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322 QUESTIONS

et dans le second

d’où l’on voit qu’à cause du facteur I0n qui affecte la première
partie des valeurs de x2 et y2 , ces deux quarrés seront respectivement
terminés par x et y. 

-

Tout se réduit donc à résoudre les deux équations indéterminées

2np20135nq=I ,
5nr20132ns=I .

Voici leurs solutions pour divers cas particuliers 
n=I , p=3 , q=I , r=I , s=2 , x=6 , y=5 ,
2 g, 3 , I , 6 , 76 , 25 ,

3 , 47 , I5 , 5 , 78 ; 376 , 625 ,
4 586 , I5 , I , 3g , 9376 , 0625 ,
5 293 , 3 29 , 283I , 09376 , 90625 ,
6 I709 , 7 , 67 , I39I6 , I09376 , 890625 ,
7, 55542 , 91 ’, 37 , 22583 , 7I09376 , 28906i5 ,:

etc., etc. , etc., etc., etc. , etc. , etc.

Ainsi, tout nombre terminé par quelqu’une des valeurs de x ou

de y aura toutes ses puissances terminées par cette même valeurs-

Réflexions sur le même problème ;
Par M. GERGONNE.

R La question proposée revient évidemment à la suivante: Trouver
un nombre de n chiffres qui , retranché de son quarré , donne
un. reste qui ait au moins n zéros à sa droite ?
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Soit x le nombre cherché, et soit généralement B la base du

système de numération relativement auquel on se propose de ré-

soudre le problème ; en désignant par y un nombre entier indé-
terminé , l’équation de ce problème sera

x22013x ou x(x2013I)=Bny ;

x ne devant pas avoir plus de n chiffres.
On satisfait dabord généralement à cette équation, quel que soit

B , en posant y=0, d’où

x= o ou x=I .

Ainsi, dans tout système de numération, tout nombre terminé par
n zéros ou par l’unité précédée de n2013I zéros, a toutes ces puis-
sances terminées aussi par n zéros ou par l’unité précédée de n-r
zéros , respectivement ; ce qui est d’ailleurs évident. Nous ne nous

occuperons donc plus à l’avenir de ces deux solutions.
Pour parvenir à la découverte des autres, remarquons d’abord

que x, et à plus forte raison x2013I , étant moindre que Bn , ne
sauraient, ni l’un ni l’autre , être divisibles par ce diviseur ; et,
comme d’ailleurs ces deux nombres x et x2013I sont nécessairement

premiers entre eux, ils ne sauraient être divisibles, respectivement
que par deux nombres aussi premiers entre eux.

Soit donc supposé
Bn=pq ;

p et ’1 étant deux facteurs premiers entre eux, différens de Bn et
de l’unité. E1’ étant le plus petit des nombres de n+i chiffres,

il s’ensuit que p et q seront l’un et l’autre moindres que x et

x2013I ; en choisissant donc x de manière que l’un des deux soit

divisible par p et l’autre par q , on remplira les conditions da

problème, puisqu’on aura l’une ou l’autre des équations
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dont les prem!ers membres sont entiers , par l’hypothèse, et qui
ont pour second membre un nombre entier indéterminé.

Posant donc 

l’élimination de x donnera. 

pt-qu=I ou qt-pu=r

Ayant donc trouvé un système de valeurs de t et U satisfaisant à
l’une ou à l’autre de ces d’eux équations , on aura ensuite

x=pt ou y=qt ,

et le problème sera résolu..

On voit par la qu’outre les solutions communes a tous les sys-
tèmes de numération déjà mentionnés , le problème admettra encore
deux fois autant dé solutions qu’il y aura de manières de décomposer
Bn en deux facteurs premiers entre eux, différens de lui-même et
de l’unité.

Soit supposé
B=a03B1b03B2c03B3 ....., d’où Bn =an03B1bn03B2cn03B3 .....

a , b , c ,..... étant dés nombres premiers ihëgaux, au nombre de
m. Il est évident qu’il y aura autant de manières de décomposée
Bn en deux facteurs premiers entre eux , dont aucun ne soit. l’unité,
qu’il y aurait de manières d’exécuter cette décomposition sur le

simple produit 
abc ..... gh ,

aussi de m facteurs.. 0r" soit Zm-I ce nombre de décompositions
pour le. produit de- m2013I facteurs

abc .....g ,
en introduisant le m.me facteur h, on pourra Introduire indiffé-

remment
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remment, pour chaque décomposition, dans le premier ou dans

le second facteur, ou bien encore le prendre à lui seul pour un

facteur ; ce qui prouve qu’on doit avoir Zm=2Zm-I+I ; ce qui
donne , en général ,

Zm=2mC2013I ;

mais, lorsque m=2, on a évidemment Zm= 1, donc C=I 2 , et

par conséquent 

Zm=2m-I2013I ;

le nombre des solutions , autres que les deux mentionnées ci-dessus
sera donc

2Zm=2m20132 ,

en y joignant donc ces deux-là, leur nombre total s’élèvera à 2m;
m indiquant combien la base B a de sortes de facteurs premiers.

IL Lorsqu’on a trouvé un nombre dont les n derniers chiffres

à droite se reproduisent perpétuellement à la droite de toutes ses

puissances , il est évident qu’à plus forte raison ses n’ derniers chiffres
à droite, n’ étant moindres que n, se reproduiront aussi perpétuellement
à la droite de toutes ses puissances. Les solutions du problème
pour la valeur n donnent donc en même temps des solutions

pour la valeur n’ , moindre que n ; puis donc que , par ce- qm
précède le nombre des solutions pour chaque valeur de n est tou-
jours le même et ne dépend que de m, il sera le même pour
n’ que pour n , et conséquemment les solutions pour la valeur n
donneront toutes les solutions pour la valeur n’.

Ainsi, lorsqu’on voudra avoir les solutions pour plusieurs valeurs
de n ; au Jieu de monter successivement de plus petites valeurs à

la plus élevée, il sera incomparablement préférable d’attaquer direc-
tement le problème pour cette derrtière ; puisque les solutions qu’on
obtiendra renfermeront implicitement toutes les autres.

Tom. V. 43
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Appliquons ces généralités à notre système de numération ; et
cherchons à résoudre le problème, dans ce système, pour les 20

premières valeurs de n. Pour .cela nous poserons sur-le-champ n=20.
Nous avons d’ailleurs B=I0=2.5, d’où Bn=220.520 ; et nous

n’aurons conséquemment que le seul système de valeurs 

p=220 , q=520 ;
en sorte qu’il faudra résoudre successivement les deux équations
indéterminées 

220 .t2013520.u=I , 520. t2013220.u=I ;
ou du moins chercher les plus petits nombres qui y satisfont ; en

posant ensuite

x=220.t , x=520.t .
Or, on a

220=I o48 576 ,

520=94 956 806 64o 625 

Si l’on cherche le plus grand commun diviseur entre ces deux 
nombres, les quotiens successifs seront 

90949470, 5, I , I , I , 3 I , 1 , 3 , 1 J 1 , I, l, I0, l, I2 .

A l’aide de ces quotiens , sauf le dernier, on trouvera , pour la

dernière fraction convergente vers 520 220,

On conclura de là , par les théories connues (*) , que le plus
petit système de valeurs de t et u, dans l’équation

(*) Voyez le 2.e volume de l’Algèbre d’Euler ou la Théorie des nombres
de M. Legendre. 
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220 .t2013520.u=I
est 

t =7385006028926 ,
u=8II99 ;

que par conséquent, pour l’équatiou

520.t2013220.u=I ,
ce plus petit système de valeurs est

t =22020138II99 ,

u=52020137385006028926 .
On aura donc 

x=220.7385006028926 ,
x=520.(22020138II99)=I0202013520.8II99:

On trouvera ainsi que tous ies nombres et les seuls nombres dont
un certain nombre des derniers chiffres à droite seront les mêmes,

que dans l’un quelconque des quatre nombres

..... 00000 00000 00000 00000 ,

..... 00000 00000 00000 0000I ,

..... 07743 74008 I987I 09376 ,

..... 92256 2599I 82I28 90626 ,
auront aussi les mêmes derniers chiffres à droite, en même nom-
bre, à toutes leurs puissances.
On traiterait d’une manière analogue le cas où l’on exigerait seu-

lement que les terminaisons des puissances successives fussent 

périodiques (*).

(*) Le Rédacteur a reçu postérieurement de M. Durrande une autre solution du
même problème , qui rentre pour le fond dans celles qui viennent d’être mentionnées.


