas ; tandis que celle-ci, en la supposant même
inattaquable , sous le point de vue théorique , se trouve en défaut dès le
i2. r a e degré'.

J . D. G.
(**) En ce cas , ce n'est point la peine de chercher querelle à la méthode

de M. Cauchy , et de lui reprocher la prolixité des calculs qu'elle exige. Dès
qu'en effet il ne s'agit que de the'orie , c'est là un objet de peu d'importance ;
et c'est alors la considération de la géne'ralite' et de la pureté des principes
qui doit régler les rangs entre les méthodes» Gr, s'il en est ainsi, nous n#
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le degré est un peu élevé. Le moyen qui est alors le plus expé-
ditif consiste à tracer la courbe X=zjr* 11 peut se faire , à la vérité »
que même le tracé de cette courbe laisse incertain si deux racines
sont imaginaires ou seulement réelles et très-voisines ; mais , dans
ces circonstances , assez rares d'ailleurs, on peut facilement lever
l'incertitude ? par la méthode que j'ai donnée pour l'approximation
des racines réelles des équations numériques ( Méthodes nouvelles ,
etc. > chapitre III )•

CONCLUSION.

3.* J'ai fait voir qu'une formule déduite de principes exacts ;
d'après une figure géométrique , peut , lorsque la figure
change , par le changement des données , se trouver en dé-
faut j et donner lieu à des cas douteux ; et qu'alors il n'est
pas exact de dire que la formule est fausse (*). A cette
occasion , j'ai rectifié le sens de la formule cS\n.a/=c/Sin.a (**).

2.° En rapportant les conditions connues de la réalité des racines

Yoyons rien de préférable pour la détermination du nombre des racines imagi-
naires des équations numériques , que le recours à l'équation dont les racines sont
les ^u«rrc4 Jca différences des siennes prises deux à deux.

J. D. G.

(*) C'est aussi la doctrine que nous avons professée au commencement de
cet article. Pour les points singuliers des courbes , par exemple , la formule

-f- est en défaut > parce qu'elle se tait ; mais , par cela même qu'elle se tait *
ax

on ne saurait dire qu'elle soit fausse dans ce cas. Il n'en est pas de même du
théorème de M. Bérard ; son tort à lui est de parler dans les cas même ou
il devrait se taire , et de tromper ainsi ceux qui l'interrogent.

" J. D. G.

(**) Nous croyons avoir prouvé que cette formule n'a pas besoin de recti-
fication t et qu'elle est toujours parfaitement exacte,

J. D. G.
pour
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pour le* 2.me , 3.m* 9 4.me degrés , j'ai relevé la méprise de l'illustre
Lagrange ? relative au 3.mc degré (*).

3.° J'ai donné, pour le 5.me degré, des conditions analogues à
celles qne Ton connaissait déjà pour les trois précédens. Ces
conditions ne se sont trouvées qu'au nombre de cinq , et non
au nombre de dix , comme l'avait cru Lagrange (**). Ces formules
me paraissent préférables à tout ce que l'on connaissait (***).

4.° J'ai donné , pour les degrés de 6 à 12 , deu^Cméthodes. Par
îa première, j'emploie , comme moyen principal, l'auxiliaire J==o ,

(*) C'est pour la troisième fois que M. Bérard revient là-dessus ; et l'on serait
presque tente d'en inférer que c'est là la partie de son mémoire à laquelle II
attache le plus d'importance.

On a vu plus haut à quoi se réduit cette grave méprise , et quelles peuvent
en être les dangereuses conséquences. Certainement la plupart de ceux qui ont lu
la Résolution des équations numériques 3 ont remarque4 cette méprise tout aussi
bien que M. Bérard ; car tous savent aussi bien que lui qu'une seule condition
est nécessaire pour la realité des racines d'une équation du 3*me degré9 comme,
en particulier , mainte endroits de ce recueil pourraient en faire Ici \ mais
loin de songer à se prévaloir d'une distraction , très - innocente d'ailleurs f

de la part d'un homme si digne de leur respect, à l'exemple des pieux et pudiques
enfans de Noë , ils se sont empressés , au contraire , de détourner leurs yeux.
Que si pourtant quelqu'un d'entre eus avait pu croire que , dans l'intérêt de
îa science , il pouvait être bon de signaler cette petite inadvertance , il l'aurait
fait sans ostentation 5 et se serait bien gardé sur-tout d'attendre une telle conjoncture
pour accoler l'cpithète à?illustre au nom du grand homme dont ils auraient
eu à relever la faute*

~ J. D. G.
(**) Non , encore un coup , Lagrange n'a point cru cela; îi a dit formellement y

tu contraire, que sans doute ces conditions devaient ctre en moindre nombre*
J. D. G.

(***) D'accord ; mais qui répondra que M. Bérard n'a pas commis ici une
méprise pareille à celle de-Vi!Iustre Lo^rjjige , et que ces cinq conditions sont
toutes nécessaires ? Sa méprise porterait alors sur tous les degrés , puisqu'il les
ramène tous su cinquième,

J. D. G,

Tom. iX. 49
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dans trois ou quatre cas favorables de chaque degré. Mon théorème
contesté fournît pour ces cas la solution la plus simple qu'on puisse
espérer. Dans les autres , il y a du doute entre deux combinaisons 5
mais le doute peut être levé par des mo\ens que j'Indique.

Dans la deuxième méthode , j'emploie un nombre m—5 d'auxi-
liaires 7 et une table dont Fusage est très-facile , ainsi (ju'un théo-
rème nouveau sur les signes des racines réelles. Cette seconde mé-
thode méritera , je pense , l'attention des géomètres ; et je remercie
MM. Tédenat et Servois de m'avoir provoqué à de nouveaux efforts
par leur judicieuse critique (*).

Ce mémoire aurait exigé plusieurs figurés pour en faciliter l'in-
telligence , et en rendre l'exposé plus clair ; mais les géomètres
sauront-les suppléer. Un reproche plus fondé sera celui de n'avoir
pas suffisamment approfondi certains points et démontré certains
autres (**)• Mais je prie le lecteur de considérer qae ce sont plutôt
des vues que je propose qu'un traité que je prétends faire. Si
elles sont jugées utiles, je n'aurai pas perdu ma peine ? et les
loppemens deviendront faciles (***)•

(*) Qu'est-ce pourtant qu'une méthode qui , de l'aveu même de Pauieur,
est peu près inexécutable dans la pratique ; et qui , de son aveu aussi f
échoue en théorie dès le i 3 . m e degré.

J. D. G.

(**) C'est là, à ce qu'il paraîl , un péché d'habitude chez M. Bérard ; il voit pour-
tant combien sont graves les désagrémens qu'il entraîne.

J. D. G.

(***) A la bonne heure. Si M, Bérard parlait toujours sur ce ton , son
tne'rile , que personne ne lui conteste , paraîtrait dans un jour beaucoup
plus brillant. On peut dire du talent ce qu'on a dit de l'esprit : celui
quon veut montrer fait tort à celui qu'on a i et , d'ordinaire, les autres nous
refusent des louanges , même méritées , en proportion de la part que nota
&ous en faisons nous-mêmes»

J. D. G.
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QUESTIONS PROPOSÉES

Problème d*Analise algébrique*

le nombre des conditions strictement nécessaires et
suffisantes pour qu'une équation de degré quelconque ait toutes

racines réelles ?



FORMULES D'INTÉGRATION.

ANALISE TRANSCENDANTE.

Recherche des formules propres à intégrer , par
approximation , entre deux limites données quel^
conques , toute Jonction différentielle d'une $eul&
variable ;

Par M. le professeur KRÀMP 9 correspondant de Tacadémiô

royale des sciences ? doyen de ia faculté des sciences de

Strasbourg > Chevalier de l'Ordre royal de la Légion

d'honneur.

( Troisième Mémoire. )

ï. JL/ANS un mémoire insère à la p?ge 872 du VLe volunre dia
présent recueil , j'ai donné douze dîiFérentes formules au moyen
desquelles on peut intégrer , avec une approximation plus ou moins
parfaite , entre deux limites données quelconques 9 toute fonction
différentielle d'une seule tatiable. Je me propose de reprendre ici
le calcul de ces formules 7 pour le présenter sous une forme qu|
me semble préférable ; et pour les soumettre ainsi à une vérifica-
tion qui leur imprime une sanction nouvelle y si elles sont exactes ?

et qui , dans le cas contraire , en fasse disparaître soit les fautes
d'impression qui auraient pu s'y glisser , soit même les erreurs de
cralcul que Ton a soupçonné s'être introduites dans quelques-unes
d'entre elles. Si j'avais besoin , au surplus , de me justifier , de

Xom, IX, n* XII7 i.eS juin 1819, 5o
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revenir de nouveau sur un sujet qui, aux yeux de quelques lec-
teurs , pourrait paraître déjà épuisé ; je trouverais mon excuse dans
l'importance des formules dont il s'agit ; importance qui me parait
suffisamment établie par les applications qui déjà en ont été faites.

2. Soit ydx une fonction différentielle explicite de x , dans la-
quelle on suppose y donnée en x 7 par une équation de la forme

v désignant une'fonction d'une forme connue et déterminée quel-
conque ; et proposons-nous d'obtenir une valeur approximative de
l'intégrale fyàx , entre deux limites données quelconques*

3. Considérons y comme l'ordonnée d'une courbe dont x est
l'abscisse , et dont la nature est conséquemment déterminée par
l'équation ci-dessus ; la question proposée se réduira évidemment
à quarrer l'espace mixtiligne compris entre la courbe > l'axe des
x et les ordonnées qui répondent aux deux abscisses données pour
limites d<e l'intégrale,

4. On peut toujours faire coïncider Taxe des y avee la première
de ces deux ordonnées , et prendre , en outre , pour unité , la
portion dé Taxe des x qui la sépare de l'autre. On réduit ainsi
le problème à déterminer l'intégrale fyàx entre les limites zéro et un.

5. Soit divisée la portion de Taxe des x comprise entre les or-
données extrêmes en un nombre arbitraire n de parties égales ,
lequel devra être d'autant plus grand qu'on aspirera à une plus
grande précision dans les résultats. Soit posé

& , b9 c , p , q seront ainsi les ordonnées des points de division
-de Taxe des x , et pourront être déterminés au moyen de l'équa-
vion d:e la courbe. Si nous imaginons use courbe parabolique passant
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par les extrémités supérieures de ces ordonnées, cette courbe différera
d'autant moins de la courbe dont il s'agît que le nombre n des
divisions de l'axe des xy de zéro a un, aura été pris plus grand;
d'où il suit que , dans la recherche approximative de Jyàx ^ il pourra
être permis de substituer cette courbe à la courbe proposée. Alors
l'intégrale cherchée ne dépendra uniquement que des quantités a f

h > c9*.:.p9 q , et du nombre n choisi pour nombre des divisions
de la portion de l'axe des x prise pour unité.

6. On voit par là que , pour résoudre le problème ? il n'est pas
même nécessaire de connaitre la relation générale qui lie y à x ;
et qu'il suffit seulement de connaître les valeurs de la première
de ces variables qui répondent à des valeurs de la seconde croissant
en progression arithmétique ; et ce n'est point là un des moindres
avantages de nos formules , qui peuvent ainsi être appliquées à
des recherches d'expérience et d'observation où très-souvent la na-
ture de la dépendance générale entre les deux variables est tout-
à-fait inconnue*

7. Soient posés

Aa—è—a ;

m! étant, comme à l'ordinaire , le symbole de i.2.3..k-../72. Sî, pour
-on moment , nous prenons pour unité l'intervalle constant entre
deux ordonnées consécutives, nous aurons, comme Ton sait, pour
l'équation de la courbe parabolique ,
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de sorte qu'il s'agira d'intégrer

depuis o jusqu'à n*
8. Procédant donc à l'intégration ,~ et observant que l'intégrale

doit s'évanouir en même temps que x , il viendra

H-A*.—

/ #3 X* \

résultat dans lequel il faudra supposer ensuite #=r/2.

9. Mais il est clair qu'en rendant n fois plus grand l'intervalle
entre les ordonnées consécutives , on 3» aussi „ rendu n fois plus
grande Faire de la courbe à quarrer , c'est-à-dire , l'intégrale de-
mandée -, d'où il suit que la véritable valeur de cette intégrale n'est
gue la 72.me partie de celle que nous venons de lui assigner; c'est-
à-dire qu'elle est égale à cette intégrale divisée par oc , et prise
ensuite jusqu'à # = #, En posant donc, pour abréger,
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A £

3 2 »

^ 3 T

valeurs dans lesquelles il faudra supposer xzzn , on aura

10. S i , dans ceîte dernière formule, on remet pour Aa % A*& p

A5a , A4# , *• leurs valeurs (7) en a 7 b 9 c , d , , en se
xappclant que # = / 2 , on pourra l'écrire sous cette forme

~7~"~V^ 7 + T :1\ iï~ — ^

B . C D . _ P
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11. Il est clair dVilleurs que les ordonnées également distantes

des extrêmes , telles que a et q , h et p 7 ....... doivent , dans cette-
formule être affectées du même coefficient , puisqu'en renversant
Taire mixtiligne à quarrer , de telle sorte que sa première ordonnée
devienne la dernière , et vice versa , sa surface doit toujours de-
meurer la même. On pourra donc réduire le calcul des coefficiens
a y b , c , à la moitié de leur nombre, si ce nombre est pair,
et à la moitié plus un , s'il est impair ; et alors il conviendra de
les calculer dans un ordre rétrograde, attendu que les derniers se
présentent sous la forme la plus simple. A la vérité, en procédant
ainsi ? on se privera du moyen de vérification qui résulterait de
l'égalité des coefficiens également distans des extrêmes ; mais on en
trouvera un autre dans l'égalité de la somme de tous les coefficiens
à l'unité» 11 est évident 5 en effet , que , si Ton supposait à la fois
# = i , b=\ , c^zi ,...'..., Taire à quarrer devrait , d'une part, êlre
la simple somme de ces coefficiens , et que , d'une autre , elle devrait
être égale à l'unité.

12. L*e plan général ainsi tracé , il s'agit d'en venir à l'exécution f

pour toutes les valeurs de n , depuis un jusqu'à douze inclusivement.
Cherchons d'abord les valeurs de A y B } C , D , Il nous faut,
pour cela, continuer le tableau commencé ci-dessus (g). Dans ce
tableau ?.la loi des signes , exposans et dénominateurs , est manifeste.
Quant à celle des numérateurs numériques ? en remontant (7) à
l'origine de ces .nombres , on voit qu'en général l'un quelconque est
égal à celui qui est immédiatement au-dessus ; plus , le produit de
celui qui est immédiatement à gauche de ce dernier par l'exposant,
de ce jdans le premier terme de la ligne que Ton calcule, Ainsi ,
par exemple, dsoslavaleur.de D , 00 a 6 = 3+1.3 > 1 1 = 2 + 3 . 3 5
et ainsi des axutres-

13. Rien ne sera donc plus facile que de pousser ce tableau aussi
]oin qu'on voudra. En le poussant jusqu'à la Jette M 7 et
faisant d'abord abstraction des puissances de x et des dénominateurs >
on aura
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Pour A , x '.

Four B , t—i ;

Pour C , i - 3

+2:

Pour D , 1 — 6

+ 1 1 - 6 ;

Pour E , 1—10

+35—5o

Pour F , I - I 5

+85-225

+274—120 «

Pour G , 1—ai

+175—735

+1624—1764

+720 .

Pour H , x—28

+322—1960

+6769— !3i3a

+i3o68—5o4o •

Pour / , 1—36

+546—4536
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+22449—67284

+ 118124—iog584

Pour K , 1—45

+870—9450

+63273—269325

-f-723680—1172700

+ 10^6576—362880

Pour L , 1—55

+ i32o—1815oN

+157 773—go2©55

+3416930—^8409500

•4-12753576—10628640

+3628800 .

Pour M , 1-66

1925—32670

—4599^730

105258076^—150917976

120543840—39916800.

On s'assurera de l'exactitude de ces résultats , en observant qtié r

dans chaque groupe , la somme des nombres positifs et celle des
nombres négatifs-doivent être égales entre elles, et moitié du dernier

nombr©
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Combe du groupe qui le suit immédiatement; comme îl est aisé de
se convaincre que cela doit être en effet.

i4- Si présentement on rétablit les puissances de x et les déno-
minateurs 7 en simplifiant autant qu'il $e pourra , il viendra

Jtfz=. —. .— —

4

a>3

225*»

77
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"o*7 i57773*6 170^4

— 4- —5 ia8865*54- g

*i« iix'o , _ o r si Ï ^ ^ 1 * 7 I3I8779* ,

- — -—4-,7^-3267^4-—3 ^ s-

i5. En classant les dénominateurs, ces formules deviennent

2/4=1 .

44-

_I 0^—90 r

4-1 o5 x*—2004;

4-144 •

4-1428^—4725**

4-7672^

4-7 OO**-—3528a:*
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+8640 .

= i c u 7 — 3 i 5

+ 1 2 1 84^^3—29547 o

-4-392040^:.—226800

—269 \ 36a;3

2^r=: 12^9—59 4-s8

+12760^7 — 15592DJ1?5

+ 1 9 î o5152 jr3—08699

4-45169344^"—23950080

3r9^6—3092760^^

4^366772OJT*- 4o'>656oo^^

+ 7 6 0 2 Î 4 5 6 O ^ — 85029120^

-^43545600 *
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—17837820^*

+IO4O48373OOJ;5—4*8561 i^

+ i i494 l 818992a?3—*2o6oo3o:

+219389788800.2? —108972864000 -

16. Il s'agit présentement de procéder aux substitutions, OA
d'abord ? quel que soit ce 7

Les valeurs de B sont

Pour xzz^z , 6 5 = i ?

3 , 3 ,

'4 > . 5 ;

6 , 9 ,

7 , " »

8 , i3 ;

9» l5>'
10 , 17,

1 1 1 r9 *

1 3 ;

Les valeurs de C sont



Les valeurs de D sont

D'INTEG

Pour x=Z

4
5

6

7

8

9

1 0

I I

) sont

Pour # = 4 ,

5,

6 ,

i 7 «

8;

9»

1 0 ;

;« i

RATION.

» 4>
9 .

1 6 ,

> 2 5 ,

3 6 ,

» 4 9 >

64,

, 8i ,

85 ,

» 346,

533 ,

983?

1629,

, s5io i

366i ,•

385

Les valeurs de JE $on|
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Pour x—ô , IZE = IQ ;.

6 , i"32 „

7 , 45g ,

8 , 1168 ,

9 , s475 >

10 , " 4644 >,

n , 7987 .

12 , 12864 ,

Les, valeurs, de F sont

Pour * = 6 ; 84F= 492 ;,

7 , 44*7 »

8 , 18128 ,.

9 ,. 53073 ,

10 , 127180 ,

n , 266297 ,

12 , 5o563a %,

Les. valeurs de. G sont.

Pour x—'] ,' 2^G — -]5i ;

8 , 736o ,

9 > 34479 ^
10 , 1139^o ,

I I »

13 ,



les

Les

Les

Les

valeurs de H

Pour i

valeurs de I

I 3 I N T

sont

r=8,

9 >

IO

12 ,

sont

Pour # = 9 ,

valeurs de K

IO ,

II ;

12 ,

sont

Pour # = i o 9

valeurs de L

Pour ;

il ,

12 l

sont

•r=li i

12 ;

ÉGRATION.

yoH—i 5824 v

i86543 ,

988G00 ,

3941207

10732176 .

20 /= 25713 ;

3236oo j

1901961 ,

7717824 .

1 3 2 ^ = i28536o

i8686327

121158720

24Z=2i7i465

332C7456

Enfin , la valeur de Jf
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Pour # = Ï 3 , 5 460^=471623 3856 .

iy. Nous avons donc présentement tous les éle'mens nécessaires
pour calculer nos diverses formules ; et nous procéderons à leur
calcul ainsi qu'il suit,

Pour le diviseur un nous avons la formule

puis donc qu'on a, pour tous les cas , Â~\, nous aurons

2fyA* = (a+b) . (I)

Pour le diviseur deux % nous avons la formule

mais j pour le même diviseur , nous avons trouvé

~ t

en substituant donc, la formule sera

6fydx=(a+c)

Pour Je diviseur trois 7 nous avons la formule

is t pour le même diviseur ; nous avons trouvé
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en substituant donc, la formule sera

Pour le diviseur quatre } nous avons la formule

maïs, pour le même diviseur > nous avons (roové

«n substituant donc , la formule sera

(IV)

+ I2£ .

Pour le diviseur cinq, on a la formule

+ L

mais , pour le même diviseur , nous avons trouvé

«n substituant donc , la formule sera

(V)

IX, "
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Four le diviseur six , on a la formule

:+i.

knaîs \ pour le même diviseur \ nous avons trouvé

pn substituant donc, la formule sera

+272 £?.

Pour le diviseur sept, nous avons la formule
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mais pour le même diviseur, nous avons trouvé

en substituant donc , la formule sera

(VII)

Pour le diviseur huit P nous aurons la formule

mais, pour le même diviseur, nous avons trouve'

(*) On voit par là que , dans la formule correspondante de la page 376 da
tome VL« de ce recueil ? il s'est glissé deux légères fautes, tes minutes «jus j?aî
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an substituant donc , la formule sera

+5888(3+*)

-4540^ . (*)

Pour le diviseur neuf 9 nous avons la formule

9-'

maïs , pour le même diviseur > nous avons trouvé

en substituant dope , la formule sera

entre les mains prouvent, au surplus, que ces fautes ne sont que d'impression!
ou tout au plus de copie.

(*) On voit qu'ici encore , il s'est glisse une faute d'impression ou de co-
pie dans le coefficient du premier membre de la formule [correspondante de la
page 376 du volume déjà cité,
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(IX)

Pour le diviseur dix-, nous avons la formula

10 10!

a 3 1 ^ 4 ! 5!

mais, pour le même diviseur , nous avons trouvé

en suljtituant donc , la formule sera

oo (//+//)

+427368/ .

Pour le diviseur onze, nous avons la formule
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mais, pour le même diviseur, nous avons trouvé

«a substituant donc, la formule sera

(
(XI)

+25226685(^+0

—9595542^+^)
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Pour le diviseur douze, nous avons la formule

fydx M

mais, pour le même diviseur, nous avons trouvé

en substituant donc , la formule sera

d^r~ 136^651(^+«)

— 7587864^+/)
+35725120^+^) (XII)

-8979713%. (•)

(*) Cette formule est exactement celle de M# Bérard ( tom, VII , pag. n o ) ,
et diffère totalement de celle gut j'avais d'abord publice'C tonu V I , PaS» 377 )•
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Toutes ces formules se vérifient 3 au surplus , en ce qu'elles

donnent Taire cherchée égale a l'unité , lorsqu'on suppose toutes
les ordonnées a, h$ c}...... égales elles-mêmes & l'unité.

Dans un prochain article , nous appliquerons ces résultats à
l'intégration approchée des équations différentielles à deux variables.

QUESTIONS PROPOSEES.

Problème de Géométrie.

XL est connu qu'en général par neuf points donnés on peut
toujours se proposer de faire passer une surface du second ordre
dont l'espèce se trouve déterminée par la situation respective de
ces neuf points.

Mais, lorsque la Surface est donnée d'espèce ? elle n'a plus
besoin d'un si grand nombre de points pour JHre déterminée ;
ainsi , par exemple , une sphère est déterminée par quatre de
ses points ; un cylindre droit par cinq , et un cône droit par six*
On sait même faire passer une sphère par quatre points donnés *
mais aucun ouvrage de géométrie n'enseigne à faire passer un
cylindre et un cône droit par cinq ou six points donnés -9 on
propose donc ces deux problèmes ?

L'erreur était donc ici entièrement de mon eôlé , et je me fais autant im
plaisir qu*un devoir de le reconnaître. Elle a dû prendre sa source d'une
part dans la complication de mes premiers procédés , et de l'autre danâ

où j'étais de soumettre mes calculs à la vérification d'autrui.

FIN DU NEUVIÈME VOLUME*
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