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236 ANALISE

ANALISE ALGEBRIQUE.

Recherches sur le développement numerique des fonctions
que M. Kramp a dénotées par A et T, dans son
Arithmétique universelle ;

Par M. ArGcAxND.

[a Vg Vi Vi Vi Vie Vi Vo Vi

I. L’EMPLOI fréquent dont les fonctions désignées par M. Kramp-
par A et I'sont susceptibles, est sans doute un motif pour chercher
3 en étendre la théorie. L'objet particulier de cet éerit est de recueillir
quelques résultats tendant. 2 faciliter la détermination numérique de
Ia valeur de ces fonctions, lorsque la variable est donnée.
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2. La fonction désignée par A ( Arith. unip. n.° 560 ) est

An=DB n+4B,n*~+B ,n*4-B sn+... A)

B,, B,, B,,.... éaant les nombres de Bernouilli ; et on a le
théoréme suwant (ibid. n® 573 )

b ot e

a-f-2r a+(p-x)r

— 1 +pr L VAR B
7 QLO +A a ‘.Aa-}-pr; )

. r .
faisant — =5, on obtient
(/2

. {Log (14pm)+An- A__.F_f (B)

. I
1+ 141 + 1+2n+ -+ 1+(p--x)n

On tire de cette dernidre équation, en faisant n=1,
I ) 4 I 1
Log.(14p)=A pars —A1-+ (I—I-- -+t s+ > ) (8
Mettons 1-}~ pour » dans Iéquation (B), et nous aurons, em
isolant A(14-7),

—r —_
A(r4n)= x+n)gx+ b +5+m +~--+p+(p__x)n§

—Log(r-hprtpirtA

D)

I+p+zm ;

ar,
n
t-p-tpn=(io)(a-kn) == o) ok e =
donc , en employant la valeur de Log.(1-+p), (C),

I 1\
Log(1-+ppn) =Ag —Ar (1o =+ 5 b= )

Lag(ep-Hog [ = |

Péduisant les fractions de (D) en séries, procédant suivant les
puissances positives de » , et substituant la valeur que nous venonms
de trouver pour Leg. (1-+p-pnr) , nous aurons

dom. V, 3z
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n h 4
A(1+n)=Ar—Log. [1_ e +n)]—./\ =

2 3 k 1
+-2-——%+—'38~—;'%+. ce—g
3
T
- fn:  8m3
et S -
+%_? %— .

X (p=Dn  (p—1)n*  (p=1)n3
o R T +

p pz Pz p‘ ) . o o . p
n (p=—1)n2 (p—1)2n3
3 - -} —a .. e
P p? r

-—n+—;~——3—+....

. . . L . n
p ¢étant arbitraire , faisons - le infini ; Log. [x-——-

A S \ .
A;-:- disparaitront , et il restera

+p

Altbn)=Arbn(H i e b (== — & —

R G ol ke O b A G

équation que nous écrirons ainsi :

A(t~4n)=A1 42, n4»a,n*» R TR (E)

3. Or, si lon fait

I 1
Se= l+£‘+ -3_‘+Z‘ e ;

¢ étant employé comme indice général, on trouvera

e t
<mwwje
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e L A P
A,=+§;—Sz+5, s
Ny =— i S, —28, 4+, ; (F)
A= i—8,438, 35,45, ,

.
@ ® o e o 0 o 2 6 s & % o v e & « o o o ¢ 3

or , les séries §, , §,,.... sont sommables ( Introd. d’Euler.

Arith. univ. n.° 599 ); on peut donc déterminer les valeurs nu=
mériques des cocfficiens A, , A5 5000
On tire des équations précédentes

7‘1=""§+S§——7“ ’
Ay = IS, —(r 422, ,
A== 48—(rF32,432,) ,

> 8 e ¢ 8 o o @ s v o 8 « & & o ¢ o & o e« o o

<a

formules qu’on peut employer & vérifier le calcul fait par Ies
équations (I%).
Observons que, si Pon fait, en général, T,=8,—1, on pourra
substituer 7" & § dans les équations (F), excepté dansla premiére.
4. Quant 3 Ar on peut le calculer par la formule (C), en
prenant pour p un nombre assez grand pour quen développant

A—_—I—:— par la formule primitive (A), on n’ait pas 3 craindre l'effet
147

de l'augmentation progressive des nombres de Bernouilli.
On peut aussi faire n=—1 dans (E), ce qui donne

Ar=n—ar, 42, —r,Fe 5 (G)
enfin , on peut encore employer la formule

o T, T, T, -
A= I'T‘LOD-2+ -—2— —— -—3——+ ‘4—' —reete y (H)
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pour vérifier les résultats précédens. Leur conformitd servira d'ailleurs
3 garantir la justesse des valeurs employées pour 7', , T, ...

Cette derniére équation sc tire de la formule (B) ) qui donne,
en faisant p=1 ,

%iLog (1) Arme 2 )

dod I . I
ou lon tire, en mettant —~ pour »
n

I

n n+1+—.....Log ( i+ )
Faisons successivement =1, 2, 3 ys..; il viendra
Ar=A:41~Log2 ,
A=A —Log.(141)
Ar= At =Log(i+3) |

0‘0--.0.-!-'- .,

d’ol résultera, en prenant la somme de ces équations ;
Ar=i1—Log.2+ I —Log.(1-}- 1 )42 ;-Log.(x+ i
et en développant les logarithmes, excepté celui de 2,

Ax._x«-Logz-i-—- .._...+._._....f._+,,,, )

.22 3.23

1 1 b .
Fy—ztmTmte
1 1 I

tr— Tt

4@ 6 s 8 o o8 2608 288 200 s e

en sommant les sdries verticales. on obtient I'équation (H).

5. Or, les valeurs de A1, a;32,,2, ..... présentent la série
suivante , singulitre par son irrégularité , tant dans la succession
des valenrs absolues , que dans celles des signes:
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At=+0,57721566490 , »; ==0,0000576677.,
ap=-40,64493406685 , », =-}o0,0000121080.,

Ay =-40,05712283631 , A;o,=-40,000003454. .,
Ay ==-0,0101898390g , »;; ==~=0,000006295..,
A ,=-}0,00119469664 , »,3=-40,000004948. .,
Ay =+40,0002778979. , A,;=—0,000002950..,
Ag====0,0003037026. , a,,=-}0,0000014I...,
», ==+0,0001565295. , A, ;=~—0,00000047..s,

Faisons .= (==1)’x,, ce qui revient a changer les signes des a
a indices impairs ; nous aurons , par les formules (F),

1 s -1 1~ ¢-2 £-1 -2 =3
T W — —— ’-'*'S G S g e g '—-—S "'i'
b ‘*{S' IS’+1 a ¢4 1 2 3 s+
Or, la série entre les accolades est toujours positive ; car ; en la
désignant par U, , et en développant les § pour lesquels on peut
prendre les 7' (n.°3) , on aura

) 4 b ¢ . | .
U, =— — S o S
s+ 4 +9 N 16 .
s F "
O —— S WEERE bt u'.‘
2 64
¢ =1 1 ¢ el 1 4 gmey g
- . —“+ . . — T e . :
+ 1 2 16 2 81+ 1 2 343+
P

u-.-o....nonh.t.tcl’;....lls(llll.nooq;-o’on;

et , en sommant verticalement

im 3 VG s @

On voit que les valeurs de U, vont toujours en diminuant, et
en peut méme déterminer un indice s~41 tel que U, soit plug
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petit qu’une limite donnée L, Pour cela , soit partagée cette li-
mite en deux parties arbitraires L/-L7/=L. Un terme quelconque
de (I) est plus petit que le terme -correspondant de la série ;-

4% ...; mais la somme de celle-ci est finie, donc on peut
I

(z1)?
tous les termes suivans soit plus petite que L/ quel que soit « Le
quanti¢me z étant ainsi déterminé , on pourra prendre : de manitre
que la somme des premiers termes

T ()t ()

soit plus petite que L/ ;car il est visible que ,: augmentant , cette

pren&re dans (I) un terme

z 1 —
<;:i-—;> , tel que la somme de

somme décroit plus rapidement que celle des termes d’une pro-
. Id . - . z .
gression géométrique qui aurait - pour raison.
F4 I

On peut conclure de 1 que la série des g ou des a est con-
vergente , mais la convergence est bien plus rapide qu’elle ne pa<
raitrait devoir I'étre en raison des considérations sur lesquelles la
démonstration précédente est appuyée. ,

. t .
Les signes de w;= — —U, présentent cetle succession :
£

1,2,3,4,5,6,7,8,9, 10, 11,12, 13, 14, 15, tteu

—_— et — = — 4 4+ 4 A e

* *
Or , les valeurs absolues de g, décroissant beaucoup plus rapi-

dement que celles de — ,il parait que lavaleur de U, oscille, pour

. . . I .
ainsi dire , autour de celle de — , en la serrant toujours de plus
€

prés, et quil y a quelque chose de circulaire dans le caractére des
coefficiens g , considérés comme fonctions de leurs indices. Obser-
vons qu’il y a augmentation dans la valeur de deux g conséeutifs,
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aux endroits marqués * ; savoir , & I'exception de g, et &, , aux
deux premiers termes qui suivent chaque changement de signe.
Nous retrouverons cette méme circonstance dans le développement
de la fonction I'; et ce qui confirmerait le soupgon que nous éle-
vons ici sur la nature des coefficiens w, c’est la possibilité de trou-
ver des fonctions circulaires qui présentent le méme genre d’irrégu-
larité dans la succession des valeurs et des signes. Soit , par
exemple ,

. 3x—=2
10%.Sin. x
12

Ya= 2%, (Ba—4-1) ’

3

En faisant sueccessivement #=o0, 1, 2, 3 .....; on trouvera pour
¥ les valeurs suivantes :

50000 , 3235 , 3093 , 1207 4, 240 , 51 , 71 , 34,8,2,3, 1.
- 4+ 4+ + + = = ~ =4+ +

* *

s

sdrie qui offre des particularités analogues & celle de la série des w

6. La formule primitive (A) donne , en vertu de B,=1,
A(—n)y=An—n , ou  An=p-+t+A(—n).
Faisant cette substitution dans (I) , il vient
i n
o=Log.(1-n)F-A(=n)me e

Mettant z—1 pour 2 et transposant, on obtient
- 1
A(1=—n)=~—Logn+A (I-—- -1-2-) ; (K)

et , en développant A (1———}) par la formule (E)

A(t=n)=Ar—Logn— = + 2 e 2 i

nz
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au moyen de quoi on peut avoir promptement la fonction A d'un

nombre négatif trés-grand.
Si l'on met n—1 pour 2~ dans (I) on obtiendra

A(n~1)=n—1-Log.n+A (1-. —;- ) ;
et, par le développement de A(I-——-—;—) ,

A ’ - -
A(n—1)=n—Logn~14/x — ——-+-—-—-—-7—5 +
formule propre i calculer la fonction A d'un trés-grand nombre
positif.
7- Si l'on développe 2, ,2, 34; ,4«.; dans la formule (E), on
aura

A(4n)=At~—n ns,
S, 2%,
m oy 3 3
— 5 7’8, —2n’S,+n’S,

T S, 3048, —3ntS S,

= 4 s e o0 a2 e en s 0 s 8 2 48 e s L]

=A,—Log. (1—!—n)+—-——51+<l+n) +( > S4+..,;
En mettant ;I:;- pour 7, on tirera de cette équation
] n S, S, S,
A;:;-—-Ax-i—Log. —r— —;+;;+';;+-m-'5

et , en faisant » négatif,
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La différence de ces deux équations donne

n Sc
A — —— ——-Log =2 + )

Mais on sait d’ailleurs ( Inzrod. d’Euler, n.° 179) que le second

. ’ . =
membre de cette dernitre équation est la valeur de n—aCoti — ;
n

done

A -—-——}-Log — —A—-— —Log. n—:—_—x =n—=Cot. % .

On peut réunir A et Log. dans une seule fonction M en posant
généralement

M= Ax+Log.:t ;

I'équation précédente prend alors la forme plus simple

M;*Mm—n—wCOt —_— .

On aura d’ailleurs, en reprenant Iexpression de U, (n.®5),

M(1+4n)=A1~4-U,n—U,n*+-U n>—
8. La fonction I' est ( Arith. unip. n.° 6o1)
B
I'n=B n+B‘n +— s A 3

et on a (Ibid. n.° 603 ) le théoréme general
Log-{ 1(x4-n)(1~42n) [ 14-(p—1)n] } =

nb Bgrﬂ

©-
b 4 1 n .
—pt (S 4p— = ) Log (-bpnAT = — T -
En faisant
C(14n)=Ci4-y, 04y ,n* v 04y piti (M)

on pourrait, au moyen du théordme précédent , déterminer leg

?-Omo r‘ 32
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coefficiens 5, 5 ¥; 5 %3 s+ par une méthode analogue & celle du
n.° 2 ; mais le caleul est prolixe, et il est plus simple de les
faire dépendre des coefficiens a;, A, , 2;,...., en cmployant la
relation

n*d(T'n)=(An—B.n)dn

qui existe entre ces fonctions., On trouve alors

v =Ar— =4 Ar—1, )

LR

2y, = A —

—2y =2 114 2, ,
: 3734—:7»;—- v =4y, =43INA1— I —2x 4 2, , , )
4'}’4=A3-—27=-671=_—4AI+':'+37‘1-2P"':+ Ay s

5;/5 =Ag - 3y’—874_—=“"!,:5A1'_':' ""47‘1+3"='—27‘3+7\4 ’

La méthode directe du n.° 2 dennerait
yi=-+ A1—:,
2y, =—2A14 T,-} 2 —2.1,
3yy=4+3M1—=3T,4+ T,— {43+,
4y =—4M14-8 T, — 4 T+ T, +1—4:F5+3)
5y =45 A1—10T 4 10T, =57 ;4 Tgom 25t 22 -2,

.
e 8 + o & @ % ¢ e & s 8 & P B 8 ° e & 3 & 0 b s @2 0 0 s o s b s 0 2 o+ @

formules moins simples, meais qui dépendent immédiatement des T';
on pourrait d'ailleurs les tirer des précédentes , par le développement
des A

On aurait encers
B R T A WL SRR
293 T2y =22 =3 A g LA gdmranne
vy =r =22 F3rg—42, tmenen

& 0 5 0 0o 8 9 8 s 08 N 04 s
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es formules se tirent des équations (IN) , en partant de la troi-

sierme , par d-s substitulions successives. On peut aussi les en faire
deriver comme il suih

L éyuation (X) donne

Logn=A (1'% v:; ) —A(1—n) ; | (©)

d’ott

F Y 1 3 1 .
LOg-:’z-——}\! (72""_""2' )"—"7\1 (’2’_ -7'2—2' ) +}\; (12 _— n—; )""nu

Nous remarqucrons, en passant, que le développement de Log.r
se fait ici suivant les puissances cntiéres de » , sous une forme
trés-simple quoique peu usitée; et c’est un fait d’analise assez sin—
gulier que les coefficiens d’un tel développement, pour une fonction
qui doit également étre regardée comme fort simple, soit soumis &
une marche aussi irréguliére que celle des a.

. . , . . . A .
Soit fait, dans 'équation précédente , n=1-~7 d’olt — =1—i R

~—7%4,...; on aura

., 12 3 74
o — T cette
” -+ 377 +

=2, (2i—2"H.)—2, (fi—20) 40 (60—302 i) — il

La comparaison des termes qui multiplient les différentes puissances
de 7 fournira des équations dont les deux premiéres donneront
également

Iz=ma—2a, 30 —4a gt e P)
Or, on a, par exemple
Par (N) 5y ==5Armmimmf 37 me2n; 2,
Par (G) 5A,== 452 y =5 =52 3 =5 452 ;=52 g erene
Par (P) =i= = 2y o2 g3 g b2 g 5 62 gores
done
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Bys=hg=2xr, +3n;—4a,F it
et, en général,
R S S TP pen

Nous pouvens remarquer que I'équation (O) donne , en vertu

de A(n—1)=n—2~+A(1—n), (n.° 6)
Logn=A (1—-—-:;) —A(n—1)+4n—1) ;

mais
Log.n=—Log. (1- i— )+Log.(n———x) ;

donc
o=A<x~—--:- )+Log. (1———:: )—A{n——x)~—Log,(n—x)+{n—-x) ;

ou, en reprenant I'expression de M,
' n
n-1
g. M. Kramp a fait voir que I'i==1—;Log.(2#), ( Annales,
tom. 3, pag. 11 ). On pourra encore calcaler ce méme nombre
en faisant n=-—1, dans l’équation (M), ce qui donnera ‘

I =7, +y,—-y4+.....

10. La suite v, , v, 5 ;e présente les mémes irrégularités

=Mn—=n .

M

que celle des coefficiens a, comme les valeurs suivantes le font voir
't =-+}0,08106146679 , v, =-0,000005266 .,
v, =-+40,07721566490 , 7, ,=-—0,000002837..,
v, =—0,00474863148 , »,,=-}0,000001163.,,
¥, =—0,0003661008qg , y,,=-0,000000293..,
¥ ,=-0,0003760073. , »,,=—0,000000062.,,
ys ==—0,0001430118. , A, ,=0,00000016. ..,
vs =-40,0000339978. , »,; =-—0,00000014. ..,
v, =-+0,0000004832. , ¥, s=-+0,00000010...,

¥y ===0,0000067778. , ... ... 0oL,
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Si on change le signe des » a indices impairs , on aura cette
succession

1.2.3.4.5.6.7.8.9.10.11.12.13.14.15.16.:
bbb m o — 4 4 A
* ok *

Le signe * indique qu’il y a augmentation dans la valeur absolue
de deux 5 consécutifs. Cette circonstance a lieu, comme pour les

a, aux deux premiers termes qui suivent chaque changement de
signe.

7

11. En faisant p=1, dans I'4quation (L) , on en tirera
1 1 r :
I"n:—-—l—{—(-n—-i—-;)Log.(I-l-n)-ljr—;; 5 ' o
¢t, en mettant 7—1 pour n»
n N ¢ 1\
r—1)=—1-4 (n—_;—}-—;)Logn—}-l"(x—_;) ;

puis , développant I' (1—-% ) par la formule (M);

I"(iz-—l)_-—-1+

[{Amat §

+2 > LogntTr— 2 p 2 2iyi

expression au moyen de laquelle on pourra calculer facilement la
fonction I' d’'un trés-grand nombre.

2. Une ocbservation qui se présente naturellement est que les
équations précédentes , qui contiennent des logarithmes, donnent des
résultats absurdes, lorsque les nombres de ces logarithmes sont né-
gatifs ; ce qui tient sans doute aux mémes causes qui ont conduit
M. Kramp & des conclusions ‘paradoxales ( Annales, tom. 3, pag. 3
et 343 ). 1l a donné & ses lecteurs ( Jbid. pag. 344 ) V'espoir d’une
solution satisfaisante de ces difficultés. Les géometres ne peuvent
que désirer avec un vif intérét les éclaircissemens promis par ce

dlebre professeur. ls seront doailleurs’ une sorte de mémoire jus-
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tificatif en faveur de lalgtbre qui , i cet égard,
quelque sorte in reatu.

se trouve en

13. Nous rapporterons ici , pzir occasion , des formules analogues
a celles de la page 118 (Annalas, tom. 3)

e —3a? ' — 2430 544
2 53 va yi=—r0a2y3-}-Saty
7 Y iCos a+e~'}’ yszaz + Bij +B 125 +Bo 253 +.... (Q)
an (1 a . a3—3ay2 a5_1003)’3+50y4
e’ —-2Cos a-}-e—}’ yz+ 22 B=a+B4 1.2.3 "_Bé T 2305, vere (P\)
Sinwv ) )’

9;3-!-30’3' i1 Oa-yi‘-l-')ﬂﬁ‘y
Cos;y —Cos.a o az.‘._yi +B’1’~B4 5B 1.2.3.4.5 T (S)
En faisant a=o, dans (Q) ,ona la seconde des séries de la page 118,

dont les autres “sont tirédes. Nous demontrerons ces formules comme
il suit.

oin

U T

En faisant: Ar=1 , on a

A(e™Sin.ax) =" { (¢"Cos.a—1)Sin.ax—+¢"Sin.aCos.az ! ,
A(e™Cos.az)=e" (e"Cos.a—-x)Cos ax—-e"Sm aSin.azx } ,
d’ol on conclut qi'on peut supposer

2(e™ Sinax) = (AL in.az-+BCos.ax) ,
Z(e"Cos.ax) = e"* CCos.az—DSin.az) ;
A, B, €, D étant des constantes.
En effet , différenciant et comparant aux valeurs précédentes ,
on trouve
‘ e1Co8.a==1 enSin.a

€2 7m2e"Cos.a-1 ~ T et tempenCosia4-1

D'un autre c6té, si Pon applique 3 ¢*Sin.az et ¢™Cos.az , (ou
seulement 3 la premitre de ces deux fonctions , car elles con-
duisent toutes deux au méme résultat) la formule d’intégration
1 x* dz a3 dz xk diz
SZm e Z e — — e
x 1.2 dx 1.2,3 dx? 1.2.3.4 da3
B, dz B, 'diz Bg diz
--—+—— —_— " — e —— —
1 dx 123 dx3 1.2.3.45 das -
on obtient un résultat de la forme
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S(e”Sinvaz)=¢*(ASin.az-+BCos.az) ;

4 et B étant les séries (Q—2) et (R). Ainsi, ces valeurs peuvent
Gtre dgalées aux valeurs (T).

Y
U
-

Dans les valeurs (Q) nous avons fait passer la’ fraction . dans

le premier membre, pour plus de symetrle, ce qui a donné, pour
ce premier membre ,

GHCOS.ﬂ'—I S 3 .

+i=1 ' =
i=2z, =
e2em2e"Cos.ad-1 = * P etimmnetCos.a--1

e ?I_.e L3/

u|u

e—2Cos.a-e~n

La formule (S) dérive de. Iune des deux premiéres , en y mettant
\/—; pour y. el
Observons .que les coefficiens de z=¢¥, dans les expressions de

la somme des séries de la. page 113, peuvent se déterminer d’une
maniére indépendante par les formules

A,=1"",

Ne—E Beeyg -~
B =2 e g ;

n N ne=y
- N -—1 s
Cn=3H e — 2 +""'_'-'l" ' ’
¢ I 2
ro—— ” —— 5
==t — ? "n-!.,{_ 2 e 2 P BT e s
I a I 2 3 ’

.%
L™

.oon.o'luooa-Oocl-.oJo-.--oo.;;;;.
Ainsi, dans Pexemple de la page 113, on aurait
A, =1 =1,
B, =271 =57}
C,=30m7  284-21,1 =302, .
D, =40—7 .3 21, 2%==35.1=302 ;]
LI |

@ ¢ @ o s 6 & @ » s s s+ & = o & 8 2 s 0 s N

Au reste, la suite des coefficiens A, , By,... e étant symétrique;
il suffit de calculer ]a moitié des termes.



