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QUESTIONS RISOILUES.

Solutions des deux problémes de geomeétrie proposes
a la page 172 de ce volume ;

Par M. Brer , professeur de mathématiques & la faculté
des sciences de l'académie de Grenoble.
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SOIENT z, ¥y, z les coordonndes du sommet d’un angle triddre,
rapporté a trois axes rectangulaires; et soient X, ¥, Z les coor-
donndes courantes dans I'espace. Soient les coordonnées des arétes
de T'angle triedre ainsi qu'il suit :

X=z~4ar , X=zata'r , X=ata'r" ,

Y=y~+br, Y=y+br , Y=y+4b'r" , (1)

Z=z4cr, Z=zHcr', Z=z4c'r’ ;

nous aurons, entre les constantes , les équations de condition

a *+b > =1,
o b o =1, | (2)
/B g =

Si I’angle triedre est tri-rectangle, on aura , en outre

aa’ +bb’ +-cc/’=o ,
a4 b e’ =0 , (3)
a'a4-b"b+c"c=o ,
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11 est d'ailleurs connu qu'a ces relations on peut substituer , comme
équivalentes , les relations que voici :

a* el aP=1 , be +-b'c'H-bNc!' =0 |
o br=1 , ) (4) catc'a'4-c’a’=o0 , Y (5)
e cP=1 . ab4-a'b'a’’b/'=o0 .

et qu'on en peut encore , entrautres, déduire les suivantes :

Bl amm ! Gl ol lmmmglc!! bl Blall
— - )
a b . c .
Dl crmmct!l cllgemallc al'b—Dla 6
a' - bt - o > ( )
b/ ==ch! ca/—ac! abl=—=ba’
” = - - .
a’ ) | bt ot

Ties &quations des faces de l'angle triddre sont

X:x;-l-a’r/+a”r” X X=x+a”;‘/’+ar , ‘X=x+ar+a/r/‘ .
Y=y4b/r'+b/r" , Y =yl br Y=y-4br-+&/r ,
Z=z-c'r~=c!'r . Z=z~4-cllr!" ~ter ; Z=z-crtcr .

Si, entre les trois équations de chacune d’elles on: élimine les deux
variables qui leur sont communes, on trouvera pour nouvelles équations
de ces mémes faces, en ayant égard aux relations (5),

a (X—x)+5 (Y ~y)+c (Z—z)=o0 ,
o (X (Ymp)e! (Z—2)=0 , § (7) ,
(X 2)A- b (¥—y )c(Z—z) =0 ,

Ces choses entendues , nous pouvons procéder & la solution des
deux questions proposées.

PROBLEME 1. Quelle surface décrit le sommet dun angle
triedre
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triddre iri-rectangle mobile , dont les aréies sont assujetties &

toucher perpétuellement une surface fize du second ordre?
Solution. Soit

AX: - BY* - CZ A2 A’ X2 B/ Y +2C'Z =0 (8)

Péquation de la surface fixe du second ordre. En la combinant {1)
avec celles de l'aréte 7, poar éliminer X, ¥, Z; exprimant que
Téquation résultante du second degré en r a scs deux racines égales,
et posant, pour abréger, '

Ax’-}-—By’-—!—Cz’-—[—-zA’x—!—zB’y-i—zC/Az':.K
Az4A'=D, D—AK=D,
By--B'=FE , F*—~BK=UEF/,
Cz4-C'=F , FP—CK=1PF .
on aura '

D'a*-E'b*-Flc* -2 EFbc4-2FDca4-2DEab=0 :

On exprimera donc que les trois arétes sont tangentes a la surface
courbe , en écrivant

D'a *+E'b *+F¢c *42EFb ¢ +2FDc a 42DEa b =o ,;
D/g/ *+E'l *+-F'¢! *4-2EFb ¢/ 4-2FDc! o/ 4-2DEa’ b =0 ,
Do/ E/b/2 4= Fl /A2 EFB/ /42 FDe! a/!4-2DEa/ b/l =0 ;

en ajoutant entr’elles ces trois équations, et ayant égard aux relas

tions (4) et (5), il viendra
Di-El-F'=0 ;

c’est-3-dire ,

Tom. V.

*
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DA P—K(4+B+C) =0 ,
ou encore
(Axg-A)2-(By+4B)24~(Cz4-C')>
= (A+4-B4C) (Ax24-By2~}-Cz2fa A/ a4-2B'y42C'z)=o0 ,
-pu enfin, en développant et ordonnant
A (B4C)a*4-B (CA-Ayy*+ € (A+B)z
(B+C)a*+B (C+A)y*+ € (d+ )‘7‘§=A/2+E/’+C”. (9)
+24/(B4-C)a—+-2B/(CH-A)y+2C/(A+4B)z

Telle est I'équation de la

.
1

surface cherchée.

PROBLEME H. Quelle. surface <décrit le sommet d'un angle
triddre tri-reciangle mobile , dont les faces sont assujeities & Eire
perpétuellement tangentes & une méme surface-donnée du second ordre ?

Solution. Léquation du plan tangent a la surface (8), par un
point de cette surface dont les coordonnées sont X/, Y7, Z', est

(AXA AN XA (BY'4-B) Y4(CZ4-C Zp A XI4-B Y'4-C' Z1=0 ; (10}
Ies trois coordonnées X/, ¥7, Z/ étant lides entr'elles par la relation
AXPA-BY*4-CZ 42 A’ X/ 4 2B'Y'+2C0'Z! =0 ,

laquelle peut étre écrite ainsi
BU(AX'}-4"*-4-CA(BY'+B"24-AB(CZ!4-Cy3==BCA*»FCAB>4-ABC? , (11)
Mais Péquation du plan de la face 777/ est (7)

8X4-b Yob-cZ—(axotby-d-cz)z=0 ; 12)

st donc on veut exprimer que cette face est tangente a la surface
du second ordre, il faudra -écrire que les ¢quations (10) et (12)
ne different au plus que par un facteur, ce qui donnera

A
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Aa=AX-A"

N=BY' 4B, Aaibydce)p- A Xp-BYHCZ1=0 .
A=CZ C

En dliminant X/, ¥7 » Z’,  entre ces -quatre équations et I'équa-
- tion (11), et posant, pour abréger,
BCA'>4-CAB>4-ABC=K ,
Ax4-A'=D , BCD*==K=D',
By4B=E , CAE:—K=F',
Cz4 C'=F , ABF*—K=I",
on obtient aisément
BCD'a*4CAEb >4 ABFc>42 ABC(AEFbc-BFDca-}-CDEaby=o0 .

Afin donc que les trois faces de l'angle triddre soient tangentes 3
la surface courbe , on devra avoir

BCD!4 2CAED 4 ABF¢ 42 ABC(AEF) ¢ 4-BFDc a 4-CDEa b Y=o,
BCD/a! 24-CAE/Y 34 ABF'¢! 22 ABC(AEFb o/ 4-BFD¢' o/ J-CDEa' b =0 ,
BCD a//3ej-C AE/b 2o ABF'¢/342 ABC(AEFb/!c/'4-BF D¢/ a"-CDEa/by=o0 .

En prenant la somme de ces treis équations , et ayant ¢gard aux
relations (4) et (5), il vient

BCD'4CAE'4+ABF/=o0 ,
¢est=h-dire ,
B:CD24Co A Eonfe A2 B2 Fomm K (BC C Af-ABy=0 ;
‘ou encore
B:C (A 4-C2.A2 (By4-By»-}-42B2(Cz-Cly
+—(BC~4C.A4ABY(BC.A*+C.AB2-4ABC'=)

ou enfin, en développant, ordonnant et réduisant,
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ABC 4y p-22y42(BC A'24-C.AB'y 4 ABC'z)
=(BA=C) A/ (C- A B (A4-BYC's .

Telle est donc Péquation de la surface cherchée. On voit que cette

surface est une sphére ; et, en écrivant son équation sous cette forme:
A ) $ B ?3 ( (& ‘sz BC4-CA4-AB{ A B’2 C”

z4 — —_ o Mt Sl Bt R Pl

{+A§+ly+B§+§z+C ABC A S’

en voit que les coordonnées de son centre sont

A B C

A4 7’ B °’

”

€t que son rayon est

]/gz_+ Ik

)
oy : -p ——




