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322 QUESTIONS

Béflexions sur le méme probléeme ;
Par M. GERGONNE.
L. La question proposée revient évidemment A la suivante : Trouper:

un nombre de n chiffres qui , retranché de son quarré , donne
un- reste qui @it @qu moins n zéros & sa droite?
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Soit z le nombre cherché , et soit généralement B la base du

systéme de numdration relativement auquel on se propose de ré-

soudre le probléme ; en désignant par y un nombre entier indé-
terminé , I'équatien de ce probléme sera

x*—r ou z(r=1)=DB"y;

# ne devant pas avoir plus de n chiffres.

On satisfait dabord généralement & cette équation, quel que soit
B, en posant y=o0, dou

X=0 ou x=1 .

Ainsi, dans tout systtme de numération, teut nombre terminé par
r zéros ou par l'unité précédée de n—1 zéros, a toutes ces puis-
sances terminées aussi par 7 zéros ou par l'unité précédée de n—1
zéros , respectivement; ce qui est d’ailleurs évident. Nous ne nous
occuperons donc plus & l'avenir de ces deux solutions,

Pour parvenii' a la découverte des autres , remarquons d’abord
que z, et a plus forte raison x—z, étant moindre que B", ne
sauraient , ni 'un ni lautre , &tre divisibles par ce diviseur ; et,
“comme d’ailleurs ces deux nombres x et x—1 sont nécessairement
premiers entre eux, ils ne sauraient étre divisibles, respectivement,
que par deux nombres aussi premiers entre eux.

Soit donc supposé

Br=pg ;

p et ¢ dtant deux facteurs premiers entre eux , différens de B et
‘de l'unité, B# étant le plus petit des nombres de n-1 chiffres,
il s’ensuit que p et ¢ seront l'un et l'autre moindres que z et
z—1 ; en choisissant donc 2 de maniére que I'un des deux soit
divisible par p et l'autre par ¢ , on remplira les conditions du

probléme , puisqu’on aura I'une ou l'autre des équations’
x  x=—I x X=X

e -l
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doat les premiers membres sont entiers , par I’hypothdse, et qui
ont pour second membre un nombre entier indéterming.
Posant done
x=pt , ¢ x=qt ;
ou
T—1=qu ; o Fe—1=pu

P’élimination de  donnera
pt—qu:r ou qt‘—-—pu:r .

Ayant donc trouvé un systtme de valgurs de 7 et z satisfaisant 3
Pune ou & lautre de ces deux équations, on aura ensuite

x=pi ow y=q,
et le proBl'éme sera résolu..

On voit par 1 quloutre les. solutions communes ¥ tous les sys-
témes de numération déja mentionnés , le probléme admettra encore
deux fois autant de solutions qu’il y aura de maniéres de décomposer
B" en deux facteurs premiers entre eux , différens de lui~méme et
de Lunité. '

Soit supposé

B=2%"".....,, dod B=a'tm¥....:

@, b, c,.....4tant dés nombres premiers inégaux, au nombre de
m. Il est éyident qu'il y aura. autant de maniéres de décomposer:
B" en' deux facteurs premxers entre eux , dont aucun ne soit 'unité
quil y aurait de maniéres d'exécuter cette décomposition sur le:
simple produit
abe oo gl ,

aussi de- 7 facteurs:. Or, soit Z,., ce nombre de décompositions
pour: le. produit: de- 72 ==x facteurs

en: introdyisant le m.™¢ facteur 2, on pourra I'fatroduire indiffé=

remment
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remment, pour chaque décomposition , dans le premicr ou dans
le second facteur, ou bien encore le prendre & lui seul pour un
facteur ; ce qui prouve qu'on doit avoir Z,=2Z,.,-+1; ce qui
donne , en général ,

Z =aomC—1 H

m

mais, lorsque m=2, on a évidemment Z,=1, donc C=:, et

par conséquent

Zpy=2m"tey ;

le nombre des solutions, autres que les deux mentionnées ci-dessus
sera donc

2Zm=2M—2 ,

en y joignant donc ces deux-13, leur nombre total s’élévera d 2™;
m indiquant combien la base B a de sortes de facteurs premiers.

II. Lorsqu’on a trouvé un nombre dont les # derniers chiffres
3 droite se reproduisent perpétuellement & Ia droite de toutes ses
puissances , il est évident qu'd plus forte raison ses n/ derniers chiffres
a droite , »/ étant moindres que 7, sc reproduiront aussi perpétuellement.
a la droite de toutes ses puissances. Les solutions du probleme ,.
pour la valeur 7, donnent donc en méme temps des solutions ,
pour la valeur 7/, moindre que 7 ; puis done que , par ce qai
précéde le nombre des solutions pour chaque valeur de 72 est tou-
jours le méme et ne dépend que de m, il sera le méme pour
n/ que pour n, et conséquemment les solutions pour la valeur »
donneront Zoutes les solutions pour la valeur »’.

Ainsi, lorsqu’on voudra avoir les solutions pour plusicurs valeurs.
de n; au lieu de monter successivement de plus petites valeurs &
la plus élevée, il sera incomparablement préférable d’attaquer direc—
tement le probléme pour cette dernitre ; puisque les solutions qu’on
ebtiendra renfermeront implicitement toutes les autres.

dom, V. 43
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Appliquons ces généralités & notre systtme de numération ; et
cherchons i résoudre le probléme , dans ce systtme, pour les 2o
premi¢res valeurs de 7. Pour cela nous poserons sur-le-champ n=2o0.
Nous avons dailleurs B=10=2.5, dod B"=22°.5% ; et nous

n’aurons conséquemment que le seul systéme de valeurs
P:‘zzo . q=5zo ;

en sorte qu’il faudra résoudre successivement les deux équations-
indéterminées

2 g5 y=1, b5 .fa2? y=1 ;
ou du moins chercher les plus petits nombres qui y satisfont; en
posant ensuile

r=2%,f , =5z,
Or, on a
2°=1 048 576 ,

5°=q4 956 806 640 625 .

Si Ton cherche le plus grand commun diyiseur entre ces deux.
nombres, les quotiens successifs seront

90949470’ 5) I,1,1, 3,1, 1)31 r,1, I, 1, 10, 1, I2 .
A Taide de ces quotiens, sauf le dernier, on trouvera , pour la

520
dprnnére fractlon convergente VErs ——; N

7385006028926
81199

On conclura de la , par les théories connues (¥) , que le plus
petit systéme de valeurs de z et u, dans I'équation

() Voyez le 2.¢ volume de VAlgébre d'Euler , ou la Théorie des nombres
de M. Legendre.
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2%° 252 . y=1x

est
=7385006028926 ,

z=81199 ;
que par conséquent , pour l’équatiou
520 fem2?0 =y .
ce plus petit systdme de valeurs est
t=2%*—81199 ,
2=5%°—7385006028926 .
On aura donc
£=2°.7385006028926 ;
x=>5 .(2"’-—51 igg): 102°=57°,81199 7
On trouvera ainsi que tous les nombres et les seuls nombres dant

un certain nombre des derniers chiffres a4 droite seront les mémes,
que dans 'un quelconque des quatre nombres

«+...00000 00000 00000 00000 ,
« + + « s 00000 00000 00000 OOOOI ,
v e« . 07743 74008 19871 09376 ,
e+« v 92256 25991 82128 go625 ,

auront aussi les mémes derniers chiffres 4 droite, en méme nom-=
bre, 4 toutes leurs puissances.

On traiterait d'une maniére analogue le cas ol I'on exigerait seu-
lement que les terminaisons des puissances successives fussent

périodiques (*).

(*) Le Rédacteur a recu postérieurement de M. Durrande une autre solution du
méme probléme, quirentre pour le fond dans celles qui viennent d’étre mentionnées.



