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SOIT I'équation
xta—b=c ;
on en déduit

x=(~a-4b. (1)

Si, au lieu d’opérer de cette maniére , on retranche de chaque
membre le bindéme (¢—4), on aura

z=c~—(a—0b). (2)

La quantité ¢ restant quelconque , je vais faire successivement,
sur @ et 4 , les deux hypothéses suivantes , >4 et b>a. Soit

Tom, 1V, n> I, 1.°% juillet 1813. 1



2 REGLES
d'abord >4 ou a=j-y ; on aura, aprés la substitution dans les
équations (1) et (2),

résultats parfaitement identiques.
Soit, en second lieu, 6>a ou b=a-+y; les mémes substitutions
donneront

a=c+ty , x=c—[a—(a}d)]=c—(—)).

La derniére expression se présente sous une forme inintelligible,
puisquelle exige qu'on exécute une soustraction impossible, et que
T’on retranche de ¢ le résultat de cette soustraction. La valeur ¢~§
peut servir & linterpréter ; car on l'a obtenue en faisant passer les
quantitds @ et 4 du premier membre dansle second ; ce que 'on est
toujours libre de faire, quelles que soient les valeurs de ces quantités ;
de sorte que l'on pourrait en conclure que

e—(—3)=c+

Quoiqu’il ne manque rien & cette conclusion, du cété de la rigueur,
la marche que I'on a suivie n’éclaire pas assez sur la difficulté en
question , et ne fait point assez bien voir comment on passe de
Pexpression ¢—(—3) a Pexpression ¢y, Afin de le mieux apercevoir,
il faut remonter & I’équation primitive, et y substituer & la place de &
sa valeur @-4-3. On trouve alors

z—y=c.

Ainsi, c’est & tort que l'on avait considéré la suppression du binéme
(a—b) comme une soustraction , puisqu’il est évident qu’il fallait ,
au contraire,, ajouter & chaque membre la quantité 3 pour avoir z.
Lorsqu'on opére sur des quantités numériques , il est clair qu’on
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.ne peut jamais éprouver le moindre embarras; mais, en opérant sur
I'équation littérale

zta—b=c ,

ol @ et b peuvent avoir telles valeurs que 'on veut, rien n’indique
si, pour dégager 'inconnue &, on a réellement une addition ou une

A

soustraction a effectuer. Si l'on suppose donc qu’on en ait tird
x=c—(a—D) ,

c’est qu'on a tacitement regardé @ comme étant plus grand que 5,
et par conséquent cette expression sera en défaut, lorsqu’on aura
a<b; mais alors il* est évident que la proposée aurait pu étre mise
sous la forme

x—(b—a)=c ;
d’o 'on aurait tiré

x=c+4(b—a).

+

Réciproquement , cette derniére expression sera en défaut , lorsqu’on
aura 4<a ; et alors la premitre sera la véritable. On voit donc que,
si I'une des valeurs se présente sous une forme inintelligible par
elle-méme, on est en droit d’en conclure qu'on a opéré dans un
sens inverse de celui suivant lequel on aurait d&t opérer, et que l'on
doit meodifier le résultat, en prenant la différence dans le sens ou
elle peut étre naturellement prise, et I'affectant d’un signe contraire
a celui que le calcul a donné, D’aprés cela, on aura évidemment

e—(a—b)=(mm( =)=+ {b—a, =+ ;

ct(a—b)=cH(—p)=c=(b—t) =cowmp .
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Telle est la maniére dont doivent étre envisagées l'addition et la sous<
traction des quantités négatives isolées.

De l’équation

z—A =ac—-5c-—&a’+5d R 3
on tire

r=AVac—~bc—ad-+bd ,

valeur qui peut, en général , se mettre sous cette forme
r=A~+(a—0b)(c—d). 4)

1.° Je suppose a<d et c>d ou b=a-+y et c=d~+w Il vient;
dprés la substitution dans I'équation (4),

=A+4-(—)(<)-

Clest-A-dire , qu’on aurait & ajouter & 4 le produit d’une quantité négative
isolée par une quantité positive. Or, on peut remarquer que, dans ce cas,
on n’était point autorisé & mettre la valeur de # sous la forme (4), puisque
I'identité de cette forme avec la forme (3) n’a été démontrée (Alg. Mul.)
que pour le cas ot a—b5 et c—d étaient des différences naturelles; mais
alors la valeur (3) , ou @<¥&, et par conséquent ac<bc et ad<bd,
pouvait s’écrire de la maniére qui suit :

x=A—{bc—ac)+(bd—ad)= A—(be—~at~—~bd-4-ad)
=A—[(b—o)c—(b—a)d] = A—(b=02)(c—d)=A—ps ;

d’olt I'on voit qu'on a été conduit & multiplier une quantité négative
isolée par une quantité positive , parce qu’on a regardé comme possible
la soustraction (¢—5%) qui, dans I'’hypothése actuelle est impossible ;
et, dans ce cas, on compense l'erreur qui a été commise , en formant
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le produit , comme si la quantité (—jp) dtait positive, et en affectant
ensuite le produit du signe (—).

2.° Silon avaita>b et d>¢ ou a=5b-5 et d=¢~+-¢; on trouverait,
en substituant dans (4) '

&= d()(~ ).

Mais, par la méme raison que précédemment, on n’est pas alors en
droit de mettre la valeur (3) sous la forme (4); et puisque , dans
le cas présent, on a a>b, d'ot ac>bc et ad>bd, on peut écrire

x=A—(ad—bd)+(ac—bc) = A= (ad==bd—ac--bc)

= A(@==b)(d—0)=A = ja.

On voit ici, comme dans la précédente hypothése , comment on a
été conduit & multiplier une quantité positive par une quantité négative
isolée , et comment on doit effectuer I'opération,

3.° Enfin, en supposant , en méme temps, &b>a et d>¢, c'ests
a-dire, b=a-}y et d=c-+w&, on obtient

F=A+(—3)(—4) 3 .

mais alors, ayant dd>ad et bc>ac , on devait donner 3la valeur
(3), au lieu de la forme (4), la forme suivante

‘e =A4(bd—ad)—(bce—ac)=A~-(bd—ad—bc+-ac)
= A+ (b—o)(d=c)=A4} 4
D’olt I'on conclut que le produit de deux quantités négatives isoldes

est le méme que celui de ces deux quantités prises positivement.
Quant & la division, je considére l'expression
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qui résulte , ou qui, du moins , peut étre censée résulter de I'équation
(#—A)(c—d)=a-—b. )

Or, si (a—b) est négatif et (c—d) positif, il faudra que (w—4),
a—b . L e . . .
-5 soit négatif ; il en sera absolument de méme , si

Cvo—

_ou son égal

(a—0) est positif et (c—d) négatif; enfin, s’ils sont tous deux négatifs,

—b
(x—A) ou son égal -?_—_g devra étre positif.

AN

Réflexions sur le méme sujet;

Par M. GERGONNE.

[a Vo Vi) Vo Vig Vig Vo Vo 9 V1o V]

ON ne saurait disconvenir que la théorie qui vient d’étre développée
ne soit trés—exacte , trés—simple et trés-lumineuse , et peut-étre de
beaucoup préférable a tout ce qui a été dit jusqu’ici sur le méme
sujet; du moins tant qu'on voudra demeurer attaché aux idées qui
sont aujourd’hui généralement en vogue sur la nature des quantités
négatives. Mais ces idées qui, en toute rigueur, peuvent étre admises ,
ont-elles réeliement , sur celles auxquelles on les a substitudes , toute
la supériorité qu’on leur attribue ? Ces derniéres étaient-elles tellement
défactueuses qu’il ¥y ait eu une absolue nécessité A les écarter ? Et,
en les rejetant, n’a-t-on pas fait rétragrader l'algébre jusqu’au point
ou elle était dans son enfance ? N’a-t-on pas ajouté 4 la théorie du
calcul une inutile complication ? N’a-t~on pas ouvert une source féconde
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d’embarras pour le calculateur ? Telles sont les questions que, depuis
longtemps , j’ai le dessein de discuter, dans ce recueil, avec tout le
soin et toute 'étendue que mérite leur importance. Le défaut de loisir
m’en a constamment detourné jusqu’ici ; mais , PUiSqu’enﬁn Poccasion
vient s’en offrir, je veux du moins, au défaut d’une discussion en
forme , hasarder quelques réflexions sur ce sujet, espérant que le
lecteur voudra bien suppléer & ce que les bornes étroites que je suis
contraint de me prescrire , pourront me forcer d’ometire.

Les adversaires de l’ancienne théorie des quantités négatives , je
veux dire de la théorie adoptée par Newton , Euler , d’Alembert, etc.,
conviennent eux-mémes que cette théorie est extrémement commode; et,

s'ils la rejettent, c’est uniquement parce que, suivant eux , il en nait
plusieurs difficultés assez graves ; mais il me parait qu'avant de lui
substituer une théorie nouvelle, il efit au moins fallu examiner, avec
soin, si ces difficultés étaient réellement de nature  ne pouvoir étre
surmontdes , et si on ne courrait pas le risque de ne faire que les
remplacer par des inconvéniens beducoup plus graves encore. 11 me
parait qu’en présentant la doctrine des quantités négatives de la maniere

que je vais expliquer, tous les nuages élevés contre elle peuvent étre
facilement dissipés.

Il n’est pas besoin d’un grand effort d’attention pour apercevoir qu’in-
dépendamment de leur valeur absolue, on a sans cesse A considérer, dans

les quantités leur mode d’existence, c’est-a-dire, 'opposition qui peut se
trouver entre celles qui sont de méme nature. Cette opposition est un fait
évident, prdexistant a tout systéme, a toute convention, et généralement
apercu par tout le monde. Ainsi, par exemple, chacun congoit claire-
ment que 12 francs de dettes ne sont point la méme chose que 12
francs de biens ; qu'un effort de 12 livres , qu'il faut faire pour
empécher un ballon de sé¢lever, n’est point la méme chose que
Veffort de 12 livres qu’il faut faire pour empécher une pierre de
descendre ; que intervalle de 12 anndes, qui sépare 'époque actuclle
d’'un événement passé , n’est point la méme chose que lintervalle



8 QUANTITES
de 12 années qui sépare la méme époque d’un événement & venir, elc.

La science des grandeurs ne remplirait donc qu’une partie de son
but ou, pour mieux dire, elle deviendrait une source continuelle
d’erreurs et de méprises , si, se bornant A considérer les quantités
sous le rapport unique de leur valeur absolue, elle négligeait d’avoir
dégard a l'opposition qui peut souvent exister entre elles. Il faut donc
que cette science fournisse des symboles , non seulement pour repré-
senter les valeurs absolues, mais encore pour différencier entre cux
les divers modes dexistence qu'une méme sorte de grandeur
peut offrir.

Pour remplir ce but important, il suffit uniquement d’une con-
vention et de deux signes : ¢’est-a-dire, que, lorsque plusieurs quantités
de méme nature entreront simultanément dans une méme question ,
et présenteront, les unes & I’dgard des autres , I'opposition dont il
est question ici, on affectera de I'un quelconque de ces deux signes
toutes celles d’entre elles qui offriront le méme mode d’existence,
tandis que l'autre signe affectcra celles qui présenteront un mode
d’existence inverse de celui-la.

Concevons que l'on applique a cet usage les deux signes = et —3
comme on les appelle respectivement signe positif et signe négatif,
une quantité sera dite positive ou négative , suivant qu'elle se trouvera
étre affectée de I'un ou de l'autre de ces deux signes. Ces dénomi-
nations peuvent étre mal choisies ; mais elles ont cela de commun
avec beaucoup d’autres; et linconvénient n’est point trés- grave,
lorsque le sens qu'on se propose d’attacher aux mots est nettement
déterminé. L’essenticl est de bien se rappeler que , toutes les fois
que , dans une méme question , on a & considérer des quantités
dont le mode d’existence est opposé , il est nécessaire d’affecter de
signes contraires les symboles qui en représentent les valeurs absolues ;
mais que ce n'est que par unc convention tout a fait arbitraire , que
les unes sont positives , de préférence aux aulres ; et cela a tel point
que , daus tout état d’une question , on peut changer la convention
d’abord établie , soit pour tous les élémens dont cette question se

compose ,
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compose , soit seulement pour ceux d’entre eux qui sont d’une méme
espéce quelconque.

On voit qu'ici je considére les signes —- et — comme originaire-
ment institués , non pas pour indiquer l'addition et la soustraction,
mais uniquement pour différencier entre elles les quantités dites
positives et négatives. 11 n’est pas difficile de faire voir ensuite que
cet autre usage de ces deux signes est une conséquence toute naturelle
du premier. Je sais bien que je m’écarte ici de la marche des inventeurs;
mais c'est que je pense quon doit towjours le faire quand on y
trouve quelque avantage.

On me demandera peut-étre une définition , proprement dite, de
ce que j'appelle ici modes d’existence opposés ? je répondrai a cette
question , lorsqu’on m’aura donné de bonnes définitions de l'espace,
du zemps , des substances , des modes , de Vangle , et notamment
de ce qu’on appelle aujourd'hui guantités directes et inverses. Cette
opposition est manifeste pour qui veut prendre la peine de 'observer;
elle se fait méme remarquer dans les étres purement intellectuels,
comme dans les étres sensibles; et qu'importe , aprés tout, qu’elle
soit définie, pourvu qu'elle puisse étre nettement saisie par les esprits
méme les moins attentifs. A

Voici, au surplus, un caractére propre 4 la reconnaitre ; c’est que
deux quantités entre lesquelles elle existe, s’anéantissent par leur réunion
lorsqu’elles ont d’ailleurs la méme valeur absolue. Ainsi, par exemple ,
parce que des poids égaux , placés dans les deux bassins d’une balance,
se font équilibre , il y a opposition d’existence entre les mouvemens
que ces poids tendent a faire naitre dans le fléau (*).

Plus généralement , si I'on fait un tout de deux quantités de méme
nature , mais de signes contraires, l’effet de celle qui aura la moindre

‘valeur absolue sera de détruire dans l'autre une portion égale a elle-

(* Cest & cela que revient cette expression populaire , il lui manque quatre
liards pour avoir un sou, employée dans quelques provinces , pour dire qu'un
homme n’a absolument riex,

dom, 1V.
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méme ; en sorte qu'il s'en formera un résultat unique; égal & la
différence de leurs valeurs absolues, et affecté du signe de la plus
grande.

D’apres les idées que je viens de développer , lorsque I'expression
~—a se présente a moi, je n’y vois nullement une soustraction impossi-
ble & ¢ffectuer , et je 0’y vois pas d’avantage une forme algébrique
inintelligible par elle-méme. Cette expression —a m’annonce simple~
ment quil a été fait, sur les quantités de la nature de @, une
convention formelle ou tacite, en vertu de laquelle on a différencié,
par les signes , celles dont le mode d’existence était opposé, et que
a appartient & la classe de celles qu’on est arbitrairement convenu
d’affecter du signe —. Clest ainsi que les quantités négatives isolées
regoivent , dés l'origine , une interprétation simple et naturelle.

A cette maniére d’envisager les choses, répondront des locutions
qu’'il faudra bien se garder d’employer dans le langage vulgaire , mais
qui pourront étre utilement introduites dans la langue de la science;
-ainsi, par exemple, on dira d'un événement qu’il arrivera dans —4 ans,
pour dire qu'il est arrivé il y a -}-4 ans ; ou, au contraire , qu’il
est arrivé il y a —4 ans, pour dire qu’il arrivera dans -4 ans;
et ces locutions n’auront rien de plus étrange que celles , générale-
ment admises , qui consistent & dire qu’on répéte un nombre % de fois,
pour dire qu’on le divise par 4, et qu'on partage un nombre en 3 de
parties égales, pour dire qu'on le multiplie par 4.

On me demandera maintenant si je considére les quantités négatives
isolées comme plus grandes ou comme moindres que zéro ? Avant
de répondre a cette question, je distinguerai d’abord deux sortes de
zéros : savoir , le zéro absolu , symbole d’un pur néant, et au-dessous
duquel conséquemment rien ne saurait se trouver , et un zéro limite
ou point de départ, qui est de pure convention , ct auquel se rapportent
constamment les quantités considérées comme pouvant &tre positives
et négatives. G’est, par exemple , le zéro du thermometre ; c’est le
plan de niveau duquel on part pour estimer les élévations et les
abaissemens ; c’est I'époque de laquelle partent les chronologistes
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pour fixer la date des événemens , soit antérieurs soit postérieurs ;
et c’est encore l'origine des coordonnées dans la géométrie analitique,
Présentement , lorsqu’on me demandecra si une quantité peut étre
moindre que zéro, je répondrai simplement qu'unc quantité, considérée
absolument , ne pouvant étre ni positive ni négative , ne saurait jamais
étre moindre que le zéro absolu ; mais que, deés lors qu'on a égard
au signe de cette quantité, on annonce par la méme qu’il existe,
pour les quantités de méme nature qu'elle , un zéro limite ; et
qu’ainsi, si elle est négative, zéro doit se trouver entre elle et les
quantités positives.

Si, pour fixer lcs idées, on imagine toutes les quantités possibles,
d’'une méme nature quelconque , disposées par ordre de grandeur et
de haut en bas, depuis Dinfini positif jusqu’a linfini ndgatif, sur
une méme ligne verticale , ainsi qu’il arrive pour la graduation du
thermoméire; on pourra fort bien dire alors que, de méme qu’une
quantité positive plus petite est au-dessous d’une autre quantité positive
plus grande , une quantité négative plus grande est, au contraire ,
au-dessous d’une quantité négative plus petite , ct, & plus forte raison,
au ~ dessous de zéro et des quantités positives. Mais il faut bien
remarquer que ce n’est ici qu'une pure fiction de Pesprit, et qu’aux
idées de dessus et de dessous on pourrait, tout aussi bien, substituer
cclles de droite et de gauche, ou encore celles de devant et de
derriére.

La question des quantitds au-dessous de zéro correspond exacte-
ment A celle des quantités au-dessous de l'unité ; car, de méme
quil y a deux sortes de zéros, il y a aussi deux sortes d’unités ;
savoir , une unité absolue , au-dessous de laquelle rien d’existant ne
saurait se trouver, puisque , pour exister, il faut au moins étre uz,
et une unité conventionnelle , qui admet indistinctement des quantités
au-dessus et au-dessous d’elle. De méme donc que I'on dit que 3 est
au-dessous de cette derniére unité , et que = est an-dessous de ;3
pourquoi craindrait-on de dire, dans un sens analogue, que —4%
est au-dessous de zcro, et que —4 est inférieur 3 —3 7 En général,
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si —a est une simple forme algébrique ou une soustraction impossible
. I - . .
a effectuer , pourquoi — ne serait-il pas aussi une autre forme algé-

brique ou une division impossible 3 effectuer ? il est aisé de voir
en particulier que tous les raisonnemens que M. Cach vient d’appliquer
au calcul des quantités —y et —w, pourraient étre également appliqués

. I I . . . .
aux quantltés-}- et = et , pmsqu’on ne juge point ces raisonne-

mens nécessaires , pour établir les régles du calcul de celle-ci, pourquoi
les jugerait-on tels & I'dgard du calcul des autres?

En.résumé , je ne vois point pourquoi les géometres , adoptant
un systtme tout pareil 4 celui de la double doctrine des anciens
philosophes , aujourd’hui tant etsi justement décrié, professeraient exté-
rieurement des principes différens de ceux qui les dirigent eux~
mémes dans leurs recherches ; principes qu’ils ne pourraient abandonner;
dans la pratique , sans le plus grand embarras, et dont l'extréme
lucidité est d’ailleurs de nature a frapper tous les esprits ¥ N'entendent-
ils pas répéter tous les jours autour d'eux que el komme a moins que
rien, et cette locution triviale, si fréquemment employée, ne leur

annonce - t-elle pas que le vulgaire lui-méme semble appeler des
notions que l'on se figure étre inaccessibles pour lui?

Tout ce qui préceéde ne concerne encore que les quantités concrétes;
mais que dirons-nous présentement des nombres abstraits ? Pourront-
ils aussi offrir, les uns par rapport aux autres , quelque opposition
dans leur rhaniére d’exister ? en quoi cette opposition consistera-t-
clle ? et & quels caractéres pourra-t-on la reconnaitre ? Je n’ignore
pas que des géométres dont je respecte les lumiéres ont établi, en
principe, que Zout nombre abstrait est essenticllement positif ; mais,
3 ce compte , je ne vois plus , dans les puissances des nombres négatifs,
que des é/res de raison ; car enlin, dans toute multiplication , encore
faut-il bien que I'un des facteurs au moins soit abstrait ; d’ailleurs;

" ces mots nombre abstrait , ne sont au fond que des mots, et
peuvent, comme tels, ére employés a signifier tout ce qu’on voudra.
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’»
Ecartons-nous , toutefois’, le moins quenous le pourrons, des no-

tions communes , et voyons quels sont les cas out ce qu'on appelle

vulgairement nombres abstraits , se présente 3 nous. Jen remarque

deux principaux : le premier a lieu lorsque nous cherchons } assignes
le rapport entre deux quantités de méme nature, et on peut dire,
dans ce sens, que le nombre abstrait exprime combien de fois une
quantité donnée doit étre répétée pour former , une autre quantité,
aussi donnée, de méme nature gu'elle.

Le second cas a lieu lorsqu’il s’agit d’assigner les rangs entre
une suite de grandeurs dérivées les unes des autres , suivant wune
loi queleonque: on peut donc dire, sous ce nouveau point de vue,
que Je nombre abstrait exprime le rang qu'occupe un objet parmi
plusteurs autres. ‘

Ces notions ainsi admises, et elles le sont universellement; si 'on
nous demande, par exemple, quel est le rapport entre 12 francs
de biens et 4 francs de biens ? nous répondrons, sans hésiter , que
¢’est le nombre abstrait 3, et nous ferons exactement la méme réponse,
si I'on nous demande quel est le rapport entre 12 francs de dettes
et 4 [rancs de dettes ; puisqu’il faut répéter 3 fois, soit 4 francs
de biens pour faire 12 francs de biens, soit 4 francs de deties pour
faire 12 francs de dettes.

Que si l'on nous demande ensuite quel est le rapport, soit entre
12 francs de biens et 4 francs de dettes , soit entre 12 francs de
dettes et 4 francs de biens ? nous pourrons nous trouver d’abord
embarrassés , et méme la question pourra, d’'une premiére vue, nous
sembler absurde ; attendu que des biens répétés font toujours
des biens , et que des dettes répétées font toujours des dettes :
cependant , en y réfléchissant mieux , nous ne tarderons pas i
apercevoir qu'il existe un moyen de faire, soit 12 francs de biens
avec 4 francs de dettes, soit 12 francs de dettes avec 4 francs de
biens ; et que ce moyen consiste & répéter d’'abord 3 fois les 4 francs,

soit de biens soit de dettes, et & changer ensuite le mode d’existence
du résultat obtenu,
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Or, tr¥s-certainement , rien n‘empéche d'indiquer , tout d’un coup ,
cette double opération , en faisant précéder du signe — le nombre
abstrait 3, pourvu qu'on éecrive ou qu'on sous-entende le signe —=
devant le méme nombre abstrait, lorsqu’il répondra au premier des deux
cas que nous venons de considérer. On dira, en conséquence , que
prendre une quantité 4-3 fois, c’est la répéter 3 fois , en lui conservant
son mode d’existence ou son signe ; et que, prendre une quantité
—3 fois, c'est la répéter 3 fois, en changeant son mode d’existence
ou son signe: il y aura donc, dans ce sens, des nombres abstraits
négatifs aussi bien que des nombres abstraits positifs ; et Yon pourra
établir, en principe , que le nombre abstrait qui exprime le rapport
ntre deux quantités de méme nature , est positif ou négalif , suivant
g:e ces deux quantités ont le méme mode d’existence ou un mode
d cxistence opposé , c’est-a-dire , en d’autres termes , suivant que
ces deux quantités ont le méme signe ou des signes contraires. Ainsi
se lrouveront expliquées, par unc convention toute simple et toute
naturelle, lesrégles des signes pour la multiplication et pourla division.

Quant A la seconde sorte de nombre abstrait ; concevons qu’apreés
avoir derit une série dont on connait la loi , on ait numéroté ses
termes , de gauche & droite, 1, 2, 3,..... Rien n’empéchera, i
Vaide de la loi connue de cette série, dela prolonger vers la gauche,
tout aussi bien que vers la droite ; et, d’apres les idées développées ci~
dessus, on sera tout naturellement conduit & numéroter successivement
les termes nouveaux, iritroduits sur la gauche, o, —1, —2, —3,...;
auquel cas il deviendra nécessaire d’écrire ‘ou de sous—entendre le
signe —~ devant les indices des termes déja numérotés 1, 2, 3....

On aura donc encore ici des nombres abstraits positifs et des nombres
abstraits négatifs ; et les différens signes dont ils se trouveront affectés ,
annonceront qu’ils .indiquent les rangs de termes situés de part et
d’autre de celui qu'on sera arbitrairement convenu de numéroter zéro.
On voit par 14 que ces nombres abstraits doivent étre soigneusement dis-
tingués de ceux de la premiére sorte. Ceux-ci sont positifs ou négatifs
intrinséquement , ou du moins en vertu d’'une convention géndrale
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qui , une fois établie, ne saurait plus étre changée; tandis que les
autres ne sont tels que par la situation du zéro, qu’on peut déplacer
a chaque question nouvelle que l'on traite , et par la convention libre
que Pon a faite sur le sens positif et sur le sens négatif du numé-
rotage. En un mot , les nombres abstraits de cette dernitre sorte
rentrent absolument dans ce que j’ai déja fait remarquer des nombres
concrets , considérés comme positifs et comme négatifs.

Ce que je dis ici n'est , au surplus , que ce que les géomitres
pratiquent tous les jours. En est-il un seul, en effet, qui ignore
ce qu’il doit trouver, lorsque, dans le terme général d’une série
il substitue , pour lindice, un nombre négatif ? En est-il un seul
qui hésite sur le rang que doit occuper un terme dont il trouve
Vindice négatif ? Que devient donc alors la maxime : fout nombre
abstrait est essentiellement positif ? Faut-il donc que la maxime
contraire demeure une sorte de mystére, entre les seuls initiés 7 Et
n’ai-je pas eu raison de dire, tout a I'’heure , que les théories modernes
avaient entrainé les géométres , involontairement sans doute, dans
lIe systtme de la double doctrine. (*)

Les principes que je viens d’exposer sont, & quelques modifica-
tions et &4 quelques développemens prés, ccux qui ont été généra—~
lement professés jusqu'a ces derniers temps. Une expérience assez

longue m’a prouvé que non seulement ils dtaient toujours nette=
ment saisis par les commengans , mais qu’en outre ils imprimaient

a toutes leurs recherches une marche ferme , exempte de toute
méprise et de toute hésitation ; avantages que ne me semblent pas
réunir, au méme degré, toutes les diverses autres théories.

Il me resterait présentement & répondre aux objections, tant et si

.

s

(" L’inconvénient n'est point encore tres-grave & présent, parce que les deux
doctrines sont généralement connues, et que l'une d’elles n’est que de pur apparit;
mais , si celle-ci venait enfin & éire seule enseignée , nous pourrions fort bien en

revenir , dans quelque temps , aux racines vraies et aux racines fausses des contem-
porains de Descartes, ,
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souvent rebattues , qui ont été opposées & ces mémes principes; mais ;
dans la nécessité d’abréger , je m’arréterai seulement au petit nom-
bre de celles d’entre elles qui m’ont paru les plus spécieuses.

1.° On demande pourquoi le produit de deux quantités de signes
contraires a le privilége d’dtre négatif plutét que positif , et sil ne
devrait pas étre l'un et l'autre ; puisqu’en changeant d’hypothése ,
sur les quantités multiplides , —><— devient —X<—4, et devrait
alors donner un produit de signe contraire ¥ On demande , en se
fondant sur les mémes motifs, pourquoi , si +X-+=-, on na
pas, en changeant d’hypothése —><—=—7?

La réponse i toutes les difficultés de ce genre est simple et facile;
Dans toute multiplication , 'un des facteurs est essentiellement un
nombre abstrait de la premiere sorte , et le produit est de la nature
de lautre facteur. Si donc on change dhypothése sur les quantités
négatives, cela entrainera uniquement le changement des signes du
multiplicande et du produit; or, c’est la une condition a laquelle
satisfont en effet les régles connues. (*)

Cette difficulté est , au surplus, du genre de eelle que se propose
Lacaille , dans les premiéres éditions de ses élémens , lorsqu’il se
demande pourquoi 12 deniers , multipliés par 12 deniers, ne donnent
pas la méme chose que 1 sou multiplié par 1 sou ? Et la réponse
a cette derniére est tout  fait analogue i celle que je viens de faire
ala premiére. On -peut bien changer d’hypothdse , relativement 3 la
grandeur de l'unité de mesure du multiplicande, et cela entrainera
nécessairement un pareil changement dans l'unité de mesure du produit;
mais le nombre des unités du multiplicateur étant un nombre abstrait,
est indépendant de toute hypothése, et ne saurait conséquemment
&tre modifié dans aucun cas.

2. On demande aussi pourquoi, si les quantités ne sont positives

-

(") On pourrait m’objecter que le multiplicande , comme le multiplicateur, peut
souvent aussi étre abstrait et cela est vrai; mais ces deux nombres abstraits n’en
seront pas moins de nature différente. Le multiplicande, comme le produit , est
wn nombre de choses; le multiplicateur seul est up nombre de fois, .

(3
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et négatives que par convention, y/==g: est imaginaire , tandis que
v/ Fa» est réelle ? Cette difficulté rentre dans la précédente. v/ =52
est imaginaire , parce que —&>, ne pouvant provenir que de la malti+
plication de -+a par —a, ou de —a par }-a, n’est point un quarré,
Au contraire , 3z est réelle , parce que , soit qu’on, suppose
~a*=-taX-a ou —a*=—a>X—a , celle quaniité est, toujours
un quarré. ) ‘

3.° Tout le monde admet , comme vraie, la proportion =1 :—1 ::
—1:-4-1; or, dii-on, si les quantiiés négatives sont moindres que les
quantites positives , il s'ensuivra cette conséquence absurde que , dans
une tcile proportion , tandis que le prenier couscquent sera surpassé
par son antécédent, le second conséquent, au contraire, surpassera
son antécédent. ! .

Je répondrai & cette difficulté en observant qu’en principe on mne
doit jamais chercher dang un objet que des propriétés qui résultent
inévitablement de son essence , c’est-i-dire, de sa définition. Or ,
Iessence d’une proportion géométrique est uniquement que le quo-
tient des deux premiers termes soit égal au quotient des deux derniers ;
et c'est parce qu’ils satisfont & cette condition primordiale que les
quatre termes que l'on vient de citer sont reconnus pour élre ceux
d’une telle proportion. 1l arrive bien quelquefois , en effet, que,
le second terme étant moindre que le premier, le quatriéme_est aussi
moindre que le troisiéme; mais cctte propriété , essentielle aux pro-~
portions arithmétiques , n’est. qu’aceidentelle & 1'égard .des auu'e_s;,ict
ne s’y fait remarquer que lorsque: tous leurs termes ont'le: méme signe.

Nous venons de rencontrer une proportion géométrique dans laquelle
le premier terme surpassant le second de deux unités, le troisiéme
terme est au contraire surpassé de deux unités par le quatricme, Voici,
- linverse , une proportion ari_thfnétique dans laquelle le premier terme
contenant deux fois le second , le troisiéme est au- gontraire contenu
deux fois dans le quatriéme : c’est la proportion -3.1:—1.—2; et
cette proportion est exacte , parce qu'elle satisfait .2 Ia condition de
définition , et que toute aulre propriété , -si elle n’est pas essentielle~

Tom. IV, 3



i8 QUANTITES |
ment renfermde dans celle-1d , ne saurait lui &tre qu’accidentelle;

4° On cite enfin , dans les problemes de géométrie , des valeurs
d’inconnues qui , bien qu'affectées de signes contraires , doivent

néanmoins étre portées du méme c6té, Clest

, dit-on, ce qui arrive ,
en particulier,

dans le probleme ou il est question de mener & un
«cercle , par un point extérieur, une sécante telle que la corde inter=-
ceptée soit d'une longeur donnde. Mais, on a négligé d’observer
quen résolvant le probléme par rapport au cercle donné, on le
résout aussi pour un autre cercle , symétriquement situé avec lui
“par rapport au pomt donné, et que c’est & ce dernier qu appartxent
‘]a soldtion mégative.

Je ‘crois devoir; a cette occasion , relever une fausse interprétation
que Pon rencontre dans I'algebre de Bezout. L’auteur suppose que 175 ‘
frarics , devant étre distribués , par égales portions , entre un certain
nombre de personnes, 'absence de deux d’entre elles augmente de 10
francs la part de chacune des autres. En prenant pour inconnue
le nombre des persennes qui devaient d’abord entrer en part, il
.trouve-'==5 -pour l'une des solations du probléme, et il dit que
cette solution répond au cas ol , au contraire , deux nouveaux sur-
venans auraient diminué de 10 francs la part de chacun,

Mais ‘cette mterpretanon ne me parait pomt exacte. Ce ne sont
-point, en effet, ni-les 10 francs ni le nombre des personnes absenles
gm sont devénus negatlfs » €1 jainals les ‘données ne sauraient eprouver

:ane semblable métamorphose ; c’est uniquement-le nombre total des
.rpefsonnesqui’a subi ee changemént. Puis donc que ,'dans le' premier
« cas ;i il était question de pler'éo;niles ‘recevant , il devra étre question
oici de peréonnes donnant ; cest-i-dire, que le nombre —5, pris en <,
- xépendra & la question ol ; des personnes devant -se- cotiser potr
- fairesun fonds de 175 francs, Pabsence de deux d’entre elles aurait
- augmenté de. 10 francs la portion & fournir: par chacune d'elles.

1l est. possible , au surplus , que “cette inexactitude , ainsi que
plusieurs. autres , ait déja éié relevée , .par quelqu’un des nombreux

#ditcurs et commentateurs du Cours -de Bezout ; ouvrage excellent
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sans doute, pour Pépoque ou il a paru, mais qu'il serait peut-étre
temps enfin de laisser reposer en paix , 4 coté de la Caille et de
tous ceux du méme temps.

Avant de terminer, je dois dire quelque chose des difficultés que
présente fréquemment aux commencans l'ambiguité des signes des
radicaux pairs. Quelques auteurs, au lieu de mettre ces difficultés
bicn en évidence, et d’enseigner a les surmonter, semblent au contraire
avoir apporté tous leurs soins & les ¢éluder; c'est-a-dire, qu'ils se sont
appliqués a disposer leurs calculs de telle sorte qu'en extrayant les
racines sans aucun dgard au double signe, on tombe précisément
sur le résultat qui convient au probleme. '

Mais on ne doit jamais perdre de vue que toute racine paire porte
inévitablement lec double signe =, sans qu'on puisse dire , dans
aucun cas, ni sous aucun rapport , que l'un de ces signes lui soit
plus naturel que l'autre. A la vérité , il arrive fréquemment que,
par la nature individuelle de la question dont on s"‘occupe , I'un de
ces signes doit étre rejeté ; mais, c’est tout aussi souvent le signe =
que le signe ——3; et c’est 'précisémellt de 14 que nait embarras. Le
moyen le plus simple et le plus uniforme de le dissiper me parait
étre de traiter le double signe 7~ comme l'on traite les constantes
arbitraires, dans le calcul intégral; c’est-d-dire, d’en lever I'ambi-
guité par quelques suppositions particulitres qui ne fassent pas
évanouir les termes radicaux, et pour lesquelles on sache bien , &
Pavance , quel résultat on doit obtenir.

Jai essayé , dans cette dissertation , de ramener la théorie des
quantités négatives & des notions qui me semblent plus claires, et’
sur-tout incomparablement plus commodes pour le calculateur, que
celles qu’on leur a substitudes depuis quelques années, et j’ai montré ,
par divers exemples , que les difficultés opposées & ces mémes notions
ne sont pas aussi sérieuses qu'on pourrait I'imaginer. St j’ai pu paraitre
avoir quelquefois en vue l'introduction de la Géométrie de position,
<’est uniquement parce que je ne connais aucun autre €crit ol
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I'ancienne théorie soit attaquée et la mnouvelle défendué d'une manidre
aussi compléte et aussi supérieure. Je prie donc mes lecteurs de
croire que je men suis pas moins pour cela pénétré de la plus
haute estime pour la personne et pour les productions de Iillustre
auteur de cet ouvrage; mais je pense que la Géométrie de position
ne perdrait absolument rien de ses avantages réels, et qu'elle gagnerait
peut-étre méme , du c6té de la clarté et de la brieveté , si elle

était ramenée aux notions que je viens de chercher 3 établir, ou
plutét A rappeler de l'oubli.

ALGEBRE ELEMENTAIRE.

Démonstrations élémentaires du théoréme de d’ ALEMBERT

sur la forme des imaginaires ;

Par M. pu BourcueT , professeur de mathématiques spéciales
au lycée impérial.

ANV V NN

D’ALEMBERT a démontré le premier , mais par les calculs diffé-
rentiel et intégral, que toute quantité imaginaire

(atdy SymEN= '
peut toujours étre ramenée 4 la forme
P9y = ;

( Voyez le Calcul intégral de Bougainville, page 42 ). (%)

At

(*) Voyez aussi la Résolution des éguations numériques de Lagrange , note IX,
J, D\ G,
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Il § a environ onze ans qu’ayant vainement cherché, dans les
auteurs les plus estimés & cette époque , une démonstration élémen-
taire du méme théoréme , je m’occupai & en trouver une , soif
algébrique soit géomdtrique ; j’en obtins, en effet, une fort simple de
cette derniére sorte ; c’est celle que j’annoncai en 1802, dans un ouvrage
d’algebre que je publiai & cetie époque. Mais , depuis ce temps,
L. Garnier ayant donné une démonstration semblable , dans un
ouvrage qu'il a publi¢ en 1804 , sous le nom d’'Analise algébrigue,
yai cru devoir reprendre mes recherches pour obtenir du méme
théoréme une démonstration purement algébrique. Voici celle que
J'ai obtenue, et qui me parait préférable & -l'autre ; car, outre qu’elle
est fort simple, il me parait trés-convenable de ne faire dépendre
la démonstraiion du principe général que Zoute fonction de quaniités
Imaginaires est réductible & la_forme p+gy/ =1, de la scule branche
des sciences exactes dont ce principe fait partic,

On sait que , quels que soicnt 2 et &, on a

(@) EN T =

am-_*_-n —-1{I+nzin\/—1_1’_+m_—_l-_n\/:—_;.m—1:5:n\/—x(f_)zj:"z
- I Q I 2 a

H
on aura donc, en changeant 5 en 5y/—=:,

(ady = EN " =

(1) am:",:n\/:glimtrl\/: (b\/:.f)__mtn\/—:'m-—l ﬁnﬁ(i)zi‘.g‘

a I 2 aQ

Or, toutes les puissances paires de (/= étant égales & "1 , et
toutes ses puissances impaires étantégales & /=y, il s’ensuit qu’en
exécutant toutes les multiplications , entre les aceolades du second
membre de I'équation (1), en obtiendra une suite de termes réels,
dgnt Pensemble pourra étre représenté par g, et une suite de termcs
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affectds de —+y/=7 , dont Pensemble pourra &tre représentd par
=%/ =1 ; en sorte que I'équation (1) deviendra simplement

() ("ibt/:\m;’:"\/:‘ =am:"\/:—1(gj-_;l‘/:-l-)'

Mais, par la théorie des quantités exponentielles, théorie indépen'danté
de Iexposant de la base , on a,en désignant par la le logarithme

naturel de 2,
am "_':n\/—-l___

@) 1 OENTD ) VD (ENED gy
1 1.2 1.2.3

. . . . h1
qui , pour les mémes raisons que ci-dessus, pourra étre réduit a
la forme

“+=n\/—
am__n Izcid\/: ;
substituant donc cette valeur dans Péquation (2) , il viendra, en
développant, et posant pour abréger

cg—dh=p clz—-]jg:q R
(atby = =N =

ey ) g by =3)=(cg—dh)F(cht-dg)y —i=pLqy/ —1 }

commme nous l’avions annoncé.

Voici présentement la démonstration géométrique du méme théoréme,
que j’avais annoncée , dans louvrage d’algtbre publi¢ en 1802,
Soit posé

a
‘Z' =Cot.o >

il viendra

a:‘/a”-l—-b”.Cos.,, y b=y a*+b*.Sin.y ,

done

a by =i=(Cos.oy/ =iSin.e)y/ 2o 4:
et

Ka s b\ =1)=11(a2-b=)41(Cos.w == \/—1 Sin.a)= 1 1(a2f-b2) == o\J—1.
Multipliant les deux membres de cette dernitre équation par m¥ny/ =1,
il viendra
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Letdy =2 =V T = (@0 —nd il (@48 Fmaly =T
posant alors, pour abréger
ml(@* by —no=g , Inl(a>4-b>+4me=20 ,
et repassant des logarithmes aux nombres , il ‘viendra
(aib\/:)m::"\/—’=eg.eih\/—’=egCos]zj\/:I}'chinﬁ ;
posant donc enfin

eECos.i=p , eSink=gq ,
on aura, dc nouveau

@by = EN T = pgy T ()

Réflexions sur le méme sujet ;

Par M. GERGONNE,

[a ¥ia o Y Vi =g Vo Vo Vo “ia Vo V]

LA forine
(amtby SV

>

est loin, ce me semble, d’étre la plus générale que puissent affecter

Jes fonctions d’imaginaires, D’abord un radical imaginaire peut excéder

le second degré. A la vérité , dans ce cas , il peut toujours étre
' . 20, e . ) N

‘ramené au second degré , puisque Y/ =gi==y/ 4y —; ; mais c’est l3

une observation qui vaudrait bien la peine d’¢tre faite aux commencgans,

4 qui on ne parle jamais, dans les élémens, que de la racine QUARREE
de moins un.

(*) Dans le vrai, cette derniére démonstration est tout aussi analitique que la
premiére ; puisque les fonctions circulaires ne sont, au fond , que des transcen~
dantes d'une espéce particuliére, dont la théorie peut étre présentée d’une maniére
-tout & fait indépendante des considérations géométriques. C'est ainsi, en particulier,
gwelles ont été envisagées par M. Suremain-de-Missery , dans sa Théorie des
quantités imaginaires ( Paris, F. Didot, 1801, in-8.20). On trouve, au surplus,
dans cet ouvrage ( pag. 72 ), une démonstration du théoréme de d’Alembert qui
différe trés-peu de celles ¢e MNL. Du Bourguet et Garnier, 7. DG

. . .

.
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E 1 s2 bornant méme aux seuls imaginaires de la forme a*+5y/ =7,
ne peut-on pas considérer des fonctions telles , par exemple , que
* Sin. Sin. Sin........ (etby=x)
Co05.C05.C0800 0 0uvnn (aibv’:-_x—) R
Log.Log.Log.......(a+by/5)
le nombre des sinus, cosinus ou logarithmes’ étant quelconque, fini
ou infini, positif ou négatif, entier ou fractionnaire,, commensurable
ou incommensurable, et ‘pouvant méme étre imaginaire de la forme
mny/—1? Ne peut-on pas également considérer des fonctions de¢
la forme '
(atary/mhym EMN=IrENT
Ne peut-on pas aussi considérer des fonctions de la forme

P e 270 e =)

ou de la forme :
am=in/—1
— N a1
— =TNVT ek bin—1
C_dv 1+cl:’:d/\/-—l- +C”+d’/\/:_l+-

les a, a’,a”,....8, 0", b/ ,....c, ¢/, ¢ ,....d, d, d’,...:
étant liés par une lei connue quelconque, et leur nombre pouvant
étre indifféremment fini ou infini, positif ou négatif, entier ou fraction-
naire , commensurable ou incommensurable, ou méme encore imagi-
naire .de la forme mt-ny/=:? Ne peat-on pas enfin considérer des
fonctions d’imaginaires, composées de toutes celles-la et de beaucoup
d’autres encore , telles que seraient, par exemple, des différentielles
ou intégrales dont l'ordre serait imaginaire de la forme m=tny/ =37?

Il me semble que , dans tous les cas , la voie la plus simple
pour parvenir , s'il est possible , 4 la démonstration du théoréme,
est celle que voici. B

Soit posée I'équation :

w=ol AT, BEST. CUT ...

et supposons, cn premier lieu , que la fonction ¢ soit algébrigue.

On
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On pourra toujours, en chassant les dénominateurs ct les radicaux,
ramener cette équation a la forme

ax" b2 .....+gx+/z:0 ; N
or , il est démontré , par les élémens , que tout.es les racines d’une telle
équation sont de la forme pF-¢gy/ =1, sans en excepter méme les racines
réelles , puisqu’elles-répondent & g==0 ; puis donc que la fonction
o est du nombre de ces racines, elle doit &tre aussi de cette forme.

Supposons, en second lieu, que la fonction ¢ soit transcendante ,
mais développable en une suite de termes qui soient algébriques ou
du moins développables eux-mémes cn séries , et ainsi de suite,
jusqu'a ce qu'on n’ait plus qu’uhe suite de termes algébriques ; ces
termes, d’apres ce qui préceéde, seront tous de la forme ptgy/ =1
donc leur somme, c’est-d-dire, la fonction ¢ sera aussidé la méme forme,

Toute la.difficulté est donc maintenant réduite % savoir si vrai-
ment toute fonction non algébrique est développable en série. Je
regarde la chose comme extrémement probable ; mais je ne crois pas
qu’elleait encore été jusqu’ici généralement et rigoureusement démontrée.

ANALISE ELEMENTAIRE.

Démonstrations du principe qui sert de fondement ay
calcul des fonctions symétriques , et de la formule
du Binéme de Newton ;

Par M. Brer, professeur & la faculté des sciences de
‘ Tacadémie de Grenoble.

[a Vo VB W N Vb VL Vi Vo ¥

L SOIT représenté le produit des m facteurs simples 2=, z-|-¢,
Ty ,0000e, par

D . Lk I By v L R Ny (1) ,
Tom. IVo 4
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et celul des mémes facteurs, excepté le premier x--«, par
xm"+B1xm-z+B:xm-’+"'"+Bm—x- (2)

1l est évident qu'en divisant le polynéme (1) par #~-« , on produira
le polynome (2), et que, réciproquement, en multipliant le poly-
néme (2) par Z-«, on aura le polynéme (1). De la résultent les
équations

Bu-—1=An~x""‘“An—z+“2An—;—""') (3)
An:Bu-‘_“Bn-l' (4)

L’équation (4) démontre que tout ce qui multiplie « dans A, est
B,_, ;or, daprés la composition des coefficiens 4, , 4,, 4, ,...,
en «, B, v,...s, st dans A, on prend tous les termes multiplids
par «, puis successivement ceux multipliés par g, ¥, §,...., et
qu’on les ajoute, on aura nA,; donc

ﬂAn=S(“Bn—x) > (5)

le signe S indiquant la somme des produits «B,_, que I'on obtient
en permutant successivement « avec chacune des autres lettres.

Cela posé, dans I'équation (5) substituons & B,_, sa valeur (3),
il viendra

nAd,=S(ed,_y=—u*A,yt.o.. T,

ou

nAdAA4, S(—a)+A4,. ,S—a)~4.....F8(—e)=0 ; 6)
et, comme —«, —B, —y,.... sont les racines de l’équation (1) 5
il s’ensuit que la formule (6) détermine les sommes des puissances
semblables de ces racines, savoir : S§(—u&), S(—«)*, S(—a)®,. ...
jusqud S(—«)™ On peut méme pousser plus loin le calcul de ces

sommes , en multipliant 'équation (1) par 27, et en appliquant ensuite
la formule (6) A I’équation résultante. (*)

(*» On trouve un aricle sur le méme sujet & la page 238 du IIL.° volume
de ce recucil J. D. G.
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11 L’équation

ndy—d,_ Set-A, Swim..7..=0,
devient, en supposant e=—=g=y=y=.....,
ndy—~md, otmd, ,i*~md, 4
Changeant n, en n—1, on aura
(n—1)4,.,—mAd, ,otmA, ;et=—.....=o0.

Multipliant cette dernidre équation par «, et l’a}outant 4 la prdcé=
dente ; il viendra

eeeey ==0,

nd,—(m—n41)4,.,s=o0 ;
ce qui établit une relation entre deux coefliciens consécutifs du polynéme
a" A 2™ A Ay = (2™

d’ot 'on déduit la formule du binéme.

On peut encore démontrer cette formule d'une manidre plus directe;
il suffit pour cela d'observer que , dans I'équation

nd,=S(B,.,) ;

le nombre des preduits de n lettres du premier membre est dgal
au nombre des produits de 7 lettres du second membre ; désignant
donc par N™ le nombre des produits différens de n lettre qui sont
comptés dans 7 lettres ,nous aurons 2N =mIV;' " , et par conséquent
la suite d'équations '
nN® =m Nt
(n—l)N", : —(m'—l>le—
(ne—2) N7~} =(m—2)N"}

LN+ = pt-1,

Effectuant le produit de ces équations , et omettant les facteurs
tommuns , nous obtiendrons

-3

., vl

-
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m m=—1 Mmoo ——
J\vm= _ . [ERY) z n+l -
» b ¢ 2 3 n

Si l'on fait maintenant «=g=,=3=,.,.. on aura
—_ N,
AH——-ZV"& ’

done
777 e 1

(z4-a)m= 2™~ 2:— az™ == -?- . @™ i,

2

- QUESTIONS PROPOSEES.
Problémes dc Géomeétrie.

1. UNE droite mobile parcourt le plan d'un triangle de maniére
que le produit des segmens qu’elle détermine sur deux de ses cotés,
vers leur point de concours , est conctamment égal au produit des
deux autres segmens des mémes cétés. On propose d’assigner la
courbe A laquelle , dans son mouvement , cette droite sera perpé-

tuellement tangente ?
. H. Un plan mobile coupe un tétratdre de telle manitre que le

produit des segmens qu’il détermine, du ¢6té du sommet du tétraédre,
sur les trois arétes qui y concourent, est constamment égal au produit
des segmens des trois mémes arétes qui se terminent & la base , et
qu’en outre , le produit des aires des triangles qu'il intercepte du
coté du sommet , sur les trois faces qui y concourent, est cons-
tamment égal au produit des aires des quadrilatéres qui, avec ces
triangles,, complétent ces trois. mémes faces. On propose d’assigner
la surface courbe & laquelle , dans son mouvement , ce plan sera
perpetueliement tangeat ?
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MATHEMATIQUES APPLIQUEES.

Solution des deux problémes proposés & la page 243
du II1° volume des Annales (*) , avec quelques appli-
cations a la construction des thermoméires métalliques
en forme de montre;

Par M. Arcann.

[o.%a Ya Vo VoVl Mo " 4

1. SOIENT AT (fig. 1) latangente commune, BAD la perpendiculaire
3 AT sur laquelle se trouvent les centres des arcs tangens, C un
point pris, 2 volonté, sur BD. Que de ce point, comme centre,
et du rayon CA=z on décrive 'arc AM=¢, la longueur donnée
étant =24. Qu’on abaisse sur AC la perpendiculaire MP , et soient

AP=zx, PM=y ,

. a
y=28Sin. pal

x:z(x-—-Cos.-:j ) .

. . e e . . @ a
on tire de ces deux équations , par I'élimination de Sin.— et Cos.— ,
z z

On aura (1)

. . e a
au moyen de celle-ci : Sm.”;—-}—Cos.’ — =1,
z

(*) Voyez aussi la page 377 du méme volume.

Tom. 1V, 5
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2= y~+x .
2x

En substituant cette valeur de z dans chacune des deux premidres

équations , on obtient celle de la courbe cherchée , sous ces deux
formes

2xy . 2ax yre—=—x? 2ax
=Sin. =Cos. .
yota yoar 7yt yia

Ces deux équations différent non seulement par la forme , mais
encore par l'étenduc de leur signification. La premieére n’appartient
qu’a la courbe qui nait des arcs AM tracés dans le sens des ordonnées
positives. La seconde comprend , en outre , la courbe semblable formée
du c6té des ordonnées négatives : car on voit qu’elle ne change
pas en mettant —z au licu de 2. C’est donc cette dernitre équation
seule qui résout le probléme tel qu'il est énoncé, en y supprimant
toutefois la condition que les arcs touchent la droite donnée du
méme c¢d1é ; car, par cette restriction, on n’aurait qu'une moitié de
la courbe ; savoir : celle qui est tracée du c6té des abscisses positives ,
et la courbe se terminerait brusquement & la ligne AT.

2. Quant a la surface courbe qui fait le sujet du second probléme ;
c’est une sphére dont le centre est le point de contact commun

A , et dont le rayon =V L4 , b étant la surface constante des
w

calottes , et = la demi-circonférence appartenant.au rayon 1. En
effet , la figure 1 peut représenter une section perpendiculaire au
plan tangent , et passant par le point A, Qu'on décrive le cercle

MN d’un rayon AM=V.£’. . Ce cercle sera la section de la sphére

dont il s’agit. Qu’on prenne ensuite , comme ci-dessus , AC & volonté,
et quon décrive I'arc AM, qui sera la section d’une demi-calotte. Per

—_—
’ ! ‘i\/
les élémens , la surface de la calotte ==2#AP.AC ¢t AP= At\(l:, ;
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donc en substituant et réduisant, cette surface =4. Cn doit ici, comme
dans le probléme précédent, et par une raison semblable, retrancher de

Pénoncé du probleme la condition que les calottes touchent le plan
du méme coté.

3. Les applications pratiques étant propres a jeter de I'intérét sur
les questions de théorie , auxquelles on reproche quelquefois de n’étre
que des objets de curiosité, il ne sera peut-étre pas hors de propos
de recueillir ici , & Voccasion de la courbe du premier probleme,
quelques considérations utiles dans la construction des thermométres
métalliques en forme de montre , instrumens dont plusieurs artistes
se sont occupés dans ces derniers temps. ‘

Le mécanisme de cet instrument est porté sur une platine et
emboité comme un mouvement de montre. La figure 3 en représente
les parties principales. Q est un pied ou talon, fixé sur la platine,
auguel est attachée une lame d’acier QTUA , dont la forme et la
position sont assez semblables a celle de ces ressorts qui, depuis
quclques années , ont remplacé les timbres des montres & répétition.
ABCD est la piece destince d donner le mouvement thermométrique.
Elle est composée de deux lames fort minces de métaux differens,
comme acicr et cuivre , soudées I'une & l'autre par leurs faces, de
maniére a4 ne former qu’un seul et méme corps. Les deux lames
QTUA et ABCD sont réunies en A: i I'extrémité D de cette dernitre
est adaptée une troisi¢me lame fort mince abed, qui en forme, en
quelque sorte, le prolongement. Le systtme QTUABCDad¢d ne tient
a la platine que par le pied Q ; tout le reste est porté en Tair et
se trouve éloigné de la platine de la distance requise pour le passage
des roues RS et FG. p est le pignon du centre dans lequel engrene
la roue RS. L’axe de cette roue porte le bras ou levier L qui appuye
contre 'extrémité & de la lame abcd. FG est une roue auxiliaire,
engrenant de méme dans le pignon P: 4 la tige de cette roue est
adapté un ressort spiral s, dont ’effort tend A faire tourner de droite
3 gauche les rouages FG et RS. Cet effort maintient le bras L contre
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le bout & de la lame. L’axe du pignon porte une aiguille , du c6té
du cadran , c'est-3-dire , du coté de la platine opposé a celui que
représente la figure.

En vertu de la différence de dilatabilité entre le cuivre et lacier,
la lame ABCD se resserre ou s’ouvre , par les variations de tem-
pérature , de maniére qu'étant fixée par une de ses extrémités,
Pextrémité libre acquiert , par ces variations , un mouvement thermo-
métrique trés-sensible. On peut I'évaluer d environ 5 millimetres ,
dans les limites de la température atmosphérique , pour une lame
d’un demi-millimeétre d’épaisseur etde 10 & 12 centimeétres de longueur,
et dont la courbure est celle d’un cercle de 25 millimétres de rayon.

La lame ABCD étant suppesde avoir le cuivre en dehors et Vacier
en dedans, lascension de la tempdrature produira une contraction ,
le ressort & agira alors contre le bras L , et la roue RS tournera
de gauche a droite, ainsi que le pignon P, vu du cété du cadran.

On voit que l'arc AM (fig. 1) de longueur constante , mais de
courbare variable , peut représenter la lame thermométrique ; le point

A est Uextrémité fixe , et le point M I'extrémité mobile. Cette derniére
décrira donc une portion de la courbe n.° 1.

4. Voici maintenant les questions auxquelles on ‘est achemind en
cherchant 4 amener ce mécanisme i toute la régularité dont il est
susceptible. Il faut d’abord donner & la lame ABCD le plus grand
mouvement thermométrique possible. On y parvient en 'amincissant ,
mais il faut lui laisser la force suffisante pour résister aux secousses
auxquelles l'instrument peut étre exposé. La forme de la lame étant,
comme on le voit, celle d’une portion de cercle, il ne reste qu'a
en déterminer la longueur.

Sl sagissait d’'une lame droite, il est évident qu'une plus grande
longueur donnerait un plus grand mouvement thermométrique ;5 mais,
pour un arc de cercle, la question ne saurait étre décidée au simple
coup d’eil. Comme le mouvement thermométrique est fort petit,
relativement a la longucur de la lame, la portion de courbe décrite
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par U'extrémité mobile peut étre sensiblement regardée comme I'éiément
ds=1/dxig-dy* de cette courbe.

Or, par les équations (1), on trouve
a2 a- a
ds":-dz’S 2~ — —2Cos, = —2— Sin. _a_§ .
! 2 z3 Z z z
Il s'agit donc de déterminer la valeur de ¢ qui rend ds un mazimum,
en regardant z et dz comme constans.
On trouve le résultat simple

a
1=Cos. = ou a=2f» ,
z

en prenant le rayon z de la lame pour unité, et en dénotant par
% un nombre entier quelconque. Dans la pratique, on ne peut prendre

que k=1, ce qui donne g==2%. On peut méme et on doit, pour

faciliter la distribution des pidces du mdcanisme , réduire 2 & ~—

comme on le voit dans la figure. Ce qu'on perd sur le mouvement
ds, par cette rédaction , est peu de chose ; en effet , les valeurs

.. 3=
de ds , dans . les deux suppositions de a=2% et g= — , sont

entre elles
214w/ geidioadd » OU A& peu prés ::13:iz.

5. Aprés avoir ainsi fixé la longueur de la lame , il faut

déterminer la direction de ds & laquelle le bras L (fig. 3)

doit étre perpendiculaire. On trouve , pour la sous - tangente

au point D, la valeur -——(1—-}-—)5 >=-——5,7 ; ainsi , la direc—
10° avec le diamdtre AQ ,
qui répond & la ligne AD de la figure 1.*°, On voit par la pourquoi
il a fallu donner au ressort abcd une forme rentrante et a inflexion.

On vient de dire que le bras L. doit é&ire perpendiculaire & la
direction ds ; mais , ce bras étant mobile , il faut entendre que

tion cherchde fait un angle d’environ
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cette perpendicularité doit avoir licu au degré de température moyen ,
entre les limites des variations atmo<pheriques.

La détermination ci-dessus fournit d'abord un 4-peu-prés, pour
obtenir la situation requise; mais il couvient daveir un moyen d’y

mettre plus de précision. On peut y parvenir , par observation,
de la maniére suivante,

6. Soient ¢, ¢/, ¢/, trois hauteurs observées sur un thermométre
de comparaison, et m , m’, m" , les degrés correspondans, observés,
en méme temps , sur le cadran du thermomeltre metallique. On réduira
d’abord m, m’, m”, en degrés angulaires, en les multipliant par
360°

T
est divisée la circonférence du cadran.

, T étant le nombre de degrés thermométriques dans lesquels

Soient ensuite (fig. 2) C le centre autour duquel tourne le bras,
AD/ la direction ds sur laquelle se meut l'extremité de la lame ,
D, D/, D/ la position de cette extrémité au moment des obser—
vations , et par conséquent CdD, C&/'D’, Cd”D’ , les situations
correspondantes du bras.

Prenons la perpendiculaire CA pour unité , et faisons 'angle
ACD=uz. o

Le mouvement de la lame étant sensiblement proportionnel aux
variations de la température , on aura d’'abord

D'D:D"D:: ¢/—c:c’—c.

La marche de laiguille fera connaitre les angles &/Cd, 4/Cd. En
effet, le mouvement angulaire de I'aiguille est au mouvement angulaire
du bras, comme le nombre des dents de la roue est & celui des dents du
pignon. Dénotant dans ces nombres par r et p, on aura

6 36
dCi= 2 (m—m)L s @Ci==Z —m) L ;

angles que, pour abréger, nous appellerons n/ et 2.
Or,
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D’ D=AD’ —AD=Tang.(x+n’ )—Tang.z ;

b

(8%}
(&

D7D =AD/—~AD=Tang.(#~-n/)—Tang.z .

En substituant ces valeurs, la proportion ci-dessus donnera , pour
déterminer Tang.z, I'équation

(¢"—c){ Tang.(x+4-n/)—Tang.x | =(¢/—~c){ Tang.(x+n")—Tang.z}.

En développant Tang.(z~}-»/) et Tang.(x-4n"') , les deux membres
deviennent divisibles par 1-4Tang.’x, et 'on trouve

(M) Tang.n/=—(c'—c) Tang.n"

Tang.x=

(¢!'=—c"YTang.n/Tang.n/

Pour employer plus commodément les logarithmes au calcul de Tang.x,
on peut prendre un angle auxiliaire ¢, donné par I'équation

(¢/==c)Tang.n"

Tang.¢= -

¢/lemg ?

on aura ensulte

Tané.x= (c!'=c) Sin. (n/==¢)

(c!'w=c!) Sinn/Tang.n/'Cos.@ )

Soient maintenant M et CmM la position de la lame et du bras ,
3 la température adoptée comme oyenne , » cette température
exprimée en degrés du thermometre de comparaison, et soit fait
angle ACM=g; on aura, comme ci-dessus

DD :MD::¢/—c: y—c

s

: : Tang.(w-}-n/)—Tang.x : Tang.x—Tang.s ;
d’ot on tire
(y—0)Tang.(x4-n')—(y==c") Tang.x

C/a——c

Tang..=

. oye o ’
ou, en employant, comme ci-dessus, un angle auxiliaire v,
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—cYTane.,
Tang.#’:-——_w ¢) ang.x ,
Y—C

puis
(=) Sin.(x~f-n/==])

Tang.p= ;
(¢/==c)Cos.(x~4-n")Cos. ¥

L’angle ; ainsi déterminé , fera connaitre la quantité dont la
position de lextrémité & (fig. 3) doit étre avancée ou reculée. Cette
‘quantité sera BSin.x, en dénotant par B la longueur de la partie
utile du bras, c’est-d-dire , la distance entre le centre de la roue
et I'extrémité du ressort, mesurée i la tempéralure moyenne.

Si, comme on le verra plus loin, cette opération peut se faire,
Pinstrument étant monté, on observera la marche de laiguille qui

T
devra parcourir -3%; degrés de Péchelle du cadran.

En prenant pour ¢/ le degré le plus élevé et par ¢ le plus bas ,
de mani¢re que ¢, ¢/, ¢/ suivent Pordre de la température ascen=
dante, il faudra, si Tang.. est positive , accourcir le ressort abed
ou faire reculer I'aiguille. Ce serale contraire , si Tang.x est négative.

7. La maniére dont le mouvement de la lame se transmet au
rouage, a l'avantage d’occasioner le moins de frottement possible
et de donner beaucoup de facilité¢ pour régler le thermométre ,
ainsi qu’on va le voir ; mais elle a cependant un défaut qui frappe,
au premier coup d’ceil. En effet, les angles décrits par Vaiguille,
3 partir de la température moyenne , sont proportionnels , non aux
lignes AD, AD’, AD” (fig. 2) parcourus par I'extrémité mobile ,
comme il le faudrait, mais aux arcs dont ces lignes sont les tan-
gentes. Il en résulte donc une erreur qu’il faut évaluer; mais, avant
d’examiner cette question , il convient de faire ici deux observations,

1.* La marche de Vaiguille ( supposée d’ailleurs réguliére ) est
en proportion inverse de la longueur dénotée par B au n.° précédent,
Or, cette marche n’est pas arbitraire ; elle doit correspondre a la
division du cadran , qui est supposé donnée. Il faut donc , pour

obtepir
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“obtenir cette correspondance , pouvoir faire varier , & volonté ,
la distance B. Clest dans ce but qua été imaginé le ressert
subsidiaire abcd (fig. 3) , maintenu par la vis de pression ¢. Par
le jeu de cette vis , on peut ouvrir ou refermer le ressort abed :
mouvement qui approche ou éloigne Uextrémité & du centre de L, et
produit ainsi la variation demandéde.

2.° Cette correspondance obtenue , Iindication de Vaiguille peut
n’étre pas d’accord avec celle du thermoméetre de comparaison, de
méme qu'une montre bien réglée peut étre en avance ou en retard.
Pour établir I'accord , on ne peut point, comme dans une montre
quon met & I'heure, faire tourner l'aiguille sur la tige du centre ;
car ici le rouage n'offre point de résistance ; il faut donc enlever
Paiguille de dessus son axe , et I'y replacer dans la situation con-
venable. Cette opération , toute simple qu’elle parait , ne saurait
néanmoins s’effectuer avec une précision suffisante. Il est donc néces-
saire de pouvoir obtenir une plus grande approximation. Le moyen
suivant remplit cet objet.

La platine est emboitée de maniére que le poussoir P se trouve
vis-a-vis d’un point M de la lame extérieure QTUA, tel qu'en
exergant sur ce point une pression dirigée vers le centre p, il en
résulte a lextrémit¢ & un mouvement dans la direction ds; ce paint
se détermine facilement par l'expérience. Le poussoir étant traversé
par une vis V, dont le bout vient appuyer contre le point M, on
peut, par le jeu de cette vis, faire avancer ou reculer lextrémité
d, sans rien déranger au reste du mécanisme , et achever ainsi de
rendre I'indication dc {’aiguille concordante avec celle du thermométre
de comparaison. On doit observer ici que l'emploi de cetie vis V
doit étre mis & profit pour obtenir une derniére approximation ,
dans D'opération du n° 6, laquelle doit précéder celle dont on vient
de parler. A la vérité , ectte dernicre dérangera la position prescrite
par le n.° 6; mais tout ee qui en résultera , ¢’est que le bras L
qui devrait étre perpendiculaire & la directien ds, 4 la température
moyenne y , ne le sera véritablement quwa la température » 1 un

Jom. 1. (37
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ou deux degrés , ce qui ne présente aucun inconvénient sensible.

8. L’effet des vis » et V étant ainsi expliqué, on voit qu’il peut
dtre assimilé 4 deux constantes arbitraires au moyen desquelles on
peut faire en sorte que I'indication de Vinstrument soit exacte & la
température moyenne » et 4 une autre température y—=+n. On voit
aussi que l'accord étant obtenu dans ces deux cas, il aura égale-
ment licu A la température y—n2. En général , on peut ne s'occuper
que de ce qui se passe en supposant 7z positif , car les mémes cffets
seront produits , mais en sens contraire, » étant négatif.

Soient maintenant (fig. 4) MN la direction ds, CM, perpendicu-
laire & MN, la direction du bras & la température moyenne 5, CN
cette direction a la température »—}-n. Faisons CM=1 et Ang.MCN =g,
et prenons un autre angle indétermind MCX==x. Pour que l’accord
demandé edit licu lorsque le bras est en CX ; il faudrait que 'on et

MN:MX:: Ang.MCN: AngMCX ,

c’est-a-dire ,

: aTang.x
Ang.VICX— m ’

puis donc quon a réellement
Ang MCX=x ,
il s’ensuit que l'erreur est -

aTang.x

Tang.a '

Le maximum de cette erreur a lieu , lorsque Cos.*z=

ce
Tang.a
qui donne

— L _4_ s 26 s :
x—\/gﬂ—l—45\/3.a+1575\/3a +000'l

Lerreur elle-méme est alors



‘METALLIQUES. 39

9\/0 a+....,

série dont 1l suffit de conserver le premier terme.
Maintenant on doit prendre pour 2 la moitié de la distance entre

les températures cxtrémes de I’atmosphére. On peut donc faire z=25°

2725
. b
centigrades ; l'angle ¢ sera = T en conservant & T, r, p les

valeurs du n.° 6.
L’erreur au maximum , rapportée a I'aiguille ct exprimée en degrés
thermométriques , sera ainsi

8.25%.m%p>  79146p>
E T T

Soit donc ¢ la plus grande erreur qu'on veuille se permettre ; il

1 ) T 8
faudra avoir 79 <e ou ——r- =

Soit , par exemple = (::;°. Réaumur ) , on devra avoir
Tr
-;}562. Les valeurs de 7 et de p sont limitées par la nature de

Pinstrument. On ne pourrait guére faire r plus grand que 100,
Quant A p, il faut bien se garder de le prendre trop petit. On ne
peut nullement employer ici, comme dans les montres, des pignons
de 6 ou 7 ailes. En [aisant p=10, on aurait T=56 ; mais, comme
il y a une certaine ¢légance & avoir pour T une partie aliquote de
Vunité thermométrique , on pourrait encore prendre p=q , ce qui
permettrait de faire 7=5o.

9. Il ne faut point omettre de faire mention ici d’un défaut qui
parait inhérent & tous les instramens ou le corps thermométrique
est solide : defant qui tient & un fait physique sur lequel M. Laplace
a appelé lattention des observateurs ( Eaposit. du syst. du monde,
liv. I, chap. XII). Il s’agit de la résistance que les corps, en
changeant de température, opposent & leur changement de volume
et de figure : resistance qui parait étre due au frotement interne
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entre les molécules et a Délasticité de ces mémes molécules. Cet
effet est trés-apparent sur linstrument dont nous nous occupons.
Si on le met en action de maniére que l'aiguille ait un mouvement
sensible et qu'on lui fasse subir un léger choc, pour lequel il convient
d’employer un corps dur , on verra laiguille faire un saut, dans
le sens de sa marche, puis rester stationnaire pendant tout le temps
qu’il lui aurait fallu pour parcourir l'espace qu’elle a franchi. Et
ce qui prouye que cet effet ne provient pas, au moins en totalité,
du frottement externe, comme on pourrait d’abord le penser, c’est
la régularité qu'on y observe. L’espace dont il sagit parait étre
de > & ;° centigrade , pour la lame dont les dimensions sont données
au n.° 3. Ces limites scraient beaucoup plus écartées , si une cause
anssi variable que le frottement externe exercait la principale in-
fluence dans Veffet en question.

On peut ajouter que la méme résistance a lieu relativement au change-
ment de figure qui provient d’une autre cause que la variation de la tem=
pérature, par exemple, de la propre pesanteur du corps. En effet, si, en
maintenant le thermométre dans un plan vertical , on le fait tourner au-
tour de l'axe de I'aiguille , la température demeurant constante , la pesan-
teur des parties mobiles de l'instrument, particulitrement celle de la
lame, produira un changement de figure d’out naitra un mouvement dans
_ Yaiguille. Pendant ce mouvement, on pourra faire 'expérience dont
nous venons de parler, et on obtiendra le méme effet. Cette variation
dans lindication de laiguille , suivant la situation du thermométre
est, au reste , un défaut qu'on doit corriger , atin que linstrument
soit comparable & lui-méme dans toutes les positions. On y parvient
facilement, en adaptant sur l'axe de la roue RS (fig. 3) un petit
contre-poids , semblable au bras L. On observera la position dans
laquelle 'action dont il s’agit de corriger I'effet est & son maximum.
La direction du contre-poids devra alors étre horizontale , et dans
le sens ou laction de la pesanteur contrarie celle de la lame.

Le poids de cette petite correctrice se détermine facilement pan
Iexpérience,
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10. Il y aurait encore plusieurs préceptes de pratique a indiquer
ici, mais on se bornera au point lc plus essentiel. Comme la force
qui agit sur le mdcanisme est proportionnelle 3 la variation de la
température , et qu'un frottement , quelque petit qu'il soit, demande
une force finie pour étre surmonté, on veit qu’il y aura toujours,
dans la machine , une inexactitude d’autant plus grande que la résis-
tance 4 vaincre le sera elle-méme. On doit donc s’attacher , avec
un soin extréme 3 diminuer toutes les causes de frottement. Donner
au rouage la plus grande liberté , alléger les roues et laiguille,
réduire la grosscur des pivots, employer un ressort spiral trés-faible ;
éviter tout contact entre l'aiguille et le cadran ou la glace qui le
recouvre , tels sont les principaux moyens de parvenir a ce but.
On voit que la construction des thermométres métalliques exige
des considérations dont les résultats ne pourraient pas toujours étre
connus par l'expérience et le tdtonnement ; ce qui explique pour-
quoi des artistes, habiles d’ailleurs, n’ont obtenu, dans ce genre,
que des produits imparfaits quant 4 I'exactitude. Quelques essais
dirigés sur les principes qu’on vient de présenter ont été plus satis-
faisans ; ct on croit pouvoir assurer quavec un peu de soin , les
artistes obtiendraient une précision, sinon assez parfaite pour des
expériences trés-délicates , du moins suflisante dans bien de cas,
et pourraient ainsi offrir aux observateurs une nouvelle espéce de
thermométre que sa forme portative leur rendrait trés-commode en
voyage, et dans les excursions ol le transport des instrumens est
souvent un sujet d'embarras.
Paris , le 27 février 1813.
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GEOMETRIE DES COURBES.

Essai sur lexpression analitique des courbes , indepen=
damment de leur situalion sur un plan;

Par M. GERGONNE,

(o %a Y Vi Vo Vi VL Vo Via 7]

IL a été souvent remarqué que, si l'usage des coordonnées paral-~
léles & deux droites fixes, dans la théorie des courbes, réunit générale-
ment en sa faveur un trés-grand nombre d’avantages ; il est ncanmoins
certaines courbes , ou certaines recherches rclatives a toutes les courbes,
pour lesquelles d’autres systtmes de coordonnées semblent mériter
la préférence. On en voit un exemple remarquable & I'égard des
spirales qui, rapportées a des coordonnées polaires , ont , pour la
plupart , des ¢quations trés-simples et souvent méme algebriques.
Les lignes du second ordre en offrent un autre exemple; puisque,
rapportées aux mémes coordonnées , elles ont leur rayon vecteur
exprimé sous une forme rationnelle, et quen particulier I'cquation
du cercle prend alors la forme trés-simple r=Const. qui met en
évidence sa propriété fondamentale.

Jinclinerais assez A penser, d’aprds ces réflexions , que , dans
les livres destinés & I'enseiguement, il conviendrait, peut-étre, d’in-
sister un peu plus sur ce sujet qu'on ne le fait communément. Je
sens fort bien qu'on ne saurait exiger des auteurs de tels ouvrages
quils traitassent , en détail , de toutes les transformations de coor=
données , dont le nombre est illimité, et dont la plupart n’cffriraient
d'ailleurs qu’'une complication qui ne secrait rachetée par ancun
avantage, Mais il faudrait du moins que 'on mit bien ceux qui
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étudient sur la voie des recherches de cette nature , qu'on leur
montrat bien que, toutes les fois qu'on élimine & et y, entre trois
équations telles que

Flz,y)=o0,
¢>:x,y=l‘,u)=0 ’
Ya,y,t,u)=o0,

on fait une véritable transformation de coordonnées , quelle que
soit d’ailleurs la forme des fonctions ¢ et ¥, et qu'on les exergit
assez sur cette matiere pour les mettre en dlat de découvrir la
transformation analitique qui répond 4 une iransformation géomé-
trique donnée , et gice versd , du moins lorsque ces transfor-
mations ne sont pas trés - compliquées (*). En particulier , on
pourrait , relativement aux lignes du second ordre , demander de
rapporter ces courbes , soit & deux points fixes, soit & un point et
a une droite fixes , tels que, # et z représentant les deux coordonnées ,
Téquation prit la forme z+tu=Const., ou cette autre z=w. Celte
maniére de chercher les foyers me semblerait, i la fois , plus naturelle
et plus analitique qu’aucun des procédés employés jusqu’ici & leur
détermination ; et clle pourrait, en outre, conduire 4 la découverte
de quelques points remarquables, dans les courbes des degrés su-
péricurs.

Mais , soit qu’on rapporte une courbe & deux droites, ou 4 une

(*) Ce serait une question assez intéressante , mais qui ne parait pas facile 2
traiter générvalement, que celle de savoir quelle devrait étre la forme de deus
fonctions @ et ¢, pour qu'en éliminant x et y entre I'équation donnée

¥, y)=o ,
et les deux équations
Px,y,t,u)=0 , (e, y,t, u)=0,
Péquation résultante fit une équation donnée

ot , u)=o.



4 EQUATIONS ABSOLUES

dro'te et 4 un’ poiat , ou 4 deux points , ou enfin & tout autre
systeme de données invariables ; toujours la forme de son équation
dépendra de sa situation par rapport a4 ces donndes ; toujours cette
équation renfermera des arbitraires, exprimées ou sous -entendues ;
en un mot, elle n'exprimera point , si je puis m’exprimer ainsi,
la nature Znirinséque de la courbe, indépendamment de sa situation,
et de toutes dounnédes extéricurcs et immobiles.

Cette observation , faite depuis long-temps, a conduit divers géo-
metres & rechercher quel serait le systtme de coordonnédes le plus
propre a rendre lexpression analitique d’une courbe indépendante
de tout terme de comparaison , de toute convention étrangtre 3 la
nature de cette courbe. M. Lacroix a proposé l’équation entre le
rayon de courbure et I'arc correspondant, compté depuis un certain
point de la courbe (*): et ce moyen serait, en cffet, trés-propre
2 rendre I’équation d’une courbe indépendante de sa situation dans
L’espace ; mais M. Lacroix remarque lui-mémne que , dans ce sys-
téme , le point de départ des arcs serait nécessairement arbitraire. A
la vérité, on pourrait choisir celui pour lequel le rayon de courbure
est le plus petit ; mais, outre qu’il est un grand nombre de courbes
dont la courbure est la méme en divers points , P'usage d’un tel
systtme de coordonnées , supposant la courbe deji tracée , en son
entier , ne pourrait conséquemment servir a sa description. On peut
remarquer encore que , dans ce systéme , les courbes rectifiables
exceptées , les équations de toutes les autres courbes seraient inéyi-
tablement différentielles.

M. Carnot qui, dans un ouvrage trés-remarquable , a préséiﬁé
sur la transformation des coordonnées, des reflexions du plus grand
intérét (*), a proposé, pour exprimer analitiquement la pature d’une
courbe , le moyen que voici 8!, par I'un quelconque des points

") Voyez son Traité de ealcul différentiel et de calcul intégral , tome I,
page 418 de la premiére édition, et page 484 de la seconde,
(") Géométrie de position , page 473,

d’une
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d’une courbe, on lui méne une tangente , et qu'aprés avoir mené
3 la courbe une corde quelconque, paralltle a cette tangente, on
joigne le point de contact au milieu de cette corde par une droite,
cette droite fera avec la tangente un angle dont la grandeur varicra,
généralement parlant , avec la situation de la corde. Si 'on congoit
que cette corde, toujours paralléele a la tangente , s'en rapproche
sans cesse , I'angle dont il s’agit tendra continuellement vers une
certaine limite qu’il atteindra enfin, lorsque la corde et la tangente
coincideront ; c’est la relation entre cet angle limite et le rayon de
courbure que M. Carnot propose d’employer pour caractériser les
courbes ; et l'on doit convenir , en effet, que cette relation gst bien
indépendante de toutes données fixes , de toute supposition arbi-
traire et conséquemment trés — propre , & beaucoup d’égards, a faire
bien connaitre la nature des courbes. On voit en particulier que,
toutes choses égales d’ailleurs, plus l'angle sera aigu et plus aussi
la courbure de la courbe devra varier rapidement d’un pbint a l'autre;
tandis qu’au contraire plus il approchera d’étre droit et plus Ia courbe
tendra .a prendre une courbure uniforme, comme cclle du cercle.

Il parait que M. Carnot a eu principalement en vue, dans le
choix de ces deux coordonnées , la simplicité de Péquation trans—
formée ; et , en effet, l'application qu’il fait de sa méthode a la
parabole le conduit & une équation 4 peu prés aussi simple que
I’équation ordinaire de cette courbe ; mais , outre qu’il peut paraitre
peu naturel de faire entrer cn conside’ration, dans I’expressiop d’une
courbe , une droite qui passe par deux points qui se confondent,
et dont l'un appartient & une corde évanouissante, et conséquemment
insaisissable pour les sens; on ne voit pas trop comment on pourrait
d('éduire de cette expression une construction graphique approchée
de la courbe i laquelle elle est relative : objet qui, comme je Iai
déja dit, me parait ne devoir pas étre négligé dans cette recherche.

Dans un mémoire présenté i linstitut en 1803 (*), M. Ampere,

(*) Voyez le Journal de Pécole polytechnique, Xiv cahier, page 159,
Tom, 1, 7
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qui s'est aussi occupé de la méme question , a proposé , pour la
résoudre , l'usage des Paraboles osculatrices ; c’est-a-dire, que,
pour un point pris arbitrairement sur une courbe donnée , il cherche
quelle devrait étre la parabole qui aurait avec cette courbe, en ce.
point , un contact du troisitme ordre, et qu’il prend, pour équation
de la courbe proposée , I'équation entre les coordonnées ordinaires de
cette parabole. On ne peut disconvenir que, déterminé i exprimer
toutes les courbes par leur relation avec une méme courbe, choisie
arbitrairement, M. Ampére ne pouvait faire un choix préférable &
celui de la parabole ; mais, enfin, ce choix a toujours quelque chose
d’arbitraire ; il exige, en outre , la considération de deux courbes
au lieu d’une seule ; et la méthode qui en résulte, moins simple

que celle de M. Carnot, ne parait pas, plus qu'elle,, propre & fournir
une construction,

Il y a fort long-temps que j'ai congu l'idée d’un mode d’expression
absolue des courbes qui , d’une premitre vue , m’a semblé devoir
of;frir Aquelques,avantages sur tous ceux que je viens de rappeler;
mais diverses distractions m’avaient toujours détourné jusqu’ici de le
soumettre & DUépreuve du calcul, et & présent méme je ne puis
qu’en ‘dq-nner une simple esquisse. C’est, au surplus, tout ce quon
_peat raisonnablement désirer de rencontrer dans un recueil du genre

de celm-cn, destme Plutot mettre sur la voie, des méthodes qua
en offur de 1orrgs devdoppemens. :

Une courbe étant donnée , et un point étant pris arbitrairement
sur son périmétre ; elle a nécessairement, en ce point, un certain
rayon de courhure R, dont la grandeur et la direction sont déter—
mindes, tant par la nature de la courbe que par ]a situation , sur
son perlmétre , du point particulier que l’on considére. - L'extrémité
de ce rayon R est un point de la devcloppee , lié essenncllcment
" au point pris sur la ‘courbe » et variant avec lui. Or, comme, lors-
qu'une courbe est donnée , sa développée est aussi_ donnée , non
'seulement despéce , mais encore de situation par rapport a elle;
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il s'ensuit que le rayon de courbure de cette développée, en chacun
de ses points , doit aussi étre donné de grandeur et de situation. Done,
en particalier , le rayon de courbure R/ de la développée , qui
répond a Plextrémité du rayon de courbure R de la courbe primi-
tive , et qui est perpendiculaire & ce dernier , doit étre lié avee
lui par une relation qui , étant indépendante de tout objet fixe
étranger & la courbe que l'on considére , ct par conséquent a la
situation de cette courbe dans lespace , ne doit renfermer, outre
les deux rayons B, R’ , que les élémens nécessaires a la déter—
mination absolue de cette méme courbe.

C’est I’équation de relation entre ces deux rayons R, R’/ que jai
d’abord cu en vue de substituer & ’équation ordinaire des courbes ;
et l'on voit, en effet quen méme temps qu’elle est trés-propre a
les caractériser, clle ne renferme rien d’arbitraire, rien qui ne soit
absolument inhérent 4 la nature intime de ces courbes. Il est méme
ais¢ de prevoir que telle courbe dont Péquation ordinaire sera com~
pliquée et méme transcendante , pourra souvent, dans ce sysiéme,
étre exprimée par une équation algébrique trés-simple. On en voit
des exemples remarquables pour la Cycloide et la Développante du
cercle , dont les équations deviennent alors respectivement A*—-R/
=16a* et [i/=a, a étant, pour I'une et l'autre, le rayon du cercle
générateur.

Le seul embarras que j’éprouvais , dans I'adoption de ce syétéme,’
dtait de savoir comment je deduirais de I'équation d’une conrbe une
construction approchée , telle que celles quon déduit des équations
différentielles entre des coordonnées paralléles & deux droites fixes.
Je songeai done & substituer aux rayons H , I/ d’autres variables
plus propres a remplir ce but , que je ne perdais jamais de vue ,
et j'en trouvai, en effet, de telles; mais, je ne tardai pas d’aper=
cevoir que ce que je considérais comme deux modes distincts d’exprimer
les courbes , n’en faisaient au fond qu’un seul, et pouvaient facile-
ment étre déduits 'un de Vautre. La considération du dernier m’a
méme permis de simplifier considérablement les procédés relatifs 3
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la recherche du premier , ainsi qu’on va le voir tout-4& - 1'heure,

Soit MN (fig. 5) une droite prise arbitraircment pour 'un des
rayons de courbure d’une courbe connue, M étant un point de la
courbe. On sait qu'un tres-petit arc de la courbe se confend sen-
siblement avec 'arc de cercle MM/, décrit du point N comme cenire,
et avec NM pour rayon; en prenant donc cet arc MM/ pour larc
de courbe, sil'on connaissait, en général , pour un rayon de cour-
bure donné MN , quel est I'accroissement de ce rayon qui répond
au petit angle MNM/, dont varie sa direction ; en portant cet accrois—
sement sur le prolongement de M/N, de N en N/, la droite M/N/
pourrait sensiblement étre considérée comme un nouvean rayon de
courbure , répondant au point M/ de la courbe , et le point N/
comme le point correspondant de sa dévcloppée ; opérant donc sur
M/N’/ de la méme maniére qu'on l'aurait fait sur MN , on déter-
minerait un troisitme rayon de courbure M”N/ et conséquemment
un troisitme point N de la développée ; on parviendrait donc,

>
en poursuivant continuellement de la méme maniére , & tracer la

courbe proposée , & peu prés comme on trace les anses de paniers,
et 'on obtiendrait , en méme temps, sa développée , qui scrait donnée
par les intersections .consécutives de ses rayons de courbure. Tout
se réduit donc & aveir une déquation de relation entre le rayon de
courbure , son accroissement et l’angle qu’il décrit pour acquérir
cet accroisscment. Or , cette équation , lorsque du moins on considére
le rapport de Dangle a l'accroissement du rayon de courbure dans
sa limite , est trés-facile 4 obtenir , comme nous lallons voir dans
un instant; et elle est en méme temps trés-propre a caractériser la
courbe A laquelle elle est relative.

Présentement , tout étant supposé d’ailleurs dans la figure 6 comme
dans la figure 5, soient menées NP, N/P/, respectivement perpen-
diculaires & MN, M/N’ ; NP sera sensiblement le rayon de courbure
de la développée , pour le point N, et P son centre de courbure
pour le méme point, Soient faits , comme ci-dessus, MN=ZR,
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NP=PR’; on aura NN/=AR. Soit en outre désigné par ¢ l'angle
que forme MN avec une droite fixe quelconque, I'axe des z, par
exemple ; on aura AngNPN/'=Ang MNM/=A¢; et, en vertu du
triangle NPN/, rectangle en N/, on trouvera NN/=NPCus. I NN’
=NPS/2NPN/; cest-d-dire , AR=R'Sin.A¢, ou encore

, AR
T Sinag”

Cette équation n’est qu'approcheée ; mass, & la limite, elle devient
rigoureuse , et l'on obtient alors exactement

R=S2. (A

Si donc on a une équation entre B ct R/ ; au moyen de la

. . . dR .
précédente, on en déduira facilement une équation entre R et FrRd
¢

. . dR .
et réciproquement , d’'une équation entre A et 0 on déduira, par

le méme intermdédiaire, une équation entre R et B/; c’est méme
ce dernier parti que nous prendrons , comme élant le plus facile.

Nous avons donc ici deux questions & résoudre ; car d’abord on
peut avoir I'équation d'une courbe , rapportée a des coordonnées soit
rectangulaires , soit obliques, soit polaires, et on peut demander d’en:

. . . dR . .
déduire son équation , soit en R et—(ﬁ, soit en R et R’/; ou bien

. . . . dR .
on peut avoir, au contraire, son équatlon soit en R et— , soif
2 > d(’ b

en R et I/, et demander d’en déduire son équation en coordonnées
soit rectangulaires , soit obliques , soit polaires; la solution de cette
dernitre équation , qui dépend évidemment de la premitre dont elle
est I'inverse , ne conduit, généralement parlant, qu’a une équation diffé-
rentielle qu’on ne saurait toujours intégrer sous forme finie et algé-
brique ; et les constantes de son intégrale , lorsque cette intégrale
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est possible , servent a hixer la situation des axes. La premiére question
ne présente pas les mémes difficultés.

De quelque systéme de coordonnées que on parte , il est clair

. . dR .
que, pour une méme courbe , I'équation , soit en R et TR soit en

R ct I/ doit demeurer constamment la méme. Mais , si la nature
des coordonnées primitives n’exerce aucune influence sar le résultat
definitif ; elle peut rendre le calcul plus ou moins pénible. Nous
supposerons , dans tout ce qui va suivre, que les coordonnees sont
rectangulaires, d’autant que la question peut toujours étre amende
4 ce cas; x sera la variable indépendanie, et mous poserons, sui-
vant l'usage
dy dp dg

dx =P E—:q’ do =

En conséquence, nous mettrons ’équation (A) sous la forme

do _ dR

R/ T -(:c- . (B)

Cela posé, lexpression du rayon de courbure est

=000 g
q
d’odx
_d_Ii _Bpgr—r(i4pr)

dx 9* Vi s

d’un autre c6té, en appelant ¢, comme nous en sommes convenus,

Yangle que fait la normale ou le rayon de courbure avec laxe
des z, on a

d¢
¢=—Arc. (Tang.: z ) , dot — = . ;
4 dx 1~-p>

substituant donc dans léquation (B}, elle deviendra
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R, 2 4y

T 14p2 g2 Vit
ou
B/ = 3pqr—r~+p? . (14-p*)2 )
q° q
ou enfin

3pg2eamp 2)
R=XCTCH) b
qz

(D)

Soit donc
x,y)=o0 , M

équation en coordonnédes rectangulaires d’une courbe quelconque,

Par trois différentiations consécatives , on en tirera les trois nouvelles
équations '

o(x,y,p)=o , (11)
oz, y,pyq)=o0 , (Hr)
¢///<x7y:/0:7’r)=07 (IV)

auxquelles on joindra encore les deux équations (C) et (D) qu'on
pourra écrire ainsi

qzﬂz=<[+pz)3 s (V)
g = [B3pg—r(1+p*)]R ; (VD)

et, en éliminant entre ‘elles les cinq quantités #, y,p, ¢, 7, on
obtiendra , pour résultat final, I'équation cherchée , en 72 et et R/,

. . dR | . :
dans laquelle on pourra ensuite substituer - @ R/, si on le juge

convenable.
Si, au contraire, I'dquation proposée était
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fp, am)_ —o
WA, d9§—¢(R,B)__o,

en y joignant les équations (V) et (VI), pour en éliminer R et
A/ , I’équation résultante’, en x, ¥ , p, g, r, scrait I'équation
differentielle du troisiéme ordre de la courbe en coordonnées rectan-
gulaires ; équation qu’il faudrait ensuite intégrer , soit exactement
soit par approXimation.

Pour pfemier exemple , proposons-nous de trouver Yéquation de

Pellipse en R et B/, 2a et 25 étant les deux axes ; les équations
du probléme seront

bxr ety =ab* (1)
batapy=o , (2)

b ef-a*(p*~gy)=o0 , 3
Spg-try=o , (4)
FR=0+4p") , ()
g*R'=[3py—r(1-+p*)] A. (©)

L’dlimination de 7 , entre les équations (4) et (6) donnera d’ahord
gy B =3p[1+(p*~gn) ] R ; V)

I'édlimination de ¢ , entre les équations (3) , (5) et (7) donnera
ensuite

(ap*4-5")B'+-3p(a*>—b") R=0 , (8)
(@p*+b* P Rr—a'y*(14p*)’ =0 ; ()

dliminant encore p entre ces dernitres et équation (2), on aura,
en ayant égard & I'équation (1), et en transposant et quarrant dans

Véquation (8)

ﬂ:



DES COURBES. 53
0’563/2—_-9(0’ z\z/bz__y )y--ﬂ’ ((0)
a*b*R 2=§<az__5=>'y3+54§3 ; (r 1)
la derniére donne

2

2 .2 b ————
C—VFTE) , Poy=t =Ly 7T,

3 —
‘y - -CI—.bZ

Substituant ces valeurs dans l'équation (10) , on obtiendra enfin
Péquation demandée , laquelle pourra étre mise sous la forme suivante.

()P TP e ®

Cette équation met parfaitement en évidence la propriété dont
jouissent les rayons de courbure de Vellipse , d’étre constamment

compris entre les deux limites E}; et lia:- , et montre en outre que,
lorsqu’ils atteignent 1’une ou l'autre de ces limites, le rayon de cour-
bure de 1a développée devient nul. Cette équation peut sembler un
p:u compliquée ; mais jobserverai que celle & laquelle parvient
M. Ampere , ne l'est pas moins (*). Si 'on y change b enby/ =1, on
la rendra propre a 'hyperbole dont le premier et le second axes sont
respectivement 22 et 25 ; elle deviendra ainsi

oH > VRN
(3Ii>+l[_V(bz) {I+V(a_) §_° -
et l'on voit ici que le rayon de courbure, qui n’a point de limite

. . b* . .
en grandeur, ne saurait étre moindre que —,ct que, lorsqu’il atteint
- a

cette limite, le rayon de courbure de la développée devient nukl
Si, pour l'une et Pautre courbes, on désigne le paraméire par
p » leurs équations pourront étre comprises dans la formule unique,

(P @l =

e

(*) Voyez au bas de la page 170 du volume déja cité,

Iom. 1V, 8
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le signe supérieur répondant a Iellipse et linférieur & I'hyperbole.
Si l'on veut passer de la & la parabole, il suffira de supposer que
@ est infini, ce qui donnera, pour I'équation de cette courbe ,

R’ \2 3 M.zﬁ
(“gﬁ‘)—ng—VC..);:o. ®)
P
~ 8i, dans les équations (E) et (H), on fait 2=a, elles deviendront
respectivement propres au cercle et & I'hyperbole équilatérale ; il

viendra ainsi :
’ n )z RN 2
e e L Ly §'=o
30 p ?
B/ \2 R 3 " ’
(§E>+§1_7V _a_§=o ;

et I'on voit que la premiére revient a ces deux-ci

R=a , R'=o0 ,
ainsi que cela doit étre

. dR
En mettant , dans toutes ces équations , pour R’ sa valeur TR
et tirant ensuite de I'équation résultante la valeur de dR, en fonction

de R et de, on aura des formules qui pourront servir commodément
4 tracer les lignes du second ordre , 4 la maniére des anses de paniers
le tracé approchera d’autant plus d’étre exact qu'on fera croitre angle ¢
par des degrés plus petits.

Pour second exemple, proposons-nous de déterminer I’équation;
en coordonnées rectangulaires, de la courbe qui a constamment son
rayon de courbure égal a4 celui de sa développée ; les équations du
probléme seront

R'=R ,
gR =(+4p?)
g B'=[3pg*—r(14p")]R ;
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d’'olt, par I’édlimination de R et R/, on conclura sur-le-champ
3pgr=—r(i4-p?) _
—_—qz“— =1

en mettant successivement cette derniére équation sous les deux formes

g-2pg—r4r?) _ —p qlg4p?)4p.2pgl—p14p>)r

=1-p,
g? ’ g* P
on verra aisément que deux de ses intégrales premitres sont
14-p2 (14p?)
S =ryd, =y
d’ott, par I’élimination de ¢, on conclura l'intégrale seconde
x B . d x
= T +B , ou simplement L ;
x—y~-A de  x=—y

attendu que, par un changement d’origine , on peut toujours faire
disparaitre les deux constantes 4 et B. L’intégrale de cette derniére
équation est

C+-Arc, (Tang. = -i-; ):Log.\/m s

ou, en passant aux coordonnées polaires, et faisant commencer les
arcs avec les rayons vecteurs,

t=Log.s ;
équation de la spirale logarithmique , comme on pouvait bien s’y
attendre.
Je terminerai par observer qu’avec des modifications convenables,

il serait possible d’étendre aux surfaces courbes et aux courbes &
double courbure la théorie qui vient d’étre développée.
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CORRESPONDANCE.

Lettre de M. Du Bourcuer , professeur de mathématiques
spéciales au lycée impérial,

Au Rédacteur des Annales ;

En réponse & la lettre de M. Bret , insérée a la page 369
du 3.:° yolume de ce recueil.

[a 2a Vo i Tia o o Yl V]

MONSIEUR ET TRES-CHER CONFRERE ,

LA nouvelle difficulté quéléeve M. Bret , contre la démonstration
que j’ai donnée A la page 338 du 2.° volume des Annales, et qui
aest plus celle qu'il avait élevée & la page 33 du 3.° volume, et
a laquelle j’ai complétement répondu, a la page 94 du méme volume ,
s'applique généralement & tous les renversemens d’équations indéter-
mindes entre deux variables, et a par conséquent déja di étre ex-
pliquée (*). Mais , comme il m'est beaucoup plus aisé , dans ce
moment , pour répondre & M. Bret , de donner moi- méme une
explication de la difficulté en question , que de feuilleter , peut étre
inutilement , un grand nombre d’auteurs , je ferai remarquer & ce

(" En effet, si cette légére difficulté n’avait déja été expliquée , il s’ensuivrait,
par exemple , qu'on serait encore dans le doute sur l'identité des courbes respectives
des équations y=0x et x==¢’y , lorsque cette derniére équation est le renverse-
ment de la premiére.
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glométre que, si, en s’exprimant comme il le fait 2 la page 369
du 3.° volume, on représente par b une des couples de =, y,
non comprises dans celles g, «/#’, «/3/,.... de l'équation

a=¢(4,B,C,....¥) , (=)
ee couple ne satisfait pas i I’équation
AamBam = Ca™ - =y, (1)

dont celle (2) est le renversement; il s’ensuivra que, pour y=5,
dans léquatl’ 1), on devra avoir '

A(a+9)"+B(a+9™ *4-Clato)™ ... =5 ;

renversant cette dernitre équation , il est clair , d’aprés les éqbations
(1) et (2), qu’il viendra

aty=¢(d, B, C,...0) ;
mais , par hypothése ,
a=¢(4d,B, C,....0) ;

donc y=o, et, par conséquent, @b est aussi une couple de z, y,
dans V’équation (1) ; donc toutes les couples qui satisfont a l'équation
(2) satisfont aussi @ I'équation (1), Cela démontré, je pense que
M. Bret admettra cette conséquence , et peut-ttre alors cessera-t-il
de croire qu'il soit zrés-difficile de ramener la démonstration du
principe qui sert de fondement 4 la théorie des équations, a des
notions purement élémentaires.
Agréez , etc.
Paris , le 2 juin 1813.
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Lettre de M. BERARD, principal du collége de Briancon.
Au Rédacteur des Annales ;

En réponse a la lettre de M. BRrgT , insérée & la page 369
du 3.° volume de ce recueil.

[a Va Vi Vi o Vb V3 Vo Vg ¥

MONSIEUR ,

PERMETTEZ—-MOI, je vous prie , quelques observations trés-courtes
sur la lettre de M. Bret que vous avez insérée 4 la page 369 du 3.°
volume de votre intéressant recueil.

Le procédé de M. Bret et le mien, pour construire la parabole ;
renferment deux points distincts,

1.° Il sagit d’abord de déterminer deux tangentes MO, M/O;
paralléles aux axes des coordonnées , ainsi que les points M, M/
ol elles touchent la courbe. Pour cela M. Bret et moi employons
les mémes équations. Mais, tandis qu’il construit leurs intersections,
moi je les combine par élimination. Jusque-la le but est le méme ,
et la différence des moyens peu importante.

2.° Les deux tangentes étant trouvées , ainsi que leurs points de
contact M, M/ avec la courbe, il s’agit de construire cette courbe.
M. Bret remplit ce second objet en déterminant d'abord le sommet;
tandis qu’au contraire je commence par chercher le foyer F, en
menant les deux rayons vecteurs MF , M/F.

M. Bret remarque, avec raison , que , lorsque les coordonnées
sont rectangulaires, les droites MF , M/F , se confondant avec la
corde MM/, ne sont plus propres a déterminer le foyer , par leur
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intersection ; mais, dans ce cas particulier , la construction devient
beaucoup plus simple ; le foyer étant alors le pied de la perpen-
diculaire abaissée sur la corde MM/, du point O de concours des
deux tangentes,

Ainsi ma construction ne souffre pas plus d’exception que celle
de M. Bret; et elle se simplifie méme, dans le cas particulier ou
elle’ semblait étre en défaut. Je laisse , au surplus, au lecteur a
juger de cc que ces deux constructions peuvent avoir de commun;
et je crois devoir me borner i observer qu'ayant communiqué le
manuscrit de mon ouvrage a M. Bret, en aott 1808, il n'est pas

surprenant que depuis lors il ait oubli¢ les détails de ma cons-
truction.

Agréez , etc.

Briangon, le 18 de juin 1813.

QUESTIONS PROPOSEES.

Problémes de Geométrie.

1. A.U systtme de trois cercles ‘donnds , tels que chacun d’eux
touche les deux autres , circonscrire un triangle de maniére que
chacun de ses cotés touche en son milien I'un des cercles donnés?

II. A un triangle donné, inscrire le systtme de trois cercles tels
que chacun d’eux touche les deux autres et touche, en outre, en
son milieu, 'un des cotés du triangle ?

Probléme d Hydro-dynamique appliquée.

Une roue est composée de deux plateaux égaux , en forme de
couronnes circulaires , ayant leurs plans paralléles et leur axe commun.
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Ces plateaux sont unis l'un a l’autre par des ailes brisdes, unifor~
mément réparties sur leur contour , formant des angles diedres dont
les faces sont rectangulaires et perpendiculaires aux plans des deux
plateaux. Ces plateaux sont d’ailleurs solidement unis 3 l'axe de la
roue , par un nombre suffisant de pitces d’assemblage.

La figure 7 représente 'un des plateaux , vu en dedans, sur
lequel sont marquées ses intersections avec les ailes ; on a aussi
indiqué dans cette figure , les pitces qui unissent le plateau 4 Paxe
de la roue , et dont la forme et les dimensions peuvent d'ailleurs
étre varides d’un grand nombre de maniéres diverses.

On s'est assuré qu’une telle roue , entiérement plongée soit dans
I'eau ‘soit dans un courant d’air, de maniére que son axe soit fixe
et vertical , y prend un mouvement de rotation.

Cela posé ; on suppose donnés 1.° le rayon extérieur des pla-
teaux ; 2.° l'intervalle qui les sépare ; 3.° la vitesse du fluide ; et
lon demande . quels doivent étre le nombre, les dimensions et la
situation des ailes, pour que la roue produise, en tournant, le plus

grand effet possible ?
Théoréme de Geéomeéltrie.

M, M/ étant deux points quelconques d’une parabole , O le point
de concours des tangentes en ces points , et I le foyer , on propose
de démontrer que

Mo’ _ Mo’

MF  MF
d’oti il suit que, si F tombe sur MM/, le sommet de I'angle O, qui
devient droit, est placé sur la directrice , et la ligne OF est per—
pendiculaire sur la corde MM/,
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PHILOSOPHIE MATHEMATIQUE.

Nouveauaxe principes de geéometrie de position , et
interprétation géomelrique des symboles imaginaires,

Par M. J. F. Frangais , professeur a I'école impériale
de Yartillerie et du génie,

A% L VLV, VL V. V. V)

IL est si naturel de considérer , & la fois , en géométrie, la grandeur et la
positiondeslignes, que, dés qu'on a commencé & cultivercette science, on
a dt avoir besoin d’exprimer des rapports de grandeur et des rapports
de position , entre les différentes lignes composant une figure quelconque.
Jose dire qu'il est surprenant, d’aprés cela , que les premiers principes
de la Géométrie de position ne soient pas encore complétement
établis. Cette assertion, elle-méme , pourra, au premier abord, sembler
exagerée et paradoxale ; mais j’espére que sa vérité sera mise hors
de doute, par les détails qui vont suivre.

Notation 1.*%. Nous représenterons ici la grandeur absolue d’une
droite par une simple lettre, comme @, &, ¢ ,.e.c.2, ¥, 2,....;
et, pour indiquer , & la fois, la grandeur et la position d'une droite,
nous affecterons la lettre destinée & désigner sa valeur absolue d’un
indice exprimant l’angle que fait cette droite avec ume droite fixe
et indéfinie, prise arbitrairement, et qui pourra étre considérée comme
Paxe des abscisses positives. Ainsi, par exemple, a,, bg, ..., Zys Yy
représenteront des droites dont les grandeurs absolues sont 2, 4,...,
Xy % ,e-0., et qui font, respectivement avec 'axe des & positives,

Tom, IV , n.° Il , 1.°% septembre 1813, 9
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des angles «, #,...., £, v,.... Gette distinction est nécessaire ,
atin de ne pas confondre une idée composée avec une idée simple,
une grandeur donnée de position avec une grandeur absolue.

Définition 1.7°. Nous appellerons Rapport de grandeur le rapport
numérique entre les grandeurs de deux droites , et Rapport de position
Iinclinaison des deux droites 'une vers l'autre, ou l'angle qu’elles
font entre elles. Pour comparer entre elles deux droites données &
la fois de grandeur et de position , il faut considérer non seulement
le rapport que leurs grandeurs ont entre elles, mais encore comment
ces droites sont placées l'une relativement a l'autre ; c’est ce quex-
prime notre rapport de position,

Définition 2. Nous dirons que quatre droites sont en proportion
de grandeur et de position , lorsqu’entre les deux derniéres il y
aura méme rapport de grandeur et méme rapport de position qu’entre
Jes deux premieres. Ainsi il ne suffit pas, pour qu’il y ait proportion
de grandeur et de position entre quatre droites, que le rapport dit
géoméirique , entre le second antécédent et son conséquent, soit le
méme que celui qui existe entre le premier antécédent et son
conséquent ; il faut, en outre , que le rapport que nous avons appelé
rapport de position, soit aussi le méme.

Exemple. Ainsi, pour avoir la proportion de grandeur et de position
a,:bg::c, 1 dy,il faut qu'on ait, A la fois, -ba-: -:—z- et fema=)—y.

Corollaire 1.7, 11 suit de 1a que, dans une proportion de gran-
deur et de position , les grandeurs absolues des droites sont en
proportion géométrigue , tandis que les angles que font ces mémes
droites avec 'axe des abscisses positives sont en proportion arithmé-
tique.

Corollaire 2. 11 s’ensuit encore que, dans deux figures semblables ,
disposées d’'une maniére quelconque sur un méme plan, les cétés homo-
logues sont en proportion de grandeur et de position ; car les grandeurs
absolues de ces cOtés sont en proportion géométrique, et les angles
quiils forment deux a deux sont égaux.
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Remarque. 1)idée de proportionnalité , en géométrie , est fondée

sur la similitude des figures ; notre définition 2.° repose donc sur

un principe fondamental de la géométrie ordinaire , et nous ne faisons
qu’exprimer, d’'une maniére eaplicite , la double circonstance de la
proportionnalité des cétés homologues et de Végalitd des angles
compris entre ces cotés,

Définition 3. Lorsque , dans une proportion de’grandeur et de
position , le conséquent du premier rapport devient en méme temps

Vantécédent du second , la proportion de grandeur et de position

est dite continue ; et une suite de termes , dont trois consécutifs

quelconques forment une proportion continue de grandeur et de
position , est une progression de grandeur et de position. Ainsi,
une suite de droites en progression géométrique ordinaire ne forme une

progression de grandeur ct de position que lorsque les angles que
les droites consécutives font entre elles sont égaux.

Exemple 1.°". Pour avoir la proportion continue de grandeur et

de position @, :8g::08: ¢, , il faut qu'on ait, i la fois, —i—: —Z— et
p—a=y—_8.

Corollaire 1.*. Donc, pour qu'une droite &5 soit moyenne pro-=
portionnelle de grandeur et de position entre 2 et ¢,,, il faut quon
ait g=7;(a+vy); en sorte que Jp partage en deux parties égales
JYangle formé par les droites @,, ¢

Y
Exemple =. Pour avoir la progression de grandeur et de posi-

. . . , N R ¢
tion -:a“:bp:cy...l}‘:m‘“,ll faut qu'on ait, & la fois, - ...

= et p—a—y—B= ..., = p—2Ae

Corollaire 2. Donc , dans une progression de grandeur et de
position , les grandeurs absolues des droits sont en progression
géométrique , tandis que les angles qu'clles font avec laxe des
abscisses positives croissent en progression arithmétique.

Nozation 2. Nous pouvons maintenant séparer, dans Ja notation,
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ce qui est relatif & la grandeur absolue d’une droite de ce qui
est relatif 3 sa position. D’abord on a, par la premitre notation
dy=a, 1,=1; et ensuite on a, par la définition 2.°, 1:1,::a: @,
d’ou l'on tire @,—a.1,. Ainsi, nous pourrons représenter , de gran-
deur et de position, la droite @, par a.i,, ol @ est la grandeur
absolue, et 1, le signe de position.

Définition 4. Nous appellerons Droites positives celles qui, étant
paralleles & Taxe des abscisses, sont dirigées de gauche a droite ,
et Droites négatives celles qui, étant paralléles & 'axe des abscisses ,
sont dirigées de droite & gauche. Nous appellerons , de méme , Angles
positifs ceux qui sont compiés depuis l'axe des abscisses positives,
en montant , et Angles négatifs ceux qui sont comptés depuis le
méme axe , en descendant. Cest Ja la définition ordinaire des quan-
tités positives et des quantités négatives en géomdtrie; mais , il s’en
faut de beaucoup qu’on en ait tiré toutes les conséquences qu’elle
est susceptible d’offrir. En combinant cette définition .avec les pré-
cédentes , nous allons en déduire une maniére simple , uniforme et
féconde de représenter les lignes de grandeur et de position.

Corollaire. 1.°*. 1l suit de cctte définition et de nos notations
quon a =1=1,, et —1=1_, _, et par conséquent +z=aX(+41)
=a,, et —a=aX(—1)=0.1 4 ..

Corollaire 2. On sait , d’un autre cété , que -1 =eoea\/:; y
et ~—1I :eiﬂ\f:; on a donc aussi -+a=a><(+x)=a.e°w-‘
:twv—.——x.

>

et —a=aX(=1)=a.c
Remarque. 11 est yrai qu'on a plus généralement , -{-1~=e=t2””\/"I

et —1 == (ant-1)ay=1 ,  étant un nombre entier quelconque ; mais,
dans le géométri'e de position , on n’a besoin‘que d’'un seal tour
de circonférence, pour dcterminer la position d’une droite, ce qui
suppose =0 , et réduit ainsi les expressions de -1 ct de —1 A
celles du corollaire précédent.
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Théoréme 1.t*. Les quantités imaginaires , de la forme Fay/ =7
représentent, en géométrie de position , des perpendiculaires & l'axe
des abscisses ; et réciproquement les perpendiculaires & l'axe des
abscisses sont des imaginaires de la méme forme.
Démonstration. La quantité +ay/ 1 est une moyenne propor-
tionnelle , de grandeur et de position, entre —+a et —gz, cest—
a-dire, entre ay €t donc , d’aprés le corollaire r.cr de 1la

définition 3.°, la valeur de cette moyenne proportionnelle , de gran-
deur et de position, est @ = ; cest-a-dire , qu'elle est perpendi-

culaire & I'axe des abscisses, et dirigée soit en dessus soit en dessous
de cet axe ; et l'on a +a\/—1=a+g_r, et —ay/ —1=a_ =. Réci-
2 z

proquement , toute perpendiculaire A I’axe des abscisses est représentée,
d’aprés nos notations, par @ = :elle est, par conséquent, d’aprés
=

le corollaire 1.2 de la définition 3, une moyenne proportionnelle entre
a, et a_ ., ou enire ~+a et —a: elle est donc une quantité ima=,

ginaire de la forme —+ay/ .

Corollaire 1.°. 1l suit de 1 que /=7 est un signe de position
qui est identique avec 1 =,
2

ve——
Corollaire 2. De plus, puisqu’on a -—1=xiw=é'—”v-',on
. —_— o el pr
a aussi /=1 m=eT VT
15‘1

Corollaire 3. Les quantités dites zmaginaires sont donc tout aussi
réelles que les quantités positives et les quantités négatives , et n’en
different que par leur position qui est perpendiculaire 4 celle de
ces derniéres.

Remargue générale. Cette théorie des signes de position est une con-
séquence nécessaire el irrécusable des premiers principes. Elle est plus
conforme aux régles d’une saine logique que la théorie ordinaire ot
I'on admet, un peu gratuitement ou du moins sans nécessité , deux
especes différentes de quantités positives , et autant d’especes de
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quantitds négatives ( les abscisses et les ordonndes ); car, d&s qu'on
admet la définition 4.° des quantités positives et des quantités négatives,
il n’est plus permis d’en introduire d’autres qui ne soient pas comprises
dans cette définition; et l'on est obligé forcément d’admettre toutes
les conséquences que cette méme définition entraine. Ces conséquences
heurtent , & la vérité, les idées regues ; mais c’est que ces idées sont
fondées sur un défaut de dialectique , qui consiste & admettre deux

principes , et deux principes incompatibles , l4 ot un seul serait
suffisant.

Théoréme 2. Le signe de position 1, a pour valeur N ; Ceste
a-dire , que 1¢=e“\/:;

Démonstration. Supposons que la demi-circonférence décrite d’un
rayon =1 soit divisée , dans le sens des angles positifs , en m parties
égales , et qu'on mene des rayons aux points de division ; ces rayons
formeront, d’aprés la définition 3.°, une progression de grandeur
et de position : or, les denx termes extrémes de cette progression

dtant r,=w1 et Ip=—1=¢"V *

, les termes intermédiaires

= XN
aV—1 2\—I
Yoy 127, 137, 4400 I(m-1)z auront pour valeurs e ,em

 J
Tie m m m

Loy —

iz (GETPL N mry na =7
em 3eeel m ; de sorte qu’en général on aura 1ra= V=1 ;
: m

n=z= »
et , comme oy peut representer un ang!e quelconque , on aura finale=
\f—1
ment 1 =t \/ .

Corollaire 1.°* Si I'on prend les logarithmes naturels des deux

membres de I’équation I,L=e”\/—I , on aura «y/—1=Log.(1,): ce
qui fait voir qu’en géométrie de position les arcs de cercle sont les
logarithmes des rayons correspondans. Ces arcs de cercle sont, comme
on le voit, affectés du signe de position /=7, ce qui parait trés—

naturel , puisque leur direction est dans un sens perpendiculaire a
Vaxe des abscisses.
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Observation. Le corollaire précédent contient le germe d’une
théorie trés-simple et trés-lumineuse des logarithmes naturels, et
de leurs rapports avec la circonférence du cercle. Il explique ex-

pression énigmatique » les arcs de cercle imaginaires sont des
logarithmes «; il donne enfin un sens raisonnable et intelligible &

. . ;. a D — m—
I'équation symbolique et mystéricuse e v/ —1=Log.(yy ).
Corollaire 2. Puisque , d’aprés la notation 2.°, on a o,=a.1,;
il suit du théoréme précédent qu'on a aussi a,:a.e“\/_l.

Corollaire 3. Comme on a e“\/—‘=Cos.¢+Sin.¢.\/:, il s'en—
suit que @, =aCos.«~+aSin.«y/ =1 c'est-ia-dire que , pour exprimer
une droite de grandeur et de position , il faut prendre la somme de ses
projeciions sur deux axes de coordonnées rectangulaires : bien entendu
qu'on prendra chaque projection avec son signe de position.

Corollaire 4. 11 suit de la qu’a une droite quelconque , donnée de
grandeur et de position , on peut substituer tant d’autres droites
qu'on voudra , pourvu que la somme de toutes les projections de
ces derniéres soit égale 2 la somme des projections de la droite
donnée ; c’est-a~dire , qu'ad une droite x, on peut substituer les

droites @, , &g, €5 ,...s7m, , pourvu qu'on ait , entre ces quantités,
la relation '

x.e‘g\/"‘=a.e“\/“l+b.e'e\/—l+c.e°'\/_'+....-l-m.e”V—l; (A)
ou, & cause de l'indépendance du signe /=7,
2Cos.t=aCos.ub5Cos.8-4¢Cos.4=o o oo . FmCos.p ;
| (®)
#Sin.z = aSin. « }-4Sin.g4-cSiny 4o v o o FmSin.ge
On voit que toutes ces droites a,, dg, €, ,.... peuvent étre prises
arbitrairement , A l’exception d’une seule, dont la grandeur et la
position doivent étre déterminées par 1’équation (A) ou par ses
équivalentes (B).
Réciproquement, on peut substituer 4 tant de droites, données
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de grandeur et de direction , qu’on voudra une droite unique , poutvu
que les projections de cette derni¢re , sur deux axes rectangulaires,
soient respectivement égales aux sommes de projections des premitres
sur les mémes axes; et alors sa grandeur et sa position se trou-
veront déterminées par les équations (B).

Corollaire 5. Si les droites Zyy @us bgy €y,...cmy du corollaire
précédent forment un polygone fermé , les équations (B) sont
évidemment satisfaites. Donc, on peut substituer & une droite quel-
conque donnée une suite d’autres droites , formant un polygone
fermé avec la droite donnée ; et réciproquement , & une suite de
droites formant un polygone non fermé, on peut substituer la droite
qui fermerait le polygone.

Application & la mécanique. Les trois derniers corollaires sont
immeédiatement applicables 4 la composition et & la décomposition
des forces. En effet, une force, donnée d’intensité et de direction,
peut toujours étre représentée par une droite donnée de grandeur
et de position, qui est le chemin parcourn , en vertu de cette
force , dans l'unité de temps. En substituant donc, dans les trois
derniers corollaires, les mots « force donnée d'intensité et de direc—
Zion » & ceux-ci « droite donnée de grandeur et de position » ,
on aura immédiatement les théorémes connus sur la composition et
sur la décomposition des forces. Cette théorie , qui était toujours
sujette & quelque difficulté, se trouve donc réduite & une question
de géométrie de position.

Remarque. 11 est bon d’observer qu’au moyen du signe de posi-
tion /=, les abscisses et les ordonnées se trouvent aussi indé-
pendantes, en géométrie de position, que le sont, en mécanique,
les forces perpendiculaires entre elles. Cette conformité seule éta-
blirait un argument non équivoque en faveur de notre théorie ,
si dailleurs elle ne sc justifiait pas d'elle-méme.

[
——

Théoréme 3. Le signe de position 1, a aussi pour valeur 137 ;

o
c'est-d-dire , que 1,=1%=,
Démonstration.
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Démonstration. Si I'on divise la circonférence décrite d’un rayon
=1 en m parties égales, et qu'on mene des rayons aux points de
division , ces rayons formeront, d’aprés la délinition 3.¢, une pro-

gression de grandeur et de position, dont les deux termes extrémes
’ 2

s 14T ==1m,..ss
m

I

seront également I'unité. On aura donc 1:3=1

“m
n 2n= n T«
1275 = 1m. Supposant donc —=w, on aura —= — , et par con-

= m m 2@

o
séquent T,==17=. ]

Corollaire 1. 1l suit de ce théoréme, 1.° que les rayons qui
partagent en 2 parties égales la circonference dont le rayon est 1,
représentent les 72 racines m.™¢ de D'unité ; 2.° que toutes ces racines
sont égales entre elles et & 'unité, et qu'elles ne different les unes des
autres que par leur position ; 3.° qu’enfin elles sont toutes ¢égale-
ment réelles , puisqu’elles sont représentées par des lignes données
de grandeur et de position.

Corollaire 2. En comparant ce théoréme avec le précédent, on obtient
immédiatement les valeurs eonnues des racines de 1’unité , qu’on peut
exprimer, en général , par im=em VT = Cos.f;lf—}—Sin.z—:;f- y/ =1

Remarque 1.7¢ En combinant entre eux les théorémes 2.° et 3.5
ainsi que leurs corollaires , on peut faire les rapprochemens les plus
curieux et les plus intéressans entre les arcs de cercles, les loga—
rithmes naturels et les racines de I'unité , et rattacher ces trois branches
de calcul a une seule et unique thcorie.

Remarque 2.°. On voit , par cette théorie” des signes de position ,
qu’a %a rigueur on pourrait se passer, en géométrie, des signes -+,
— et /=, comme signes de position ; et que nos signes 1,,

ST P les remplacent, avec avantage, en conservant la liaison
w =3

de ces signes avec le signe général de position Ty Il en résul-

terait encore cet autre avantage que les signes ~}- et — ne serviraient
plus désormais qu’a indiquer I'addition et la soustraction ; de sorte

Tom. IV. 10
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que ces signes n’auraient jamais qu'une méme signification ; ce qui
éviterait bien des embarras , et serait en méme temps beaucoup plus
conforme aux régles d’une saine logique.

Théoréme 4. Toutes les racines d’une équation d'un degré quel-
conque sont réelles , et peuvent étre représentées par des droites
données de grandeur et de position.

Démonstration. 1l est démontré que toute équation d'un degré
quelconque est toujours décomposable en facteurs réels , soit du
premier soit du second degré ; et conséquemment il suffit de faire
voir que les racines d’une équation du second degré peuvent étre
représentées par des droites données de grandeur et de position. Or,
les racines d’une équation du second degré étant de la forme
x=p=t/7 , sont immédiatement constructibles , par les corollaires 3.°
et 4.° du théordme 2.°; car 1.° si ¢ est positif, 2 sera la somme
ou la différence de deux quantités positives ou négatives , comptées
sur Paxe des abscisses; 2.° si g est négatif, x sera une droite partant
de lorigine et dont les coordonnées de l'autre extrémité seront p

et /4.

Telle est I'esquisse , trés-abrégée , des nouveaux principes sur
lesquels il me parait convenable et méme nécessaire de fonder la
géométrie de position , et que je soumets au jugement des géometres.
Ces principes étant en opposition formelle avec les idées admises
jusqu’ici , sur la nature des quantités dites imaginaires , je dois
m’attendre A des objections nombreuses ; mais j'ose croire qu'un
examen approfondi de ces mémes principes, les fera trouver exacts,
et que les conséquences que jen ai déduites, quelque étranges qu’elles
puissent paraitre d’ailleurs , au premier abord , seront néanmoins
jugées conformes aux régles de la dialectique la plus rigoureuse.

Je dois, au surplus, & la justice de déclarer que le fond de ces
idées nouvelles ne m’appartient pas. Je Tai trouvé dans une lettre
de M. Legendre & feu mon frére, dans laquelle ce grand géometre
lui fait part ( comme d’une chose qui lui a été communiquée , ct
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comme objet de pure curiosité ), du fond de mes définitions 2.°
et 3.¢, de mon theoréme 1.°% , et du corollaire 3.¢ de mon théoréme 2.°;
mais ce dernier n’était avancé que gratuitement , et n’était justifié
que par lexactitude de quelques applications. Ce qui m’appartient
en propre s¢ réduit donc & la maniére d’exposer et de démontrer
ces principes , 4 la notation , et 4 lidée de mon signe de posi-
tion 1. '

Je désire que la publicité que je donne aux résultats auxquels
je suis parvenu, puisse déterminer le premier auteur de ces idées
4 se faire connaitre, et & mettre au jour le travail quil a fait lui-
méme sur ce sujet. (*)

Metz , le 6 de juillet 1813,

™ Il y a environ deux ans qu'écrivant 2 M. de Maiziére , au sujet de son
mémoire inséré 4 la page 368 du 1.°¥ volume de ce recueil, je lui mandais qu'on
avait peut-étre tort de vouloir comprendre toutes les grandeurs numériques dans
une simple série ; et que , par leur nature, elles semblaient devoir former une
table & double entrée qui, bornée aux seuls nombres entiers, pourrait étre figurée
comme il suit :

wery =22\ T ) 1o/ =1, o/ =1, F1d2\/ =1 , F2foV =1, e
oy =2 V=T, =1 V=1, A V=t i VT, e VT
oy —2 , -1, +o, 41, 42, e
oy =2 =1, =1 V=1, = =1 = VT, 2 VT
ooy =22\l 5 = pema\J 1y =2\ T y r1—2\ =1, Fa—aN =1 e

I I R I I I I A I L I I S I

en sorte que déja, comme M. Frangais, je supposais les nombres de la forme

n\/—x situés dans une ligne perpendiculaire a celle qui renferme les nombres
de la forme n; et que, comme lui encore, je représectais les nombres étran-~
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ANALISE TRANSCENDANTE.

Intégration , sous forme finie , de quelques JSonctions
differentielles circulaires ;

Par M. Du Bourcuer , professeur de mathématiques
spéciales au lycée impérial,

[a Ta Vi Vig Vi Wo o VL V)

ON rencontre souvent , en mécanique , des fonctions différentielles
de la forme

gers & ces deux lignes par la somme de leurs projections sur lune et sur l'autre.

Le méme M. de Maiziére , au sujet de quelques difficultés que j'avais opposées
au mémoire que je viens de citer , me manlait , dés le mois d’avril 1811 : ce
que j'avance ici sur les imeginaires est une idée hardie que je suis bien aise
de jeter en avant, et dont, jen suis sir, vous aurez déja reconnu lexactitude;
et,, un peu plus loin : ce paradoxe cessera d’en éire un, lorsque jaurai prouyé
que les imaginaires du second degré , et par conséquent de tous les degrés,
sont tout aussi peu imaginaires que les quantités négatives, ou les imaginaires
du premier degré; et que nous sommes exactement , & l'égard des uns , dans
la situation o étaient nos algébristes du Xxv11® siécle & l'égard des autres.

En rappelant ces circonstances , il est certes loin de ma pensée de chercher
4 dépouiller M. Frangais , non plus que le géométre dont il a si bien su mettre
les indications A profit , de la priorité de leurs idées ; mais je veux montrer que
ces idées ne sont point tellement étranges que le fond n’en ait pu germer dans
plusieurs tétes & la fois. 1l faudra sans doute faire heaucoup encore pour parer
toutes les objections, pour éclaircir toutes les difficultés , pour dissiper tous les
nuages , pour étendre et perfectionner la nouvelle théorie et en rendre bien évidens
Pesprit, le but et les avanlages; mais, on ne peut espérer ces résullats que du
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z"dzCos."z , 2"dzSin."z,

Aucun auteur, du moins que je sache, n’ayant donné les intégrales
sous forme finie , de ces deux formules, jai pensé que l'on ne
serait pas fiché de les rencontrer ici.

L’intégration de ces deux formules pouvant toujours , comme
nous le verrons tout 4 'heure , étre ramenée & celle des formules

(az)"d.Sin.(az) ,  (az)"d.Cos.(az) |
lesquelles reviennent &
2"d.Sin.x 2"d.Cos.x ,

c'est par celles-ci que nous commencerons. A la vérité , nous pourrions
en déduire les intégrales de notre équation générale (432) [ Traizé
de calcul différentiel et de calcul intégral, tome 1I , page 236,
art. 425 ], en y faisant X=2a", a=o0 etb=1; inais nous croyons
devoir , dans ce mémoire, les intégrer immédiatement.

Intégration de 2"d.Sin.z. . :
On a

d(a"Sin.z)=2"d.Sin.x—na"~*d.Cos.z ,

done

temps et des efforts réunis de tous ceux qui voudront bien ne pas rejeler cetle
théorie avec dédain , sans lavoir sérieusement examinée,

Ce qui me parait résulter, bien clairement, du mémoire quon vient de lire;
ce qui peut en Ctre regardé comme le résumé , est la proposition suivante : Lorsque
cherchant , sur une droite indéfinie, une longueur déterminée , mais inconnue ,
guon croit étre d'un certain cbté d'un point fixe pris sur cette droite, il arrive
que cette longueur est réellement du cété opposé de ce point fixe , on trouce
pour la longupur cherchée , une expression négative ; et si cette longueur n’est
pas méme situde sur la droite donnde )\ son expression se présente alors sous
une forme imaginaire,

J. D. G.
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JSz"d.Sinz = #"Sinz-nfz"~*d,.Cos.x ; (@
or,
d(z"~ " Cos.z)=2"~*d.Cos.x+(n—1)2"-2d.Sin.z ;

donc

Jam=* d.Cos.x=a"""*Cos.x—(n—1) /2"~ *d.Sin.z. )

De ces équations (@) et (4), on conclura aisément les valeurs
de fz"~*d.Sinz , fz"~3d.Cos.z , /2""4d.Sin.z ,.,.. et, par des subs-
titutions successives, 4 partic de I'équation (e), on parviendra au
résultat que voici : ‘

(1 Jx"d.Sina= { B e (1 1) 22 (e 1) (e 2) (e 3) 67t A s } S04
{nxﬂ"—n(n-—l)(n-z) &3 41 (2==1) (n==2) (w3 (e ) 0¥~ S==e 0 § COS. X

dont les séries , régies par une loi trés-simple 4 apercevoir, sont
finies , lorsque ~ est un nombre positif et entier. Il est d’ailleurs

ais¢ de voir que le coefficient de Cos.z est égal 2 la différentielle
de celui de Sin.z, divisée par da.

Intégration de z"d.Cos.x.

Suivant la méthode des intégrations réciproques ( Art. 217 de
Vouv. cité ), on a

J2"d.Cos.z=2"Cos.x—n/2"-*d.Sin.x , ©)
Ja"'dSinz=2"=*Sin.x 4 (n—1) [z"~ *d.Cos.x. ()

Mettant successivement n—2, n—4 , .... dans les équations (¢) et (d) ;
on forme une suite d’équations qui ont chacune leur dernier terme
affecté d’un facteur intégral qui est le premier membre de I'équation
qui suit immédiatement ; donc, par une suite de substitutions suc-
cessives , & partir de 1’équation (¢), on parvient aisément a celle
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(2)  fx"d.Cos.x={x"m=n(n em1)x" tefn (ne==1) (n==2) (ne=3) X" hom=iss, }Cos )
{ nxn= f—n (n—1) (n—2) 2"~ 31 (N 1) (1) (1= 3) (o ) T § ==0se } SILE

dont les séries sont les mémes que dans I'équation (1).
Intégration de z"dzCos.™z.

Des équations, connues en trigonométrie , qui donnent respective—
ment les valeurs des puissances paires et impaires du cosinus d’'un
arc, en fonction des premiéres puissances des cosinus de ces arcs,
et que j’ai rappelées, sous les lettres (@) et (4), a la page 411 du
premier volume de mon Traité de calculs différentiel et intégral,
on tire pour le cas de /2 NOMBRE POSITIF ET PAIR,

SzrdzCosMz= — § fz"dzCos. mz-{- -r—;l- - /z"d2Cos.(m—2)z-

2m—l

n .T-Z:-!_fz"dzCos.(m-4)z+....+?- ot _m;‘-m+zfznd2Cos.2z§+
2

T
) § cm=1

13500000 (m""l) z"+‘ ;
2,4.6 sev e lm(n+x)

et, pour le cas de 7z NOMBRE POSITIF ET IMPAIR,

SzrdzCos.mz= ;:— {/2"d.2Cosmz+ - fz"dzCos.(m=—2)z-
I

m me—r _ m m=—1 Fm35) .,
- — - [2"dzCos.(m—4)z4 et - — ...i(m+3)fz dzCos.3z4~
— L(m43
-'—:- 'mz e : E::t!))fz"dz(]os.z}.

Multipliant et divisant, dans ces deux équations , chaque terme

du second membre par la (n~41)™° puissance du coeflicient de z
sous le cosinus, en observant qu'en général
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kdzCos.kz=d.Sin.kz ,

il viendra, pour le cas de 7, NOMBRE POSITIF ET PAIR ,

(3) Jz"dzCos.z= ;,;,L; %ﬁl_,_—, S(mz)"d.Sin.(mz) 4~ Z;”_:’E)"?. / [(m=—2)2]"d.Sin.[(m-—g)z]

m=—1 Imfa 1 N . 1 3 me=—1
crenes _ cevelt 2z)"d.Sin.(2z —_— e —, g
+ i S Im—I 2"+‘f( zy'd Sin.(22) (+ 2 4 m n+x

et pour le cas de 72 NOMBRE POSITIF ET IMPAIR ,

4 Jz"dzCos.™ = { —i/ (mz)"d Sin.(mz)-}- ey e [(m—-'))z]"d Sin.[(m—=2)z]

M me—1 Tm5y 1 (. m m—1 1 (m+4-3) #d.Sin.z
+.o...+ 2 T d) -3u+x./(3‘z) 'd.Sin.(3z; + ""'xl(m——z)/z .

Or, les valeurs de tous les termes intégraux des seconds membres
de ees équations (3) et (4) sont données , sous forme finie, par
I’équation (1), en y faisant successivement z=mz, (m—2)z,....;
donc on aura aussi, sous forme finie , les intégrales demandées.

Intégration de z"dzSin."z.

Des équations, connues en trigoriométrie , qui donnent respecti=
vement les valeurs des puissances paires et impaires du sinus d’an
arc simple , en fonction des premitres puissances des lignes trigo-
‘nométriques, soit sinus soit cosinus, des multiples de l'arc Simple,
et que jai rappelées sous les lettres (@) et (4) , & la page 4o7 du
premier volume de mon 7Traité de calculs différenticl et intégral ,
on tire, pour le cas de 7, NOMBRE POSITIF ET PAIR ,

tF

(e) Jz"dzSin"z=+ -—,,;; § /2"dzCosimz— ﬁl fz"dzCos‘.(m—z)z,—!—,

m
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() Sfz"deSinMz=1t { — =/ (mz)d Sin.(mz)— (‘:;7:;‘.] [(m—-2)z]"d.Sin.[(m—z)z]

m me==1
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m m—1 —_m m=—1 im
— J/z"dzCos.(m—4) 2.0~ — , e J%"dzCos.2z -
1 2 1 2 }m—x

=. 2o i

2 4 m n41 >

et, pour le cas de 7, NOMBRE POSITIF ET IMPAIR,

() Jz*dzSinmz= ;—r;_—l{fz"szin.mz—- i J2"dz8in (m—z)z-

/z"d2Sin.3z+

m m— m me—I I (m=4-5)
1

n
f z"dzSin, Py

= (m+ )fz"szm.z3
!

2

Multipliant et divisant chacun des termes des seconds membres de
ces deux équations affectés du signe d’intégration, par la (n--1)™me
puissance du coefficient de z sous le signe de cosinus , équation (¢),
et sous celui de sinus, équation (f) , en remarquant quen général
kdzCos.kz=d Sin.kz , kdzSin.fkz=-—d.Cos.kz , en trouvera, pour
le cas de 7 NOMBRE PQSITIF ET PAIR,

—m M= Im-f-2 t

= 4)n+,f [(m—4)z]"d Sin.[(m—A)e] o 52 = o= v T g [ (2274 Sin.(22)

2 4 m-—1 H

les signes supérieurs devant é&tre pris lorsque 72 est un nombre dou=
blement pair et les inférieurs dans lc cas contraire.

Tom. IV. Ix

|
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Et, pour le cas de m NOMBRE POSITIF ET IMPAIR ,

1 —_1 ___.__..I “n
O JsSinme =T e e s A Cos ()= —— (s} Cos [im—2)2)
m m—1 Y . R
— . e (m—4)z]"d.C — ), ! m— I(m45) 1 "
— = @P%y,fﬂ $)z]"d.Cos [(m—4)z] T e Ty e (32148 32)

m  me=—1 T (m4-3)
+ - LD !,
— 1 2 ;’-(m-—l)‘/“ d.COS.zS H

les signes supéricurs devant étre pris lorsque m—1 est un nombre
doublement pair, et les signes inférieurs dans le cas contraire.
Or, les valeurs des termes du second membre de I'équation (5)
affectés du signe d'intégration , sont données, sous forme finie ,
par Uéquation (1) ; et celles des termes du second membre de Iéqua-
tion (6) sont également données , sous forme finie 4 par ’équation (2);
donc, quelles que soient les valeurs entiéres et positives de m et z,

on a cxactement , et sous forme finie , I'intégrale demandée de
2"dzSin"z.

GEOMETRIE DE LA REGLE.

Application de la doctrine des projections a la démons-
tration des propriétés des hexagones inscrits el
circonscrils aux sections coniques ;

Par M. GERGONNE.

'

[o Vi Vi Vo Vig Vi Vio Vi Vo ¥

ON connait déja diverses démonstra:ions des théorémes relatifs aux
hexagones inscrits et circonscrits aux sections coniques (*). En

(*) Voyez , entr'autres , la note de la page 335 du premier volume de ce recueil.
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voici d’autres que- je crois nouvelles et qui me paraissent assez
simples pour permettre d’introduire dans les élémens deux théorémes
si féconds en belles applications.

?-
L. Hexagone inscrit,

1. Par les élémens de géométrie, il est facile de démontrer que, si deux
cltés consécutifs d'un hexagone inscrit au cercle sont respectivement
paralléles & leurs opposés , les deux autres cotés opposés de cet
hexagone seront aussi paraliéles Iun & [lautre. (*)

2. Il résulte de la que, si deux cotés consécutifs d'un hexagone
inscrit a lellipse sont respectivement paralléles a leurs opposés
les deux autres cotés opposés de cet hexagone seront aussi paralléles
lun & lautre. Que l'on congoive en elfet , qu’aprés avoir rendu
le petit axe de [Dellipse parallele a un plan fixe on fasse tourner
son plan autour de cet axe , jusqu'a ce que la projection orthogonale
du grand axe sur le plan fixe soit égale & ce méme petit axe,

(* Soient 4, B, C, D, E, F les sommels conséculifs de I'hexagone , et suppo-
sons que 4B, BC soient respectivement paralleles 2 DE, EF ; on aura

Arc.BC4Arc.CD=Arc.EF4Arc.FA ,
Arc.FA4-Arc. AB=Arc.CD+-Arc.DE ;
d'olt, en ajoutant et réduisant -
Arc.AB+4Arc. BC=Are.DE-4Arc. EF ,
ou, plus simplement
Arc.ABC=Arc¢.DEF ,

ce qui établit le parallélisme des cétés opposés CD , FA, du moins lorsque ,
comme nous le supposons ici, ces cOtés ne se coupent pas dans le cercle.



8o . HEXAGONES

La projection de toute la figure sur ce plan sera alors un cercle auquel
sera inscrit un hexagone dont deux cotés consécutifs seront respec-
tivement paralléles & leurs opposes , puisque les projections de
paralléles sur un méme plan sont elles-memes paralleles. Done (1)
les deux autres cotes opposes de l'hexagoune inscrit an cercle sont
aussi paralleles. 1l en doit donc cire de méme de leurs correspondans
dans lellipse , puisque les projections sur un plan de deux droites
situées sur un aotre plan ne sauraient étre. paralleles , si celles-ci
ne le sont elles—-memnes.

3. 1l suit de & que, dans tout hexagone inscrit au cercle , les
points de concours des prolongemens des cotés opposés sont tous
trois situés sur une méme ligne droite. Que V'on fasse, en cffet, une
perspective de la figure , de telle maniére que cette perspective soit
une ellipse a laquelle soit inscrit un hexagone dont deux cotés
consécutifs soient respectivement paralleles a leurs opposés (*) ; les
deux autres cOtés opposés de cet hexagone seront également (2)
paralléles I'un a Tautre. Donc les droites menées .de I'eeil aux points
de concours des prolongemens des c6tés opposés de I'hexagone inscrit
au cercle sont toutes trois paralleles au tableau, et conséquemment
dans un plan passant par P'ceil ; les points de concours sont done
dans ce plan; et, puisqu’ils sont aussi dans le plan du cercle, ils
sont sur une méme droite intersection de ces deux plans.

4. Comme toute section coniqué est la perspective d'un certain
cercle , et comme , d’un autre coté , la perspective d’une droite
est, elle-méme une ligne droite ; on peut conclure de ce qui précede
que, généralement , les points de concours des directions des cdiés
opposés de tout hexagone inscrit @ une section conique, sonit tous
trois situés sur une méme ligne droile.

™ 1l suffit pour cela de mener des droites de P'ceil & deux quelconques des
points de concours des prolongemens des cotés «pposés de I'hexagone inscrit au

cercle , et de disposer le plan du tableau parallélement a celui de ces deus
droites,
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I1. Hezxagone circonscrit.

1. Par les élémens de géométrie , on démontre facilement que,
si deux des diagonales joignant des sommels opposés d'un hexagone
circonserit au cercle se coupent a son centre , la diagonale joignant
les dewux autres sommels opposés passera aussi par le centre du
cercle. (%)

2. 1l résulte de 1a que, i deux diagonales joignant des sommets
opposés d'un hexagone circonscrit & une ellipse se coupent & son
centre, la diagonale joignant les deux autres sommels opposés pas—
sera aussi par [ centre de Uellipse. Que I'on projette, en effet, la figure
sur un plan tel que la projection de ’ellipse soit un cercle ; la projection

(*) Soient 4, B, C, D, E, F les sommels consécutifs de l'hexagone et O
le centre du cercle; supposons que les diagonales AD , BE se coupent en ce
point , et soient menées les droites OC , OF ; les deux triangles A0OB , DOE
ayant un angle égal en O, on aura

Ang.0AB+4-Ang. ABO=Ang.ODE-+Ang DEO ,

ou en doublant
Ang.FAB+Ang.ABC=Ang.CDE-+Ang,DEF.
On a dailleurs A ‘
Ang AFO=Ang. EFO , Ang BCO=.4ng.DCO ;

en ajoutant ces trois- derniéres équations” membre & membre , on verra que la
somme de quatre angles du pentagone OFABCO est égale & la somme de qualre
angles du pentagone OCDEFO ; on en conclura donc que leurs angles en O
sont aussi égaux ; puis donc que leur somme est quatre angles droits, chacun
d’eux doiten valoir deuxz, ou, en d’aulres termes , les droites OC , OF n’en forment

réellement qu'une seule , laquelle est la troisibme diagonale CF qui passe consé-
quemmeat par le centre O.
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de son centre sera le centre du cercle ; deux des diagonales joignant
des sommets opposés de I'hexagone circonscrit au cercle passeront donc
par son centre ; la troisiéme y passera donc aussi (1), et consé-
quemment la correspondante dans l'ellipse passera dégalement par le
‘centre de cette courbe,

3. Ul suit de 1a que, dans tout hexagone circonscrit au cercle,
les diagonales joignant les sommets opposés se coupent toutes trois
en un méme point. Que U'on fasse , en effet, une perspective de la
figure , de telle manitre quela perspective du cercle soit une ellipse
‘ayant pour centre la perspective de lintersection de deux quelconques
“des trois diagonales de l'hexagone circonscrit a ce cercle. (*) Deux
des diagonales joignant les sommets opposés de I’hexagone circonscrit
a lellipse se couperont & son cenire; ces trois diagonales se couperont

done au méme point (2) ; il en scra donc de méme pour leurs
correspondantes dans le cercle.

4. Comme toute section conique est la perspective d’'un certain
cercle , et comme , d’un autre c6té, les perspectives de droites qui
se coupent au méme point sont des droites qui se coupent au
méme point , on peut conclure de ce qui précéde que, géné-
ralement , Jes diagonales qui joignent les sommets opposés de
tout hexagone circonscrit @ une seclion conique se coupent au
méme point.

111. Généralisation de cette théorie.

Dans les raisonnemens que j'ai faits ci-dessus, j’al supposé taci-
tement, 1.° que I'hexagone inscrit au cercle était tel que la droite

(*) Soient menées de l'ceil trois droites, Pune & intersection des deux diagonales
dont il sagit et les deux autres aux deux extrémités du diametre qui contient
cette intersection. Par un point pris arbitrairement sur la premitre de ces trois
droites , soit menée , dans leur plan , une droite, se terminant aux deux autres,
dont ce point soit le milien ; le plan du tableau devra passer par cette derniére
droite et étre perpendiculaire au plan des trois premiéres.
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joignant deux des points de concours des directions des cotés opposés
était extérieure a ce cercle; 2.° que I'hexagone circonscrit était tel
que deux au moins de diagonales joignant des sommetss opposés se
coupaient dans l'intérieur du cercle.

Mais, lorsque les cotés de I’hexagone, soit inscrit soit circonscrit,
se coupent les uns les autrcs, entre leurs extrémités, il est des
cas nombreux ou ces conditions ne peuvent plus étre satisfaites ,
de sorte qu’il semblerait manquer quelque chose aux précédentes
démonstrations ; mais on peut les compléter a 'aide des considérations
suivantes.

On sait que l’équation générale des lignes du second ordre ren-
ferme cinq cocfliciens nécessaires et indépendans , dont on peut
disposer pour faire passer la courbe par cinq points ou la rendre
tangente a cinq droites données.

Si Pon veut au contraire assujettir la courbe & passer par six
points ou a toucher six droites données , on obtiendra entre les données
qui déterminent ces six points ou ces six droites une certaine équation
de relation, laquelle demeurera invariablement la méme, quelle que
soit la situation respective de ces points ou de ces droites , puis-—
qu’on peut parvenir a cette équation de relation, sans savoir aucunement
de quelle maniére les points ou les droites sont situés.

Mais , si l'on supposait leur situation telle que les exceptions
que je viens de mentionner n’eussent pas lieu, I'équation de rclation
ne pourrait étre que Dexpression analitique de I'un ou de lautre
de nos deux théorémes ; puisque , dans le cas contraire , on se
trouverait avoir deux équations de relation au lieu d’une.

Puis donc que cette équation de relation est invariable dans sa
forme , nos deux théorémes doivent étre vrais dans tous les cas.

Le tour de raisonnement par lequel ces deux théorémes viennent
d'étre démontrés peut s'appliquer & la démonstration du suivant qui
renferme la propriété des poéles des sections coniques ;

Deux hexagones étant Pun inscrit et lautre circonscrit & une
méme sestion conique , de manilre que les sommets de l'inscrit
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coincident avec les points de tangence du circonscrit, siles diagonales
joignant les sommets opposes de Uinscrit se coupent enun méme point,
les points de concours des directions des cbtés opposés du circonserit
seront tous irois sur une méme ligne droite , et réciproquement.

On ne doit pas perdre de vue, dans tout ceci, que le systéme
de deux droites tracées sur un méme plan forme une véritable ligne
du second ordre , et doit censéquemment en avoir toutes les propriétés.

Coneevons que le centre d'une surface conique quelconque , du
second ordre , coincide avec celui d’une sphére ; le systéme total
des courbes 4 double courbure résultant de lintersection des deux
surfaces jouira, par rapport aux arcs de grands cercles , des mémes
propriétés dont jouissent les lignes du second ordre par rapport
aux lignes droites.

En général , tout probléme qui se résout , sur un plan, en
n’employant que la régle seulement, peut étre résolu sur la sphére,
A laide d’une ouverture de compas constante et égale & l'aréte de
Poctatdre régulier inscrit.

CHRONOLOGIE.

Cal{zndrier perpétuel ;

Par M. SErvois, professeur aux écoles d'artillerie. (*)

[a Ta Vi Vi Vi V1 Vo Vo V)

LE calendrier dent je vais expliquer les usages peut servir & résoudre
ectte question générale , qui en renferme quatre particuliers : De

(" Ce nlest qua la pritre du rédacteur des Annales que M. Servois, qui
lui avait communiqué cet ingénieux calendrier , sans y attacher la moindre impor-
tance,, a bien voulu permettre qu'il parut dans ce recueil, ol Yon a pensé quil
ne serait point du tout déplacé, J. D. G.

CEs
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ces quatre choses , une année de lére vulgaire , le nom d’'un mois
de cette année, un quantiéme de ce mois et le nom du jour de
la semaine gqui répond & ce quantiéme , trois quelconques étant
données , déterminer la quatriéme ?

Des exemples , toujours beaucoup plus clairs que des explications,
vont faire connaitre le parti que l'on peut tirer de ce petit calendrier

( Poyez la Planche ).

PROBLEME I. Déterminer & quel jour de la semaine répond
un certain quaniiéme d’un mois désigné , dans une année donnée?

Exemple. On veut savoir & gquel jour de la semaine répondra
le 28 de janvier 1821 ? '

Cherchez dans la table la colonne qui renferme le nombre 21 qui
termine 'annde ; vous trouverez que c’est la premiére a gauche.
Cherchez dans la méme colonne le mot janvier, que vous trouverez,
en téte , suivi d'octobre. Marchez alors horizontalement sur la pre-
miére ligne , jusqu’a ce que vous vous trouviez verticalement au-dessus
du dernier des médaillons inférieurs, lequel renferme seul la date
donnée 28. Le mot dimanche , que vous trouverez dans le cercle
auquel vous vous serez arrété , vous apprendra que Ie 28 de jan-
vier 1821 sera un dimanche.

Remarque. Si Pannde est bissextile , c’est-a-dire , si le nombre
formé par ses deux derniéres chiffres & droite est un multiple de 4,
il faudra , durant les deux premiers mois , janvier et février, faire
usage de la colonne qui précédera immédiatement & gauche la colonine
qui en contiendra l'indication ;et de la dernitre si cette colonne est Ia
premiére. Cette remarque est générale. '

Ainsi , par exemple , sl s'agissait du jour de la semaine qui
doit répondre au 28 de janvier 1824; comme 24, qui appartient
A la 5. colonne , est un multiple de 4, et comme janvier est un
des deux premiers mois, il faudra se servir de la 4.° colonne ; on
y trouvera jancier suivi d’octobre dans le quatridme cercle en ,
descendant. Suivant donc horizontalement & droite jusqu’a Ia derniére

Tom. IV. 12
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colonne , au-dessous de laquelle se trouve le quantiéme 28 , le mot
mercredi , que l'on trouvera dans le cercle auquel on se sera arrété,
annoncera que le 28 de janvier 1824 doit étre un mercredi.

PROBLEME II. Déterminer quels jours d'un mois désigné, dans
une année donnée, correspondent & un certain jour de la semaine ?

Ezemple. On veut savoir quels sont les jours de février qui seront -
des dimanches , dans I'année 1836 ?

Comme 36 qui est dans la 6.° colonne est un multiple de 4,
et comme féorier cst un des deux premiers mois, je me sers de
la 5.5, Jy cherche le mot jféorier qui est en téte, suivi de mars
et novembre , et je file horizontalement jusqu'au mot dimanche ,
qu"x af)part'\ent 3 la dernidre colonne; ou bien je cherche le mot
dimanche dans la 5.° colonne, ct je file encore horizontalement,
jusqu’d ce que je rencontre le mot féorier; je tombe de nouveau

sur la derniére colonne, et je lis au bas que les dimanches de février
1836 seront les 7, 14, 21 et 28.

PROBLEME III. Déterminer quels sont les.mois dune année

désignée , dans lesquels un certain jour de la semaine répondra &
une date donnée ? :

Ezemple. On veut savoir quels sont les mois de ’année 1825
qui commenceront par un lundi?

25 se trouve appartenir 2 la 6.° colonne dans laquelle je cherche
le mot Jundi, je file horizontalement d gauche, en partant de ce
mot, jusqu'a la premiere colonne, au-dessous de laquelle se trouve
le quantitme 1, et je lis dans le cercle qu’il n’y a que le seul
mois d’aott de l'année 1825 qui doive commencer par un lundi.

Sl s’agit de 'année 1828, qui est bissextile , on cherchera d’abord
le mot /undi dans la 2.° colonne , qui précéde immédiatement celle
qui renferme le nombre 28 ; filant alors horizontalement 4 gauche
jusqu’d la premiére colonne , au-dessous de laquelle se trouve le
quantieme 1, on trouvera d’abord les mois d'avril et de juillet,
qu’on rejetteré , attendu qu’ils tombent au-dcla des deux premiers,
et quon a employé la colonne qui précéde l'année; prenant ensuite
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le mot Jund:i dans la troisitme colonne , et filant horizontalement
jusqu’a la premiére , on rencontrera les mois septembre et décembre |
quon admettra tous deux , puisquils tombent au-deld des deux
premiers, et qui sont conséquemment les seuls de I’année 1828 qui
commenceront par un lundi.

PROBLEME 1V. Déterminer quelles sont les années dans les—
quelles un certain jour de la semaine coincidera avec une date
donnée d'un mots désigné?

Exemple. On veut savoir quelles sont les années ou le 1.¢* d’avril
sera un dimanche.

Le nombre 1 se trouvant au bas de la premitre colonne et avril
se trouvant dans le cercle le plus inférieur de cette colonne, lequcl
renfcrme aussi le mot dimanche ; on en conclura que les anndes
ou le 1.°* d’avril doit étre un dimanche sont 1804, 1810, 1821,
1827, 1832, 1838, 1849, 1855, 1860, 1866, 1877, 1883,
1888, 1894 , etc.

Sl s’a;gissait de 'un des deux premiers mois de I'année; si, par
exemple , on voulait savoir quelles sont les années dans lesquelles
le 7 de février sera un samedi; le nombre 7 se treuvant dans la
derniére colonne , ol le mot jféerier est dans le 3.° cercle; en
filant & gauche horizontalement ;jusqu’a celui qui renferme le mot
samedi, on trouverait qu’il est dans la quatriéme colonne. Mais il
faudrait rejeter toutes les bissextiles de cette colonne et substituer
aux astériques qu'on y rencontrerait les bissextiles de la colonne sui-
vante ; ce qui donnerait 1801, 1807, 1818, 1824, 1829, 1835,
1846 , 1852, 1857, 1863, 1874, 1880, 1885 , 18gr1 , etc.

Remarque. Ce calendrier n’est vraiment dressé que pour le sidcle
actuel , mais on le rendra vraiment perpétuel, par une simple trans-
position des nombres qui expriment les années, d’une colonne 2
I’autre , de maniére que le nombre oo se trouve dans la 7.¢, dans
la5.2, dansla 3¢ ou dansla 1.7 colonne, suivant que la division par
quatre du nombre & gauche des deux derniers chiffres donnera pour
reste o, 1, 2 au 3, en sorte qu'avec quatre tableaux seulement,
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on aura. un calendrier qui pourra servir pour tous les sitcles passés
et futurs ; du moins tant que lerreur , aujourd’hui insensible , ne
sera pas devenue, par l'accumulation des siécles, assez considérable
pour commander une nouvelle réforme. (*)

M. Gauss a donné, dans lc 2.° volume de 1802 de lexcellent -
journal ‘/4sir0nomico—Géograp/zl'que de M. le Baron de Zach, une
méthode pour calculer, pour chaque année , I'dpoque de la féte de
paques. Jen ai déduit la table suivante qu’il serait facile de pro-
longer, et qui, pour chaque année du Xix.° siccle, donne I’époque
de la p1eine June de mars.

ol 1l 2|3} 41|65 ] 6171819
=== o s ot e el oo
80| 9 |29 | 17| 6 |26 13| 2 | 22| 10} 30
181 184 7 27‘ 151 4 | 24112 1 219 |
182] 29 | 17 _:3— 26 | 13 2 | 22} 10} 30 { 18
83 7 L2y 13| 4 | 24)12] 1 .;_I— 9 |29
—:-g./: —;7_-(;—- 26 {13} 2 | 221 10 ;)- —:; 7
1851 =27 _I_E')— 4 124 [ 12] 1 |21 —; 29 | 17
ool 6 ||| = |an 0|20 || 7 o
-;37-:5—7 24 | 12 | 1 :x_ 9 —;_1_7-_-‘-5_
58| 26 | 23 | 2 |z |10 |30 | 18| 7 |27 |5
:—;; 4 :/:_ 12 T 21 —;_ 29 | 17| 6 :E

(*) Je ne sais s'il a déja été remarqué que Pintercalation persanne, je veux dire
celle de 8 jours sur 33 ans, un peu plus exacte que lintercalation grégorienne,
pouvait étre répartic d'une manicre tout A fait remarquable par sa rigueur et son
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Les dixaines d’annédes sont i la gauche de la table et les unités
au-dessus , 3 peu prés comme dans les tables de logarithmes. Les
dates inférieures & 20 appartiennent au mois d’avril , et les autres
au mois de mars. La loi de cette table est fort simple : en écrivant
en cercle toutes les 3o dates, depuis le 21 mars jusqu'au 19 davril
inclusivement, ces dates prises de dix-neuf en dix-neuf, dans l'ordre
direct, formeront les lignes horizontales , et prises alternativement de
neufl en neuf et de dix en dix , elles donneront les colonnes verticales.

Si, 4 laide de cette table , on veut connaitre 'époque de la
pleine lune de mars pour I'année 1854, on trouvera, sur-le-champ,
que c’est le 12 d’avril ; et si, au contraire , on veut savoir en quelles
anndes la pleine lune de mars doit tomber le 4 d’avril , on trouvera
que cela doit avoir lieu les années 1814, 1833, 1852, 1871ct 18go.

Et, comme la féte de piques est fixée au dimanche qui suit immé-
diatement la pleine lune de mars, il est facile , au moyen de la
combinaison de cette petite table avec notre calendrier, de déterminer
Uépoque de paques pour chaque année , et d’assigner réciproquement
les années auxquelles cette féte arrivera & une époque désignée.

Si, par exemple, on veut connaitre I'époque de paques pour 1852;
comme on vient de trouver que, pour cette annde-ld, la pleine
lune de mars arrive le 4 d’avril, et, comme on trouve d’ailleurs,
par le calendrier , que ce 4 d'avril est un dimanche , on en con-
clut qu'en 1852 la féte de paques tombera le 11 d’avril,

uniformité ; il faudrait pour cela ajouter un jour, tous les quatre ans, le supprimer 5
tous les siécles , le rétablir, tous les quatre sitcles , le supprimer, tous les dix
mille ans, le rétablir , tous les quarante mille ans, et ainsi de suite ; cela don=
verait en effet, pour la longueur de l'année moyenne,

11U R SR S ST SOUUIE S SO S

300 400 100e0 do0o00
ou

365 4 (L sz mwhma b eeee )= ks msies o 50)
ou
365) o 55— 5 =365 28 =365 4 :
J.D. 6.
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Si , 3 l'inverse , on demande en quelles années paques tombera
le 1.7 avril ; on a déjd vu que ce jour n’était un dimanche quen
1804 , 1810, 1821, 1827, 1832, 1838, 1849, 1855, 1860,
1866, 1877, 1833, 1888, etc.; d’'un autre coté , pour que paques
tombe le 1.7 d’avril , il faut que la pleine lune de mars arrive
du 26 mars au 1. avril inclusivement , ce qui n’a lieu que pour les
années 1801 , 1804, 1809, 1812, 1817, 1820, 1823, 1828, 1831,
1836, 1839, 1842, 1847, 1850, 1855 , 1858, 1861, 1866,
1869 , 1874, 1877, 1880, 1885, 1888, 1893 , 1896, 1899,
etc; donc paques n’arrivera le 1.°% avril que dans les anndes 1804,

1855, 1866, 1877, 1888, etc.

CORRESPONDANCE.

Lettre de M. Brer , professeur & la faculte des sciences
de lacadémie de Grenoble,

Au Rédacteur des Annales j

En réponse aux lettres de MM. Du BourcueT et BErarD,
insérées aux pages 56 et 58 de ce volume.

(g Vi Wl VL VL W ¥, VL V)

MONSIEUR ET TRES-CHER CONFRERE ,

JE crois devoir répondre encore aux lettres de MM. Du Bourguet
et Bérard ; je le ferai brievement , et de maniére & n’étre plus
obligé d’y revenir.

Je ne disconviens nullement que le théortme que M. Du Bour-
guet a voulu démontrer ne soit évident , pour qui est habitué
la marche de l'analise algébrique ; mais je n’en persiste pas moins
hY

3 regarder comme trés-difficile d’en donner une démonstration en
forme, qui ne péche par aucun cété ; et voila sans doute pourquoi
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M. Du Bourguet ne peut défendre la siennc qu’a I'aide d'un cercle
vicieux., Supposer, en effet, que , si I'équation
Axm4Bax™  H=-Cax™ 4~ .......=b (1)
ne donne pas x=a, elle donnera tout au moins =gy, c’est bien
supposer, ce mc semble, que toute équation est résoluble , ce qui
est précisément la thése a établir. (*)

(*») On démontre que toute équalion
AxM4-Bam-1f-Cx™ 2d=, ..., Gx—H=0 , (1)
dont le dernier terme est négatif , admet toujours au moins une racine que lon
peut représenter comme il suit :
x=¢(A, B, Cyur..G,—H) ; (2)
or, pour qui est familier avec la marche de lalgtbre, il est clair que, si la
valeur (2) rend l'édquation (1) identique, la valeur

x=¢(4,B,C,.....G, H) 6))
produira le méme effet sur Péquation
Ax™Bxm= Ve Cx™= 2t o o o = Gax4-H=0. )

Cette assertion pourrait , au surplus , se prouver comme il suit : soit mis le
résultat de la substitution de (2) dans (1) sous la forme
@b H4-cH2mad H34-c Hbwmm , o, ., . =<0 ; )
«,b,¢,..... étant des fonctions de A4, B, C,..e.. G ; cette équation (6)
devant se vérifier d’elle-méme, sans aucune détermination de H , on doit avoir
a=0, b=0, =0, d==0 ye.e:s} ¥))

mais , si (6) est le résultat de la substitution de (2) dans (1) , celui de la
substitution de (3) dans (4) sera incontestablement

at+bHA4-cH>~4-dHi4-eHid0 ey ... =0 ; ®)
or, en vertu des équation (7), I'équation (8) est identique; donc, en effet, (3)
résout (4).

La difficulté de cette théorie se trouve donc encore , comme celle de tant
d'autres , ramenée 3 ceci : Toute fonction peut-elle légitimement étre supposée
développée suivant les puissances entiéres et positives de l'un des symboles qui
la composent ?

Au surplus , si Pon ne trouvait rien & objecter contre la théorie développée
par M. de Maiziere, 4 la page 368 du premier volume de ce recueil , on en
pourrait peut-étre déduire une démonstration du théoréme de M. Du Bourguet.
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Quant 3 M. Bérard , j'ai dit que la méthode de construction de
la parabole qu’il croyait que je lui avais empruntée était différente
de la sienne , et c’est une chose dont il convient aujourd’hui. Jai
ajouté que, tandis que la mienne était générale, la sienne souffrait
une exception, et cela est si vrai que, pour le cas des axes rec-
tangulaires , il est obligé de recourir & un nouveau procédé , dont
il n’est fait aucune mention dans son ouvrage.

Je tiens trés-peu, au surplus, & la propriété de ma construction,
que tout bon écolier aurait pu trouver comme moi, et dont je n’aurais
certes pas fait bruit, si un travail plus étendu ne m’avait conduit

3 la mettre en ceuvre ; mais je dois tenir beaucoup & ne point étre
injustement accusé de plagiat.
Agréez , etc.

. Grenoble, le 10 d’aotit 1813.

QUESTIONS PROPOSEES.

Théoréeme de Geométrie.

LES rectangles qui ont respectivement pour diagonales deux dia-
metres conjugués d’une ellipse ou d’une hyperbole , et dont les cotés
sont paralltles aux axes de la courbe sont équivalens.

Probléme darchitecture.

La base et la montée d’une anse de panier , dont le nombre des
centres est 2n-+1 étant données ; construire la demi-anse, dont par
conséquent le nombre des centres sera n—1, avec la condition que
tous les arcs de cette demi-anse soient semblables et que leurs rayons
forment une progression géométrique ?

Faire une application de la solution générale au cas particulier ol
m=2, et ol par conséquent chacun des arcs de Ja demi-anse serait

de 30.° ? .
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GEOMETRIE ANALITIQUE.
Meémoire sur les surfuces du second ordre ;

Par M. Brer , professeur & la faculté des sciences de
Tacadémie de Grenoble.

[ Yo Via Vi Vo Vig V1a Vo V]

J’AI donné , dans les Annales de Mathématiques , ( tome II;
page 144 ) , Péquation qui détermine la grandeur des diameétres
principaux , dans les surfaces du second ordre , rapportées a des
axes rectangulaires. Je me propose ici de revenir de nouveau sur
ce sujet, pour le traiter d’une maniére plus générale et plus compléte;
mais auparavant je donnerai, sur la ligne droite et le plan, quelques
notions dont j’ai besoin pour parvenir & mon but.

Dans tout ce qui va suivre, je supposerai constamment aux axes
des coordonnées des directions quelconques , et j’adopterai les notations
que voici.

Ang(y ,z)=«, Ang(z, z)=g, Ang(z,y)=»
§. 1. Equations du plan et de la ligne droite.

Concevons que, de lorigine, on ait abaissé une perpendiculaire
p sur le plan dont on veut obtenir I'équation ; et soient x, ¥, z
les coordonnées courantes de ce plan; il est visible que la somme des
projections des coordonnées z, ¥, z d’un point quelconque du plan
dont il s’agit sur la perpendiculaire p , en determine exactement la

longueur. Si donc on dénote respectivement par « , g7, 3/ les angles
Tom. IV , n.° IV , 1.°% octobre 1813, 13
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que forme cette perpendiculaire avec les trois axes , I’équation du
plan sera

(A) 2 Cos.a’+yCos.p'+2zCos.y/=p.

On exprime communément une droite , dans I'espace, en écrivant
les équations de ses projections sur deux quelconques des plans
coordonnés ; mais il est souvent plus commode et plus édlégant de
s’y prendre ainsi qu’il suit: soient 2/, ¥/, z/ les coordonnées fixes
d’un point déterminé de la droite , et soit 7 la distance variable

de ce point & un autre point quelconque de cette méme droite ,
dont les coordonnées courantes sont supposées &, ¥, z; on éerira
(B) x=wa'4ar , y=y/+br , z=z'4-cr ;

@, b, cétant des fonctions angulaires , non susceptibles de devenir
‘infinies , et qui demeurcnt constantes pour toute \’étendue de la

droite ; élimination de r , entre ces trois équations, conduirait aux
équations ordinaires de la ligne droite.

§. . Du centre , du plan diaméiral et du plan tangent , dans les
surfaces du second ordre.

Soit posée, pour I’équation générale des surfaces du second ordre,

(C) Ax>+4By*~-Czid2A'yz-t2B za+4-2C'xy~4-2.4"x~-2B"y~2Cl"z4-D==0,

Si, dans cette équation , on substitue , pour x, ¥, z,les valeurs
données par les équations (B), en posant, pour abréger,

M=Aa*+-Bb*+Cc*+-24'be++2B/ca+2C'ab
(A2/'4-B/2/'A-Cly'+A")a
M'= { d~(By/+Cla/ Al 4B
+(Ca/~-A'y'-B/ 2/ 4-C")c,
M= A/ *4-Bys-C/ioua Aly e/ 4o B /' 42 Clly e AV /42 By 42 oD |

la transformée sera

») MritaM/r4-M"=o.
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Dans cette équation , 7 est la distance entre le point fixe a7, y/, 2/
et celui o la droite (B) rencontre la surface (C); elle est du sccond
degré , parce quen géneral la droite (B) rencontre la surface (C)
en deux points.

Il peut étre intéressant de discuter ce qui arrive, lorsque quel-
ques—uns des coefficiens M, 3/, M/ deviennent nuls, ou lorsque
I'équation (D) a ses deux racines égales. Je bornerai cette discussion
aux seuls cas qu’il m’est neccessaire de considérer.

1.° Si le coetficient M’ est scul nul, les deux valcurs de 7 seront
égales ct de signes contraires, quels que soient d’ailleurs 27/, ¢/,
2/, a, b, c; et alors on pourra distinguer deux cas :

Si d’abord on suppose que 2/, y/, z/ sont les coordonnées d’un
point fixe, mais inconnu , tandis que @ , &, ¢ sont indéterminds ,
ce point fixe sera le centre de la surface (C); et on le déterminera
en exprimant que léquation M/=o0 a lieu indépendamment de toute
détermination des quantités @, b, ¢; ce qui conduira aux trois
équations

Az' 4B/ 2/ 4-Cly/4A" =0

(E) By/4+C'2'4A'2'4-B"=o0 ,

Cz/+A'y'-B/a/C"=0 .
Si , au contraire, @ , &, ¢ sont constans , et 2/, ¥/, z/ indéterminés,
I’équation M/=o0 exprimera que le plan dont les coordonnées cou-
rantes sont #/ , y/ , z/ contient les milieux de toutes les cordes

paralleles a une certaine droite [ixe, et est conséquemment un plan
diamétral ; I'équation générale du plan diamétral est donc

(F) (Ada+DB/e+-Chjx4-(Lb+Clad-A'c y=+(Cc+A'b+-B'a)z
~+A"u-B"l4-C"c=o0.
2.° Si, outre I’équation M’/=o0, on a encore M=o , cette der=
nidre équation exprimera dabord que le point &/, 5/, 2/ est sur
la surface (C); et, puisqu’alors les valeurs de 7 seront toutes deux

Y

nulles, la droite (B) sera une tangente a cette surface. Or, comme
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le systéme des équations M'=o0 , M=o laisse encore les quan-
titds @, b, ¢ indétermindes , il Sensuit que , par un méme point
a/, y/, z/ pris sur (C), on peut lui mener une infinité de tan-
gentes. L’équation du lieu de toutes ces tangentes s’obtiendra en
éliminant @, &, ¢ de I'équation M/=o, au moyen des équations
(B). Ce lieu, qui est le plan tangent par le point 2/, ¥, 2, a
donc pour équation
(A2/~4B/ 2/ 4= Cly! A1) (2!
A (By'+C'zx/+-A'z/4B") y—y') ) =o.
-+-(Cz’+A’J‘/+B/x/+C’/)(Z—-z’)
En simplifiant cette équation , au moyen de I’équation de relation
M'’=o0, elle prend la forme
(Aa'Bl2/4-Cly'4- A"z
(G) +( B}‘/+ C'z'+-A'z'-B") ¥
=o.
+(C/4-Aly! Bl a/ 4 C)z
- A ! A Byt 4GV 2/ 4D
Il est ais¢ de voir que I'dquation M=o seule exprimerait que
la droite (B) ne rencontre la surface (C) qu’'en un point , lequel
- serait le point z/, y/, z/, si l'on avait en outre M”=o0. On voit
aussi que, si I'on avait, & la fois, M=o, M/=o0, I'équation (D)
et conséquemment I’équation (C) seraient absurdes, 4 moins qu’on n’edit
en méme temps M=o , auquel cas r demeurerait indéterminée ;
on pourrait donc, par chacun des points de la surface (C) , mener
au moins une droite qui y fit entierement contenue; cette surface
serait donc une surface gauche ou une surface développable. Enfin,
si I'équation (D) avait ses deux racines égales ou, ce qui revient
au méme , st Uon avait I'équation M>—MM/"=o , les équations (B)
deviendraient celles d’une tangente par un point extérieur &/, y/, 2/,
laquelle tangente demeurerait indéterminée ; on parviendrait donc &
Iéquation du lieu de toutes les tangentes menées par ce point,
¢est-d-dire , & Iéquation de la surface conique circonscrite , ayant
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ce méme point pour centre ou sommet, en chassant 2, b, ¢ de
I'équation M"*—MM/""=0 , au moyen des équations (B).

§. NIL Transformation générale des coordonnées.

Pour établir les formules qui servent a passer d'un systéme rec—
tangulaire ou oblique de coordonndes # , ¥, z 4 une autre systéme
quelconque de coordonnédes a/, y/, 2/, il suffit de remarquer que
chacune des grandeurs z, ¥, z doit étre une fonction enti¢re du
premier degré en 2/, y/, z’; on est dés-lors fondé & écrire , l'origine
¢tant la méme pour les deux systémes,

x=ax'4a'y'~+a'z’ |
(H) y=bat by

En faisant successivement , dans ces formules , les trois hypo=

théses suivantes ‘

y'=o0 , z/=0 , z/'=0 ,
z/=0 ; xr’'=o0 ; y/'=0 ;

on trouvera, pour les édquations respectives des axes des 2/,y’, 2/
rapportés au systéme primitif

(%) r=a r , y:ré r, z=cr,
(%) x=a'r , y=br, z=dr,
(&) x=a'r , y=b'r, z=c'r.

§. IV. De la sphére et de son plan tangent.

Si l'on suppose que x, ¥, z désignent les coordonnées rectan—
gulaires des points d’'une sphére qui a son centre d.lorigine et son
rayon égal 4 r, on aura évidemment

2y Az =r.
D’aprés les formules (H) I'équation de la méme sphére, rapportée
A des coordonnédes obliques z/, y/, 2/, sera
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(a 3+5 2_‘_6 2)x/2+2(a/a//+5/b//+c/c//>y/z/
(a/ >V e )y -2{a"a -b"'b 4=c"c )2/x! ) =1*
(a//2+6//2+0//2>z/2+2<a a/+b b/+c cl)x/y/
si , dans cette dernitre équation , on fait successivement les trois
hypothéses a/=o0 , y/=o0 , z/=o0, on obtiendra pour les équations
es traces de la sphere sur les trois plans coordonnés
d de la sphe les t p! d
(@’ 24-b 2o/ 2)y 24 (a2l 22 2 22 (al @ BB el Yy 2P =2
(a//2+b//z+c/lz)zlz+(a 2+b 2+C 2)x/2+2_(alla+bl/b +L‘”C Yz!x!=r2 ’
(e 2+[, 24 2) %/ 2f(a/ z+bl 2+¢;I 2)y’2+2(a al+[, b’+c cl)x{y/=rz H

mais on sait d’ailleurs que, «, B, ¥ désignant les angles des eoor=
données a/, y/, 2/, les équations de ces traces doivent étre

g2~z H-2y/z/Cosca=r? ,

z2/*~4-x/*422/2/Cos.p=1* ,

a4yt 422"y’ Cos.y =1* :

comparant donc respectivement ces équations aux précédentes , il
viendra

a *+b 4 *=1 , a'a’-p'b!' ¢/ c!’=Cos.a

@b e/ =1, a"’a 4-b""b 4c'"¢ =Cos.p

arA-b"rrYcr =1 a a/+4b b/'4c ¢/=Cos.y

]

we

et conséquemment V'équation de la sphere rapportée a des coordonnées
obliques sera

(L) x4y +z*~4-2y2Co0s.0-4-2z2Cos.p+22yCos.y =12,
Cette équation donne aussi la distance r de lorigine & un point
dont les coordonnées sont x, ¥, z.

Si le centre, au lieu d’étre situé a lorigine , se trouvait en un

point ayant pour ses coordonnées &/, y/, 2/, I'equation de la sphere
deviendrait
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(w—a'y-2(y—y/)(e—z")Cos»
(M) +(y—y/y42(z—z/)(w—a’)Cos.6 ) =T
~(z—2’)* 42 (x—a)(y—y’)Gos.y
Si, dans I'équation (G), on fait
A’=Cos.x , A'’=o0 ,
B/'=Cos.e , B'=o , D=—r
C’'=Cos.y C'=o ,
elle deviendra celle du plan tangent 3 la sphére qui a son centre

a lorigine. Ainsi 2/, y/, z/ étant les coordonnées du point de
contact , P'équation de ce plan tangent est

N) (2'4y'Cos.y4-z'Cos.g)x~(y'+2/Cos.ata’Cos.y)y=4-(z/4x'Cos.p4y'Cos.e)z=r1,

§. V. De la perpendiculaire & un plan.
Soit

(0) Azx4By-+Cz=D ;

Véquation d’un plan, et soient
¢} x=ar , y=br , z=cr,

les équations de la perpendiculaire abaissée de l'origine sur ce plan:
Si l'on congoit une sphére ayant lorigine pour centre et cette
perpendiculaire pour rayon , le plan (O) devra lui étre tangent ;
et, en désignant par 2/, y/, z’ les coordonnées du point de contact,
les équations (N) et (O) devront coincider , 3 un facteur pres,
pouvant affecter tous les termes de I'une d’elles. Exprimant donc
que leur coincidence a lieu, il viendra

D{z’4y/Cos.y=}2/Cos.p) =Ar* ,

D(y'4-z/Cos.e+a'Cos.y)=Br* ,

D(z/4-2/Cos.g4y/Cos.a) = Cr* ;
mais , comme le point de contact doit se trouver , & la fois, sur
la droite (P) et sar la sphére, on dait avoir
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x/=ar , y'=br zZ/=cr ,
a/rpy/* A=z 4-2y/ 2/ Cos.a—4-22/2/ Cos.g=-22/y/Cos.y =r2.
En éliminant 2/, y/, 2z’ entre ces équations, il viendra
D a~+b6Cos.y4cCos.g,=Ar ,
D(b~4cCos.e~+aCos.y)=Br ,
D(c+aCos.e+41Cos.e)=Cr ,
a*b*-c:4-2bcCos.e~2caCos.p+2abCos.y=1.
En éliminant 7 entre les trois premiéres équations , on obtiendra °
les deux suivantes
A(c+bCos.a~+aCos.p)= Ca-4-bCos.y~+cCos.¢) ,
Q)
B(c45Cos.«~4-aCos.8)= C(b-+cCos.a+aCos.y) ,

lesquelles expriment que le plan (O) et la droite (P) sont perpen-
diculaires I'un i lautre.
Si, entre toutes quatre , on élimine 2, &, ¢, la longueur r
de la perpendiculaire abaissée de l'origine sur le plan (O) se trouvera
donnée par l'équation
‘A>Sin.2a—2BC(Cos.«—Cos.8Co0s.4)
®) { 4BSin-*g=—=2C.A(Cos.p—Cos.y Cos.«) r==(I—COS.ﬂx—-Cos.zﬁ—Cos.’y+2Cos.xCos.ﬁCoS.'y)D2.
~+-C18in,2yy==2.4B(Cos.y=—Cos.4Cos.8)

Si le point duquel on veut abaisser une perpendiculaire sur le
plan (O) a pour ses coordonnées 2/ , ¥/, 2/, il suffira de transporter
Vorigine en ce point ; ce qui reviendra & changer #, ¥, zen 42/ ,

¥y’ , 242/, respectivement , ce qui donnera , pour la nouvelle
équation da plan.

Az+By~-Cz4-(Ax'+By'+Cz/~D)=o0 ,

et partant , pour la longueur de la perpendiculaire , celle qu’on
déduirait de I'équation (R) , en y changeant simplement D en
Azx/'+4By'+Cz/'—D.

'équation
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L’équation

(S) a*+-b*Fc*425cCos.at-2caCos.e4-2abCos.y=1 ,
A laquelle nous sommes parvenus tout & l'heure , exprime la relation
qui doit exister , dans les équations (B), entre les trois coefliciens
a, b, c, etles angles 2, g, 5 des coordonnées.

Si on prend sur les axes des x , des y et des z, respective-
ment, trois longueurs &, e, f, il sera facile d’assigner le volume
du parallélipipéde qui aura ces trois longueurs pour arétes. En effet,
d’aprés la formule (R), la longueur de la perpendiculaire abaissée
de I'extrémité de f, sur le plan des zy, sera

-571{-;‘/ 1==C08.20==C05.28~—C05.2y~42Co0s.«Cos.8Cos.y 3

mais , en considérant cette perpendiculaire comme la hauteur du
paralldlipipéde, l'aire de sa base sera deSin.y; d’ou il résulte que
son volume sera

def\/ 1 —Cos.*a—Cos.?g— Cos.?y=-2Cos.2Cos.8Cos.7-

Les conditions analitiques qui expriment le parallélisme, soit de
deux droites , soit de deux plans, soit d’une droite et d’un plan,
étant indépendantes des angles que funncot entre eux les axes des
coordunmdes , nous we nous arréterons pas & leur recherche,

§. VL. De la perpendicularité de deux plans.

Soient deux plans passant par l'origine , et ayant respectivement
pour équations

() Ar+By+Cz=o0 ;

(Ty A'z+Bly~+C'z=o0 .
On exprimera qu'ils sont perpendiculaires I'un a l'autre si l'on ex~
prime qu’une droite

x=ar , y=br , z=cr ,
perpendiculaire au premier , se trouve sur le second. Ainsi, par le
précédent §, on aura les équations

Tom. 1V, 14
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A(g+aCos.13+Z)Cos «) = C(a--0Cos.9+cCos.g) ,
B\c—l-aCos £+4Cos.a)=C(b+cCos.a4-aCos.z) »
A’a-’;—B’é—l—C’c_
Si Von élimine 2 et & entre elles, ¢ disparaitra de lui-méme, et
Ion obtiendra, pour condition de:perpendicularité des deux plans

(T), (T%), l'équation suivante : «
AA'Sin. a—(BC’-v}-GB’)(Cos «—Co0s.8Cos.y)
U) ~}-BB’Sin. ﬁ—(CA’+4C’)(Cos g—Cos.5Cos.«)
+CC'Sin*y—(AB/+B A’ Cos.y—Cos.«Cos.£)
§. V1. Dela perpendicularité de deux droites , et de I'angle qu'elles
forment entre elles.

=o0.

Soient deux droites passant par Vorigine et ayant respectivement
pour équations

V) x=ar, y=br, z=cr ,
V) z=ar, y=br, z=er .

On exprimera qu’elles sont perpendiculaires 'une & I’autre , si l'on
exprime qu’un plan

Ax+By—l—(’7=0 .

perpendiculaire 3 la premwre , contient la seconde ; ainsi, par le
§. V, on aura les équations

A(c+4aCos.4-5Cos.a)=C(a-+bCos. y—l-cCos 8) 5
B(c4-2Cos.4-5Cos.2) =C(b+4cCos.a~4aCos.y) ,
Aa’—i—-Bb’—l—Cc’:o.

Si Yon élimine 4 et B entre elles, € disparaitra de lui-méme;
et on obtiendra, pour condition'de perpendicularité des deux droites

V), (V) , Péquation suivante
aa/4~(bc'-4-cb’)Cos.«
(X) +-bb/4=(ca’+ac’)Cos.p ) =0,
~cc/'4(ab/4ba’)Cos.y
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Généralement , on peut trouver le cosinus de l'angle formé par
les deux droites
x=ar , y=br , z=cr ;
a'=a'r’ , y'=br, zZ/=cr .
car, en joignant les extrémités des distances 7, 7/ par une droite,
et appelant ¢ I'angle cherché, la longueur de cette droite aura d'un
c6té pour expression

r*=-r/*— 2rr’Cos. ,
et de lautre, parle §. 1V,
(@-x") - (y-y") 24-2(2-2") 22 (y-y") (2-2") Cos.a-2 (2-2") (x-2") Cos.f+-2 (2-2") (y-y/)Cos.9
ou, en substituant,

(>8> 4c*~4-2bcCosat-2caCos.p-4-2abCos.o )r*
+-(a”*+-b/*~c*+-2b/c/Cos.a2c'a’Cos.p--2a’b/Cos.y )r/?
=2 { aa/4-bb'-cc'4-(be'4-cb') Cos.at(ca'-ac’) Cos.p4-(ab'-ba’) Cos.y } rrt
égalant donc cette expression a la premiére, et exprimant que leur

égalité laisse r, 7/ indéterminds ct indépendans, on obtiendra d’abord
les deux relations déja connues

o *+b *~4-c *+25 ¢ Cos.ad-2¢c a Cos.t+2a b Cos.y=1,
a/*==b"*~c"*~-2b/c’Cosa~2c'a’Cos.p+42a’b/Cos.y =1 ,
et ensuite la formule
aa’+(bc’4-cb’)Cos.«
) Cosb= { ~+bb/~+-(ca’+ac’)Cos.p
~-cc/ +(ab’+ba’)Cos.y.
Au moyen de cette formule il sera facile de déterminer, soit le
sinus de I'angle de deux droites , soit les sinus et cosinus de I'angle

de deux plans, ou de l'angle d’une droite et d’un plan,

-
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§. VIIL. Recherche des diamétres principauzx dans les surfaces
du seconde ordre , rapportées & des axes quelconques.

Reprenons léquation générale des surfaces du second ordre
(1)  Ax*~4-By4-Czi42.A'yz4-2B za4-2C xy4-24"x4-2B"y+42C" z--D=0.

Nous avons déja dit que, pour passer du systéme des coordonndes
&, ¥, z au systtme des coordonnées 2/, y/, 2/, de méme origine

que celui-la, il fallait poser
= ax’+a’y’+a//z’ ’
(2) y=bzx'by' b2
z=cal4-cly! +c'z
et qualors les équations des axes des #/, y/, 2/, rapportés au
systtme primitif , étaient respectivement

3) g=ar, y=br, z=cr,
(4) x=d'r, y=br, z=dr,
) z=a'r , y=blr, z=c'r.

Si Ton substitue les valeurs (2) dans I'équation (1), on obtiendra
une transformée, du méme degré en 2/, y/, 2/, que l'on pourra
ensuite simplifier , en disposant des quantités arbitraires qui déter-
minent les directions des nouveaux axes.

Faisant donc disparaitre tous les rectangles des coordonnées , noug
aurons les dquations

‘6) ( Aa”+B’c”+C’b”)a’+(Bb”+C’a”+ Alc!hy b/+(C‘;H+ A’b”—{-B'a")C’:o N
() (Aa/+Bc4-C'b"ya - (Bb4-Clal' 4 Alc! Yo (Co/'p=A'b"=-Bla’)c =0 ,

®B)  (Aa 4-Blc! 4-Cb’ Ya 4 (BY +4-Cla/4A'c Yo4-(Cc' +A'b! 4Bla’ )c =o «
Cela posé, en éliminant ¢, &, ¢ entre les équations (3) et I'dqua-
tion (7), on tombera sur 'équation d’un plan

@ {Aa/' 4Bl 4-C'b")x4-(Bb/~4-Cla/' 4 Alc! )y} ( Cc/'je A" 4-Bla"yz=0 ,

tel que , Paxe des 2/ y étant situé, d’une manitre quelconque ,
I'équation de la surface du second ordre se trouvera délivrée du terme
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en 2’z’. Parcillement si, entre les équations (4) et (6), on éliminc
@', b, ¢, on obtiendra I'dquation d’un plan tel que, l'axe des y
y étant situé, d’une maniére quelconque , I’équatien de cette surface
se trouvera délivrée du terme en y/z’. Mais , par la forme des
équations (3), (4), (6), (7), ces deux plans doivent se confondre ;
donc, en écrivant seulement les équations (G), (7), on aura, pour
un axe quelconque des z/, un plan unique des 2’y tel que I’équation
transformée , en a/, y/, z/ , se trouvera privée, a la fois , des
rectangles 2/z/, y/z/ ; et, comme il est toujours facile , I'axe des
z/ édtant constant , ainsi que le plan des a/y/, de donner aux axes
des a/ et des y/ des directions telles que le troisiéme rectangle /y’
disparaisse aussi; il s'ensuit qu’il y a une infinité de systémes d’axes

transformés pour lesquels I'équation générale des surfaces du second
ordre prend la forme plus simple

(10) Pa/24-Ply24 Pz 342 Qut/ -2 Qly'4-2 Q' 2/}~ D==0.
Parmi tous les systtmes d’axes pour lesquels I'équation prend
cette forme, il n’en est généralement qu'un seul qui soit rectan-
gulaire. En effet, assujétissons la droite (5) A étre perpendiculaire
au plan (9); en employant les équations (Q) du §. V , nous

trouverons

(Aa/'+4-B'c'4-C'5'") (c"'4-5" Cossa-f-a""Cos.B)==(Cc/'4A'b"'4B'a/’) (a/'4-b/ Cos.y4-c""Cos.8) ;
[¢8))

(Bb/'~Cla/'=4-A'c!") (c!'4-b/"Cos.a--a"Cos.8)==(Cc/4A'b/4-B'a") (b4-c" Cos.a~}-a/'C05.%) §

RO a’ .
Si Yon proctde & I'élimination de — entre ces deux équations,
. .

on parviendra , en définitif , 3 deux équations de la forme

u a
(5 )+ur=o,

b \3 B’ \2 3%
ORICOTECHEN

(12)
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" .
dans lesquelles M , M/ renfermeront iT , mais o0 N, N/, N/,
N/ ne seront fonctions que de « , 8, v et des coefficiens de
Iéquation (1).

Or , comme toute équation du troisidme degré a toujours au moins
une racine réelle, il sensuit qu’il existe , pour toutes les surfaces
du second ordre , un axe des 2/, perpendiculaire 4 un plan des
'y’ , de maniére que V'équation générale de ces surfaces ne renferme
plus les rectangles a’/z/, 4/z/; ct, comme on peut toujours chasser
le rectangle a/y/ qui reste encore dans l'équation , on en conclut
que, non sculement on trouve un axe des z/, perpendiculaire au
plan des x’/y/, qui prive la nouvelle équation des rectangles a/z/,
y/z/ , mais encore qu’il existe un axe des 2/, perpendiculaire au
plan des 472/, et un axe des y/, perpendiculaire au plan des a’z/,
jouissant des mémes proprietés, Or, si l'on écrit que Paxe (4) des
y/ est perpendiculaire au plan

(Aa'4B/c'+C' ) x4-(Bb/~4-Cla’4-A'c" )y +4-(Cc/4-A'b/~+B'a’) z=0
qui contient les axes des 2/ et z/, on parviendra aux mémes équa=
tions (11) , en y changeant o/, 0", ¢/ en a’, ¥, ¢/; dou il

al

. , . . 14 .
suit que les équations (11) déterminent —- ¢t — ,en méme temps

o al .
que — , — ; on prouvera de méme que le troisiéme systeme de
o cll

. . , . b a
racines , tiré des équations (12), est — et -
c

1l résulte de ce qui précéde que, dans le cas ot les axes qui doivent
priver léquation de la surface des trois rectangles a’y’, y’/z/, 2’2/
doivent étre rectangulaires , leur direction est absolument déterminée
et unique, et qu’alors les coefficiens de l’équation (10) sont réels
et déterminés.

Il reste présentement & faire connaitre , pour les surfaces du
second ordre qui ont un centre, I'dquation qui détermine les gran-
deurs des diamétres principaux. La chose se réduit a calculer les
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cocfliciens P, P/, P” de l'équation (10). A cet effet , dcrivons les
résultats des substitutions des valeurs (2) dans I’équation (1), en
ayant égard aux équations (G), (7), (8); nous trouverons

(Aa *~+-Bb *+-Cc *4-2A'b ¢ +2Bc a +=2C'a b Ya*
~+(Ada’ *+-BY *4-Cc' *~H-2A'Y ¢/ ++2B'c! a’ +=2C'a’ b/ )y
+(Aa//’+35//’+C’c”’-—{—zA/ZJ/"c//+2B/c/’af“+2C’a”&”)z“
~+(2 Q 22 Q/y/__l_z Q// z/_.l_ D)

et partant

(13) Pl'=Aa/*+-Bb/*+ C!* 2 A/4//c/ S-2 B e/ al 42 Clal B!
si donc on élimine @/ y b, ¢/ des équations (11) , (13) et de

I'équation de relation formée d’aprés I'équation (S) du §. V, on
trouvera 'équation qui doit déterminer P/ ; mais , comme ces équatiens ,
ont lieu, de la méme manitre , en changeant a”, 4/, ¢/, P/ en
a,b,c,Pouena,b, c, P,ilsensuit que P, P/, P" sont
donnés par une méme équation du troisitme degré.

Il s’agit donc actuellement d’effectuer le calcul qui vient d’éire
indiqué ; mais auparavant débarrassons @, &, ¢ des accens qui les
affectent dans les équations (11) et (13), et joignons-y l'équation
(S), ce qui donnera

(14) (Aa4-Bc4Cb)(c4aCos.f+4-bCos.c)=2(Cc-A'b-}-B'a) (a~4-5Cos.+cCos.8) ,
¢ 5) (Bb4-Cla4-A'c) (c4aCos.p+4-bCos.e)=(Cc4-A'0~4B'a) (b4cCos.«44Co0s.9) ,
6)  Aa?4-Bb>~4-Ce2fe2A'bc4-2B/cad-2C'ab=P ,

(17  af-bdc24-2bcCos.af-2caCos.ff-2abCos.y=1.

Posons ensuite
Aat+B/c+Cb=L |,
(18) Bb+-Clat-A'c=L" ,
Ce+A'V+Bla=L1" ;

les trois premiéres deviendront alors
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'L (c}-aCos.8+5Cos.«) = L/(a~+bCos.,~4-cCos.s) ,
(19) I/\¢+aCos.p+4-bCos.a) = L/ b4-cCos.e+aCos v) ,
La+-L'b+L/'c=P.
Si I'on chasse successivement de ces équations deux des trois quan-
tites L, L/, L, en ayant égard 4 l’équation (17), il viendra
L =P(a+4-5Cos.y4-cCos.g) ,
(20) L/ = P(b~+cCos.«+aCos.y) ,
L/’ = P(¢+}aCos.p+45Cos.«) ,
et, en comparant aux équations (18) .
(P—A)a+4-(PCos.y—C")o-(PCos.e—B')e=0 ;
(21) (P—B)b+4-(PCos.«—A")c4-(PCos.y—Ca=o ,
(P—C)c+-(PCos.p—B’)a-+(PCos.a—ANb=o0 .

Eliminant ¢ et 5, entre ces équations, ¢ disparaitra de lui-méme;
et il viendra

(P—A)P—B)P—C)+42(PCos.a—A")(PCos.6—~B')(PCos.,~—C")
F(P-A)(PCos.u~A"y*4~(P-B)PCos.g~B’)*=~(P-C)(PCos.y-C')*=0 ,
ou, en développant et ordonnant

‘ (x—"Cos.“u--Cos.‘p-—Cos.‘y+2Coa.aGos.pCos.y)P’

ASin.*a —2.A4/(Cos.«=—Cos.8Cos.y)
¢ =BSin.?g —2B/(Cos.6—Cos.,Cos.«) ) P2
~-CSin.?y— 2C/(Cos.y—Cos.xCos.s)

BC—A"*+4-2(B/C'—~AA")Cos.«
+{ +-CA—~B"*~+2(C'4’—~BB/)Cos.p ) P
~++AB—C"*~4-2(A4’B'—CC')Cos.y
--(ABC-—AA”——BB/’—CC/*+2A’B/C/)::0 :

. a b .
et les quantités — » 7 seront déterminées par les équations

{ (P—A)
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{(P—AYP—B)—(PCos.,— C'y} —

- {(P=B)(PCos.p~B/)—(PCos.a—A"YPCos.,—C")} =0 ,
(23)
{(P—AYP—B)—(PCos,—C/y} -

~+{{P—A) PCos.a—.A")—(PCos.c— B/')(PCos.y—C} =o0.

Si l'on joint & ces deux équations I'équation (17), on aura tout ce
qu’il faut pour determiner @ , 4, ¢; et partant, on pourra calculer,
dans l'équation (10), les coeflicicns @, @/, Q”.

Il est maintenant facile de conclure des équations précédentes,
quelles modifications il faut y apperter , pour qu’elles fassent con-
naitre les grandeurs des diamétres principaux , dans les surfaces du
second ordre qui ont un centre. On sait en effet que, pour ces
surfaces , si I'on transporte l'origine des coordonnédes au centre , les
termes affectés des premiéres puissances de z, ¥, z disparaissent
de son équation. Ainsi, I’équation (1), aprés y avoir fait disparaitre
les premitres puissances de &, y, z, deviendra

Ax*+4-By* 4+ Cz*~-2Ad'y 2B za+2C/xy=H ;
d'ot il suit que I'dquation (10) prendra la forme
P/~ Ply*-Pz* = H,

. 1 T .. 4
Représentant donc par 7™ le quarré d’un demi-diaméire principal ;

H H .
on aura 71*= 7 dout P= T substituant cette valeur de P dang

les équations (22) ef (23), on trouvera les équations qui déterminent
la situation et la grandenr des diameétres principaux. On doit observer,
au surplus, que l’équation qui a pour racines les trois valeurs de
T* a nécessairement ses racines reelles , comme nous I'avons déja
démontré , en fairant voir que P, P/, P/ sont des quantités réelles.
Nous discuterons ici quatre cas différens des surfaces du second ordre.

Premicer cas. Si lequation (22) n'a aucune racine nulle , on

Tom., 1V. 15
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pourra toujours faire disparaitre les premitres puissances de z, ¥, z,
dans Déquation (1), et par conséquent réduire l'équation (10) a la
forme
Px/*4-Plyr-4-PrlizP=H ;

donc 1.° on aura Vellipsoide , un point ou une surface imaginaire ;
lorsque les racines de I'équation (22) seront toutes de méme signe.

2.° On obtiendra les Ayperboloides 4 une ou a deux mnappes,
on une surface conique, lorsque les racines de Véquation (21) ne
seront pas toutes de mémes signes.

Deuziéme cas. Supposons que l'équation (22) ait une seule racine
nulle ; I'équation (10) prend alors la forme

Pu* Pyl 42Qu/t-2Qy'+2Q/z2/4+D=o0 ;
donc 1.° on aura le paraboloide elliptique, ou une surface imagi-
naire , lorsque les deux racines de l’équation (22) seront de méme
signe , sans que @’/ soit zéro.

2.° On aura le paraboloide hyperbolique ou le systtme de deux
plans , lorsque les deux seules racines effectives de I'équation (22)
seront de signes contraires.

3.° Dans le cas particulier ou Q/=o0, quels que soient d’ailleurs
les signes des deux racines effectives de l'équation (22), la surface
est un cylindre; or, comme l'équation (=0 est satisfaite , lors-
qu'en particulier on a A4/=o0, B/=0, C”=o0; il sensuit que
Yéquation

ABC—AA”*»—BB*—CC"*~424'B'C'=o0 ,
suffit pour exprimer que la surface représentée par I'équation
Ax*+By*4-Cz*d2A'yz+-2B zo4-2C'vy4-D=0
est cylindrique. Il est remarquable que cette équation de condition
est indépendante de «, g, 4.

Troisiéme cas. Si deux des racines de I'équation (22) sont nulles,

I'équation (10) prendra la forme

Palrd-2Qa’2Qy'4-20Q"2'4D=0 ;
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elle représente une surface cylindrique , deux plans paralleles ou ure
surface imaginaire.

Quatriéme cas. Supposons 1.° que la surface (1) soit sphérique,
il y a alors une infinité de systtmes de diamétres principaux; et,
comme les équations d’un diameétre principal sont

x=ar , y=br, z=er ;
il s'ensuit que @ , & , ¢ seront quelconques. Exprimant donc que
les équations (21) laissent @, &, ¢ indcterminés , on aura
A=B=C=P
A’=PCos.. , B'—=PCos.z , C/=PCos.y.

2.° Supposons que la surface soit simplement de révolution autour

de 'un des axes, alors les équations (21) devront étre les mémes

a un facteur prés; d’out I'on déduira les équations

P—A PCos.o—C/ PCos.p==B/

’

PCos.p—B’ T PCosie—dA! T P—C
(24)

PCos.yy—C’ P—B PCos.com A"

PCos.s—B' PCos.a—A'— P—C ?

on trouvera la racine P commune 3 ces équations par la théorie
du plus grand commun diviseur. Ega]ant ensuite les valeurs de P,
on aura deux équations de condition, qui exprimeront, si elles ont
lieu , que la surface proposée du second ordre est de révolution
autour d’un axe.

On obtient aussi Iéquation du plan qui eoupe la surface de ré-
volution suivant un cercle , en éliminant @, &, ¢ entre les équations
(3) et l'une des équations (21); on a pour résultat

(25) (P—A)x~+(PCos.y— C’)y~+(PCos.e—~B)z=o0,
Pour donner un exemple de cette théorie, supposons
¢e= B, = un ang]e droit ;

les équations (24) et (25) deviendront
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g PO _p O, 4w
P =iy =

B/Cx+C' A'y+A'B'z=0 ,
égalant les valeurs de P, deux & deux , on obtiendra les équations
A' B A—B)4-C{A*—B*)=o0 ,
(26) B'C/(B—C)+A/(B*—C")=06 ,
CA(C—A)+B/Cr—A4A")=0 ,
dont deux comportent la troisieme. Elles expriment que I'équation (1)

appartient & une surface de révolution. L’equation (22) devient, en
vertu des équations (20)

BC) - CA AR
gP-—-—A-—-—-—E gP—-—-A-—-—-——-—:—} =o.
A B C

1l nous resterait & examiner ce qui arrive dans ces résultats, lorsque
un , deux ou trois rectangles des coordonnées manquent dans ’équa-
tion (1) ; mais nous renvoyons, pour cet objet, & notre mémoire qui

traite de ces mémes équations ( page 144 du 2. volume des Annales
de Mathématiques. )

On peut déduire des théories précédentes d'autres conséquences
trés-importantes ; ainsi, par exemple, on démontre trés-facilement,
au moyen de l'équation (22) , trois théorémes principaux sur les
surfaces du second ordre ( voyez, pour cet objet, un mémoire de
M. Bérard , page 105 du 3.° volume des Annales de Mathématiques ).
Nous discuterons seulement le cas particulier oti les surfaces du second

ordre dégénérent en deux plans paralléles , et également distans de
Vorigine des coordonnées. L’équation

Az*-By*4-Cz*2d'yz4-2B/za+4-2C'zy=H ,
prend alors la forme

(ma~ny=pz)*—1=0
st I'équation en T* devient
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mSSiﬂ.3x—2np(C084n—COS.ﬁCOS.7)
—~+-n°Sin.?g—2pm Cos.s—Cos.»Cos.«) y T*
~+-p*Sin.?y — 2mn(Cos.y—Cos.«Cos.8)
= 1—Cos.22a—Cos.28—Cos.?y42Cos.«Cos.2Cos.5.

Cette équation donne la longueur d’une perpendiculaire abaisséc de
Vorigine des coordonnées sur le plan

mx~nytpz=1 |
et elle coincide parfaitement avec Iéquation (R) du §. V.

Nous terminerons, sur cette théorie, en observant que la méthode
que nous avons employée, pour les surfaces du second ordre, est
exactement applicable aux lignes du méme ordre, rapportées & un
systtme primitif quelconque de coordonnées. Mais on peut, pour
ces lignes, obtenir de suite I'équation qui détermine les quarrés des
demi-diamétres principaux. En effet, soit posée I'équation

Az*++By*~+2Cxy=D ,

et soit y==mux cclle d’'un diametre de la courbe. Si T'on cherche
Pintersection du diametre avec la courbe , puis la distance r de
Porigine & ce point d’intersection, en se rappelant la formule

r*=z>+y*~-22yCos.y , ol ,=Ang.(x,y)
on aura l'équation

D(1-+m>~amCos.y) =r*(Am*+B+2Cm)

ou '
(Ar* = DYm*~-2(Cr*—=DCos.ym--(Br*~D) =0 ;
qui sera telle qu'en donnant une valeur a 7, il en résultera deux
valeurs correspondantes- pour m ; c’est-a-dire , que, généralement,
il existe toujours deux diamétres de méme longueur qui ont des direc-
tions différentes. Si maintenant on suppose que 7 désigne la lon-
gueur d’un demi-diametre principal , alors les deux diamétres égaux
qui répondront i cette hypothése se confondront en un seul ; les
valeurs correspondantes de 7 devront donc étre égales. Ecrivant dong
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la condition d'égalité des racines de I'équation en m , on trouvera
que les quarrés des longueurs des demi-diametres principaux sont
déterminés par I'équation

(AB—C?)r+D(A-+B —2CCosy)r*-+D*Sin.>,y=o.

De semblables considérations pourraient étre appliquées & la recherche
des longueurs des diametres principaux , dans les surfaces du second
ordre qui ont un centre.

Généralement , on peut parvenir aux équations qui déterminent les
diamétres principaux , soit dans les lignes soit dans les surfaces du
second ordre , en partant d’une propriété quelconque qui ne puisse
convenir qu'a cux seuls ; ainsi la propriété des maximis et minimis.
dont ils jouissent exclusivement se préte trés-aisément a cet usage,
et c'est d’elle, en effet , que M. Bérard est parti , pour parvenir
aux formules dont la recherche a fait le sujet du présent mémoire
et de l'autre que nous avons déja rappelé. Mais, nous ferons & ce
sujet la remarque que voici: c’est que, comme on ne démontre
les propriétés des lignes et surfaces du second ordre , relatives a
leurs diamétres principaux, quaprés avoir ramené leurs équations
aux formes respectives _

Py*+-Py:=H , Pzx*+Ply*+Plz*=H ;
il s’ensuit qu'on ne peut employer ces propriétés, dans la recherche
de P, P/, P/, quaprés avoir démontré , a prior: , que ces
équations donnent toutes les lignes et surfaces de cet ordre qui ont
un centre. Les démonstrations des mémes formules, par MM. Monge
et Hachette , ‘qui*'se trouvent dans la Correspondance sur lécole
polytechnigue -( 2.* vol. , n.° 5, janvier 1812 ), sont aussi sujettes
aux mémes inconvéniens. 1l me parait donc plus convenable ct: plus

.

direct d’élablir'd*abord, par la transformation des coordonnées , les
équations qui font connaitre la situation et la grandeur des demi-
diametres principaux ; et cest ce que j’ai cherché a faire , dans
ce mémoire, de la manitre la plus simple, et en méme temps la
plus générale. ' ‘ o
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ANALISE.

Détermination i nombre des termes dune équation
compléte d'un degre quelconque , entre un nombre
quelconque d'inconnues.

HRecherche des principales formules de la théorie des
nombres figures.

Deémonstration du principe qur sert de fondement &
la méthode publice par M. Bupan, pour la résolu-
lion des €quations numeriques ; ‘

Par M. GERGONNE.

[a %a Vo Sia Via Vo STVl V)

JE réunis ici , dans un méme article , diverses théories qui , A
raison de la liaison étroite qui existe entre elles , ne peuvent que
se simplifier beaucoup par leur rapprochement.

§ L

Détermination du nombre des termes d'une équation compléte dun
degré queléonque , entre un nombre quelconque d'inconnues.

Soit m le degré d’une équation compléte entre 7 inconnues ; le
nombre des termes de cette équation sera une fonction de m et
de 2 quil s’agit de déterminer , et que nous représenterons par
'Am,n' .

Pour plus de simplicité , concevons que les coefficiens de tous
Jes termes de cette équation soient positifs et égaux a l'unité: ce
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qui ne changera rien A la nature du probléme. I'équation proposée
devant renfermer tous les termes de I'équation complete du (m—1)™¢
degré , entre 2~ inconnues, plus la totalité des termes du m.™¢ ordre,

entre les mémes inconnues ; en désignant par ¢ le nombre de ces
derniers , on devra avoir I'équation

'Am,": m—-l,n+"- (1)
Il s'agit présentement de déterminer .

Pour cela, concevons que 'on multiplie chacun des termes d’ordres
inférieurs & m par une somme de puissances semblables des z in-
connues , dont les cxposans soient tels que ces multiplications donnent
toutes des produits de l'ordre 2 : ce qui exigera que l'on multiplie
le terme tout connu 1 par &™4yM4-z74....., Uensemble des
termes du premier ordre par a™" g™~ f4-zm ... .., et ainsi
de suite ; il est clair que le nombre total des termes de ces pro-
duits , abstraction faite de toute réduction, sera #.4,, ., -

Or, je dis que ces mémes termes ne seront autre chose que les
termes du m.™° ordre de la proposée, écrits chacun m fois. En
effet , en représentant généralement.I’un de ces derniers par a%yPz?...,
avec la condition e--g-»-+.....==m , on voit qu'il aura ét¢ formé
autant de fois qu'il y a de maniéres de diminuer successivement
chacun de ses exposans de toutes les unités qu’il renferme; c’esty
3-dire , de 7 maniéres différentes.

On a donc, d’aprés cela

n
nApy_y y=mp , dou p= - Y (2)
et par conséquent (1)
n mef-n
-Am,n-:' m--t,n+ ';;’ Am-l,n::TAm—h'l }
ou enfin
mA,,,,,,= (m-tn)Adp,_, r (3)

En changeant successivement, dans cette équation, m en m—rx,

m—2,
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m=—2, m=3,....2, 1, et remarquant que A,,,A=n+x , il viendra
mAm),,=(m+n)Am_,‘,, 5 ’
(=)A= (mtn—2)dp.,
(m=2)d s p=(mn—x)dp_, . ,
24, ,=(+2)4,,,
A, =41 ;
ce qui donnera, en multipliant , supprimant les facteurs communs
aux deux membres de 1’équation produit, et tirant la valeur de

Any (%) 5

Am,n-‘: ”+I."+2."'*3'3' ““"_i‘z ) (4)
2 m

formule qui résout le probleéme.
Cette solution, la plus simple que je connaisse , m’a été commu-
niquée par M. G. Fornier , éléve trés-distingué du lycée de Nismes.
Si I'on multiplie, haut et bas, la valeur de A4, par 1.2.3...77,

clle devient
12300000 .. {m—-n)

1.2.3v00mX 12300

myn =

ou, en adoptant les notations de M., Kramp (**),
’ (m~fn)!
A= = -
m:n.
On voit alors que 4,, est une fonction symétrique de m et 2, et
qu'ainsi on doit avoir
A=Ay 3 )

ce qui revient & dire qu'iZ y @ aufant de termes dans une équation
compléte du n™¢ degré entre m inconnues qu'il y en a dans ung
équation compléte du m.™° degré entre n inconnues.

(") Voyez la note de la page 200 du second volume de ce recueil
¢*") Voyez la note de la page i.re du 3.e volume de ce recueil.

Tom. 1V, 16
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§ 1L

Recherche des 'principales jformules de la théorie des nombres
Sfigurés.
T
Parce que A,,,’,, est une fonction symétrique des nombres m et n,

nous emploirons, & l'avenir , pour représenter cette fonction, la no-
tation plus simple

App=(m , n).
En conséquence , nous aurons
(m ,n)=(n ,m), (6)
et, quels que soient p et ¢
(0,7)=(0, 9)=(p, 0)=(g, 0)=1. 4]
Cette notation admise , I'équation (3) , dans laquelle on peut
permuter entre eux les nombres m et n, donnera
m(m , n’ =(m-n)(m—1 , n} ,
nm, n)y=(mA-n)m,n—1) ;
la somme de ces deux équations, divisée par m-tnz, sera
(m s my=(m—1, m)H(m, n—1) 3 ®)
or, en se rappelant les équations (7), on voit que cette derniére

exprime la construction du triangle arithmétique ; et qu’a'msi (m, n)
est la formule générale des nombres figurés.

L’équation (6) exprime donc que Ze (n4-1)™° nombre figuré du
m.™° ordre est égal au (m--1)y™°¢ nombre figuré du n™° ordre;
et 'équation (8) exprime que /e (m~~1)™° nombre figuré du n.>®
ordre , ou le (n4-1)™° nombre figuré du m™¢ ordre, est la somme

du mX™°® nombre figuré du n™¢ ordre et du n™° nombre figuré
du m.™¢ ordre,

De cette derniére on tire
(m , n)—(m—1, n)=(m ,n—1i) ;

substituant successivement pour 7, dans celle-ci, les nombres 1,
2, 3,e.0..m, il viendra
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(1,7)— 1 =(1,n—1),
(2, n)—(1,n)=(2, n—1) ,
G,n)—(2,n)=(3, n—1) ,
(m , n)—~(m—1 , n)=(m , n—1)
ajoutant ces dernidres et réduisant , on aura

(m,n):(n,m)':.(o,n-—-x)+(I,n-——l)—-l—(z,n—-l)+....+(m,n-—-1); (9)
et I'on aurait pareillement

(m,n) =(nyn)=(0,m~—1)+(1,m—1)+(2,m—1)4..(n,m—1) ;
c’est-a-dire , que le (n=4-1)™¢ nombre figuré du m.™¢ ordre, oule
(m~4-1)™¢ nombre figuré du n™° ordre , est égal & la somme des
n™¢ nombres figurés de tous les ordres jusqui’au m™° ordre inclu-
sivement ; ou encore & la somme des m—-1 premiers nombres
figurés du (n—1)™° ordre.

Je terminerai par donner , d’aprés M. Lhuilier (*), la sommation
des Znverses des nombres figurés. 11 est aisé de se convaincre, par
le développement et les réductions , que Déquation suivante est
identique

1 - (n—1)f m! (m=-1)!
(m—frnm—z)! - (m4-n—1)! } (I °)

Si l’'on y substitue successivement pour 72 les nombres 0, 1,2,.:.m,

1 (n-—-l)! 1 1!
o — o}

(m 3 n—1) -2

il viendra

©,n=—1) n=2 {(@=—2)! (n—1)!
I (n-—l)‘ 2!
(a,n—1) %(n-—x)‘ nl } ¢
: n—n's 2 __._2_.§~
(2,71——1) z n! (n~1)!

@ + 8 o e 2 @ ¢ o & o & o o o e &+ o o g

£ Voyez ses Elémens raisonnés dalgibres
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1 _ (p=1)! m! __ (4 )

m,n—1) n—2 ((m4n—2)! (nfn—n!§’
d'ol , en ajoutant et réduisant , -

1 1 1
©, n=i) + (1, n—1) + (2 5 n=—1) +‘+ @n ,n—1)
_ (n=—1)! g b4 (m—4-1)!
T s ((—2)! (m+n—l)1} >
ou encore )
1 1 2
(0 ,n=—1) (1, n—I) (2,n-—1)+m'+ (m , n—1)
N1 1
- n--zg = (m—-1, n—z)% ’ <II>

Si, dans cette dernitre formule , on suppose 2= oo , elle deviendra
simplement ,

I I I 1 71

(o, n-—-1)+ (1, n—1) + (2, n=1) + 3,n—1) o= n—z ’ (l

\
2)
c’est-a-dire ,

+ "i“— 1 +_ 2 3 4 R

a0 s — .

n 72+l n.n+ n—2 n-1 n+z'n+3‘ n=——2
. L

Démonstration du principe qui sert de fondement a la méthode

donnée par M. BUDAN , pour la résolution des équations nu-
mériques.

Soient P, o , Poyy Poy s PojyoeeieePoyer s Popsarvens les
termes de la premlére lngne hornz,ontale d’une table 3 double entrée,
dont la loi soit telle qu'un terme quelconque de cette table soit égal
a celui qui le précéde immédiatement & gauche, augmenté de celui
qui est immédiatement au - dessus de lui. En désignant par P, ce
terme quelconque, on aura

Pow=Pyy Py (13)

Pour connaitre ce terme P, ,, il est clair qu'il sera nécessaire et

suffisant de connaitre les termes de la premiére ligne horizontale,

jusquau terme P, , inclusivement ; d'ot on peut conclure que si
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on trouve une expression de P,, qui, renfermant la totalité de

A

ces termes , satisfasse & léquation (13), elle en sera la valeur
compléte.
Or, l’expression
Pyw=(k—1,n)P, ;A-(k—1,n—1)P A (k—1,1)P, ., F(hk—1,0)P,, , (14)
satisfait d’abord & la premitre de ces deux conditions; elle satisfait
en outre & la seconde. On en tire en effet

Pk-n,l=(/[_2”2)Po,o+(/f'—2?n__l)Po,t+"'+(l£-—'2?t>Po,u-l+<kf210>‘p.,u 1 4

Pkl,,_l=(/{-——I,ﬂ—]>P°J°+(/f—l,fl—2>Po,!+...+(/f—T,O)Po’,,_‘ ’

d’oll on conclut, en ajoutant, et ayant égard a I’équation (8),
Pk_l’,,—[-Pk’,l_,==<lf——1,n>P°,°+<k-—-I,Il—l)Po,,—i—...—i—(il—I,I)PQJH-‘-F(;[—I,O)PO‘,,:Pk,,,;
ce qui est précisément l'équation (13).

Si, dans I'équation (14) , on change % en m—n--1 , clle deviendra
Py i p=m—n,n)P, +m—nn—1)P, 4..~4(m—n,0)P, ,; (15)
équation qui va nous servir tout & I’heure.

Dans la table 4 double entrée dont il sagit ici , les termes de
la seconde ligne sont dits les sommes premiéres de ceux de la

premiére ; ccux de la troisi¢éme en sont dits les sommes secondes ,
et ainsi de suite,

Soit présentement 1’équation quelconque
P, 2" P, 3" P, 2" e P g Py 2P =0, (16)

Soit pos¢ z—1=y , d’od #=y-}1. En substituant, et conservant
toujours les mémes notations , il viendra

P oy " (m—1,)P o |y rd-(m—n , n)Po, 'y P, | =0 5 (17)
A-(m—1,0)P, |  —AeeA-(m—nn—1)P, “+...4-P,,,
~+itd-(M—n,n—2)P, , ~+.ed-P, .,

P B Syt

~+.wt-(m—~n , 0)P,, ...

+
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équation qui, en vertu des formules (7, 14 et 15), devient simplement
Pm+ 5,50 ‘.'ym+Pm,x 'ym.l+Pm'l,1 '.ym-z+"+Pm-n+l,n 'ym."+"+Pl ym=0e (18)

Ainsi, les coegfficiens successifs , de gauche & droite , des termes
de l'équation dont les racines sont celles d'une équation proposée
diminuée d’une unité , sont, & partir du premier terme , la pre-
miere somme (m-41)™¢, /o scconde somme m.™® , /g troisiéme
somme (me——1)"¢, ¢t ainsi de suite, des coefficiens de la proposée.

Cest sur ce principe que repose la méthode publice par M.
Budan , pour la résolution des équations numériques ; méthode qui
n'exige uniquement que l'usage de l'addition et de la soustraction.

Rien n’est plus facile, d'aprés cela, que de diminuer les racines
d’une équation d’'une unitd. Que I'équation proposée soit

bat—8z—112°}15204-24=0 ,
par le procédé indiqué ci-dessus , on formera la table suivante :

5—8—114154-24,

5—3—14+4-29+53 ,
5+4-2—124-17,
5+7—5 >

54-12,
5,

et équation transformée sera
5 (w1 )t12(@—1 3 —5(2mm1 ) F 17 (2—1)4-53=0 ;

identique avec la proposée. Nous renvoyons, pour les applications,
A Vouyrage de M. Budan,
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e

QUESTIONS RESOLUES.

Solution du probléme d Arithmeétique proposé ¢ la
page 384 du 3. yolume de ce recueil ;

Par un ABONNE,

[ %2 Y Vo Vo Vo W, W V)

ENONCE. Etant donné le produit de la multiplication &'un
nombre de plusicurs chiffres par un autre nombre , dont les chiffres

ne sont que ceux du premicr, écrits dans un ordre rétrograde ;
trouver les deux facteurs P

Le premier moyen qui s’offre & I'esprit,, pour résoudre le pro-
bléme proposé , est d’écrire , sur une méme ligne, tous les diviseurs
du nombre donné ; de former une seconde ligne des- quotiens ob-
tenus en divisant le nombre donné par les nombres de la premiere
ligne , et de comparer enfin les nombres correspondans dans les
deux lignes. Il est clair, en effet, que tous ceux de la seconde
ligne qui ne différeront de leurs correspondans dans la premiére
qu’en ce que les mémes chiffres y seront écrits dans un ordre ré-
trograde , pourront, avec ces correspondans , éire pris pour les deux
facteurs cherchés.

Il est meme aisé de voir qu’on peut n’éerire dans la premiére
ligne que ceux des diviseurs du nombre proposé qui n'exceédent
pas sa racine quarrée et borner de méme ceux de la seconde ligne
aux quoticns que ccux-ci fourniront, puisqu’en les prolongeant plus
loin l'un et V'autre, on ne ferait que répéter , dans la ligne inféricure,
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des nombres déji écrits dans la ligne supérieure, et pice persd.
Exemple. Soit le produit donné 252,
La racine quarrée de 252 tombant entre 15 et 16, on bornera

la premiére ligne aux nombres inférieurs & ce dernier, ce qui
donnera

Diviseurs .... 1, 2, 3, 4, 6, 7, g, 12, 14
Quotiens..... 252 , 126 , 84 , 63 , 42, 36 , 28 , 21 , 18.

d’olt on conclura que les facteurs cherchés sont 12 et 21, dont le
produit est en effet 252 ; et qu’ainsi le probléme n’a qu’une solution.

Mais cette méthode , bonne tout aa plus pour de trés-petits nombres,
deviendrait , pour ainsi dire , impraticable par sa longueur, sil’on
voulait l'appliquer 4 des nombres tant soit peu considérables. 11
faut donc en chercher une autre qui n’ait point cet inconvénient.
Pour y parvenir plus facilement, proposons-nous d’abord le probléme
que voici :

PROBLEME. Etant donné le produit d'un polyndéme ordonné
par rapport & une lettre quelconque , par un autre polyndéme du
méme degré , ordonné par rapport & la méme lettre , et ayant pour
ses coefficiens les coefficiens du premier , écrits dans un erdre
rétrograde ; irouver les deux facteurs ?

Limites du probléme. Pour que le probléme soit possible , Ie
polynome donné doit étre d’un degré pair; et ee polynéme doit
étre réciproque ; c’est-a-dire , que ses termes, a égale distance des
extrémes , doivent avoir les mémes coefficiens.

Mode général de solution. Soit le polynéme donné

R N s SN B i N B s 2.z o PN ¢ )
on supposera que les deux facteurs eherchés sont
Ax"4-Bx" ' -Gr+H, Ha"+Ga"'4ntd-Br+A4, (2)

dont le produit est
AH
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AH " AG o A F a0 e [ b AG ek AT 3)
+BH +B6 B | . +BH
- +CH O
S
S 2 QR
4G A+
1| A

exprimant donc que ce produit est identique avec le polynéme (»),
on obtiendra les #+4 1 équations

AH=a ,
AG+BH=b ,
AF4+BG+4CH=c¢ ,

A 4B A-C Ao F- 4G+ H* =1

lesquelles seront en nombre suffisant pour déterminer les n-}-1 eoef-
ficiens 4, B,....G, H, qui sont ici les inconnues du problé¢me,

Remargues. Comme le produit (1) nechange pas en changeant les si-
gnes de ses facteurs, il s'ensuit qu’a chaque valeur de chacun des coef-
ficiens 4, B,....G, H, il doit nécessairernent en répondre un
autre qui n'en différe que par le signe. Cette circonstance doit
donc doubler le degré des équations du probléme.

De plus, Iéchange des facteurs entre eux ne devant pas changer
le produit , et un méme coefficient se trouvant dans I'un occuper
le méme rang, en allant de gauche & droite, qu’il eccupe dans
Pautre , en allant de droite & gauche; il s'ensuit que les coefficiens
également distans des extrémes, dans I'un quelconque des facteurs,
doivent étre donnés, tous deux, par la méme équation : circonstance

Tom. 1V. 17
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qui doit encore, comme la premicre , doubler le degré des équations
du probléme.

Il faut pourtant remarquer que,lorsque n est un nombre pair,
il y a un coeflicient du milieu , qui occupe le méme rang dans
les deux facteurs; et auquel conséquemment la considération 4 laquelle
nous venons de¢ nous arréter n'est point applicable ; ce coefficient
doit donc alors étre déterminé par une équation moins élevée de
moiti¢ que celles qui déterminent les autres.

Ainsi , en résumé, la recherche de I'un quelconque des coefficiens
A, B,....G, H, devra généralement conduire a une équation ne
renfermant que des puissances paires de ce coefficient, et dont le
degré scra quadruple du nombre des solutions proprement dites que
le probléme pourra admettre ; mais le coefficient du milieu, lorsque
le nombre des coelliciens sera impair, sera donné par une équation
d’un degré moitié moindre.

Il est aisé, au surplus, d’éviter I'embarras des équations de degrés
trop élevés , et d’en avoir dont le degré soit précisément égal au
nombre des solutions du probléme. 1l ne s’agit, pour cela, que
de substituer aux inconnues primitives 4, B,....G, H, les in-
connues AH, A*+H*, BG, B*4G*,....1l est évident, en eflet,
que ces nouvelles inconnues sont & la fois indifférentes et aux signes
des facteurs et au renversement de leurs coefliciens.

Eclaircissons présentement ces généralités par la considération de

quelques cas particuliers, de plus en plus compliqués.
Premier cas. n=1.

Soit le produit proposé
ax*bxta.
En posant ce produit égal &
(Az+B)(Bax~+A)=ABx*-(A*+B*)x+A4B ,

en aura, pour déterminer A et B, les deux dquations
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AB=a , A+B=b ;
ajoutant et refranchant successivement 3 la seconde le double de
la premiére et extrayant ensuite la racine quarrée des deux mem-
bres , il viendra

A-{-B:\/b-}-za ’ A—B= \/[)—-—:m s

d’ot
A=1{y/ b+tza+y/ b—z2a}, B=1{y/ bFrza—\/b—2al;
Ainsi le produit donné, décomposé en facteurs, sera
§: [V bq2atv i—a]a [V igza—y/ b—2a] }
X {5 [V od2a—V 1=za] 2+ L [V bqzaty/ 1—2a] } -
Application. Si le produit donné est
18224452418

on aura @=18, b=45 , b42a=81 , b—2a=q , ViFea=g ,

Vi—20=3, ; [V btt2at+Vb=22]=6, [V idza—\ b—2a]=3,
et ce produit décomposé sera

(32-+6)(6243).

Deuzitme cas. n=2.
Soit le produit proposé
axrt a4 +-bata.
En posant ce produit égal i
(Az*+4-Br+4-C) Ca*~+Ba~+A)= ACx*+AB|x’+A*| x4 ABla+-AC , -

+BC| +B:| +BC
+-C

on aura, pour déterminer 4 , B, C les trois équations
AC=a, BA4+C)=b, A+C*=c—B>.
Si, 4 la troisitme équation , on ajoute le double de la premitre

il viendra
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. (A"‘I—C)z:((;-i—za)__Bz ;
mais la seconde donne

b2
(A+Cy= = ;

on aura donc, par l'égalité de ces deux valeurs,

Bt—(¢c4-2a)B*+-b>=0
d’ol , en négligeant le double signe de B,

B= I/ (c42a)+y/ (otear—ib

d’un autre coté, en retranchant le double de I'équation AC=a de

I'équation A*~4-C*=c—B*, et extrayant ensuite la racine quarrée,
il vient

A—C= \/(c—za)—-B2 5
et puisqu’on a d’ailleurs
b
A+C= -E A
on trouvera

b PSP b T e ——————
A= — 4 ==k, C=—5—; V e—2a)—B ;

au moyen de quoi tout sera connu , dans les deux facteurs du
produit donné.

Application. Si le produit donné est

122448234 412482412 ,

op aura a=12 , b=8 , c=41 , dou c+24=65, c—20=17
(c+2a)>=4225, (c420)*—48°=3969, V/ (H2a)—3b>=03 ,/B=—‘“1
ou 8, A=6 ou (14 =47), C=2 ou ;(1—y/=[7); le produit
décomposé sera donc

(22*4-246)(62°+-2--2) ,

ou bien
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by =) H8a4 (1—y/ Z))
<2 (1—y/ )& 84 £ (14 =) )

Troisiéme cas. n=3.

Soit le produit proposé

ax bz 4-cartdzdtcxtt-bat-a.
En posant ce produit égal a

(A2’ 4Bz +Ca4-DY Do+ Ca* 4Byt A)= AD2+AC | a°4+AB | zi4-A* | 2+
4BD| +BC| 4B | .-

+CcDl e | 4.

~+Dr

on aura, pour déterminer 4, B, C, D, les quatre équations
AD=g , AC{BD=b , AB+BCHACD=¢ , A*+B*+4-C*+D*=d,
en y joignant les quatre suivantes

AD=M , (1) A*+D*=P , 3)

BC=N, (3 BH4C=Q, ®)
elles deviendront
M=a,(5) AC{-BD=},(6) AB4+CD=c—N, (7) P+Q=4d,(8)
en prenant successivement le produit et la somme des quarrés des

équations (6) , (7), et ayant égard aux équations (1) , (2), (3),
(4), 11 vient

NP4MQ=bc—bN , (90 PQ44MN=(b24-c?)=2cN4N2,  (10)
dliminant M et N entre les équations (5), (9), (10), il viendra
a*(Q*— { PP—2b P*—[2a(ct-2a)—b*1P—L4abc } Q
+{(l)‘—i-c‘)P’—{-z&(_bz—-zac)P+b’(b’—4ac)} =0 ;

chassant enfin @ de cette équation , au moyen de I'équation (8),
elle deviendra
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P"-—{—(é&-——d)f”+(25“—25d~—.3a’-—2gc+cz>lh
~+(26-b°d- 4abe-4a*bt2a*dt-2acd ) P+(b4-4ab o+ fa*bd+-a*d) =o.

Telle est I'équation quil faudra résoudre pour avoir la valeur de
P; on aura ensuite

be—a

Q=d—P , M=a, N= Q

Pyp

et enlin
A=y Pyomi+y/ P—2bi}, B=:{y/F2N—y/ (=N},
C={y/0FaN+y G—=aN}, D=1{y/ Pgabi—y/ P—abi}.
Application. Si le produit donné est
1225456254332 t4-1222°4-332° 456212 ,

on aura @=12 , 4=56 , ¢=33, d=122; en conséquence , I’équa~

tion en P sera
Pi—10P3—7527P*—20560P-}10945600=0.
Cette dquation a deux racines réelles positives, dont I'une entitre qui est
4o et l'autre incommensurable , comprise entre 84 et 85 ; les deux
autres racines sont imaginaires. En ne conservant que la seule racine
P=4o , nous aurons
0=8 , M=12, N=g9,

A=6 , B=1, C=q9, D=2,
le produit décomposé sera donc

(62’ +2*~4-gr-+-2)(223+g2*4-2-+6).
On voit aisément ce quil y aurait a faire pour des produits de

degrés plus élevés.

Tout nombre pouvant étre considéré comme un polynéme or-
donné par rapport aux puissances de la base du systéme de¢ numé-
ration , le probleme d'arithmétique qui a été proposé ne differe
uniquement de celui qui vient de nous occuper qu'en ce que, dans
les multiplications numériques , les dixaines de chaque ordre vont
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continuellement se joindre , comme unités , avec les unités de l'ordre
immédiatement supérieur ; ct cn ce qu'on ne peut admettre, pour
les inconnues , que des valeurs enticres et positives moindres que 10.

Ce probléeme se résoudrait donc de la méme maniére que l'autre,
si I'on parvenait a faire rentrer dans chaque ordre les dixaines qu’on
en 2 fait sortir ; or, cest la unc chose trés-aisée, ainsi que nous
Pallons voir.

Exemple I. Soit le produit donné ==2268.

Ce produit devant étre un polynéme d’un nombre impair de termes,
le nombre de ses termes doit étre trois et le terme le plus élevé,
qui doit avoir deux chiffres , doit étre compris dans 22; mais comme
Pautre terme extréme , auquel celui-la doit étre égal, est termind
par 8, il sensuit que I'un et I'autre doivent étre égaux a 18, d'ou
il est aisé de conclure que celui du milicu est 45, ce qui, en effet,
compléte le produit total, ainsi qu’on-le voit ici

18004450418 ;
le probléme revient donc au cas ou il serait question du polynéme
182°4-452-18; on trouveradonc, par la premiére application ci-dessus
2268=36X63.

Ezemple I1. Soit le produit donné =132192.
On voit d’abord que les deux produits extrémes sont égaux 3
12, ce qui donne

1200004-12180-412 ;

décomposant de méme le nombre 1218 on trouvera 8 pour chacun
des produits extrémes, ce qui donnera

1200004800044 10048012 ;
il s’agira don¢ de décomposer le polynéme 12244827 +{ 1282412,
¢¢ qui donnera, par la seconde application,

132192=216 X612,
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Ezemple III. Soit le produit =18055872.
Ce produit se décomposant comme il suit

12000000+5600000--330000-+12200043 3004560412 ;
on trouvera, par le troisiéme cas,

18055872=2916 <6192,

QUESTIONS PROPOSEES.

Problémes de Geéomeétrie.

L DETERMINER Lellipse de plus grande surface inscriptible ou cir~
conscriptible & un triangle donné ?

II. Déterminer V’cllipsoide de plus grand volume inscriptible ou
circonscriptible 4 un tétraédre donné ?

Probleme d Analise.

«

‘Assigner le terme général du développement de la série

B SO SR Wi

§ —— [ —ac2 f—a3 B

ordonnée suivant les puissances ascendantes de 27 (*)

(*) Le géométre qui propose ce probléme observe que sa résolution offrirait
un caractére certain pour discerner les nombres qui sont premiers de ceux qui
ne le sont pas. Il est aisé de voir en eftet que, dans le terme général A,a",
e coeflicient A, n'est autre chose que le nombre abstrait qui indique combjen
Yexposant 7 a de diviseurs, y compris lui-méme et l'unité; de maniére que =
sera ou ne sera pas premier , suivant que sa subslitulion dans 4, rendra ce coeffi-
cient égal A 2 ou A unnombre plus grand que 2.
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PHILOSOPHIE MATHEMATIQUE.

Essai sur une maniére de representer les quantités
imaginaires , dans les constructions geomélriques;
Par M. ArcaxD.

[a Yo Vlo Vi Vi Sa o S

AU BEDACTEUR DES ANNALES,

MONSIEUR ,

LE mémoire de M. J. F. Francais quia paru i la page 61 du 4.°
volume des Annales , a pou;‘ objet d’exposer quelques nouveaux
principes de géométrie de position, dont les conséquences tendent
particuli¢rement & modifier les notions admises jusqu’ici sur la nature
des quantités imaginaires.

En terminant son mémoire, M. Frangais annonce qu’il a trouvé
le fond de ces nouvelles idées dans une lettre de M. Legendre qui
en parlait comme d'une chose qui lui avait été communiquée , ct
il témoigne le désir que le premier auteur de ces idées mette au
jour son travail sur ce sujet. Il y a tout lieu de croire que le
veeu de M. Frangais est depuis long-temps rempli. J’ai publié en 1806,
un opuscule sous le titre d’Essai sur une maniére de représenter
les quantités imaginaires , dans les constructions géométriques
dont les principes sont enti¢rement analogues a ceux de M. Francais,
ainsi que vous pourrez en juger par I'exemplaire que j’ai I'honncur
de vous adresser (*). M. Legendre a eu, dans le temps, la bonté
d’examiner mon manuscrit et de me donner ses avis , et ce doit
étre 14, si je ne m’abuse , la source de la communication dont

parle M. Francais.

(") L’ouvrage se trouve & Paris, chez lauteur, faubourg St-Marceau, ruc du

chemin de Gentilly, no 12.
J. D. G.

Tom. IV , n® ¥V, 1.°* novembre 1813 18
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L’éerit dont il s’agit n'ayant été répandu qu’a trés-petit nombre ,
il est extrémement probable qu’aucun de vos lecteurs n'en a con-
naissance ; et je crois pouvoir prendre cette occasion de leur en pré-
senter un extrait , présumant que cette matiére pourra les intéresser , au
moins par sa nouveaulé; ct faire naitre chez quelques-uns d’entre
eux des réllexions propres & perfectionner et a2 étendre une théorie
dont mon ouvrage ne présente encore que les premieres bases.

1. Si nous considérons la suite des grandeurs

A, 2a 5,30 , 4A yeeieins
‘nous pouvons concevoir chacun de ses termes comme naissant de
celui qui le précede , en verta d’une opération la méme pour tous,
et qui peut étre répétée indefiniment.

Dans la suite inverse )

eeveeida , 3a , 22 ,a, 0,
on peut également concevoir chaque terme comme provenant du
précédent ; mais la suite ne peut étre prolongée au-dela de zéro,
gu'autant qu’il sera possible d'opérer sur ce dernier terme comme
sur les précédens.

Or, si a désigne, par exemple, un objet matériel , comme un
Jranc , un gramme , les termes qui, dans la seconde suite , devraient
suivre zéro , ne peuvent rien représenter de réel. On doit donc les
qualifier d’’maginaires.

Si @, au eontraire , désigne un certain degré de pesanteur ,
agissant sur le bassin A d’une balance contenant des poids dans ses
deux bassins ; comme il est possible de diminuer @ , soit en enlevant
des poids au bassin A, soit en en ajoutant au bassin B, la suite
en question pourra étre prolongée au-dela de zéro; et —a, —2a,
—3a ,.... seront des quantités aussi réelles que 42 , 4-2a, +3a,....

Cette distinction des grandeurs en réelles et imaginaires est plutét
physique qu’analitique ; elle n'est pas d’ailleurs tout i fait insolite
dans le langage de la science. Le nom de jfoyer imaginaire est
usilé en optique , pour désigner le point de concours des rayons qui,
analitiquement parlant , sont négatifs.
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2. Lorsque nous comparons entre elles, sous le point de vue appelé
rapport géométrigue , deux quantités d’un genre susceptible de four-
nir des valeurs négatives , l'idée de ce rapport est évidemment com-—
plexe. Elle se compose 1.° de I'idée du rapport numdrique , dépendant
de leurs grandeurs respectives, considérées absolument; =.° de I'idée
du rapport des directions ou sens auxquels elles appartiennent :
rapport qui, dans ce cas-ci, ne peut étre que '/dentité ou l'oppo-
sition. Ainsi , quand nous disons que —Ha@:—b::—ma :-+mb,
nous énongons , non seulement que @ : 4 ::ma : mb , mais nous allir-
mons de plus que la direction de la quantité @ est, relativement
a la direction de la quantité —b& , ce que la direction de —ma est
rclativement & la direction de ~+m& ; et nous pouvons méme ex-
primer cette derniére conception d'une maniére absolue , en éerivant

(A) e ! EEE SE o) 8

3. Soit proposé maintenant de déterminer lamoyenne proportionnelle
entre 41 et —1, ¢’est-a-dire , d’assigner la quantité & qui satisfait
a la proportion

r:xiia—1,
On ne pourra égaler x 4 aucun nombre positif ou ndgatif, d’oi
il semble qu’on doit conclure que la quantité cherchée est imaginaire.

Mais , puisque nous avons trouvé plus haut que les quantités néga—
tives, qui paraissaientd’abord ne pouvoir exister que dans I'imagination,
acqui¢rent unc existence réelle , lorsque nous combinons I'idée de
la grandeur absolue avec celle de la direction ; I'analogie doit nous
porter & chercher si 'on ne pourrait pas obtenir un résultat ana-
logue , relativement & la quantité proposée.

Or, s’il existe une direction &, telle que la direction positive
soit & & ce que celle-ci est & la direction négative, en disignant
par 1, lunité prise dans la direction &, la proportion

(B) driagiin,i—1,
présentera 1.° une proporlion purement numeérique T:1::r:r, 2.°
une proportion ou similitude de rapports de dircction , analoguc a
eclle de la proportion (A); et, puisqu'on admet la virité de cctte
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dernitre, on ne saurait se refuser & reconnaitre également la légi-
timité de la proportion (B).

4. Nous allons encore établir ici une distinction physique entre
les quantités réelles et imaginaires, Que l'unité dont il s'agit soit,
comme plus haut, un certain degré de pesanteur , agissant sur un
des bras d’'une balance. Nous avons trouvé que ce genre de gran-
deur peut réellement étre positif ou ncgatil ; mais on ne saurait aller
plus loin; et on ne peut, en aucune maniére, concevoir un genre
de poids tel que 1, représente quelque chose de réel. Donc, dans
ce cas, 1, est une quantité imaginaire.

Prenons maintenant pour unité positive une ligne KA ( fig. 1),
considérée comme ayant sa direction de K & A. Suivant les notions
universellement regues, I'unité négative sera KI, égale & KA, mais
prise dans un sens opposé.

Tirons KE, perpendiculaire 3 IKA ; nous aurons la relation suivante :

La direction de KA est, & la direction de KE , comme celle-ci est &
la direction de KI.

La condition nécessaire pour réaliser Ja proportion (B) se trouvera
donc completement satisfaite , en prenant pour d la direction de KE;
et on aura 1,=KE: quantité tout aussi réelle que KA et KI. On
voit aussi que la méme condition est également remplie par KN,
opposée & KE : ces deux derniéres quantités étant entre elles :: -1 : —1,
ainsi que cela doit étre.

De méme qu'on a assigné une moyenne proportionnelle réelle
KE entre =41 et —1, ou entre KA et KI, on pourra construire
les moyennes KC, KG ,....., entre KA et KE, KE et KI,.....

De la, et par une suite de raisonnemens que nous supprimons ,
on arrivera a celte conséquence générale que, si (fig. =

Ang AKB=Ang A’K'B/ ,
on a, abstraction faite des grandcurs absolues,

KA:KB:: KA/ KRB/,
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Cest 1a le principe fondamental de la théorie dont nous avons
essayé de poser les premiéres bases, dans I'éerit dont nous donnons
ici un extrait. Ce.princ}pe n'a rien au fond de plus étrange que
celui sur lequel est fondée la conception du rapport géométrique
entre deux lignes de signes différens, et il n’en est proprement
qu’une généralisation,

5. Comme, dans ce qui suivra, nous aurions A répéter fréquem-
ment la phrase : /ignes considérées comme tirées dans une certaine
direction , nous emploirons 'expression abrégée : lignes en direction
ou /ignes dirigées ; et nous dénoterons par AB la ligne AB, dirigée
de A cn B, et par AB, simplement, cctte méme ligne , considérée
dans sa grandeur absolue. Nous préférons le mot de direction i
celui de position , parce que le premier indique , entre les deux
extrémités de la ligne , une différence , essentielle dans notre théerie ,
que ne marque pas le dernier. Nous pourrons réserver celui-ci pour
désigner collectivement deux directions opposées , et nous dirons

‘que AB el BA ont la méme position.

6. Nous allons maintenant examiner comment les lignes dirigées
se combinent entre elles par addition et multiplication , et en cons-

truire les sommes et les produits.

La multiplication ne présente aucune difficulté. Un produit A4XB
n’étant autre chose que le quatriéme terme de la proportion 1: 4:: B: x,
il ne sagit que d’appliquer aux lignes données le principe dun.® 4.

Quant & laddition , la regle que nous allons donner peut se dé-
montrer facilement par les théorémes qui donnent les sinus et cosinus
de la somme de deux arcs; mais il semble qu’il serait plus élégant
de la tirer, @ priori, des principes de la chose. En raisonnant par
analogie, on peut rcmarquer que , lorsqu’il s’agit d’ajouter deux
lignes , positives ou négatives @, &, on a pour régle générale quels
que soient les signes, de tirer d’abord AB= l'une des lignes, &
par exemple; de prendre le point darrivée B de cette ligne pour
point de départ de la ligne &, de tirer ensuite BC=4, et la ligne
AC, dont les points de départ et d’arrivée A, C sont respective=~
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ment le point de départ de la premitre ligne @ et le point d’arrivée
de la seconde ligne &, sera =a--b.

Geénéralisons ce principe et nous conclurons que A, B, C,....F,
G, H, étant des points quelconques, on a

AB4+BCHC....4od F+FG4+CH=AH .

7. On peut décomposer une ligne en direction donnée KP ( fig. 3)
en deux parties appartenant a4 des posizions données KA et KB.
1l suffit, pour cela, de tirer , sur KB, KA, les lignes PM , PN,
paralleles 2 KA, KB; et on aura

KP=KM4MP=KN--NP ;
mais , comme on a

KM:‘N_? et ]_{—L\-I‘:N‘TF s
et comme d’ailleurs il n’y a que ces deux maniéres d'opérer la décom=
position proposée , il faut en conclure, en général, que si, ayang
A4-B=A/-4B' ,

A, A/ ont la méme direction @, et B, B/ la méme direction 4
@ et b n’appartenant pas 4 la méme position, on doit avoir ausst
K:K-’. et E‘.—:E./

Cette partition a fréquemment lieu , lorsque I'une des positions
est celle de 1 et lautre la position perpendiculaire ; ce qui revient
a la séparation du réel et de limaginaire.

8. Passons aux applications, et établissons d’abord quelques con-
séquences dont Temploi est le plus fréquent.

Soient ( fig. 4) AB, BC,....EN, AB/, B/C/,....E/N/, des
arcs égaux , au nombre de 2, de chaque cé6té du point A ; KA étant
prise pour unité ; et soit KB=u ; on aura

KA=1 » KB=u , K(T::u‘ , KD=#*,.......KN=u" .

- Ema— D 1 et 1 m— 1 PO 1
KA=1 , Kb'= —, KU= =, KD/'=— ,....KN/=;,-, ;

u u2
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KA KB RC KD KN

2 A

. 0 [l —,6 — e pp3 L

— 1 —= =u —_—= = ut —_—=U ves e e —— —

ha N 7 KU T KD ? KN

Et, si I'on prend, sur les rayons correspondans , Kg/=Kp , Ky/ =Ky,
Ks/=Ky,.... les longueurs Kg, K, Ky,.
aura encore

... étant & volonté, on

Ke |
xe O ?

K¢
=t ::_:UG

s .
4 K& ’

1€1

e

Si sur des rayons KA , KM, KN,...., pris pour bases, on

construit des figures semblables, et que @, m, n,.

«o.. solent des
lignes homologues de ces [igures , on aura

(C) m=axKM , n=ax<KN ,.....

9. Sotent ( fig. 5 ) Arc.AB=CD=a , Arc.AC=5 ; on aura
(5,6,7)

Cos.(a4b)+1/ =1 Sin(a+4-0)=Ky+sD=KD=KB < KC
:(Ke +ﬁB) ><(K»,+yb)= (Cos.a+1/—=1Sin.a)(Cos.b41/ =18in.b)
=Cos.aCos.b—S8in.aSin.b )~/ —1(Sin.aCos.b~+4-Cos.4Sin &) ;.

donc , en séparant,
Cos.(a-0) =Cos.aCos.5—Sin.aSin.b ,

Sin.(a4-2)=Sin aCos.b~}Cos.aSinb .
-—b
Scient (fig. 6) AC=a , AB=4 , BD=;BC=~— ; prenons

AE=BD ect tirons KD et BC se coupant en & ; nous aurons

(Cos.a—Cos.b)+/—=i(Sin.a—Sin.b) =(Cos.a~+y/ —1Sin.a)

' (Cos.b4-y/ =iSinb)= (Ko C)—(Kp+7B) =KC—KB
—KC+Bh=BC=2dC= (n.° 8. C) 2EXKD

b b
= 27F x (K34-3D) =2y =:iSin. ——~(Cos =St )

a—b a-}-b a+b
=—asin. " sin 2 oy TTsin, T Gos. 2
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Donc , en séparant,

a-b

. e=b .
Cos.a—Cos.5=—28in. — Sin. ,

2 )

2 2

Sin.g—Sin.f =42 Sin, =~ Cos ath .

Soient (fig. 7) AB, BC,....EN, des arcs égaux , au nombre
de 7 ; et faisons AB=a. Nous aurons

‘Cos.na—+1/ —:Sin.na=Cos. AN/ =1Sin AN= KN =

KN=KB"=Kp+4-B,"=(Cos.a-+/ =1Sin.a)".
On aura encore

" Cosay/=iSina=Ke4-2B=KB=KNi=(C-4 NV

|
EIL

I - I I I T~
y — e mmas e ]y - - y
N A T i - R I
7\ K 1.2 K 1.2.3 Ky

I .
p . —_—— —1)Sin.2na
=(Cos.na)i{ 1+ = Y.:LM+ R W T, o

Cos.na Cos.na

1.2

Faisant na=ux et ensuite 2= o, on obtient, par lcs termes affectds
de =7,
s=Tang.x—? Tang.%-{—% TanglSz—......

Soit I'arc AN ( fig. 7 ) divisé en 7 parties égales. Les rayons KA,
KB, KC,.... forment une progression géométrique, et les arcs cor-
respondans , ou certains multiples de ces arcs , peuvent étre pris
pour les logarithmes de ces rayons.

Posons Log.KN=mAN=mnAB , m étant le module indéterminé,
Si Von fait = oo , arc AB pourra éwre considéré comme une
droite perpendiculaire sur KA ; on aura donc AB=y/=; AB; ou
AB=-— /[ AB ainsi

KN=mnAB=—mny/—1AB=— — (AKX R\=
Log KN=mn V —1A _n,m‘/ 1(AK+4-KB)=
—mn\/ —1(—i~+KNn),
Faisant KN=1-+2 , il vient
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Log.(1-2)=—mn \/:T[—x—{—(x-l-x)i]=—-mn\/'——{(—-1_—|—1+ —:—{ F— -;I; z* )

—_— x2 x3
=—my Te— T L)

ou encore , parce que m est indéterminé
x2 a3 x4
Log.(1-+2) =m(z— — —+ - — o e
2 4

Divisons les deux arcs égaux AN, AN/ ( fig. 8 ) en n parties
égales ; tirons la double tangente nn/ et les sécantes K&, Ke,...;

nous aurons (8)
KA Ks KC Kn

‘e m—
Kn' ’

N I_{_A- . W . ]TG * 80
denc les arcs correspondans , ou certains multiples de ces arcs peuvent
encore étre pris pour les logarithmes de ces mémes quantités , savoir:

m. AN:Log.I‘:" .
Kn/
Soit AN=z; on a
Kn ‘ﬁ-{-_A—n. I+\/:?Tang.x

ma=Log. g5 =Log. == =Log T e

Soit encore ( fig. 9 ) I'arc AN==24 divisé en un nombre infini
de parties dgales , dont AB soit la premitre, prenons AP="~ =z , et
tirons AN, KP et Po; nous aurons

201/ —1 =2ANy —1=2n.ABy/—1=2n. AB=2n(AK-+KB)

=2n(—14KN#)= 272[ em 14-(KA+AN)#] = 2] —1-(1--AN)7]

) S I

— T —_—1
ey e — AN R
=2n(—1+1+iAN+ n_n AN,+"->=2(AN—"—;‘ +é31—\1 —..); (D)
I.2

mais (8), AN=2pN= 20D <KP= 2¢P(Ko+¢P)
=21/ —1Sin.g(Cos.a--y/ =iSin.a) ;
Tom. 1V. 19
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d’ou AN*=—(2Sin.a)*(Cos.2a-4y/ —1Sin.2a) ,
AN’ =—1/ =1(2Sin.z)’(Cos.3a41/ —1Sin.3a) ,

En substituant ces valeurs dans la série (D) et séparant, il vient

2Sin.a T (2Sine)? (2Sin.a)3
28 =+ Cos.a~+— Sin.2a— —5— Cos.3a—......
I 2
2Sina . (2Sin.a)? (2Sin.e)3 _,
0= an.a+———-Cos.2a+——§—— Sin.3g—......
1 2

9. Nous bornerons ici ces applications. On peut, ainsi que nous
I'avons fait dans notre Essal, obtenir, d’'une maniére analogue, les
principaux théorémes de la trigonométrie, comme les développemens
de Sin.na, Cos.na, (Sina)*, (Cos.a)*, les sommes de séries Sin.g
=+8in.(a+4-5)=4Sin.(a-+20) ..., Cos.a~ Cos.(a-b)+Cos.(a20)+..,

ct la décomposition de x*"—2zCosaza-f-1 en facteurs du second

degré.

Comme application a l'algtbre , nous démontrerons que tout
pelynéme
a"ax b - f2tg
est décomposable en facteurs du premier degré ou, ce qui revient
au mérne , qu'on peut toujours trouver une quantité qui , prise
_pour z, rende égal A zéro le polynéme proposé que nous dési-

gnerons par y. Les lettres @, &,....f, g n’é¢tant point d’ailleurs
restreintes ici 4 n’exprimer que des nombres réels.

Soient yp, ¥p4p les valeurs de y résultant des suppositions z=p,
a=p+; p et i étant des nombres -pris a volonté et p désignant
un rayon en direction ; on aura

ypr=p"tap" " " it
Yrau= (Pe)) " 4alp)' " b lppi)" " S (p ) tg
.=yp+1'pQ+l'2pZB+Z'3p3S+....+i"p" 5

Q,R,S,.... éant des quantités connues, dépendantes de p, 7,
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a,b,c,....f, g, qui sobtiennent en développant les puissances
de p+4-pi. Si l'on suppose 7 infiniment petit, les termes affectés de
3

#, 22,....0" disparaissent , et 'on a simplement

Yo+u=yp Q.

Construisons le second membre de cette équation , suivant les
regles preécédentes. Soit « l'angle que fait y, avec la ligne prise
pour origine des angles ; on peut prendre p de maniére que 7;Q fasse
avec cette méme ligne un angle —« , c’est-a-dire , que la direction
de 70 soit opposce & celle de y,. La grandeur de Yp4,i SCTa ainsi
plus petite que celle de yp. On obtiendra , de la méme manieére,
une nouvclle valeur de y, plus petite que ypi )i, et ainsi de suite,
jusqu’a ce que y soit nul; donc, etc.

Cette démonstration est cependant sujette & une difficulté dont
nous devons la remarque a M. Legendre. La quantité Q peut étre
nulle, et alors la construction prescrite n’est plus praticable ; mais
nous observerons que cette objection n’anéantit pas notre démons-
tration ; car le terme 7R, ou le terme 2°p*S si R est nulle, et
ainsi de suite, peut remplacer le terme 7Q , puisque 5*, ¢’,.....
sont des quantités de la méme nature que p; or, quand méme on
voudrait supposer tous ces termes nuls , le dernier au moins 4" ne
le serait pas.

10. La théorie dont nous venons de donner un apergu , peut étre
considerée sous un point de vue propre 4 écarter ce quelle peut
présenter d’obscur, et qui semble en étre le but principal , savoir :
d’établir des notions neuvelles sur les quantités imaginaires. En effet,
mettant de c6té la question si ces notions sont vraies ou fausses ,
on peut se borner & regarder cette théorie comme un moyen de
recherches , n’adopter les lignes en direction que comme signes des
quantités réelles ou imaginaires, et ne voir, dans l'usage que nous
en avons fait, que le simple emploi d’'une notation particuliére. 1k
suffit , pour cela, de commencer par démontrer , au moyen des
premiers théorémes de la trigonométrie, les régles de multiplication
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et d’addition données plus haut ; les applications iront de suite
et il ne restera plus & examiner que la question de didactique
» si I'emploi de cette notation peut étre avantageux ? s'il peutouvrir
» des chemins plus courts et plus faciles, pour démontrer certaines
» vérités 7 » c’est ce que le fait seul peut décider.

11. Nous ne croyons pas devoir omettre quelques apergus sur
une extension dont nos principes paraissent susceptibles. Soient,
comme plus haat (fig. 10), KA=-41, KC=—1, KB=-}y/=1,
KD=—1/=1; tout aatre rayon KN, mené dans le plan de ceux-
la, sera de la forme p-f~¢y/ =i ; et réciproquement, toute expres-
sion de cette forme sera celle d’une ligne dirigée dans ce plan.
Tirons maintenant , du centre K, une perpendiculaire KP=KA 2a
ce plan. Que sera la ligne dirigée KP, relativement aux précédentes?
Leur est-elle tout a fait hétérogéne , ou bien peut-on la rapporter
analitiquement & l’unité primitive KA , et assigner son expression
algébrique , comme celle de KB, KC,....?7

Si nous nous laissons guider par l'analogie , voici ce qu’elle nous
suggére sur ces questions.

En prenant pour unité des angles la circonférence entiére , il suit
des principes ci-dessus qu’un rayon en direction, faisant un angle
« avec KA peut étre exprimé par 1“. Mais , d’aprés la nature des
exposans, cette cxpression a des valeurs multiples, lorsque « est
fractionnaire , ce qui peut amener quelques difficultés. On évitera
cet inconvénient , en employant la notation de M. Francais ( mémoire
cité) , et en écrivant 1, ; on aura ainsi KA=1, , @:1%,‘
KC=1:, KD=1:.

[} .

Nous avons pris, de part et d'autre du point A, sur la circon-
férence ABCD, deux directions opposdes, affectées I'une aux angles
positifs , l'autre aux angles négatifs ; or , si nous appliquons aux
angles les mémes considérations qu’aux lignes , nous serons conduits
3 prendre les angles imaginaires dans une direction perpendiculaire.
4 celle qui appartient aux angles réels.
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Supposons que le demi-cercle ABC tourne autour de AC, le
point B décrivant le cercle BPDQ ; puisqu’on a déja

Ang AKB=-;=1.(41) ,
Ang AKD=—3=1.(—1) ;
on pourra dire que

Ang AKP=;y/ —1=1.1

LI

d’ou on conclura

KP=1: ,, =1, ——- __I--’——'(lz)\/—I =(‘/:',)\/'_1.

Telle parait devoir étre I'expression analitique demandée.
Si T'on prend un point M sur le cercle BPD tel qu’on ait
Ang BKM=x, on aura pareillement

Ang ARM= 5 (Cos.x+1/ =1Sin.p) ;

et, en faisant pour abréger Cos..~y/=iSin.u=; ,

KM= 1,= 1= (1 7)": (‘/.__I)C""‘“'f‘\/—‘s;"':“ ,

west lexpression générale de tous les rayons perpendiculaires aw
rayon primitif de Ka.

Cherchons maintenant I’expression de l’angle BKP.

De part et d’autre du point B, sur la circonférence ABC, les
angles sont positifs et négatifs réels , et le plan BKP est perpen-
diculaire a leur direction ; il semblerait donc que Iangle BKP est
ainsi que langle AKP=131y/—1, et qu'il en doit étre de méme de
tout angle NKP , N étant pris sur la circonférence ABCD ; mais
on s’apergoit bientét de la fausseté de cette.conclusion, en faisant
coincider N avec le point C, ce qui donnerait CKP=Zy/ =1, tandis
que cet angle est évidemment —AKP =2/ —1.
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Pour éclaircir cette difficulté , observons qu’une direction étant
adoptée pour celle de =1, il y a une infinité de directions qui lui
sont perpendiculaires , parmi lesquelles on en prend arbitrairement
une, pour laffecter & I'unité imaginaire /7. L’expression générale
de toute unité prise dans l'une de ces directions est, comme nous
venons de le voir,

ll’=l:.’= (V=2 P__:(‘/:—l)Cos.p-i-\/—lSin.,s .

Imaginons au point A une infinité de direction perpendiculaires
a4 la circonférence en ce point; une de ces directions sera parallele

KP. C’est celle que nous avons prise pour construire les angles
imaginaires positifs —-«y/=1; c’est-a-dire , que nous avons choisi,
pour ce cas , p—t1=Ka. Parcillement , au point C , la direction
parallele 2 KP nous adonné les angles imaginaires négatifs —«y/ =13
c'est-d-dire , que nous avons fait p=—1=KC.

Donc I'analogie nous conduit 4 faire =/ =1=KB, lorsqu’il s’agit
de la direction paralléle & K7, 4 partiv du point B.

L’angle BKP aura donc pour expression

-\l

12, Nous ne pousserons pas plus loin ces apergus ; et nous obser-
verons, en terminant, que les expressions, 2, a5, ap,, qui désignent
des lignes considérées par rapport a une, a deux, & trois dimen-
sions , ne sont que les premiers termes d'une suite qui peut étre
prolongée indéfiniment.

Si les notions exposées dans l'article précédent étaient admises ,
la question , souvent agitée , de savoir si toute fonction peut étre
ramenée a la forme p--¢y/—i se trouverait résolue négativement;

etk_Pz(‘/:T/\/—I offrirait I'exemple le plus simple d’une quan-
tité non réductible & cette forme, et aussi hétérogéne par rapport
3 /=1 que lest celle-ci par rapport & —-1.
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Il existe, 4 la vérit¢, des démonstrations tendant a établir que
la fonction (a+b\/:x)m+"\/—l peut toujours étre réduite a la
forme p-+¢y/ = ; mais quil nous soit permis de remarquer sur
ces démonstrations , que celles qui emploient le développement en
séries , ne sauraient étre concluantes qu'autant qu'on prouverait que
p et g ont des valeurs finies. 1l arrive souvent , en ecffet, dans
Vanalise , qu'une série qui, par sa nature, ne peut exprimer que
des quantités réelles , prend une valeur, ou plutot une forme in-
finie , lorsqu’elle doit représenter une quantité imaginaire ; et on
peut présumer pareillement qu'une série composée de termes de la
forme p—+gy/ =7 ou a,, pcut devenir infinie, si elle doit exprimer
une quantité de Vordre ap,.

Quant aux démonstrations qui emploient Ies logarithmes, elles
laissent aussi, ce nous semble , quelques nuages dans lesprit , en
ce qu'on n’a pas encore des notions bien précises sur les logarithmes
imaginaires, Il faudrait d’ailleurs sassurer si un méme logarithme
n¢ pourrait pas appartenir & la fois & plusieurs quantités d’ordres
différents @, a,, ap,. En outre, la muliiplicité des valeurs dues aux
radicaux de P'expression proposce, est une autre source d’incertitude;
de telle sorte qu’on pourrait parvenir , de la mani¢re la plus rigou-

reuse, 3 rédnire (a—l—&\/:;)m"l_n\/_l a la forme p--gy/ =1, sans
qu’il s’ensuivit nécessairement que cectte fonction n’a pas encore
d’autres valeurs de I'ordre a@3,, non réductibles 4 cette forme (*)

(*) On ne peut, sans doule , que savoir beaucoup de gré 3 M. Frangais
d'avoir, en quclque sorte , provoqué M. Argand 4 donner plus de publicitd &
ses vues sur I'un des points les plus délicats et les plus épineux de l'analise algé-
brique. Espérons quil s'élablira désormais une heureuse rivalité entre ces deux
estimables géomeétres , et qu'ils s'empresseront , & I'envi P'un de l'autre , & per-

b1

eclionner et a éclaircir l'intéressante théorie dont ils viennent de poser les
fondemens.

J. D. G.
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ANALISE ELEMENTAIRE.

Developpement de la théorie donnée par M. LAPLACE ;
pour lélimination auw premier degré ;

Par M. GERGONNE,

Le.Tla Vi Vg Via Vo Y Vo d

CRAMER est , je crois, le premier qui ait remarqué la loi que
suivent les valeurs des inconnues dans les équations du premier
degré, et qui ait indiqué des méthodes pour construire ces valeurs,
sans passer par le calcul de ’édlimination. Postérieurement , Bezout,
dans sa Théorie générale des équations algébriques, a apporté quel-
ques modifications a ces méthodes; mais, quoiqu’il fat sur la voie
d’en donner une démonstration proprement dite , elles sont demeurées
entre ses mains, comme entre celles de Cramer , le résultat d’une
simple induction.

Ce n’est seulement qu'en 1772 que M. Laplace , dans les Mémoires
de l'académie des sciences , a démontré , pour la premiere fois, d’une
maniére générale et rigoureuse , I'exactitude de ces formules. Mais ,
soit que la précieuse collection ot la théoric de cet illustre géo-
meétre est exposée , ne se trouve pas sous la main de tout le
monde, seit plutét que M. Laplace , ne présentant pour ainsi dire
cette théorie qu’en passant , ne lui ait point donné le développement
suffisant pour la faire bien apprécier, on a toujours continué depuis
lors , dans tous les traités d’algebre, & n’appuyer les méthodes de
construction des valeurs générales des inconnues que sur une simple

induction,
Une
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Une expérience de plus de dix années m’a convaincu que la

théorie de M. Laplace , suffisamment développée n’excéde pas la portée

des esprits les plus ordinaires. Voici sous quelle forme jai coutume

de la présenter. Jose croire qu'on la trouvera plus courte et plus

simple que les calculs qu'il faudrait faire pour donner quelque vrai-
semblance aux conclusions qu'on voudrait tirer de I'induction.

1. Dans tout ce qui va suivre , jappellerai Nombres de méme
espéce deux nombres qui seront l'un et lautre pairs ou l'un et
Vautre impairs. Jappellerai, au contraire , Nombres d'espéces djffé-
rentes deux nombres dont 'un sera pair tandis que l'autre scra
impair.

2. Ainsi, il sera vrai qu'on change I'espice d'un nombre en lui
ajuutant ou en lui retranchant une unité ou , plus généralement ,
un nombre Zmpair quelconque, et qu'on nc la change pas en lui
ajoutant ou en lui retranchant un nombre parr.

3. 1l sera encore vrai de dire que, si l'on change plusieurs fois
consécutivement l'espéce d’un nombre , son espéce se trouvera defi-
nitivement étre ou n’étre plus la méme qu'elle était en premier
lieu , suivant que le nombre des changemens d’espices qu’il aura
subli sera pair ou impair.

4. Soient des lettres @ , &, ¢,...., toutes dilférentes les unes
des autres , au nombre de 72. Concevons que ces lettres soient écrites,
les unes & la suite des autres , dans un ordre arbitraire. Si alors.
deux d’entre elles se trouvent tellement disposées, I'une par rapport
4 Pautre, dans l'arrangement total, que celle qui se trouve le plus
3 droite soit , au contraire, a la gauche de l'autre dans I’alphabet ;
nous exprimerons cette circonstance en disant que ces deux leitres
forment entre elles une Znversion. Nous dirons, en conséquence ,
que l'arrangement total présente autant d’inversions qu’il s’y trouvera
de sysiémes de deux lettres pour lesquelles la méme circonstance
aura lieu.

5. On voit par la que, si les m leftres se trouvent é€crites suivant

Tom. 1V, 20
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I'ordre alphabétique , le nombre des inversions sera nul ; et qu’au
contraire il n'y aura que des inversions, lesquelles par conséquent
seront au nombre de Im(m—1), si elles sont écrites dans un ordre
absolument inverse de celui de Dalphabet.

6. Soit M un arrangement quelconque de nos 72 lettres; per-
mutoris-y entre elles deux lettres consécutives quelconques, sans
toucher aucunement aux autres; et soit M/ le nouvel arrangement
(iui en résulte. Je dis que, dans M et M/, les nombres d’inversions
sont d’espéces différentes. En effet, les deux lettres permutées devant
nécessairement former une inversion dans 'un des arrangemens M,
M/, et n’en point former dans Pautre:, et toutes les autres lettres
demeurant , dans les deux arrangemens , disposées de la méme
manidre , soit entre elles, soit par rapport a celle-la; il s’ensuit que ,
soit en plus soit en moins, le nombre des inversions de M/ differe
seulement d’une unité du nombre des inversions de M ; ces deux
nombres sont donc d'espéces différentes.

7. W suit de la que, si I'on déplace unc seule lettre d’'une maniére
queiconque , V'espéce du nombre des inversions demeurera la méme
ou se trouvera changée , suivant que le nombre des places parcourues
par cctte lettre sera pair ou impair. En effet , on peut concevoir
que le déplacement ne s'opére que successivement , par la permu-
tation continuelle de cette lettre avec sa voisine, soit de droite soit
de gauche ; or , & chaque permutation partielle (6), lcspece du

nombre des inversions variera ;

; donc, a la fin (3) , lespéce du
nombre des inversions se retrouvera la méme qu'au commencement

ou sera changée , selon que le nombre de permutations particlles,
c’est-a-dire, le nombre des places parcourues sera pair ou impair.

8. Concluons de la que, si on déplace deux lettres, pour leur
faire parcourir, en tout, un nombre impair de rangs, Iespéce du
nombre des inversions se trouvera nécessairement changée. 1l est
clair, en effet, qu'il faut , pour cela , que l'une des deux lettres
déplacées parcoure un nombre pair de rangs, ce qui ne change
pas (7) l'espéce du nombre des inversions, et que l'autre en par-
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coure ensuite un nombre impair , ce qui doit nécessairement la
changer (7).

g. Donc, si I'on permute entre elles deux lettres non consécutives ,
on changera nécessairemrent l'espécc du nmombre des inversions. Soit
en cffet » le nombre des lettres intermédiaires 3 ces deux-la; on
pourra d'abord porter la lettre la plus & gauche immeédiatement 2
gauche de l'autre, ce qui lui fera parcourir » places; puis remettre
cette derniére a la place de la premitre; et, comme elle sera obligée
de passer par-dessus celle-ci, elle se trouvera avoir parcourn n--1
places. Le nombre total des places parcourues par les deux lettres
sera donc 27-4-1 , et conséquemment (8) l’espéce du nombre des
inversions se trouvera changdée.

10. Soit derite successivement la lettre & 3 la gauche et d la
droite de la lettre 2, en changeant le signe au changement de place;
on formera ainsi le binéme

ab—ba.

Soit introduite successivement , et en allant de gauche & droite, la
lettre ¢, dans chacun des termes de ce polynéme , en lui faisant
parcourir , dans chacun , toutes les places de droite & gauche, et
changeant encore de signe & chaque changement de place, on formera
ainsi le polynéme

abc—ach-t-cab—bact-beca=—cha.

Concevons que 'on en fasse de méme suceessivement pour les lettres
suivantes 4, €, f,...., jusqu’a la dernitre inclusivement, en suivant
toujours exactement l'ordre alphabétique : on parviendra ainsi &
un polynéme homogéne P, de m dimensions, dont les termes, au
nombre de 1.2.3....m, ne seront évidemment autre chose que la
totalité des permutations dont nos m letires sont susceptibles. Je
vais prouver que, d'aprés ce mode de génération , les termes de ce
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polynéme auront le signe -+ ou le signe ~— , suivant que
le nombre des inversions qu’ils présenteront sera pair ou impair.

Il est d’abord aisé de voir que les deux résultats que nous venons
de former satisfont a cette loi. Supposons donc qu'elle se soutienne
encore pour l'avant-dernier polynéme, de maniére que chacun de
ses termes porte déja le signe qui convient au nombre de ses inversions.
L’introduction de la derniére lettre 4 la droite de I'un de ces termes
ne changera rien & cet état de choses puisqu’elle n’en changera ni
le signe ni le nombre des inversions. A mesure que cette lettre
“avancera ensuite vers la droite , l'espéce du nombre des inversions
sc trouvera alternativement (7) changée et rétablie ; mais le signe
se trouvant aussi, par hypothése, alternativement changé et rétabli,
la loi dont il est question continuera a subsister, si, comme nous
le supposons, elle a lieu dans P’avant-dernier polynéme ; puis donc
quelle subsiste dans les deux premiers , il s’ensuit qu’elle est
générale. .

11. Concevons actuellement que , dans chacun des termes du

polynéme P, on affecte chaque lettre d’un indice égal au rang de
cette lettre , en cette maniére

ab,—b,a, ,

ab,cy—~a,c,bt-c.a,b,—b,a,c,+4b,c,a,—c,b,a, ,

.
® 8 8 ¢ 8 2 e s e s s e s 8 s s B s s s s e s e e e ey

on formera ainsi un nouveau polynéme D, qui n’aura plus de termes
semblables. Je vais prouver que si, dans ce polynéme D, on change
une lettre quelconque en une autre, en laissant d’ailleurs celle-ci
ou elle se trouve déja, et sans toucher aux indices, tout le poly-
néme s’anéantira.

Supposons , en effet, que l'on change %4 en g, sans toucher &
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g ni aux indices. Soient , pour un terme pris au hazard dans le
polynéme, p et ¢ les indices respectifs de g et %; ce polyndme,
renfermant toutes les permutations, doit avoir un autre terme ne
différant uniquement de celui-1a qu'en ce que c’est 2 qui y porte
Iindice p et g l'indice ¢: et de plus (9) ces deux termes doivent
étre affectés de signes contraires ; ils se détruiront donc , lorsqu’on
changera 4 en g; et il en sera de méme de tous les autres termes
pris deux a deux.

12. La lettre @ devant se trouver dans tous les termes du poly-
nome D, et ne pouvant se trouver qu'une seule fois dans chacun;
ce polynéme peut étre ordonné suivant les indices de cette lettre,
ainsi qu’il suit :

D=4,a,4+4,0,}A4,0,}......+Apa, ; (1)

A, A,, 4;,..... 4, étant des fonctions de &,, ¢,, dy,.....,
byy 2y @y yeieiniy by €y dy. Alors, d'aprds ce qui vient d’étre
dit (11), on devra avoir

o=A,b,4A4,0,+4,b,4..... 40, ,
o=d,c,4A,c,+Ac,4o  Amey 5 Y (2) @)

€ o o 4 o 8 o e 0 8 e 4 8 » o e 0 s s s s 0

Le polynéme D, ordonné par rapport & quelqu’autre lettre, don~
nerait lien & des conséquences analogues.

13. Ces choses entendues, soient, entre les 7 inconnues £,y , 2 ,...;
les m équations

(*» Ce sont ces fonctions dont il a été question & la page 153 du 3. volume
de ce recueil.
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a 24b ytc 2. =k, )
ay 24b,y+c, 4.0 =k,
a,24by+ciz4-...o =k, , ) (3)

c 3

dbmytemet.o =k o

AmX

En prenant la somme de leurs produits respectifs par A;, A4,,

A, eii. Ay, et ayant égard aux équations (1 et 2), il viendra
Da=Ak,A4k,+A kv A0 5 (4)

d’on

x___.'A,k,-{-A,k,-l—A,k,-{- ..... A e
Ayaydia, 4 034wt Ansn

Ainsi le dénominateur commun des valeurs des inconnues n’est autre
chose que le polynome D ; et on en conclut le numérateur de la
valeur de chacune d’elles , en y mettant la lettre qui représente
le terme tout comme & la place de celle qui représente le coefficient
de cette inconnue, toujours sans toucher aux indices.

14. Si, dans les équations (3), on change £y, k,, ky,ieiiliy
en —kyw , —k,v, —kyo,....—k, , ¢ étant une (m—~+1)™° in-
connue , ces équations, toujours au nombre de 7 , deviendront

a,a+b,ytc,zt ek, v=0
a,2+b, y4c, 2otk o=0 (5)

a6 s 8 6 6 % 0 s & o e o 0 g s 00

et donneront , par un semblable changement opéré dans I’équation (4),
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ot
Ot

fx:-—(AJf,-l-Asz-l“A;k 3+""'+Au.kiﬂ)‘; 4 <6>

or, comme ¢ , dans cette équation , denfeure arbitraire , on peut
fort bien poser y=-—D«: on aura ainsi

a=(A, kA oA e Ah)e

formule dans laquelle « demeure indéterminée. On aurait des valeurs
analogues pour y, z,....s.

15. Ainsi , la méme méthode qui nous a conduit aux valeurs
générales des inconnues, dans les problémes déterminés du premier
degré, nous donne également les valeurs entiéres les plus générales
des inconnues dans les problémes indéterminés de ce degré ; du
moins lorsque les équations n’ont point de terme tout connu,
et que le nombre des inconnues n’y surpasse que d'une seule
unité le nombre dec ces équations.

16. Mais , de ce cas particulier on peut facilement passer aux
autres. Si, en effet, le nombre des inconnues surpasse de » unités
celui des équations , il ne s’agira que de joindre aux équations
données n—1 autres équations de méme forme affectées de coefli-
ciens arbitraires; la qnestion se trouvera ramenée au cas que nous
venons de considérer , avec cette différence qu’au lieu d’une seuls
arbitraire , les valeurs des inconnues cn contiendront plusieurs. C’est
4 peu prés par cette voie que, depuis long-temps, M. Servois était
parvenu, de son c6té, aux résultats que j'ai donnés a la page 156
du 3. volume de ce recueil.

17. Enfin la méme méthode peut conduire encore aux équations
de condition qui doivent avoir lieu entre les coefliciens , lorsque les
équations sont en plus grand nombre que les inconnues. Si, en
effet , entre /2 inconnues on a m-{-n équations, en tirant des m
premitres équations les valeurs de ces inconnues pour les substituer

dans les 7 suivantes, on obtiendra ainsi les équations de condition
demandées,

.
o
V]
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QUESTIONS RESOLUES.

Solution du premier des deux problémes proposes &
la page 28 de ce volume; :

Par M. SERrvois, professeur aux écoles dartillerie.

(o Yo Vo Vo Vio o Mo Vie V]

ENON CE. Une droite mobile parcourt le plan d'un triangle de
maniére que le produtt des segmens qu’elle détermine sur dewx de
ses ¢btés , vers leur point de concours, est constamment égal au
produit des deux aulres segmens des mémes cotés. On propose
d’assigner la courbe & laquelle, dans son mouvement, cette droite
sera perpétuellement tangente ?

Solution. Soient M, M/ (hg. i1 ) deux points quelconques d'une
parabole , dont F soit le foyer ; et soit O le point de concours
des tangentes en M, M’. Robert Simson a démontré que, d’aprés
cette construction , les triangles FMO , FOM/ sont semblables, de
telle maniére qu’on doit avoir

ou

Ang MFO=Ang OFM’ ,

Ang FOM=Ang FM/O
Ang
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Ang OMF = Ang NVOF ; (*)

(*) La similitude de ces triangles peut étre facilement déduite du théoréme
suivant : .

THEOREME. Si ayant mené , dans une parabole , un nombre quelconque
des rayons vecteurs , de direction arbitraire 5 ou fait tourner tous ces rayons
vecteurs , un seul excepté, autour du foyer de maniére que les angles qu'ils
Jorment respectivement avec le rayon vecteur fixe soient diminués de moitié; et si ,
en méme temps , on allonge ou on racourcit les rayons vecteurs mobiles de maniére que
leur nouvelle longueur soit moyenne proportionnslle entre la longueur du rayon
vecteur fixe et leur longueur primitive ; leurs extrémités se trouveront toutes alors
sur la tangente & lextrémité du rayon vecteur fixe.

Ce théoréme n'est lui-méme qu’'un cas particulier de cet autre théoréme :

THEOREME. La ligne dont les rayons cecteurs sont moyens proportionnels
entre ceux d'une parabole et upe longueur arbitraire donnée, et ou ces rayons
vecteurs forment , deux & deux , des angles moitié de ceux que forment leurs
correspondans dans cette parabole , est une ligne droite.

Ce dernier théoréme se démontre assez simplement comme il suit :

Soient r, r/, r/ trois rayons vecteurs d’une parabole dont la distance du sommet
au foyer soit p; et soient «, o', «” les angles que forment respectiviment ces
rayons vecleurs avec p , on sait qu'on aura

- N T o

r Cos2la =—p , Vr .Cos. fa =\lp ,
3 AY — —

r' Cos.2; o/ =p , d ou \r' . Cos. ;& :\/p y
/! 21 pfe—p ——

r/Cos.2 3 o/'=p ; \Vr. Cos. & o/!=v\/p .

Prenant la somme des produils respectifs de ces trois derniéres équations par
F\ . Sin. k(@) , ==\[rr!. Sin, & (@/==a)4-\[rr’. Sin. t (¢'—a) , et réduisant,
il viendra

\/rr/. Sin. t (;’-—u)-—Vrr”.Sin.% (a”—-x’)-{-\/r’r”. Sin, I (a//==aY=0. (1)
Or, soient présentement M, M/, M/ trois points de la ligne dont on cherche

la nature, F le pole auquel on la rapporte et a la longueur arbitraire donnée;
on aura, par hypothése,

Ang MEM=1 (¢/=—a) , Ang M/FM=1 (¢/==z) , Ang.M/FM/'=1 («/'=a'};
FM=\/ra , FM=\re , FM'=Vra:
ol
Tom. 1IV. ax
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on a donc, par la proportionnalité des cotéds ,
FM oM FMW OM/
FO oW’ Fo om’
d'ott on tire, par I'élimination de FO,
o' wmo'
nMF T wF
et ainsi se trouve démontré, en passant, le théor¢me de la page 6o.
~ Soient présentemeut ( fig. 12) LP, PQ, QN trois tangentes }
une parabole dont le foyer est I ; soient L., M, N les points de
contact respectifs des tangentes , et R le point de concours des tangentes
extrémes, Suivant le théoréme de Simson
Ang LRF = Ang ANF=Ang MQF ;
d’ou il suit que le quadrilatire FPRQ est inscriptible au cercle.
On a d’aprés cela
Ang RPF == — Ang RQF = Ang NQF
Ang RQF ==z — Ang RPF = Ang LPF ;
les triangles RPF , RQF sont donc respectivement semblables aux
triangles NQF , LPF, et on a par conséquent
QN :NF :: PR:RF,
PL:LF::QR: RF ;
d’oll on tire, en multipiiant
PR.OQR

RE =LF.NF. —— ON.PL

Triang MFN/ == :FM XFM Sin.M/ FM= ta\/rr’ Sin. 1 (& =& ,
Triang MFM//== ; FM XFM/'Sin.MVFM== £ a\/rr//Sin.} («/'—e ) o
Triang M'FNM/= ; FM/XEM"Sin MVFN/=]a\/r'r"Sin.} («/ &) ,
done (1) *
Triang MEN/=Triang MFM/"<4-Triang M"FM/z=o,

Propridté qui appartient exclusivement 3 la ligne droite.

J. D, G
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mais, par le théortme de Simson ,

| BF =LF.NF ;
done

PRXQR=PLXxQN ;
relation indépendante du point M, et qui prouve par conséquent
que, si la droite PQ se meut sur le plan da triangle LRN, de
maniére a y satisfaire constamment, elle sera constamment tangente
4 une parabole, touchant respectivement RL et RN en L et N. (*)

() Ce probléme fournit une application des plus simples de la théorie développée
& la page 361 du 3.° volume de ce recueil.

Soient @, b ceux des cotés du triangle donné que la droite mobile doit couper
suivant les conditions données ; et soient 4, B , respectivement, les segmens qu'elle
détermine sur eux, du coté de leur point de concours; en prenant @ el & pour
les axes des coordonnées, I'équation de la droite mobile sera

%
242 =1 ou Batdy=AB ; (1)
A B
et l'on aura la condition
AB=(a==A)(b~B) ou  BajAb=ab ; 2)
faisant varier A4 et B, dans les équations (1) et (2), il viendra
(x~=A)3B4-(y=—=B)dAd=o0 , adBA4-bdA=o0 ;
d'oli
b(x—A)=a(y=B) ; 3
tirant enfin des équations (2) et (3) les valeurs de 4 et B, pour les substituer
dans I'équation (1), il viendra
(ay—bx)?~2ab(ay~}-bx)4-a*br==0 ;
¢quation d'une parabole touchant les deux ctés @, b 3 leurs points de concours
avec le troisieme,

Nous observerons que ceci peut fournir un mode de construction plus simple
de la parabole de raccordement des routes , dont il est question 4 la page 250
du 1.*Y volume de ce recueil.

On résoudrait, par un procédé analogue , le 2.° probléme de la page 28 du
présent volume ; mais le calcul en est fort compliqué,

J. D. G.
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On peut déterminer plus particulierement cette parabole par une
construction qui me parait assez élégante. Soient LAN (fig, 13) le
triangle proposé , et P, Q, respectivement , les milieux des edtés RL,
BN ; PQ sera évidemment une des situations de la droite mobile.
Soit p le centre du cercle passant par les trols points PRQ ; Ie foyer
devra étre sur la circonférence de ce cercle. Soit menée Bp , prolongée
jusqu'a la rencontre de la circonférence en ¢ ; le point ¢ sera le
centre du cercle circonscrit 3 LRN; de sorte qu'en menant gL et
gN langle TgN sera le double du supplément de LRN ; mais
dans la figure 12, Pangle LEN doit aussi étre double du supplé-
ment de LRN; donec ( fig. 13 ) le foyer cherché doit étre sur la
circonférence passant par les points LgN , laquelle coupe la pre-
mitre en un nouveau point F qui sera conséquemment le foyer; et
comme d'ailleurs on connait deux tangentes et leurs points de contact »
rien ne sera plus aisé que de déterminer le sommet. (*)

QUESTIONS PROPOSEES.

Theoréme de Geéomeélrie.

CA, CB sont deux demi-diamétres conjugués d’une ellipse ou
d’une hyperbole , dont le centre est C. On a mené la droite AB;
et, par un point queleonque M de la courbe, on a mené & cetfe
droite une paralltle , coupant respectivement CA et CB en A’ et B/,

—_— —_—
On propose de démontrer que MA’/ +~MB/ est une quantité cons-
tante.

(* On peut aussi employer a la recherche du foyer et du sommet les mé-
thodes, soit de M. Bérard , soit de M. Bret, dout il est fait mention & la page 58
de ce volume.

J. D. G,
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ASTRONOMIE.

Essai d'une nouveile’ solution des principaus problémes
d’astronomie ;

Par M. KrAamp , professcur , doyen de la faculté des
sciences de lacadémie de Strasbourg.

[a Ve Via Vo Vo Vo Mo Vo V]

1. SOIENT, p le temps périodigue d’une plantte ; @, le demi-
grand axe; aCos.n, le demi-petit axe ; aSinn, Vexcentricité 5 ¢ ,

Yanomalie vraie ; ¢/ , Vanomalie de Pexcentrique ; i, le temps,

. . . t .
compté depuis I'aphélie; ce qui donne 2Z pour l'anomalie moyenne.
P

On parviendra de ¢ 4 ¢/, et de 12 & 7, moyennant les équations
connues

2=t . . Cos.ASin ¢ Cos.g==Sin.2
— = ¢/~-Sin.ASin.¢/ , Sin.¢/= —"— Cos.¢/ = — 8 —— .
rEas s O T Cong . S T IS aCos @

2. PROBLEME 1. Connaissant le temps t, et pur conséquent
. 2at . . .
Panomalie moyenne — , on demande Uanomalie vraie ¢ , exprimée
P

par une série disposée selon les puissances ascendanies de l'excen~
tricité », telle que o=A-+-Ba4-Ca>~+-.....; les coefficiens A, B,
C,.... étant des fonctions det qui ne renferment point a et qu'il
sagit de déterminer ?

A cet énoncé , on reconnait le Probléme de Képler. Pour le
résoudre, on a employé jusqu’ici la série ¢=r¢=4-4Sin.z4-BSin.2z
~4CSin.3¢--..... Iciles coefliciens 4 , B, C ,.... étaient des séries,
ordonnées sclon les puissances ascendantes de Pexcentricité; con-
vergentes , & la vérité , mais pourtant inlinics, et qui ne sont sommables

Tom., IV , n.° VI, 1.°° décembre 1813. 22
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dans aucun cas. Les coefliciens de la nétre seront des expressions
finies ; et clle se trouvera ainsi exempte du défaut de lautre.
3. Sotution. Le premier terme est ce que devient ¢ , dans le
) 2%t P
cas de a=o, ce qui do"ne7‘=¢’=¢. Ainsi 4= —. Les autres

p
coefficiens seront ce que deviennent, dans ce méme cas de a=o0,

. o e . do d¢ dip .

les coefficiens différenticls partiels — | <=2 T30+ Pris en re=
gardant a comme la seule variable, et le temps # comme exempt
de difTérentiation. Cherchons d’abord 1’équation différenticlle com-
plete entre dz , da et do.

. Cos.ASin ¢
4. De Sin.g/= ——— " ou de

1—Sin.ACos.9

0=Sin.¢’~Sin.¢’Sin.2nCos.p—Cos,ASin.¢ ,
on tire en différentiant

0=da{Cos.2Cos.¢Sin.¢/—Sin.»Sin.¢)
—d¢(Sin.2Sin.eSin.¢/—Cos.2Cos.¢)
—d¢’Cos.¢/(1 —Sin.aCos.o).

En mettant 3 la place de Sin.¢/ et de Cos.¢/ leurs expressions en

A et en ¢, cette équation deviendra divisible par Cos.o—Sin.a , ct
fournira , aprés les réductions

daSin.e4-daCos.x

do/ =
? 1=—S5in.2.Cos.@
L’autre équation

aat . .
— =¢'-Sin.»Sin.¢/ ,
p
donne, aprés avoir été diflérentiée et réduite
2wdt 1—Sin.ACos.¢

/ ——d»Sin. .
de daSin.e-+ . o

Egalant entre elles les deux expressions de d¢/, on aura une
¢quation cntre les trois différentielles dz , da, de, d'apres laquelle
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oz (1==Sin.ACos.9) > Sin.g{z—Sin.2C0s.0)
de= = dz— - d» ;
pCos.ia Cos.a

d’ou il résulte

d@ 2% (x——Sm ACos ¢)2
Cos A ?
( d@ ) Sm.qb(z-—Sm.ACos@)

Cos.a

.

5. Considérant ici le temps # et lanomalie vraie ¢ comme lcs
seules variables , on aura 'équation trés-connuc

. Cos.3a do
di= d

2z(1—>5in ACos.9)*
d’ott ’on pourrait tirer , sur-le-champ , 'anomalie vraie ¢ , moyennant
une série, ordonnde d’apres les sinus des angles multiples de I’ano-
malie moyenne. Mais, si I'on regarde a comme la seule variable,
et le temps # comme exempt de différentiation , on aura d'abord
de _ Sin.@(2==Sin. A Cos.®)
FT Cos.a i

pour le premier de nos rapports différentiels partiels. Faisons ici
do . .

A==0,on aura ¢:=A4, et - —=——28in.4. 1l en résulte B=—28in.A4 ;
¢

et tel est le coefficient du second terme de la série.

6. Pour faciliter les différentiations ultérieures , et les développe-
mens qui , dés le troisitme terme deviennent assez compliqués,
faisons Sin.a=x et Cos.p=y; ce qui donne

do Sin.@ dx dy Sin.2@
— T — D — —_— :CO A _ = — .
a Pt Gt DI 20 9 S G ()

Remarquons , de plus , que le rapport différenticl :——}z est constam-
z8in @
Cos."A
rement algébrique, ordonnée selon les puissances ascendantes de @
et de y. Si Von désigne par Pda—Qdy la différentielle de cetle

fonction z, on aura, aprés les réductions

ment de la forme

, la lettrec z désignant une fonction entié~
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D0 S8 lnw-aydray’)HP(1-a0) - Qamzy —2y tay )]

dandt T Cos.i+IA
Ainsi, pour trouver ces cocfliciens , il faudra effectuer les -multi~
plications ; c’est la seule difiiculté qu'il restera & surmonter.

Sin.@

(2-zy) au

do
. D'aprés cela our passer du premier -— = — —
vi Dap ela, p passe P ier o L

a - .
second T on awra n=t, z=—2-ay , P=y, Q=x , dou il

résulte
%232 - (S;:sli By —ry—5zy’t-22%7).
On en tire
n=2; z=by—a'y—6zy’ 422’y ,
P=—22y—by*day’ ,
Q=5—z*—122y+462%* ,
donc
dp  Sin.g 10—22*-212y—26y*~42y
da3 Cosia .

( d2222y*4-50xy’ =82’y —3 a2y t4-82%y°
Faisant ensuite n==3 et
Z==10==252=—=2120y—206y 23y 42222y 245000y 383y 33 f a2y 4d-Bac3y5
P=—jx=—21y 4322y 44 4ay24-S0ydmmzfay’—68xytdeafazy’ ,
Q=m—218—52y 234442241500y 22423y 2—13622y 3}-foxdyt ;
Jou il résulte
—162—145y+742y+41229*+206y°
—aty — 762y —52027y —5406xytt-2624y3
28827y 5642y ' —7 22ty S — 2662y S48ty

Et ainsi des autres.

dép _ Sin.@ s
dat T Cosén l

8. Il ne reste donc qu’a faire , dans tous ces rapports différentiels,
A==o0, et par conséquent z=o0, ¢=4 , y=Cos.4. On aura

B= -—.’.’.Sinod ’



D'’ASTRONOMIE. 163
2C=-}58in. 4Cos. A ,
6D= Sin.A4{10—26Co0s.4) ;
24E=— Sin.ACos.A(145—206Co0s.24) ,
120F=— Sin.4(306—2228Co0s.*A~42194Cos.*.4) ,
et ainsi des autres. On aura e=A~+Bra4+Cr’~+Dr’+4...... La
série , ordonnée selon les puissances ascendantes de la petite fraction
angulaire A, est convergente par elle-méme ; ct les coefliciens nu-
mériques qui accompagnent les puissances de Cos.4 ne mettent aucun
obstacle a cette convergence.

g. La série donnée par lillustre auteur de la Mdécanique céleste
(tome I, page 181 ), est

p=A+(2e— =% &)Sin A4 (L e*— = et 474 e5)Sin2 A4

=+ (5 — 25 Sin 3 A4 (222 eb— 222 ¢6)Sin. 4.4
+ 22 5Sin 5 A4 e5Sin 6 4,
Pour la transformer dans la unétre, il suffira de mettre 4 la place
de Sin.2A4, Sin.3A4,..... les formules connues, ordonnées selon les
puissances ascendantes de Cos.d ; il faudra faire de plus e=Sin.a
et changer enfin les signes de a et de toutes ses puissances impaires ,
attendu que, dans notre formule , les anomalies sont comptées, non
du périhélie , mais de I'aphélie. On reconnaitra bientét ainsi lidentitéd
absolue entre l'une et l'autre.

10. Faisant , dans cette formule , 7=p ou #=1:p, on aura
¢=/A. Etsi Von fait t=1p, il résultera p=qo°—2a-42ia3—LaSf-.,
On aura donc go°—9¢=o2r—Ia'4-Sa%—.. .. et telle est aussi, a
trés-peu prés, la plas grande équation du centre,

11. PROBLEME 1I. On demande dexprimer le rayon vecteur
r, par une série analogue & la précédente , savoir r=1-++Ba—-4Car*
+Dx’A-.....; le demi-grand axe étant supposé égal & lunité ?

32, Solution. On a, par la théorie connue de Dellipse,

Cos.2a

g —

1—Sin.ACos.p
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Le premier terme de la série étant ce que devient 7, dans le cas

. . dr .
de A=o, c’est-a-dire, égal & 'unité; pour trouver e faisons encore

2=Sin.a , dz=dxCos. ,
d’ou
y=Cos.? ; dy=—d¢Sin.¢ ;
donc
dx . dy Sin.2¢ do Sin.g
—_— = S.A — = — —_— T e— Po Y— :
da Cos.a da Cos.A (2 xy) > da Cos A( ¥) ;
de plus
L2
r= R
1—xy

d’olt on conclura , apres les réductions, la formule tres - simple

dr

Ty =y Cos.ne

13. Pour effectuer, avec facilité , les différentiations ultérieures ;
n

. d*r
remarquons que le rapport différentiel T A1ra generalement la forme

z . R , .
o) la lettre z désignant un polynéme ordonné selon les puis
sances ascendantes de x et de y, et dont la différentielle com-

plete pourra étre supposée dz=~Pdz+Qdy. Il en résultera, aprés
les réductions, le rapport suivant

dettr  (n—2)zx~-P(1—a)}-0(2—xy—2y2-}-ay3)
dan+-1 Cos.i—=2 ) °

‘Aidé de cette formule générale, on passera facilement d'un rapport
différentiel & Tautre; les multiplications a faire seront la seule diffi~
culté qu’il faudra surmonter. )
. dr )
Ainsi , ayant eu - =yCos.a, on aura d’abord, par la diffé-

rentiation ,
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et dés lors on pourra se servir de la formule générale. Pour trouver
dy

o5 ¢ on aura

n=2 , z=s—ozye—rytay’,
P=—2y+y?® ,
Q=—2x—4y+3zy* ;
d’ot on conclura
di3r 1 —4x-——loy+4x’y+1 4xy*

—

@-Co

S +9}~3——6x’y3—~xoxy‘+3x‘}ff‘

Par un semblable procédé, on fera ensuite =3,
z=—4x—10yt4a’y+ 14zt gy —62y —102yi 325
P=—f4-8xy+-14y*—122y —10y'+-62y° ,
Q=—r1o0+4a*4-28xy—+27y*—1827y*—foxy 4152%y¢ ;

d’ou on conclura

— 24482+ 642y +88y>—8z’y

722y —1762y3 —64yt+2827y J-13427y¢ ¥ 5

F1132y5 =362y —70a’y -1 527y

dré -~ Cos.2A

dér 1

et ainsi du reste.
14. Ainsi donc , pour trouver les coefficiens de la série r=x

F-Ba4-Cr*~4-Dra’—-.. ... , il faudra voir ce que deviendront ces
d=r dir

o0 Taco dans le cas de a=0 ,

R . dr
rapports différentiels NG

. a2zt < ,
qui donne z=o0, ¢=A=—, et y=Cos.4; et l'on aura
p

B=-4Cos.4 ,

2C=42—2Co0s.4 ;

6D=—10C0s.4+4qCos.’4 ;
2{FE=—02/488Cos.2A—(4Cos.44 ,
120F=-}416Cos.4 —~1040C0s.> A+4625Co0s.>4 4

ct ainst des autres.
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15. Dans le cas de z=o0, on aura A=0 ; Cos.A==1 , et

A3 AS . .
— — — 4 — —...., ou bien, r=1-}S8in.a. Dans le cas de
r=14— &+ 5 , ’ +
. a3 25
t=%p, on aura A==, Cos.d=—1, et r=1-—7\+—6— --l—‘;+...;,

ou bien , r=1—S8in.a, 1l est presque superflu de remarquer que
ces deux expressions 1-Sin.x, 1—Sin.a, sont effectivement celles
des distances du foyer de lellipse & ses deux apsides. Faisant enfin
t=:1p,on aura A=1=, Cos.d==0, et r=i1-4a*—atfnrbm. ..,
ou bien , 7= n . Ainsi, le rayon vecteur qui répond au quart
1422

de la révolution est une fonction algébrique de la quantité angu-
laire a.

16. Nous nous proposerons, en troisitme lieu, de déterminer , pour
un temps quelconque proposé , la longitude géocentriqgue d’une pla-
néte , moyennant une série double , ordonnée selon les puissances
ascendantes des excentricités de la planéte et de la terre. L’extréme
complication des calculs auxquels nous conduit le développement des
coefliciens nous oblige a faire une supposition qui heureusement
est admissible, et qui ne restreint en aucune maniére la généralité
du probléme. Nous supposerons que , la terre étant dans I'aphélie
de son orbite , la plantte soit en méme temps & une trés—petite
distance de I'une de ses deux apsides. De pareilles époques sont toujours
assignables , et leurs retours doivent former des périodes que l’on
peut déterminer avec toute la précision qu'on désire. Soient, en
effet, p et g, les durées des révolutions anomalistiques des deux
planctes et «, 2 leurs anomalies vraies , pour une époque quelconque.
Il est clair que la premiére des deux planétes passera par I'une

af-ma

de ses apsides au bout d'un temps égal a p , tandis que

2@
“+-n=

. B
Vautre passera par l'un des siens au bout d’un temps

g:les

2%
deux nombres m , n étant des nombres entiers quelconques, po-
sitifs ou négatifs. Donc , pour déterminer une des époques o les

' deux
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deux plandtes auront été ou seront, i la fois, dans I'une de leurs
apsides, il faudra déterminer les deux nombres entiers m et n de
maniére qu’ils remplissent le plus exactement que possible la condition

atmw = i ou mp—ng=— et i
2w .p 2@ 7 4 yh w ?

et on sent que la solution de celte question ne peut présenter de
difficulté.

17. PROBLEME IIl. On demande, pour un temps quelconque
proposé , la longitude géocentrique d'unc planéfe geéncralement ex-
primée par une série double , ordonnée selon les puissances ascen-
dantes des excentricites de lorbite de la planéte et de celle de

la terre?

18. Solution. Supposons que la terre et la planite ayant quitté
au méme instant leurs aphélies A, B (fig. 1), soient arrivées ,
au bout du temps #, aux points P, Q de leurs orbites respectives ;
en désignant par F le foyer commun ou le centre du soleil , et
supposant que la ligne des équinoxes soit EE/, l'angle EHQ sera
la longitude géocentrique de la planéte. Désignons de plus:

par p et ¢ les durées des révolutions anomalistiques,

par @ et b les demi-grands axes des deux orbites,

par aCos.n et 5Cos... leurs demi-petits axes,

par aSin.x et 4Sin.. leurs excentricités,

par « et g les longitudes EFA, EFB des deux aphélies,

par ? et ¥ les deux anomalies vraies AFP, BFQ, 4 I'époque 2,

par ¢ et ¥ les deux anomalies de I'excentrigue,

par 7 et s les deux rayons vecteurs FP, FQ,

et enfin par w la longitude géocentrique demandée EHQ.

19. Les deux longitudes héliocentriques seront ainsi les angles
EFP, EFQ; et I'on aura

EFP=«=—¢ , EFQ=p—y ;
ce qui donne
. sSin.(B==y)==rSin.(z—@)
Tang.gp= - .
$Cos. (8= ) =rCos.(a—@)
Tom. 1V, 23
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On aura de plus , pour les deux rayons vecteurs FP et FQ ou
rets

aCos.2A 5Cos.2p
r=————, =
1—Sin.ACos.@ 1—3Sin.z.Cos.

On aura enfin les équations, déja employées dans le premier pro-
bléeme , par lesquelles on passe de lanomalie vraie 4 l'anomalie
moyenne , et réciproquement : savoir ,

. Cos.ASin. . Cos.uSin.
an.¢’=—7—“—¢—- , Sm.x]/::—~—,—{f—l—i— R
1—Sin.ACos.® 1—38in.Cos.y
Cos.@=—Sin.x Cos.9—Sin.a ~
Cos ¢/ = Cos Y/ = ————
1—Sin,ACos.0 ’ 1—Sin.zCos. ¢
27t

. ozt . .
;— = ¢-Sin.aSin.¢ i:"’"—}—Sm.,«Sm.-\p.
q
20. Comme on demande pour w une série double , ordonnée selon
les puissances ascendantes des deux excentricités, telle que
w=A—4Bat-Cr*4-Dr’~4=.creres
B/ u=4=C/rpe=D/ 22 podvaniee,
S B e ot LN SO
+D///[43+n-un
+|.Il'l.

on voit que son premier terme 4 sera ce que devient l'angle »,

2wt
dans le cas de a==0, w=o03; ce qui denne r=a, s=b, ¢=—,

12 .
-:p:—zig dol il résulte
9

aSin, (a—-z—;'—t ) ~b5Sin. ([5—- i:—t

2Cos. (oa-—%f—t) —bCos. (ﬁ—f(j—t .

a1, Les deux coefficiens qui suivent, B et B/, seront ce que
2 H

Tang.4=

‘v . dev dw
deviennent les deux rapports différentiels PP dans laméme sup-

position de a=o0 , »=o0; et 'on voit que la differentiation doit
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porter uniquement sur les deux excentricités a et g, et que le

temps ¢ doit étre regardé comme exempt de différentiation. On
aura ainsi

do Sin.@¢(2=Sin.ACos:®) dr

—— =— —_— = 0 '¢
da Cos. A ’ da aCos.2Cos.?
ad Sin.(2=Sin.xCos.+) ds

A, . = =Cos.uCos¥
E» Corn ; M 5Cos.xCos

22, Enfin, de Vexpression de Tang.w , donnée ci-dessus , on
tire lexpression générale de dw , ainsi qu’il suit

—r2d@-4-rsd@ Cos.(a— p==¢4-)—sdrSin. (a=—p—p-}\)
d __—sldil«—}-rsdxlzCos.(u—-ﬁ—q)-{-xlz)+rdsSin.(u——/.’:~—-¢+¢)
w= r2—2r5 Cos. (o= Bu—@~}=}) 45> 2

. . . dw dw
_ee qui donnera, pour les deux cocfliciens partiels — , —

A dee
dw _ Cos.A a2C05.2A5in.¢(2=—Sin.ACos.9)
dr  r2—2rsCos.(a—PB=-@4-4 )52 (1—Sin.ACos. )2

abCos.2.Sin.p(2=—=Sn.ACos.0)"
- (1==Sin.2Co0s.¢) (1 =Sin.,.Cos.y) Cos.(u—-ﬁ—-qa-l—xl/)

abCos.2uCos.¢ _, %
kil stk A8 EEPRRPR A
(1=—Sin.xCos.{) Sm'(“ e—¢+¥) {5

dee

_ Cos.pe 52Co0s.2Sin. (2==Sin.. Cos. )
dee - r2==2rsC0s.(t— =4~ )52 (1=Sin. e Gos. )2

2A8in.J/(2—Sin..Cos.
. abCo.s ASin. (2 ll’.l ©Cos.) Cos.(u——ﬁ—‘l’—{—‘l’)
(1—Sin.AC0s.¢) (1==Sin.pcCos.y)

abCos.*ACos.
—_— " _Sin.(xa—pg—0¢+¥) } .
(1—Sin.ACos.9) Sin.(«e—p—oF )§

24. Pour en tirer les deux coefficiens B, B/, il faudra faire,

aat
dans les deux expressions , a=o0 , g=o0 , r=a, s=b, ¢=—,

2%t . e
Y ==~ ; on aura ainsi
q
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I ., 2=t

B= poE— 22°Sin,—
a? = abCos.(( @—p— — ...f) b2 P

(=Tt
. 2=t 2zt 2%t 2%t _, 2 2
—24bSin. — Cos.(a—ﬁ—*- -+ -1) -abCos. = Sin. (u—/s-._f_t_i_.f.t ?,
P P 2 P q)S

B = z 25°Sin, 22

2%t 2=t q

a=—zabcos.(u—,3__ = |4-b2
P + q

~2abSin. ﬁCos,(m—g—z——m —{-2—23"5)--|-115('jos.izr—lSin(as-/s-f-w-f 4.2 g .
P P q q P q

25. La forme, trés-compliquée, des deux différentielles partielles

de dw

dr 7 dg

succes, au développement des coefliciens ultérieurs ; et nous avouons

ne permet guére de procéder , avec quelque espérance de

que la formule que nous venons de trouver ne pourra guére é&tre
regardée que comme le résultat d’une premiére approximation, &
laquelle il nous parait convenable de nous arréter. Pour trouver la
longitude géocentrique , avec une plus grande précision , il faudra
encore recourir , dans chaque cas particulier, 3 'emploi des tables,
et renoncer aux avantages qui pourraient résulter d’une formule
générale,

26. Connaissant la position des deux aphélies, ou les angles EFA,
EFB ; et les deux longitudes héliocentriques EFP , EFQ , et par
conséquent aussi les deux rayons vecteurs FP , FQ, on trouvera la
longitude géocentrique , ou l'angle EHQ par la formule
FQS8in. EFQ—FPS:n.EFP
FQCos.EFQ—FPCos.EFP *

Ici la ligne FP, rayon vecteur de la terre , peut toujours &tre regardée
comme donnée ; mais, pour trouver FQ, rayon vecteur de la planéte,
il faut connaitre 'anomalic vraie de cette derniére, ou 'angle AFQ,
qui est lui-méme égal & la longitude EFB de I'aphélie, moins la
longitude héliocentrique EFQ ; ce qui fait naitre une difficulté,
lorsque, de la longitude géocentrique , qui est la seule donnée, tapt

Tang. EHQ =
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par les tables que par l’observation, on veut repasser  le longitude
héliocentrique. La difliculté sera levée, par la résolution du probléme
que voicl.

27. Connaissant , outre les longitudes des deuzx aphélies , aussi
bien que les grands axes et les excentricités des deux orbites,
la longitude gdocentrique d'une plancte , pour un instent doamnc ,
trouver sa longitude héliocentrigue ?

Désignons par

B l'angle EFB, longitude dc l'aphélie de la plantte;

b le coté BF, demi-grand axe,

w l'angle EHQ , longitude géocentrique de la plandte,

J le rayon vecteur FP,

» Pangle EFP, longitude héliocentrique de la terre,

¢ I'angle EFQ, longitude héliocentrique de la planéte;
donc , AngFPH=w—, ,

Ang PQF =@—s .
I’angle BFQ, anomalie vraie de la plandte, sera B—¢; et I'angle
formera ainsi 'inconnue du probléme.

Le triangle FPQ donnera FP : FQ=Sin.(w==¢): Sin.(s~=n) ; donc
FQ‘“ Sin.(w-—n)f.

Mais , parce que FQ est un rayon vecteur de I'ellipse ; om a aussi
P q y p3¢ ;

" Sin.(w—>¢

FQ _ bCos.2e .
" 1=Sin.uCos,(B—¥)

donc, si 'on pose, pour abréger,
bCos.2p
—_——=n ,
JSSin, (w=—17)
on aura l’équation
1 =7Sin.(w——0)-Sin,xCos.(B—6).
Pour la résoudre, il suffira de faire
nCos.w=—Sin.xSin.B

2 = p2ed-27Sin.,uSin.(W==B)-Sin.’s ;
nSinww—=4-Sin.Cos.B ’ R n*+ nSi HS ( ) - ?

Tang.K=



1-4 PROBLEMES
et I'on aura finalement

Cos. (14K} = -13{- .
Le probléme sera résolu,

28. PROBLEME V1. On demande de comprendre les époques
des conjonctions et des oppositions d’une planéte dans une seule
série double , ordonnée selon les puissances ascendantes des deux
exceniricités ?

2qg. Solution. Par les mémes raisons exposées au sujet du précédent
probléme , le temps # sera compté d'une époque ol , la terre étant
dans son aphélie en A, la planite était trés-prés de l'une de ses
deax apsides B ou B/. Les quantités données du probleme seront
donc : savoir, les demi-grands axes @, & des deux orbites; les deux
demi-petits axes aCos.n, #Cos.. ; les deux révolutions anomalistiques ,
P, g ; enfin l'angle AFB que les deux grands axes font entre eux,
et que nous désignerons par ¢; et les lettres ¢ ct ¥ continueront
a4 désigner les anomalies vraies AFP, BFQ des deux planttes au
bout du temps #z On aura ainsi AFP=¢, AFQ=s++; ce qui
donne , pour le cas du probléme ¢—¥—s=n=; la lettre n désignant
un nombre entier pris A volonté, pair dans les corjonctions , im-
pair dans les oppositions. T en résulte 1’équation différentielle
de=dy ; cest la premicre des équations différentielles qui nous
conduiront & la connaissance des coefficiens.

30. La série étant supposée de la forme

t=A4-Br~4Cr*4-Dr3—-......
B/ p4-C'rpu4-D/22 ot
4 C 2= D VP .
D13
Le premier terme A sera ce que devient # dans le cas de a=o,
2wt 2wt

u=o ;or, on a, dans ce cas, p—:@, —=v, ce qui fournit
q

. 2=t 2=t
Péquation — — — ==na-}~; done
P q
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A= (nw+-pyq '
2@(g—p)
Telle est la valeur du premier coefficient de la série.
31. Les coefficiens B, B’ seront ce que deviennent , dans le
. . de dt
cas de n=o0, =0, les deux rapports différentiels partiels — , T :
f‘
On a trouvé (4), dans le premier probléme , pour la différentielle
complete de o,

2% (I—Sin.ACo0s.0)2 Sin.@(2=Sin.ACo0s.9)
d¢= = 1 df— mn.o(2 mn da :
pCosia Cos.a

on aura de méme, pour la seconde orbite,

dd= 2w (1==Sin,pCos.y)?2 A Sin.(2==Sin.x Cos. )

gCos.lp Cos.ee

d(x.l

Egalant entre elles ces deux différentielles, ce qui est effectivement

I'équation de condition (29) des syzygies, on en tirera la différen-
ticlle complete de z qui doit répondre 2 la nature du probleme ;

. . . . de dt
ce qui donnera ensuite , pour les rapports différentiels — , T
de 1 }_1(]Cos.’-’ACosﬁyan.¢(2-—Sin.AC05.¢)
FT 27 ¢Cos.3pe/ 1==S5in.AC05.9)2=pCos.3a( 1—Sin. xCos.4)2 >
dt I p9Cos.2.Cos.3ASm. (2==Sin.ge Cos.{)
de ~ 2a  gCos3u(1—Sin 2C05.9)*—pCos.3A(1=Sin.xCos,4)2

32. Il nc restera qu'a faire, dans ces expressions, a==0, x=0;

ce qui donne cp:#, 2%11’ pour avoir les deux coefliciens
B, B’. On trouvera ainsi
pySin 22 pysin. 222
O =

33. Les coefficiens €, €/, €/ des termes du second ordre seront
ce que deviennent , dans le méme cas de A=0, x=o0, les trois
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dzt ad2g da#
T 2dade T 2de

rapports différentiels partiels pYTP -. Faisant , pour

abréger

P=1—S8in.»Cos.0 , @=1—8in xCos.¢ ,

ce qui donne
dP =—d»Cos.2Cos.0 d¢ Sin.ASin. ¢ N

dQ:—d,«Cos.#Cos.4/+d4/5in.#81n.4/ ;

on parviendra ainsi & donner une forme un peu plus abrégde aux

¢ X .
deux rapports T A lesques deviendront
dt ) pqCos.2A2Cos.3,Sm.o(14-P)
2% _— =+ - »
da gP2Cosdp=—p2Cos.3n

. d¢ ) pgCos.2pCos3ASinAd (14-0Q)
—w( dw ) g P2Cos.3p—pQ2Cos.sia

Mais il est convenable d’abréger encore. Désignons par #', M , N
le dénominateur commun et les numérateurs de ces deux valeurs,

de maniére qu’on ait

dt _ M dt _ N .
(5 )=% > =(5%)=%F
fes différentiations partielles nous apprendront que
dF
( Ty )=—-29PCos.A3yCos.<p+3pQ”'Sin.mCos.’;..
- < %’% ) (29 PCos.’uSin.ASin.e—2pQCos.’ASin &Sin.¥) ,
dF 2 .
( m ) =429 Co5..Co05.*2Cos.4— 37 P*Sin.uCos.>x
13
" d . . . .
-+ ( Ti,ui ) (2¢PCos.’Sin.»Sin.e—2pQCos.’2Sin.uSin ¥) ;

( > 4 g oS, A Q8. FS!D-?( Sl .2\ CO . /‘.COS'. ASID' A )
i :
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+( )(}’7005 2»Cos.>¢(2Cos.e— Sin.»Cos.> ¢~ Sin.2Sin.* ¢

dM
( A > =—23pgCos.>2Cos.?xSin..Sin.¢/2 — Sin, »Cos. ?)

-+ ( e >/DqCOS.’?\COS.3;4(2COS.,@—-Sin.ACos.zfp-{-Sim)\Sin.’@) .
( O )—-—-oquos. aSin.aCos ?x«Sin ¥ (2—Sin.«Cos.¥)
do . e ae
~- ( e )pqCos.3ACos.‘*M(zCos.«lz-—Sm.(.aCos.W—-l-Sm.,ubm.N«) ,
( ) = ~—p7Cos.32Cos.£Sin.¥(4Sin.u~Cos.*uCos.¥—25in.*Cos, ~P)

+( ™ ) p§Cos.’aCos,*(2Co0s.¥4-Sin.xSin.*§—Sin..Cos.>¥),.

de
Reste donc a trouver les expressions littérales de ( ) ( )

dr et dee, et 2 cffectuer ensuite les développemens. Or, ayant déji
exprimé do en d# et da, de méme que d¥ en d7 et de, on n'aura
qu’a substituer , dans 'une de ses expressions, la valeur de dz en
dxr et de : on aura ainsi la différenticlle compléte de de ou dv .

d’ott on conclura

pSin.quos.!A(I +P)Q> ( ﬂ )__qSin JCos.2pe(14-QY P>
T gP2Cos.3pm=pQiCosia’ T gP2Cosu—pQ=Cosin |

34. Apres avoir effectué ces développemens, on pourra procéder;

. ¢y . o ‘e . det
sans difficulté, 3 la détermination des rapports différentiels el

dz¢ da¢  Avant dz 1
— nt 2 — ==, 2 —— -
T d,(.a ya zr( 7y , w( i ) -7 il en ré
sultera

WF2< i;) F( (m> M(

Tom., 1; 34
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(i) =F (5 -5 ) =1 (& )+N(
()= () (i)

35. Ainsi donc, pour trouver les coefficiens €, €/, €/, de nos
termes du second ordre , il fatudra voir ce que deviennent ces
rapports différentiels partiels , dans le cas de A»=0, x#=o0. On tire

.. . 2wA 2w A4
de cette supposition P=1, =1, ¢= , = ; eten con-
P . q
tinuant, par abréviation , d’employer les lettres ¢ et ¥ i la place

de leurs valeurs , on aura, dans la méme supposition de a=o,

#=0 ,
F=g—p , M=opgSin.p , N=2p¢Sin.y ,

( ) 2pSin.¢ ( - quin.wI«
g g=p
ct ensuite

( )=_9900s¢, ( ) ~F2pCos.¥ ;

( ) pq(q—-5p)Sm ¢Cos. ° ( ) __ 4pgCos. ¢Sm ¥
9P
( ) pq(Sq-p)Sm 4 Cos. '4/ ( ) + 4p2qCos.Sin. ¢ )
=P 9=r

we

36. De 12 on pourra passer immédiatement aux rapports différentiels
dat d2t dz¢
du second ordre Tr 0 D de On aura, toujours dans le cas

de a=o0, x=0,
&t pg5p43p
dar 22(g=—p)?
dx

Tl S q__p‘z(pSm 2Cos¥+4Sin¥Cos.e) .

Sin.¢Cos.¢ ,
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2 5943 .
o = MSID."LCOS.‘;’ ;
d'ul 2w(p——q)2

d’ot lon tire enfin

C = P9(5p~+43¢)Sin.¢Cos.0
T ey ’

8pq(pSin.¢Cos.~f-¢Sin. Cos.0)

) —
¢'= ha{g—p)? ’

_ P9 (5943p)Sin.d Cos.y

c/
4o (g—p)?

37. Pour trouver pareillement les coefficiens D, D/, D/, D/, des
termes du troisitme ordre , il faudra différencier de méme , par
rapport a » et «, les rapports différentiels dont nous avons donné
la liste (33). Nous n’exécuterons pas ces développemens ; mais la
route est tracée, et, en attendant, la série

t=A+Br4Cr*
+B/t“+C/A‘u
~+C/e*

fera connaitre , 3 peu prds, les époques auxquelles il arrivera quel-
que conjonction ou opposition de la plantte a laquelle se rapporte
Vellipse BQB/ de la figure.

Nous poursuivrons ces recherches dans un prochain article.
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OPTIQUE.

Note sur la construction des miroirs concaves de grandes
dimensions ; 4

Par M. A.***, abonné.

[a Vi Sla e Tia ~a N e =

ON sait que la construction des miroirs concaves , de grandes
dimensions , présente des difficultés considérables , soit pour obtenir
I'uniformité de courbure , soit pour donner au poli la perfection
nécessaire. On surmonte, en partie, ces difficultés , avec du temps,
du travail et du soin; mais les opérations sont toujours trés-longues
et trés-coliteuses. Si donc il était possible de ramener la fabrication
des instrumens de cette espice aux procédds qu'on emploie, ou
da moins quon peut employer , pour celle des miroirs plans, il
n’est pas douteux quil n’en résultat beaucoup d’économie et de
facilité , et par suite un perfectionnement sensible , dans cette partic
intéressante de l'art de lopticien.

Le moyen dont on va parler parait tendre 3 ce but; mais on
ne devrait penser & le mettre en pratique qu'aprés s’¢tre préala-
blement assuré, par la théorie, du résultat qu’on pourrait en espérer;
abstraction faite des différences inévitables entre le calcul et Pexé-
cution, Les questions dont il provoque ’examen sont d’ailleurs de
nature & mériter l'attenion des géometres. Par ce double motil ,
on croit pouvoir entrer dans quelques détails sur le procédé dont
il s'agit.

On rappellera d’abord celui qui a ¢été mis en usage par Buffon,
il y a environ soisante ans, pour se¢ procurer des mireirs ardens.



CONCAVES. 181
Il consiste & couper une glace circulairement , 4 Tastreindre par
son bord, et & la rendre concave , par une pression appliquée au
centre , d’une maniére permanente ( Mémoires de [l'académie des
sciences , pour 1754 ). Prenons, au lieu d’une glace , une plaque
métallique , convenablement préparée ; et imaginons que sa convexité
se forme du coté qu'on destine & la face antérieure du miroir.
Suapposons , de plus , qu’il soit possible de soumettre cette face
convexe aux opérations par lesquelles on applanit et polit une grande
pi¢ce de métal; on enlévera ainsi la calotte trés-mince qu’intercepterait
un plan passant par l'aréte de cette méme face. Si 'on supprime
ensuite la force comprimante , la plaque reprendra son état primitif ;
et la face sur laquelle on aura opéré deviendra concave, avec une
courbure sensiblement pareille 2 eelle qu’elle avait dans son ¢état
de convexité.

Dcux questions se présentent d’abord, relativement & cc procédé.
La premicre de pratique : comment obtenir la condition absolument
nécessaire pour que I'opération proposée soit praticable, savoir, que toutes
les parties de la machine soient situdes du méme cété, par rapport
au plan indéfini qui passe par la surface & polir ? La seconde de
théorie : quelle est la courbe que forme un diamétre de la plaque,
dans son ¢tat de comi)ression; et, plus particulitrement , quelle
est la portion de cette courbe qui peut, sans erreur sensible , rela-
tivement a sa destination , étre prise pour une parabole ?

On ne croit pas devoir entrer ici, sur la premiére question, dans un
discussion qui ne pourrait qu’étre prématurée ; et il conviendra seu-
ment d’observer que les difficultés , peut-étre insurmontables en
opérant sur le verre , disparaissent , lorsqu’il s’agit d'une maticre
aussi facile & travailler qu’une substance métallique. I.a seconde
question , indépendamment méme de toute application , parait digne
d’excrcer la sagacité des géometres. 1l conviendrait peut-étre de I'étendre
au cas ot la pression aurait lieu , non sur le centre , mais sur tous les
points d’un cercle concentrique 4 la circonférence de la plaque, et
méme sur plusieurs cercles de cette espece, 4 la fois ; et , pour
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ce dernier cas, on pourrait rechercher quels seraient les rayons des
cercles et les forces & appliquer qui produiraient la courbure la plus
apprachante de la parabole. (*)

Comme , & Pexécution, il se trouve nécessairement des défauts
d’cxactitude dont on fait abstraction en théorie , il ne serait point
inutile de rechercher les anomalies que produiraient , dans Deffet
cherché , des irrégularités dont I'ordre pourrait étre supposé treés-
petit par rapport aux dimensions du miroir; comme , par exemple,
si les deux faces n’étaient pas exactement paralléles; si, au lieu
d’étre planes , elles étaient des portions de cylindres, de cénes ou
d’ellipsoides trés-grands; si la plaque ct le support nécessaires a
Vopération ne se touchaient pas cemplétement par tous les points , ete,

() Un probleme beaucoup plus général serait le suivant : Ure surface courbe
rigide et élastique, d'une forme connue et d'une épaisseur constante , ou variant
suivant une loi donnée , est invariablement fixée dans Uespace, par plusieurs de
ses points , ou méme par une oy plusieurs courbes continues tracées sur elle.
On a appliqué des pressions constantes , données d’intensité et de direction , en
divers autres points de cette surface, ou méme suivant d’autres courbes continues
tracées sur elle. On propose d’assigner la nouvelle courbure gu’affectera cette surface?

On pourrait aussi renverser le probléme, et demander quels devraicnt éure les
points d’application, directions et intensités des pressions , ainsi que la situation des
points fixes , pour produire une courbure dennée.

Pour préparer, par un probléme plus simple , & un autre plus compliqué , on
pourrait d’abord se proposer celui-ci : Une verge courbe , rigide et élastique , d'une
courbure connue , et d’'une épaisseur constante , ou variant suivant une lpi donnée
est invariablement (fixée dans Uespace, par plusieurs de ses points. On a appligué
des pressions constantes , données d'intensité et de direction , er divers autres
points de cette verge. On propose d’assigner la nouvelle courbure gu'elle affectera
par leffet de ces diverses pressions ?

Ce probléme est susceptible du méme renversement que le précédent ; ¢’est-
A-dire, quon peut demander quels sont les points fixes et les pressions qui pro-
duiront unc courbure donnée ?

Ces problémes paraissent avoir beaucoup d'analogie avec celui de la courbe
élastique ; le premier suppose nécessairement dans la surface une certaine extensibilité
et contractibilité , sans laquelle on ne pourrait obtenir que des surfaces développables.

J. D. G.
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Ce contact exact est vraisemblablement une condition irés - impor-
tante ; mais on aurait des moyens assez faciles de Pobtenir, avec

toute la précision désirable.
Paris, le 23 octobre 1813.

QUESTIONS RESOLUES.

Démonstrations du théoréme de géomeétrie e€nence o la
page 6o de ce volume ;

Par - MM. MassaBieau et GuiLLAuME , professeurs de
mathématiques au lycée de Rodez , Gosert, éleve du
lycée d’Angers, et M. BErArD , principal et professeur
de mathématiques au collége de Briancon, (¥)

[ S Va Y Ve e Za o

E NONCE. N/, M étant deuz points quelconques dune parabole ,
O le point de concours des tangentes en ces points , et ¥ le foyer;
on propose de démontrer que

MO*_W0"

MF ~ ™MF
d'oi il suit que, si ¥ tombe sur VM, le sommet de l'angle O ,
qui devient droit, est placé sur la directrice , et la ligne OF est
perpendiculaire sur la corde N/M//.

Les solutions fournies par MM. Massabieau, Guillaume et Gobert
sont purement analitiques , et reviennent & peu prés 4 ce

qui suit.

(*) Le théoréme a été proposé par M. Bérard.
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O

Soit
y’=4m‘ s (I>

I’équation de la parabole , et soient les coordonnées des points M/,

M/, O et F ainsi quil suit

x’ PN

pour M7/ pour O

¥

a, c,
pour F

s o 5

pour M/ g

¥
on aura conséquemment
yr=4ex’ , y'*=/fcx. (2)
Les équations des tangentes, par les points M/, M/ seront
yy/'=z20(z+a’) , yy'=zc(lata") ; (3)

et, comme le point O appartient & la fois & ces deux tangentes;
on aura

by'=z2c(a+-a’) , by’=20(a-ta") ; (4)
d’olt on tire , en ayant égard aux équations (2)
y/‘y” .
a= W’ b==x(y"y"). (5)
Cela posé on a

MO = (wrma(y—iy = {22 —22]

4e 4e
. . I;v+4 2
iy =y =TT (=

MO =X (g

et on a pareillement

x/

e 3, (A
1\1//0 = 40 (y/_..y//)z 3

mais , d’'un autre c6té, on a aussi

et 3
M/F
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—_—
MF = (2/=c)*~4y/ ={(a/—c)*F fex/=(a'+¢)* ;
d’ox I\I/F=x/+c ;

et 'on a pareillement

M/F=z/c ;
done
————— 2 —— 3
MO _ M”70 (yl==yy3 (6)
MF ~ M'F T e ?

ce qui démontre la premidre partie de la proposition,
On a de plus

MF X M/F=(x/0) <x~+c>={ = +c§ { = +c§= 33{0— -—c}z iy

o

M'F X MN/'F=(a—c)*--1*= OF .

Eliminant successivement M/F et M/”F entre cette derniére équation
et I'équatien (6), et extrayant chaque fois la racine quarrée, il

viendra
MO M'F _ OF

MO OF M/ 7

d’ott il résulte que les deux triangles FM/O ct FOM/” sont sem-—

blables, (*)
Cela posé , si la somme des angles égaux OFM’, OFM” vaut

(" Cest le théoréme de Robert Simson , rappelé par M, Servois, & la page 156
de ce volume.

Tom. 1V, 2>
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deux angles droits ; cest—a-dire, si le point F est sur la corde
BI/M*, chacun de ces deux angles sera droit ou , cn d’autres termes,
OF sera perpendiculaire sur M/M/ ; la somme des deux angles
FOM’ et FM/O vaudra donc deux angles droits ; et, puisque le
dernier est égal & FOM/” , il en résulte que l'angle M/OM/ est

alors droit,

Lorsque les trois points M/, F, M’ sont en ligne droite, on a

¥y
Xl g ?
ou
/Sﬁ_— }: //g‘y/2 — } °
T T
ou Oy 4e Yy —y") =0

ou simplement

Yy'+4er=o ;

ce qui donne

ainsi alors le point O est perpétucllement sur la directrice.

Voici présentement la démonstration de M. Bérard , qui est pure-
ment géométrique.

Par les trois points M/, M/ , O ( fig. 2 ) soient mendes des
paralleles & l’axe ; et soit H le point ol la derniére rencontre la
courbe. Par ce point H soient menées des paralleles 3 OM’ et 3 OM//,
rencontrant respectivement en P/, P/ les diamétres menés par M/,
M. Le quarré d’une ordonnée au diametre étant le produit de

I'abscisse par le quadruple de la distance du sommet de ce diametre
au foyer; on a

P/ =fMEXMP , HP" =4M/FxMP" ;
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mais , & cause des parallélogrammes OP/, OP/, on a
M/P/=M/P”=0H , HP/=0M/, HP/=0M";
donc
OM/ =4FM/<OH , OM/ =4FM/xOH ;

ce qui donne, par l'dlimination de OH ,

oM’ omr

FW ~ Fmr C

Si le point F est en ligne droite avec les points M/, M~ (fig. 3 ),
cette équation n’exprimera autre chose que la proportionnalité des
quarrés des c6tés de 'angle droit d’un triangle rectangle avec leurs
projections sur ’hypothénuse ; le triangle M/OM/ sera donc rectangle
en O, et OF sera perpendiculaire sur M/M”.

Soit , dans ce cas, prolongée OH jusqu’a la rencontre de M/M//
en I, et soit menée HF. On sait que, par la propriété de la pa-
rabole le point H est le milieu de OI; puis donc que I'angle OFI
est droit , ce point H est le centre du cercle circonscrit au triangle
OFI, et par conséquent HO=HF ; et puisque OH est parall¢le 2

Paxe, le point O est un point de la directrice.

N

Tentatives et réflexions relatives au probléme proposé
a la page 352 du troisiéme volume de ce recueil;

Par M. Kramep , professeur , doyen de la faculté des
sciences de l'académie de Strasbourg.

[a Vi o Vo Vi, VI W7o W ¥

LE probléme proposé & la page 352 du troisitme volume des
Annales revient évidemment a cclui ol il s'agirait de determiner
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langle au sommet d’une pyramide ou d’un céne donné, 3 base
quelconque. Clest aussi sous ce point de vue que je me propose
de l’envisager, dans ce qui va suivre.

1. L’angle au sommet de tout corps pyramidal a pour mesure
naturelle de sa capacité le polygone sphérique décrit de son sommet
comme centre, avec un rayon arbitraire , dans toutes les faces qui
le comprennent; et le rapport de la surface de ce polygone 3 celle
de la sphere entitre, ou bien & la huititme partie de cette sphere,
connue sous le nom de triangle sphérique tri-rectangle, et que ,
dans mes Elémens de géométrie , j'ai désigné par le nom dorzhoddre.

2. Désignant par s la somme des angles externes d’un polygone
sphérique quelconque, la surface de ce polygone scra égale & 360°—s;
Pangle droit étant l'unité des angles linéaires, de méme que I'or-
thoedre est celui des angles solides. Ainsi I'angle droit sera & 360°—s,
comme Dlorthotdre est & la surface du polygone sphérique.

3. La figure 4 désigne la surface antérieure d’'une pyramide, ayant
pour base le polygone rectiligne ABCD..... Si du point S comme
centre , et avec un rayon arbitraire, on déerit , dans les faces de
cetie pyramide, le polygone sphérique abed....; la surface de ce
dernier polygone exprimera la capacité de I'angle solide pyramidal
dont le sommet est S, tandis que ses angles exprimeront les incli-
naisons mutuelles de ses faces entre elles ; c’est ainsi que , par
exemple , 'angle sphérique & exprime l'angle plan (*) compris entre
les deux faces triangulaires ABS, CBS. On le trouvera, lorsque l'on
connaitra tous les angles lincaires aux sommets de la base ; c’est ainsi
qu'en désignant par B l'angle ABC, par m langle ABS , et par
n Pangle CBS, on aura le cosinus de l'angle plan ABSC, ou

(*) Il est presque superflu d’observer que lauteur emploie ici les ancicnnes
démonstrations d'angles linéaires , plans el solides , corrcspondant aux dénominations

nouvelles d'angles plans, diédres et polyédres.
J. D. G,
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Cos.b= Cos.B—Cos.mCos.n -

SinmSin.n

4. Mais , pour appliquer ces principes généraux aux conoides;
ayant pour base une courbe quelconque, rentrant en eclle-méme,
il faut nécessairement réduire 4 des coordonnées rectangulaires la
position des sommets de cette base , considérée comme polygone
rectiligne d’'un nombre de cotés fini. Soient done (fig. 5) L, M,
N, trois sommets consécutifs de cette base, que nous rapporterons
4 l'axe indéfini AZ, mené dans le plan de cette méme base, par
le pied A de la perpendiculaire SA. Nous désignerons par Z cette
méme hauteur SA ; et, prenant le point A pour origine des coor-
données , nous exprimerons par & , ¥ les coordonnées du premier
sommet L ; par 7, #, celles du second sommet M; et parp, ¢,
celles du troisitme sommet N; de maniére que

AO=z , AP=¢ , AQ=p,

OL=y ; PM=wz; QN=g¢:

Il en résultera
gﬂ’:k%—x’—l—y’ ; I—J_Iz=(l—x)’+(”—3’)’ i
SM =hrdwr , NN =(p—tyd-(g—)* ;
SN =kdpdg ;s LN =(p—a)+(g—y) ;
d’ott 'on tire

P2 s 2] bl y

Cos SML= """
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t2fute—pt—qu

Cos.SMN = SNy

t2feu 2t gomtlymmplomgu--p x-4-qy
J m—
Cos LMN = L MXMN .

Il faudra aussi se procurer les expressions des sinus des deux pre-
miers SML et SMN de ces angles. On aura, aprds les réductions
nécessaires,

———— Y
) 72 LM o(fy—ux)?
Sin:SML=~ — y_z ,
SM xLM
B2 MN. -(gtmmpu)
2, ‘wamT)11)2
Sin.2SMN = 9,

Le produit SMXXLM.S:z.SML exprime le double de la surface du

triangle LSM; d’ou il suit que cette surface gura pour expression

H Vﬁ“.mz —+(ty—ux)* -

5. Le cosinus de l’angle plan LSMN, qui exprime linclinaison
mutuelle des deux faces triangulaires LSM et MSN, ayant pour
son sommet lindaire I'aréte pyramidal SM , est exprimé comme il suit :

Cos.LMN==Cos5.L.MSCos. NMS

0S. = .
Cos.LSMN Sin . LMS.Sin. NMS

Aprds les substitutions, et les réductions, en assez grand nombre;
. qui se présentent, cette expression devient
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ha(t2efu 2t sty mmpt—gu—-p 2=y Y= {ty—tia ) (gl==p1)

V{ B LM +{ty—uzx)*}} 7 MN z+(qt——pu>2 i

Cos. 1.SMN =

On trouve ensuite, pour le sinus du méme angle,

h.SM (pu—gtt-ty=—110=—
Sin.LSMN = (pu=—qt-ty—ux=—=py-+-g.x) .

§ LM 1—-|—(ty —ux)*} {4* MN z+(qt—pu)“}

d’ott il résulte enfin

b SM(pu—git-ty—ux—py-q:x) )
hE( sty —pt—qutpagy)—(ty —ux) (u—gt) *

Tang LSMN=

et telle est la tangente de l'angle plan, compris entre les deux
faces triangulaires contigués L.SM , NSM.

6. Pour passer du polygone rectiligne au cas d’une courbe con-
tinue , prenons sur son périmetre les trois points L, M, N, i des
distances infiniment petites I'une de l'autre ; et, en continuant de
désigner par les lettres #, z, les deux coordonndes AP, PM, du
point intermédiaire M, nous aurons z~4-d#, z-}-dz, respectivement,
pour les coordonnées AQ, QN , du point suivant N; tandis que
t—dt4-d*t—d’t4-..... , u—du+d?u~d’u4-..... seront , respecti-
vement , les expressions complétes des coordonndes AO, OL, du
point précédent L. Comme , dans le probléme que nous nous pro-
posons , il suffira de nous arréter aux secondes différentielles,
mOUS aurons

AO=a=t—dt+ds ; AP=z, AQ=p=s-4d:,
OL=y=uy—du+d*z; PM=z; QN=¢g=u-du.

En faisant ces substitutions, dans I'expression ci-dessus , nous aurons
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pour la différentielle de la somme des angles extérieurs, différentielle
que nous représenterons conséquemment par ds, et de laquelle dépend
la solution de notre probléme , I'expression suivante

- R.SM(dtd2um=dudzr)
T he(deerdur) - (tdum—ydz)a

7. Si nous désignons , en outre , par A4 la portion de la surface
convexe de ce corps conique , comprise entre les deux arétes AL,
AN, nous aurons

dd=\/ h*(dr*~-du*)+(¢tdu—udz) ,

ds= Rdedenn/h-—-t2u>

442

L’expression de ds est donc beaucoup plus compliquée que celle de
dd ; et, comme cette dernitre n’est integrable que dans un nombre
de cas trés-borné , desquels celui du céne oblique, a base circu-
laire , est formellement exclu ; on voit que l'on doit encore moin:
se flatter d’une solution complete du probléme qui concerne I
capacité des angles au sommet.

8. A la place des ccordonndes rectangulaires # et z, essayons de
substituer le rayon vecteur AM=r et langle MAZ=¢ qu’il fail
avec l'axe des 7z, ce qui donne z=rCos.¢, u=rSin.e. On trouver:
ainsi

dd=1y/ h*dr*4-(L—r)r*de®
et si I'on fait d¢ constant, d'ol d*¢=o0, on aura

_ adr2de4-r2d@3—rdorde
T hrdre (heraradgr

v \/h:—}-rﬁ .
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9. Prenons pour premier exemple le céme droit ayant A pour

centre de sa base, ct 7 pour rayon de cette base. Ici on aura dr=0;
la différentielle de la surface conoidique deviendra donc

dd=rdey/h¥r,
ayant pour intégrale

A=:irey/ higr+4C ;

ce qui donne, pour la surface entiére du céne =ry/Tgre. Faisant,
4 A —ane ’ld@
pour abréger, le c6té du céne ou y/Egr=f, on aura ds= WAk

ho .. o .
et s= — . Ainsi, la somme des angles extérieurs , pour le céne

S

. , , omh .
entier , étant d’aprds cela 7— , la_capacité de l'angle au sommet

. o2m( f—h) . .
deviendra T On aura donc la proportion: l'angle droit, ou
- 2a( f—h) .,
— , est é-——§~—, comme l'orthotdre est 3 la capacité de l'angle
2

qu’on cherche, lequel, par conséquent, sera égal a l'orthoédre mul-
T 4(f—h) . .

tiplié par — Effectivement, l’angle en question occupe , sur
la surface d’une sphére du rayon f, une calotte sphérique de la
hauteur f—%, dont la surface sera, par conséquent, 2=zf(f—£%);
‘d’un autre c6té, l'orthoddre, égal au huititme de cette sphére, sera

zfr L. .\ .
— ; divisant donc la premiére expression par la seconde, on aura
2
. 4Uf=h) . . .
la fraction {f , que le précédent calcul nous a fait obtenir.

10. On sait que la surface du cone oblique se refuse & tous les
moyens connus d’intégration. On peut cn conclure, & plus forte
raison , que la capacité de son angle au sommet se trouvera hors
du domaine de lanalise actuelle. Soit SA (fig. 6 ) la hauteur d'un

Tom. 1IV. 26
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tel cone, ayant pour base le cercle décrit du cenire C, avec le
rayon CB=CD=r; soient, de plus, AS=%, AC=a , AP=¢,
PM=u, ce qui nous fournit I’équation (¢—¢)*~4u*=r* On aura,
d’aprés cela

dA:{dz‘ V112r2+(a2—r2-—at)2 ;
r2e—(a=—=t)?2

différenticlle qui n’est intégrable dans aucun cas. On trouvera ensuite

ds=" hrade h2+r2—a2+2at
 hrrig-(ate=rz—at)? ) 12— (q=—t)?

D'aprés I'essai que j'emn ai fait, cette différentielle m’a paru aussi
peu intégrable que la précddente.
En faisant

y=y/ h*~r*—a*--z2at ,
ct posant de plus, pour abréger ,
. a*~r-hri=m* , ao—r~h*=n*,

eette différentielle deviendra

8hray2dy
T (4h2r24nt=—zn 2yadey )\ jarimmmigr2my 2 —y b

ds

.
)

formule qui n’est pas susceptible d’étre intégrée.
11. L'une des courbes qui semblerait promettre des résultats plus
fayorables , c’est la développée de Dellipse, comprise sous I'équation
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4 \.; f u
(7/ 7

il en résulte, en posant @*=d=( ,

=I ; (*)

braijcatt
dr4-dur= Patten ds .

z
azt’

La racine quarréde de cette formule est entidrement intégrable ; il
en résulte que I'arc de la développée elliptique , pris depuis z=g est

: LI
ab—{ bratdeeti T
?

ac?

ce qui donne, pour la longueur du quart de cette développée ;

a2f-ab-4-b2
a~-b ¢

eette courbe est donc rectifiable ; comme le sont les développées
de toutes les courbes algébriques. Mais cet avantage est perdu, tant
pour la surface que pour la capacité angulaire du céne dont elle
est la base. Les différentielles dont dépendent ces deux problémes
sont aussi peu intégrables que dans le cas du céne oblique a base

eirculaire,

(*) Dans cette équation @ et & ne sont point les demi-axes , mais des troisicmed

] X

proportionnelles & ces demi-azes et a lexcentricité,
J. D. G,
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QUESTIONS PROPOSEES.
Théorémes appartenant a la géomeétrie de la régle.

L DEUX hexagones étant tracés d’une maniére quelconque sur le plan
d’'une section conique , en sorte cependant que les sommets du second
soient les péles des cotés du premier; si les points «e concours
des directions des cotés opposés de celui-ci sont tous trois sur une
- méme ligne droite , les droites joignant les sommets opposés de
P'autre se couperont toutes troisau méme point, et réeiproquement. *)
1I. Quelqu’un soupgonne 1.° que, dans tout dodécatdre-icosagone,
régulier ou non, inscrit & une surface du second ordre, les six inter-
sections des directions des faces opposées sont situées dans un méme
plan; 2.° que, dans tout icosatdrc-dodécagone , régulier ou non s
les six diagonales qui joignent les sommets opposés se coupent toutes
en un méme point; on propose de vérifier, par le raisonnement,
st ce soupgoun est fondé T (**).

(*) On remarquera sans peine que les théorémes démontrés a la page 78 de
ce volume, ne sont que des cas trés-particuliers de celui-ci. On peut, au surplus
pour la définition des pdles , consulter la page 337 du premier volume de ce
recueil.

(**) Neuf points ou neuf plans tangens suffisant pour déterminer une surface
du second ordre; si ces théorémes sont vrais, les six droites augquelles ils sont
relatifs doivent é&tre, en outre , assujetties & d'autres conditions , comme , par
exemple , de former un hexagone inscriptible & une ligne du second ordre , ou
un angle hexaédre circonscriptible & un cone du mime ordre. 1l serait intéressant
de trouver aussi ces relations,



_ Tow IV, Plan 1V puay 161- o=,

v

. M

R

B Q2 A B P D

S90¢ fecit






ELEMENS D'UNE ELLIPSE 197

ASTRONOMIE.

Recherche des elémens d'une ellipse , dont le Sfoyer et
trois points sont connus ;

Par M. Kramp , professeur , doyen de la faculté des
sciences de l'académie de Strasbourg.

[a o Vi Vi, Vo Vo VL VL V)

SOIENT F le foyer et P, Q, R trois points donnés sur le péri-
metre d’une ellipse®, et soit EF une 'droite fixe , dirigée d’'une
mani¢re quelconque , dans le plan de ces quatre points. I s’agit
de déterminer les élémens de la courbe.

Les données du probléme sont au nombre de six ; savoir: les
trois angles EFP, EFQ, EFR, et les trois rayons vecteurs FP,
FQ , FR. Soient donc

P=/Ang.EFP , p=ray. vec. I'P,

Q=Ang.EFQ , g=ray. vec. FQ,

R=dAng EFR ; r=ray. vec. FR .
Les inconnues du probléme sont au nombre de trois; savoir :
Pangle EFA que fait la direction FA du grand axe de Vellipse

avec ladroite fixe EF', le demi-grand axe de Vorbite et son excen-
tricité. Soient donc

¢=4Ang EFA ,
a=le demi-grand axe,
Sin.a= T'excentricité , divisée par le demi-grand axe.

En supposant que le point A est P'aphélie, on aura.
Tom. IV , n® VI, 1.° janvier 1814. 27
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AF =a(1+4-Sin.»)
Ang AFP=P—o¢ ,
Ang AFQ=0Q—¢ ,
Ang AFR=R—o0 .
Et, par les propriétés connues de Vellipse, on trouvera

_ aCos.2a
P= 1—Sin.ACos.(P—¢) ’
_ aCos.2A
7= 1—Sin.ACos.(Q=0) ’
aCos.2a
r=

~ 1=Sin.ACos.(B=—9)

Divisant successivement la premitre de ces deux équations par les
deux autres, il vient

__ 1=Sin.aCos.(Q—¢)

T 1—Sin.ACos.(P—¢) ’
1—Sin.ACos.(H—0)
1—Sin.ACos.(P—@)

Il en résulte les deux équations qui suivent

p—q=§{ pCos.(P—¢)—¢Cos.(Q—¢)}Sin.» ,
p—r={pCos.(P— ¢)—rCos.(R—0)} Sin.a .

En égalant entre elles les valeurs de Sin.a tirées de ces deux équa-
tions , il vient

——
—

1A Bl

P—q _ p=r
pCos.(P—¢)=—qCos.(Q—¢) - pCos.(P—=g)=rCos.(R—¢) ’
et par conséquent
(r—9){ pCos.(P—¢)—rCos.(R—g)}= (p—1){pCos.(P—¢)—gCos.(Q—)o}

en développant Cos.(P—¢), Cos.(Q—¢) , Cos.(B—¢), ct divisant
ensuite par Cos.p, on tire e cette équation

Sin.a=

p(r—g)Cos.P4-g(p—r)Cos.Q-4r(g—p)Cos.R
pr=—4)5in.P~g (p==r)Sin. Q-7 (g==p)Sin, Iy ’

Tang.o=—
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On déduit de 12, apres les réductions
(r—9)4q(p—7)Cos.(Q—P)+-r(g=p)Cot.(A—P)
g(p—r)Sin.(Q—P)~r(g—p)Sin.(H—P)
p(r—¢)Cos (P—Q)~+g (p—r)~-r(g—p)Cos.(R—Q)
pr—g)Sm.(P—Q)~4-r(g—p)Sin.(K—0Q)
p(r—¢)Cos.(P—R)~4-q(p—r)Cos (Q—R)-4r(g=—p)
pr—g)Sin (P—R)~¢ (p—r)Sin.(Q—h)

La nature du probleme exige que des tangentes on passe aux

Tang.(P—¢)= 4

’

Tang.(Q—¢)=

?

Tang.(R—¢)=

cosinus. On y parvient moycnnant une certaine fonction , qu’'en
attendant nous représenterons par F*, et dont la valeur, que nous
nous réseryons de simplifier plus loin , pecut étre exprimée ainsi
qu’il suit:
(r—gyp*+-2rg(p—r)(g-—p;Cos.(B—Q)
Fr= § +(p—g)r*~+2pr(7—p)r—q)Cos.(P—H)
~+(g=p)r*+2g9p(r—g,(p—7r)Cos.(Q—P).

On trouve alors

F
Sin A= Q=P rfg7Sin (B Q) Sim BTy

et ensuite
FCos.[P—¢)=g(p—r)Sin.(Q=—P)~+4r(g—p)Sin,(R—P) ,
.FCos.(Q—¢)=r'\q—-p)5in.(B—Q)+p(r—qtSin.(P-—Q) R
& FCos(RB—o)=p(r—¢)Sin(P—R)4¢(p—r)Sin.(Q—R) ; -
d’ou encore
g(p—r)Sin.(Q—P)~4-r(g=—p)Sin.(R=—P)
pgSin.(Q=P)~4-grSin.(R=—Q)~4-rpSin.(P—HK) ?
r(g—pSin.(B—Q)~4-p (r—¢)Sin.(P—Q)
PgSin.(Q=—=P)4-grSin.(R—Q)~4-rpSin.(P—H} ’
p(r—¢)Sin.(P=Rg (p—r)Sin (Q—R)
P¢Sin.(Q=P)4-grSin.(h=—Q)4-rpSin.(P—R)

De li résulte DI’égalité suivante

Sin.aCos.(P—e)=

Sin.aCos.(Q—e)=

Sin.aCos.(R—o¢,=
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1—Sin.ACos.(P—@) __ 1—Sin.ACos.(Q=9)  1—Sin.2Cos.(R—9)
qr rg Pq

H
attendu que ces trois expressions se réduisent également %

Sin.(Q=~P)4-Sin.(BA—Q)4-Sin.(P—R)
pgSin.(Q—P)~4¢7Sin.(B—Q)+4rpSin.(P=—1) :

Il ne reste plus & déterminer que le demi-grand axe de Porbite.
On a
pqr Sin.(QueP)~4-Sin.(R—1)+Sin.(P—R)
= Cos.2a . pqSin, (Q—P)4-g7rSin.(B=—Q)~4-rpSin.(P=R) )

™

En remarquant que

Cos.(R—Q)=1—2Sin.2: (R—Q) ;
Cos.(P—R)=1—28in2;(P-A) ,
Cos.(Q—P)=1—28in>: (Q—P) ;
Pexpression de F* donnée ci-dessus peut étre réduite 2 cette forme
plus simple

F*=4qr(p—q)(p—r)Sin> ; (B—Q)
-+4rp(g—r)(g—p)Sin.* ; (P—E)
~+4pg(r—p)(r—¢)Sin.* :(Q— P).

T (» 1l convient de remarquer que le numérateur Sin.(Q—P)~-Sin.(R—Q)-f
Sin.(P——R) peut étre réduit & la forme suivante , plus commode pour le calcul
par logarithmes,

—4Sin, 2 (Q=P)Sin.  (R=—0Q)Sin. (P—R).
On peut remarquer aussi que le dénominateur pgSin.(Q-P)4¢rSin.(R-Q)4pSin,(P-R)
n'est autre chose que le double de l'aire du triangle qui a ses sommets aux trois

points donnés.
J. D. G,



THEORIE GENERALE DES KEQUATIONS. =201
on pourra aussi écrire

p(r—¢)Sin.2 L Po4-q(p=-r)Sin.> L Q4-r(¢g==p)Sin.2 L R

Tang.e= .
ang-? p(r—¢)Sin.; PCos.; P4-¢ (p—r)Sin.; QCos.- Q4r(g=p)Sin+RCos.: R

™

ANALISE ELEMENTAIRE.

Meémoire sur les principes fondamentauax de la théorie
generale des équations ;

Par M. D. EnconTRE, professeur doyen de la faculté des
sciences de l'académie de Montpellier,

[a U Vo Vg Vi ¥l Vlo Vo V)

1. LA théorie générale des équations repose , toute entiére, sur
deux théorémes dont la démonstration me parait n’avoir pas encore
été donnée d’une maniére qui puisse étre mise a la portée des
commengans. Le premier de ces théorémes est que, dans une équa-
tion A une seule inconnue z , si deux nombres @ , 4 , successivement
substitués & x, donnent des résultats de signes contraires, il y a
nécessairement une racine réelle, comprise entre @ et 5. Le second
est qu'une équalion quelconque A une seule inconnue =z, étant

(*) Si, dans Dapplication & un cas parliculier , on trouve SinA=I ou, ce

qui revient au méme
F=pqSin. (Q==P)4¢rSin.(R—Q)+-rpSin.(P—HR) ,
on en conclura que la courbe est une parabole. Il serait aisé de faire voir que
cette équation de relation revient a celle qui a été donnée a la page 157 de ce
volume. On pourrait en faire usage , pour simplifier , dans ce cas , la valeur de
Tang.e.
J. D. G.
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ordonnée suivant les puissances de cette inconnue, quon suppose
toujours entiéres et positives , son premier membre est nécessairement
décomposable en facteurs simples de la forme réelle 2+a, ou de
la forme imaginaire atatby —i.
2. L’illustre Lagrange, dans son beau Traité de la résolution des
équations numériques , démontre le premier de ces deux théorémes en
supposant le second.

« Sotent, dit-il, «, g, »,.... les racines de I'équation ; elle
» se réduira , comme on sait, i cette forme (= «)(@—g)(@—7)....= 0.
» Or, soient p, ¢ les nombres qui, substitués &3 # , donnent des
» résultats de signes contraires, il faudra que ces deux quantités

(P—a) p—8.(p=2) eeeees (g—a)(g—B)g—2)ee.-s

» soient de signes contraires; par conséquent, il faudra qu’il y ait,
» au moins, deux facteurs correspondans, comme p—ea et g—a,
» qui soient de signes contraires; donc il y aura, au moins, une
» des racines de l’équation , comme « , qui sera entre les deux
» nombres p et ¢, cest-d-dire, moindre que le plus grand de ces
» deux nombres , et plus grande que le plus petit; donec cette
» racine sera nécessairement réelle. »
* 3. Lagrange convient lui-méme, dans ses notes, que cette dé-
monstration peut laisser du doute , relativement aux facteurs ima-
ginaires , ce qui 'oblige a en donner une autre qui n’est pas sujette
a2 la méme difficulté.

« Représentons, dit-il, en général I'équation proposée par P—(@=o,
» P étant la somme de tous les termes qui ont le signe =, et
» —Q la somme de tous les termes qui ont le signe —. Sup-
» posons que les deux nombres p, ¢ soient positils, et que ¢ soit
» plus grand que p. Si, en faisant 2=p , on a P—(Q<o0, et
» et quen faisant 2=¢ , on ait P=Q>o0 , il est clair
» que , dans le premier cas , P sera plus petit que @ , et
» que , dans le second, P scra plus grand que @. Or , par la
» forme des quantitds P et @, qui ne contiennent gue des termes
» positifs , et des puissances entiéres et positives, il est évident que
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ces quantités augmentent 4 mesure que z augmente , et qu’en
faisant augmenter z , par tous les degrés insensibles , depuis p
jusqu’d ¢, elles augmenteront aussi, par des degrés insensibles,
mais de maniére que P augmentera plus que Q, puisque de plus
petite qu'elle était, elle devient la plus grande. 1l y aura donc
nécessairement un terme entre les deux valeurs p, ¢ od P éga-
lera ¢ : comme deux mobiles qu’on suppose parcourir une méme
lignhe , dans le méme sens, et qui, partant & la fois de deux
» points differens , arrivent en méme temps a deux autres points,

¥ ¥ w ¥

E ¥ v 9

» mais de manitre que celui qui était d’abord en arritre se trouve
» ensuite plus avancé que l'autre , doivent nécessairement se ren-
» contrer dans leur chemin. »

Lagrange étend ensuite le mémé raisonnement au cas ol p etg
scraient négatifs, et a celul ou ils seraient de signes différens, ce
qui est facile.

4. Cette démonstration me parait trés-rigoureuse, et celle qu’on
trouvera ci-aprés n'en est qu’une sorte de commentaire ; mais l’ex-
périence m’a prouvé que les jeunes-gens ont beaucoup de peine a
la saisic telle qu'elle vient d’étre présentée ; qu’'ils se font mille
difficultés sur la comparaison de deux fonctions & deux mobiles (*),
et qu'ils_se plaignent sur-tout, avec quelque apparence de raison,
de ce que la considération des quantités infiniment petites , qui
leur est interdite , dans une partie des mathématiques, quoiqu’elle
put leur épargner bien des calculs, est permise et devient méme,
en quelque sorte, nécessaire dans celle-ci.

(* Si lon voulait faire servir la géométrie a rendre plus palpables les vérités
purement algébriques , on pourrait, dans le cas dont il s'agit ici, raisonner de la
maniére suivante, Soient posés y=P , y/==Q. Chacune de ces équations, qu'on
peut rapporter & la méme origine et aux mémes axes , exprime une courbe
continue : ce quil est aisé de démontrer, sans supposer connue la théorie gé-
nérale des ¢équations. Or, 5 étant actuellement moindre que 3/ ne peut ensuite
la surpasser, cuas que les deux courbes se coupent , et quil y ait conséquemment
une valevr de @ qui donne =y
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5. Le second théoré¢me fondamental exige des connaissances plus
profondes , ce qui oblige les analistes 4 ne le donner que vers la
fin de la théorie des équations, tandis qu’il devrait étre placé au
commencement , puisqu’on en suppose la vérité dans toute cette
méme théorie. Je crois donc rendre un service de quelque impor-
tance aux éléves qui suivent les classes de mathémnatiques spéciales,
en démontrant ici, d’une maniére facile, les deux théorémes dont
il s’agit, sans rien supposer au-deld des connaissances qu’on a du,
ou du moins qu’on a pu acquérir avant de s'occuper de cette matiére.

6. Hypothéses et définitions. Les équations que nous considérons
ici sont de la forme )

aP4=Aa™ '4-Bam= - Ca™ 3 . - T=0.

Les exposans m , m—1, m—=2 ,..... sont supposés entiers et po-
sitifs. Les coefliciens 4 , B, C,...., au nombre desquels nous
comprenons le terme connu 7', sont réels , mais peuvent étre in-
différemment entiers ou fractionnaires, positifs, négatifs ou nuls.

Tout nombre qui, mis & la place de x, satisfait & P’équation,
.est dit ,racine de cette équation.

Les racines des équations peuvent étre déterminées d’une maniére
exacte ou d’une maniére approchde.

Une racine est déterminée d’une maniére exacte , lorsqu’un nombre
substitué & x réduit absolument le premier membre 4 zéro. Une
racine est déterminée d’une maniere approchdée , lorsqu’on a une suite
de nombres qui, substituds successivement d x, rendent le premier
membre de plus en plus petit , et peuvent le rendre moindre que
toute grandeur donnée, quelque petite qu'on la suppose.

7. THEOREME. Si un nombre @, mis 4 la place de #, dans
unc équation de la forme ci-dessus, satisfait & cette équation, ou,
ce qui revient au méme, en réduit le premier membre & zéro,
ec premier membre est exactement divisible par x—a.

Démonstration. Soit exécutée , autant que possible , la division

P&P
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par z—a; il suit des premiers principes de cctte opération que le
reste B, s'il y en a un, nc renfermera pas x, et que, le quo=
tient partiel obtenu indépendaminent du reste étant designé par P,

. R . ,
le quotient total sera P~4—— ; de¢ manidre qu’on aura
X0

My Jem=1 L Rem— 2. T R
AR AR AT _py B

xX=a X=—qa

Ces quantités égales, multipliées I'unc et I'autre par x—a, donneront

des produits égaux; donc
a4 Az ~+-Ba™ * ..o+ T=P(x—a)+-R.
Or, par hypothése, I'un et I'autre membres de cette équation doivent
se réduire & zéro , lorsqu'on y met @ pour x , ce qui d’ailleurs
n’apporte aucun changement & R, puisque R ne renferme pas z.
Nous aurons donc
o=P(a—a)+R ou o=R;

c’est-a-dire , que le reste de la division est nul,.ou que la divi-
sion est nécessairement exacte. Cette démonstration est de d'Alem-

bert. (*)

8. Remargque. En exécutant réellement la division par x—a, on
trouvera au quotient
2™ A4-a)2™ A (BA-Aa+a*)a™ b 4-(CH-Ba+-Aa* +a*)am4+..;
quantité qu’on peut mettre sous la forme

a™ e A g A B gL T

(*) Cette démonstration prouve qu'en général , quel que soit & , le reste de

la division du premier membre de I'dquation proposée par a—a ,
chose que ce que devient ce premier membre , lorsqu'on y met a
a; dol il résulte que ce reste sera ou ne scra pas nul , suivanl que @ seva

n'est autre
au licu de

ou ne sera pas racine de l'équation.

J. D, ;.
Tom. 1V. 28
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9- PROBLEME. Former une équation, de tel degré qu’'on voudra,

qui ait au moins une racine réelle ?
Solution. Prenez un polynome quelconque de la forme

a4 Az™ 4 Ba™ v AT

m étant un nombre entier positif , moindre d’une unité que le
nombre qui exprime le degré de I'équation demandée. Multipliez ce
polynéme par & moins ou plus une quantité réelle et connue a;
et égalez le produit & zéro. Le probléme sera résolu; car, en pre-
mier lieu, 'équation ainsi formée est nécessairement du degré m—-1
qui, par hypotheése, est le degré prescrit; et, en second liea, I'une
des deux quantités 42 ou —a est évidemment racine de cette
équation,

10. Corollaire. 11 y a, dans tous les degrés, une infinité d’équations
qui ont au moins une racine réelle,

11. THEOREME. 11 est possible qu’une équation du degré m
ait m racines réelles.

Démonstration. Soit une équation du degré m, laquelle ait une
racine réelle , ce qui est possible (10). Le premier membre de cette
équation , savoir : 2™"4Aa™ "' =Bam= ...+ T, sera divisible par
z~-a, etle quotient serade la forme 2™~ '4-A/2™ = *+B/2a™ 4. 4-1";

ainsi 1’équation primitive sera changée en celle-ci
(z—a)(@™ 4 A'a™ *4-B/a™ 3+ 4 T') =o0.

On y pourra donc satisfaire de deux manidres différentes ; premiére-
ment en faisant x—a=o0, secondement en faisant

2™t/ a™ =Bl g™ -+ TV =0

Or ; si cette dernitre équation a une racine réelle &, ce qui est
possible , on pourra la mettre sous la forme

(2—b)(&™ P4 AV 5™ - B ™ At TV) =0

et 'équation primitive deviendra
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(z—a)(w=b)(xm= 2t A//am=3 - B/Igm= 44T/ )=0.
S'il arrive encore , ce qui est toujours possible, que I’équation
am= e gmm 3Bl g A AT =0
ait une racine réelle ¢, l'équation primitive deviendra
(z—a)(@—b)x—c)(a™~ 34-A"/zm= 4 B/ g™~ 5 4., 4Ty =o0.

Et, si l'on continue & supposer que , le dernier facteur étant dgalé
a zéro, il soit toujours possible de satisfaire & I’équation résultante ,
supposition qui , comme nous l’avons vu, n’a rien d’absurde; il
devient évident que le premier membre de I'équation primitive sera
décomposable en autant de facteurs simples qu’il y a d’unités dans
Pexposant m. 1l devient donc aussi évident que cetle équation aura
m racines réelles ; car elle sera nécessairement satisfaite, quel que
soit celui de ees m facteurs qu’on rend égal a zéro.

12. Corollaire. Nous sommes donc en droit de conclure, non
que toute équation du degré m ait m racines réclles, et que son
premier membre soit décomposable en m facteurs simples ; mais
quiil existe une infinité d’équations du degré quelconque m qui
ont 2 racines réelles , et dont le premier membre est décomposable
en m facteurs simples. Chacun peut méme composer a volonté
autant qu’il lui plaira , de ces sortes d’équations.

13. LEMME. Le produit de deux ou de plusieurs facteurs sim-
ples , tels que r—ea, x—b y X=——C 5..+s., Ne peut étre exactement
divisé par un facteur simple , qu’autant que ce facteur est un de ceux
qui ont concouru a former ce produit.

Clest ce qu’on démontre dans la théorie des nombres. (*)

(*) Soient M, N deux facteurs algébriques, dont le produit BIN est divisible
par le facteur simple x—a ; je dis que Pun, au moins, des deux facteurs NI,
N est divisible par x—a. ‘

En effet , soit exéculée , autant que possible , la division de DI par x=—g;
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14. Corollaire. Si le premier membre de I'équation z™4-Azm=*
~4-Ba™=*4-...=0 est une fois décomposé en m facteurs simples , on
ne saurait le décomposer en d’autres facteurs simples différens des
premiers. 1l est donc possible qu'une équation du degré m ait m
racines ; mais elle ne saurait en avoir un plus grand nombre.

15. Remarques. 1. On démontre ordinairement cette vérité de la
maniére suivante :

Soit I'équation a™4-Az™~ ' 4-Bz™*4-....4T1=o0, décomposée en

m facteurs simples , de maniére qu'on ait
(#—a) Z~—b)(Z—C) cs.0on. (x—T)=0 ,

et soit z—e« un diviseur exact de a"+Ax™"'4-Bzx" i ~4-...T,
lequel diviseur ne soit égal & aucun des m diviseurs x—az , 2—0b,
Z—Cyurees Z—T.

Ce diviseur donnera un quotient de la forme a2™"'—-A/z™"*
+B/z™" 3 4~.....+T”; et nous aurons , par conséquent,

. . M R
le reste R, ¢l y en a un, ne conticndra plus x, et lon aura —-w =P+4 ——;
x—a x—a

ce qui donne
M=P (x—2)-}-R.

Soit pareillement exécutée la division de N par x—a , le reste S, s'il y en a

un , ne contiendra plus x ; el l'on aura
N=Q(x—a)-}-S.

Donc

MN=PQ(x=—a)>-(QR~-PS) (x—a)-4-RS.
Et, puisque MN est divisible par x—a , il faut que BS soit nul ou divisible
par x=a ; or, il ne peut étre divisible par a~a, puisqu’il ne renferme pas x;
on doit donc aveir nécessairement HS=o ; et par conséquent R==o ou 8=0 ;
c'est-a-dire , que la division, soit de 3 soit de N, par x—a ne doit absolument
laisser aucun reste.

Il suit de la que, si une formule algébrique est le produit de plusieurs fac-
teurs simples x=—a , x=—b , x—c,...., et qu'un facteur simple a—~ divise exac-
tement ce produit, ce facteur x=Fh est identique avec quelquun des faclcurs
F=—a , T=b, X~=C.00ivs
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(x-a)(x-é>{x-¢;),,,,,(x_r>_-_-_-_(x_,) (™" V4~ A/ 2™ 4Bz Ve-T7).

Or, #—a est un diviseur exact du premier membre de cette équa-
tion ; il doit donc étre aussi un diviseur exact du second membre ;
et , ne divisant pas le facteur 2—a , il divise nécessairement l'autre

facteur 2™ 'A-A/z™" L Bla™ 34 ATV,

Soit exécutée cette division ; il en résultera
(@-b)(@-c)x=d).(2~1) = (x-)( 2™ AV 2™ S4B/ g™ 4 4-TV).
Le méme raisonnement fera trouver ensuite

(z-c)(x-d) (x-€)..(-1)= (2-) (2™ 34 A/ 2™~ 4B/ 2™ s ... F-T7) 5

et, en poursuivant toujours ainsi, on arrivera enfin a la conclusion
Z—T=z—u«; ce qui est contre I'’hypotheése; cette hypothése ne peut
donc subsister ; et il n’existe conséquemment d’autres diviseurs simples
de am4-Azm'+4-Bam~ *~-...4T que les m diviseurs simples 2—a,
Z—b, Tt ,.c.o . Z—T.

IL. 11 est aisé de voir que ce raisonnement est inutile ou faux.

11 est inutile, si les facteurs x—~az, 2~8b, 22— yo....2—r sont
considéréds comme ils doivent P'étre, c’est-d-dire, comme des fac-
teurs premiers.

Il est faux, s'ils ne sont pas considérés comme tels; car s'ils ne
sont pas premiers, on n’est pas en droit de conclure , de ce que
a—a divise le produit (z—e)(am"'d=-A/gm= 2 4-Blzm i 4. 4-T7) ,
et ne divise pas'un de ces deux facteurs, savoir z—a , qu’'il divise
néressairement I'autre facteur. Le nombre 1o, par exemple , qui
ne divise ni 5 ni 8, divise pourtant le produit 4o de ces deux
nombres, Pareillement la formule 2*—g* , qui ne divise aucun des
trindmes 2°—22x+--a* et 2°-;-2024-q* divise pourtant leur produit

atemogtz2dqt, ()

() Le Corofiaire du n.® 14 peut dlre éiabli divectement , d’une maniére trés-
simple, indépendumment da Lemme du a0 13,
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16. PROBLEME.Onaun polynéme Az"~+Ba™" *+4-Ca™" 44T,
dont tous les termes sont positifs; et l'on sait qu'un nombre a,
substitué & # , dans ce polynome a donné un résultat . On demande
un nombre g tel que , si l'on substitue a~g pour x, dans ce
‘méme polynéme, le nouveau résultat soit plus grand que % et moindre
que k=%, % étant une quantité positive donnée, et qui peut étre
prise aussi petite qu’on voudra ?

Solution. Mettons, en effet , a-p pour z , ce qui nous donnera

Ax™ = da™ 4+ :',n" Aa™ "t g4 % I Ao gt BT

2

M=l 7
.

B 1= Bam™ i 4~ —— Bom-1 44 2 Ba™3 4.
1

I 2

Cam=2=Cqm~*+4

_—n — T3
B2 Cam b 2 Cam 4 g nn
1 1 2
T =T.
Or nous avons, par hypothése ;
AamBa™ - Ca™ - onnio . +T=F

en désignant donc respectivement par P, Q, R, ... les coefliciens
de 8, g*, B 4w, tout se réduira & prendre g de maniére que

Tout se réduit, en effet , & prouver I'absurdité de la prétendue identité
(w==rz) (=D (== rers (X =) == (d0mm ) (" Tf A/ = 2L Bl 3 fe ., 0 o= T7)2
Or, cette absurdité s'apercoit sur-le-champ , en y faisant x==x ; elle devient
alors , en eftet
(t==02) (tm==eD) (tmn) csss () == (ot mmt) (" T fo A/ ™= 2 B/t 3 s T =0 ;
en sorte quelle exprime que le produit d'une suite de nombres tous différens
de zéro est égal & zéro,

Cette remarque est de M. Fauquier , ancien éléve du lycée de Nismes , main«
tenant éleve & l'école du génie.

J. D. G.
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Pp+Qe*+-Re* o A"

soit moindre que 4.

Soit S le plus grand des coefficiens P, Q, R, veure. 411 est

clair que, si nous trouvons pour g une valeur qui rende
Se4-Se*+Se 4 ..oveee +58™ moindre que %,

nous aurons, a plus forte raison ,

Pe4-Qp*+-Re*4- e 4™ moindre que 2.
Mais

Sﬁ+5ﬁ:+sﬁs+ woees Sﬁm=sﬁ([+p+ﬁz+ veenes +ﬁm-7)

puis donc que cette quantité doit étre moindre que %, nous n’avons

. N ) b3
qu'a faire -—%:72; ce qui donne g=
l—

m; et le probléme est ré-

solu.

Car 1.° g est évidemment moindre que 'unité ; d'olt il suit que
Ss Spm-1

— —

1—38 1—
substitution de a-+g sera plus grand que Z.

est une quantité positive, et qu’ainsi le résultat de la

. . S
2.® Ce nouveau résultat est moindre que k-7, puisque Tﬁ/s =4,

. Sg .
et que ce qu’il faut retrancher de Py pour avoir Vexcés du nou-
)

veau résultat sur le premier, ou plutét une quantité plus grande
Spm+1 g e .
—» quantité positive et moindre que /4.

que cet exces , est

Exemple. Soit proposé le polynéme z’+5z*-+4z—-12 qui, lors-
quon y fait #=4, donne le résultat 172, Et soit demandée pour
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2 une autre valeur 448, telle que le nouveau résultat soit plus
grand que 172 et moindre que 173.

La substitution de 4-+8 4  donne

2= 343.48 4-3.484-63
52°=5.4*~45.2.484 582

4z =444 48

12 =12,

Le plus grand des coefficiens des différentes puissances de s est
évidemment 3.4*4-5.2.4+4=q2=5;
Ce qui donne 8=~ et atr=4+ L =212,
Le résultat de la substitution est 170429347 .
Résnltat plus grand que 172 et moindre que 173.
h

17. Remarques. 1. Si au lieu de prendre ﬂ=8+—h, on le prend en-

core plus petit, I'accroissement du polynéme sera moindre , mais de-
meurera positif.

II. § désignant toujours le plus grand des eoefficiens P, Q, R,.. 4,
Sﬁ Spm+ 1

1—8 - 1—8
Hi. § désignant, au contraire, le plus petit de ces mémes coeffi-
S’,B Slﬁm+1

ciens, I'accroissement du polynéme sera plus grand que = 5
h ) S

Cet accroissement sera donc compris entre les deux limites finies

Yaccroissement du polynéme sera moindre que

-

S Spm—+1z S'B S/gm—+ 1
_— et _— .

I—p 1—83 1—3 1—pA

18. PROBLEME. Etant donnés deux polynémes.
P=As"+Bx" ' Ca™ g ne. +T
Q=A'z"4B/a" 4C/a" *H-.....+T" ,

dont tous les termes sont positifs ; et étant donnds, de plus , deux

nombres @ , &, tels que le premier ctant substitué & z, dans lun
el
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et dans l'autre polynémes , donne pour P un résultat plus grand
que pour Q , et que le second étant substitué a x , dans Pun et
dans l'autre polynomes , donne pour () un résultat plus grand que
pour P ; trouver, entre @ ct 4, un nombre qui, mis a la place de 2,
dans I'an et dans l'autre polynomes , donne , pour P et pour @,
deux résultats dont la différence soit moindre qu’une certaine quan-
titd 4, quelque petite qu'on la puisse prendre ?

Solution. Substituons a—+g A z ; ordonnons par rapport a 8, et soit
S le plus grand des coelficiens des différentes puissances de g ,
dans I'un et dans I'autre polynémes, considérés comme n’en formant

h

qu’un seul ; puis prenons ﬁzg—_ﬁ.

En substituant ¢--¢ , aulicu de ¢, chacun des deux polynémes
recevra une augmentation moindre que /.

Soit fait a~+-g=a’, et subsltituons a/~-p’ 4 x, dans P et dans Q;
nous trouverons pour g’ une valeur telle que le nouvel accroisse-
ment , tant de P que de ), sera encore moindre que 4.

Fin continuant & opérer de la méme maniére, nous [erons croitre
F ot (¢, & chaque opération , d'une quantité moindre que 2% ; et o,
Ceo & voissemens n’étant pas infiniment petits , puisqu’ils sont tou-
juurs con.pris (17) entre deux limites finies, il ne pourra y en avoir
qu'un nombre fini entre @ et 4 ; un nombre fini d'opérations suf-
fira donc pour donner deux résnltats consécutifs tels que P, étant
encore moindre que  dans le premier, devienne plus grand que @
dans le second ; or, en passant du premier ¢tat au second, P et
() recevront unc augmentation moindre que % ; donc leur différence,
tant dans le premier que dans le second état , sera moindre que /;
donc le probléme sera résolu.

19. THEOREME. Si deux quantités positives @ , & , successivement
substituées & linconnue , dans une équation quelconque , donnent
des résultats de signes contraires , cette équation a une racine posi—

tive, comprise entre @ ct 4.
Démonstration. Trouver une racine positive d'une équation , c'est

dom, 1V. 2q



214 THEORIE GENERALE

(6) trouver un nombre positif qui, mis a la place de l'inconnue ,
rende la somme des termes positifs égale A la somme des termes
négatifs , ou rende la différence, cntre ces deux sommes, moindre
que toute quantité assignée quelconque.

Or , soient P, Q ces deux sommes ; puisque @ et 4 dornent des
résultats de signes contraires , il faut que @ rende P plus grand
que (), et que b, au contraire , rende Q plus grand que P, ou
réciproquement. Mais nous venons de prouver que , dans cette hy-
potheése , on peut toujours trouver, entre a et 4, un nombre qui
rende la différence , entre P et ), moindre que toute quantité¢ don-
née ; on peut donc toujours trouver une racine réelle et positive de
Péquation proposde , et cette racine est entre @ et b.

20. THEOREME. Si deux quantités négatives —a et —b , successi-
vement substitudes & l'inconnue , dans une ¢quation quelconque
donnent des résultats de signes contraires, cette équation a au moins
une racine réelle négative , comprise entre —a et —b.

Démonstration. Soit fait 2=—y. Nous aurons une déquation en y
dont les racines positives seront égales aux racines négatives de 1'é-
quation en 2. Les résultats seront d’ailleurs les mémes , si Yon fait
x=—a ou y=a ,a=—b ou y=D>;puis donc que —a et —b,
substitués & « , donnent des résultats de signes contraires, @ et b
substitués 3 y donneront aussi des résultats de signes contraires.
Donc Téquation en y aura au moins une racine réelle et positive ,
entre @ et b; donc l'équation en x aura au moins une racine réelle
et négative, entre —ag et —0.

21. Corollaire. On prouvera, avec la méme facilité , que , si
deux quantités de signes contraires, -2 et —5% , donnent des ré-
sultats qui soient aussi de signes contraires, I'équation proposée aura
nécessairement une racine réelle comprise entre entre o et -a ou
entre o et —5, et par conséquententre « et —b. (*)

(*) M, Encontre a négligé de remarquer que son probléme du n.° 18 four-
nirait , au besoin , une méthode d'approximation , pour une racinc dont on aurait
déja deux limites. J. D. G.
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22, PROBLEME. Etant proposé un polynéme de la forme
a4~ Az™~'4-Bam=*4-....~4T , trouver un nombre M qui, subs-
titué 3 z, rende le premier terme plus grand que la somme de
tous les autres ?
Solution. Soit § le plus grand des coefficiens 4, B, .o T. Si
nous parvenons a rendre 2™ plus grand que Sx™~14-§2™" 2 4-S2™" 34
e =S, & plus forte raison aurons-nous rendu 2™ plus grand que

Az™ Bzt T

Or,
S S e e S =S (2™ T 2™ L 1)
aMe—y Sxm S
=S = —_ .
=1 X1 X =1
. Sx™ S
11 faut donc que 2™ soit plus grand que —— — —. Pour cela
X=—I a—I ?
’ " . Sxm . S .
nous n'avons qu'a faire 2™= , ou bien 1=—— ce qui donne
X w1 X1

x=1+4S. Cest-a-dire, que le nombre M qui, mis & la place de
«, rendra le premicr terme plus grand que la somme de tous les -
autres est 1-+S$, ou le plus grand des coefficiens du polynéme
augmenté d’une unité.

23. THEOREME. Toute équation de degré impair a au moins
une racine réelle de signe contraire a son dernier terme.

Démonstration. Soit ce dernier terme négatif , et soit mis zdéro
pour x; le résultat sera négatif. Soit mis ensuite M pour x; le
résultat sera positif. Donc D’équation aura au moins unc racine réclle
positive , comprise entre o et —-/1.

Soit, au contraire, ce dernier terme positif , et soit mis zéro
pour x; le résultat sera positif. Soit mis ensuite =37 pour x ; le
résultat sera -négatif. Donc I’équation aura au moins une racine réelle
négative , comprise entre o et —M.

24, THEOREME. Toute équation de degré pair, dont le dernier
terme est négatif , a au moins deux racines réelles , 'une positive
et 'autre négative.
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Démonstration. Soient substitués successivement o et =M } Ia
place de l'inconnue ; les résaltats seront de signes contraires :il y
aura donc une racine réelle entre o et ~J1.

Soient ensuite substituds successivement o et —M 3 la place de
I'inconnue; les résultats seront encore de signes contraires; il y auid
donc encore une racine réelle entre o et —J/.

25. Corollaire. Toute équation qui n’a pas de racines réelles est
de degré pair, et son dernier terme est positif.

Ceci ne veut pas dire que toute équation de degré pair, dont
le dernier terme est positif, n'a pas de racines réelles.

26. LEMME. Toute fonction dans laquelle entrent les quantités
imaginaires /=1, V=1, }/—1, ...sy/ =1, peut étre ramenée i
la forme A-+By —1.

Démonstration.

L (a-+by/ Ty == () 48y =

=A+By =1 .
1L (a4-bv/ =1)—(a/+-b'y =1) = (a—a')+(b~b') /' =1
=A+By/ = .

111 (a+5‘/—1)(a’+b’\/:) = (aa’—bb" ) -{ab/'+a’b)y/ =

‘ =A+By/=.

v, ahVII_@HV=hE VT (@@ b0)4-(a'b—ab N X

oAb =1 @ —n) (@ —5’\/—-1) a2l

aa'4-5b"  albe—agl) —
—_— a/2+b/2 a/3+ I ‘/—IIA+B‘/—I-

. m m= m_252+ —I m—2 m=—3 T
V. gty =yr=(an—— 4 T3 )
m me—1 m—

m T m-
+(_.I— a" 5-—-——-.—2—-.—-—3—-—a 51/3-}-.....)\/——1

1

1 m—1 b2 1 M1 2me—1 Ime=1 bé )
e

— 7y, -
ey ] (e U L -
VI Va—l—ﬁ 1=V m  am g3 m' a2m " 3m ' 4m  at
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+‘m/;, _;_;b___r_.m—x 27N —1 -—+...-)\/:_x

m 2m
=A+By =1
e
VIL Lon a (y =) F'=+y=5, dot Y5/ Ty m=y
—_— — 2 o
S0y Ti=A+By ST ot (VI =y, don P
—-;/—1 o+ —=A+By/ =1 ; donc , en général, '\ ou
‘/-——1=A+B\/—1.
VIIL. Soit a=1+p, on aura
™ =1 =2
am___ I—f—___p+_'£_ LP2+ — 2 3 P3+unu

Soit fait ensuite m=y/ =7, il vmndra

aV -1 = Iip‘/:;"*‘ﬁa .\/:? _I+V-:;i PPRTIN

=gy S gy T Y T
=A4By/ =1.

IX. De 13 on conclura aisément
(42 TP HV T = a4 By =5 ()

27. LEMME. Dans toute équation z™—-Az™~'==Ba™" = ...
~+T=o0, la valecur de l'inconnuc est une fonction des coefliciens
A, B, C,.... . 1.

l)u’monsiraﬁpn. Une quantité est dite fonction d'une ou de plu~
sieurs autres , lorsque sa valeur dépend de celles qu'on attribue 2
ces autres quantités ; or, il est évident que la valeur de z dépend,
et dépend méme uniquement, lorsque m est donnée, de celles des

coefficiens A, B, C,....T.
28, Remargue. Quoiqu’on sache, d’'une manitre certaine , que x

(" Yoy. les pages 20 et 147 de ce volume.
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est fonction de A, B, C,....T, on ne connait la forme de cette
fonction que pour les quatre premiers degrés. 11 est seulement démontré
que la fonction qui donne la valeur de I'inconnue, par les coef-
ficiens 4, B , C,..T, dans une équation du degré m , renferme toutes
les fonctions qui donnent les valeurs de l'inconnue, dans les équa-
tions de tous les degrds inférieurs. Car # dtant une fonction de A,
B, C,....T laquelle change de valeur , et non de forme , lorsqu’on
y fait varier 4, B, C,.....T, nous pouvons y supposer 1T=0;
et, dans ce cas , les valeurs de # seront , outre la valeur zéro,
toutes les valeurs que peut donner 1’équation du degré immédiatement
infericur. Ainsi, la fonction qui donne les valeurs de x, dans l'é-
quation générale du degré m , renferme la fonction qui donne les
valeurs de x, dansl'équation du degré m—r1 ; celle-ci renferme la
fonction qui donne les valeurs de x, dans l’équation dn degré m—2,
et ainsi de suite.

29. THEOREME. Toute équation qui n’a peint de racines réclles,
en a au moins deux imaginaires de la forme a7y .

Démonstration. Une équation qui n’a point de racines réelles est
nécessairement (25) de la forme

arpAxrm Bt T =0,

Je désigne le dernier terme par I*, pour mieux faire entendre qu'il
est essentiellement positif.

Soit fait *m=—y*™ ou x=yy =i.

Nous aurons en substituant ,

—_—p 2R e 2R
y “'/‘«__x‘y

T, T\, zm-z__"_m =
(V=Y TTr=o,

ou bien

B
= Y e =T =0,

y‘m—h“”‘zm{— i

Yy =1
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Soient faits

A B
— s —— =B’ seiees 3
‘V’—I A ) ( ‘"}—I): > L4

nous aurons
yrr Ayt By tm=t L —T =0,

Or, il a été démontré ci-dessus (24) que, si A/, B/, ... étaient
des quantités réelles , il existerait une fonction de A/, B/, .uvue
laquelle donnerait au moins deux racines réelles pour y. 4/, B/, ..
n'étant pas réelles, les deux valeurs données par la fonction pour-
ront n’étre pas réelles; mais, de quelque nature qu’elles soient, il
sfilfﬁra de les mulﬁp[ier par '\'7::, et nous aurens pour x deux va-
leurs correspondantes, compliquédes , a la vérité, de différentes sor-
tes d’imaginaires ; mais qu’on pourra toujours ramener (26) & la forme

atby/ =5 ()

(*) 1l serait peut-étre aussi exact , et il parailrait du moins un peu plue
simple de raisonner comme il suit,
Soit toujours I'équation proposée
x2mp Ax2Matd BraMaiae i =T2==0
Soit fait
Tr=malUz  ou  U=T\=—13
et alors I'dquation proposée deviendra
22Mefe Ax2M=1fe B2 -2, U2==0.
Or, si U était réel, it est démontré qu'alors il existerait au moins deux fonctions
véelles de A4, B, ... U qui pourraient étre prises pour valeurs de &. Soit
a=F( 4, B, ..U)

Pune de ses valeurs. Si U n’est pas réelle , elle deviendra

*=F(A4,B, w.. T\—1),
et pourra cesser elle-méme d’étre réelle ; mais elle ne devra pas moins en ré-
soudre I'équation proposée , et sera de plus (26) de la forme a:*_-b\/:_-x-: Ceci
rentre , 4 peu prés , dans le raisonnement quon trouve i la note de la page
91 de ce volume.

Jl Dl G'
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30. THEOREME. Si une équation, dont les coefliciens sont réels,
a une racine égale & a--8y/—1, elle en a nécessairement une au-
tre égale 4 a—by/ —1.

Démonstration. Puisque a-+by/ =7 est racine de I’équation pro-
posée , le premier membre de cette équation doit étre divisible par
z#—b—y/=1; et en cxécutant la division par ce diviseur, on ob-
tiendra (26) un quotient de la forme P-Qy/ —1.

Or, le produtt de z—a—by =1 par P+Qy/ = est

{P(r—a) + Qi+ {Q(a—a)—PF Y/ =i ;

quantité qui, par hypothése , doit étre nulle. Egalant donc séparé-
ment & zéro la partie réelle et la partie imaginaire, nous aurons les
deux équations

Plx—a)4Qb=o0 , Q(x—a)—Pb=o ,
entre lesquelles éliminant P, il viendra

(x=a)+b*=o0 :

donc z—a=-+by/ =% et z=atby .

Donc, si la proposée a une racine z=a-+54y/=1, elle en a né-.

cessairement une autre 2=a—>by —1. (¥)

(*) On peut encore démontrer de celte autre maniére que , généralement,
toute quantité réelle R divisible exactement par a-}-by/—1 l'est aussi nécessaire-
ment par a—b\/—1 , et par conséquent par le produit de ces deux diviseurs, si
du moins aeth sont premiers enlre eux.

Concevons que l'on fasse la division de R "par a-F-0\/—1, les termes du quo=
¥ent ne pourront étre que des qualre formes suivantes

(V=1)”
c, d(\/:.:l)“, \/—1)3’f (\/:I)é ’

esquels seront tous conséquemment réductibles & Pune des deux formes g et
71\] ~—1I ; par ol l'on voit que ce quotient pourra étre representé par pgV=—I1.
On aura donc

A=(a+by/ =) (p+qv/ =5)=(ap—bg)+-(ag+tp)V =1 »

et, pnisque B est réelle, on devia avolx

-
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31. THEOREME. Toute équation qui n'a pas de racines rcelles
a autant de Tacines imaginaires de la forme atby =i quil y a
d’unités dans le plus haut exposant de linconnue.

Démonstratien. 1.° Toute équation qui n’a pas de racines réclles
est de degré pair (25).

2.° Toute équation qui n'a pas de racines réelles en a au moins
deux imaginaires , telles que , I'une d'elles étant représentée par
a-+by/ =1, Tautre peut étre représentée par a—by/ =1 (30).

3.° Le premier membre de 1'dquation proposce étant divisible par
&—a—by' =7 ct par x—a--ly/ =i, cst nécessairement divisible
par le produit de ces deux diviscurs, c’est-a-dire , par x*—2aa+a*45";
or, ce produit, étant réel , donnera un quotient réel de la forme
armer ol Lyt By ime Ay, .

4.° Ce quotient peut étre ¢galé & zéro, ce qui donne une nou-
velle équation , laquelle étant exactement dans le cas de la précédente a

ag+4-bp=o et  ap—bg=R.
Présentement on a

(e—bv' =) p—gv' =x;=(ap—bg)—(aq+Ip)y/ =3 ;

ou, en vertu des deux équations ci-dessus
(@=by/ =1)(p—gy/ =1)=R;

donc a==b\J—1 est diviseur de R.

Présentement , pour que R ne fiit pas divisible par le produit (a+Z/\/:—T).
(a-—L\/:) , il faudrait que les deux facteurs de ce produit ecussent un divisenr
commun ; et, comme tout diviseur commun A deus quantités divise aussi leur
somme et leur différence , il faudrait que ce diviseur divisal aussi 2a et 25\/:-_1.’
cec qui ne peut avoir lieu si , comme nous le supposons, @ et b sont premiers
gatre eux. J. D. G.

Tom. 1IV. 30
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comme elle ] deux racines imaginaires @/=-0/'y/% , a/—b/y/ Y,
et a conséquemment son premier membre exactement divisible par
z*—-oa/z+4a*4b*. Le quotient sera de la forme z*™ 4 4//z2m-$
+4B//z*™=%+-..... et, ce quotient étant encore égalé & zéro, la nouvelle
¢quation qui en résultera sera encore dans le cas des deux précédentes.
5.° En continuant a raisonner de la méme maniére , il devient
évident que, lorsque l'exposant 2m sera épuisé, on aura obtenu m
couples de facteurs imaginaires , et que, par conséquent, le nombre
de ces facteurs sera 2m , c’est-d-dire, qu’il y en aura autant qu’il
y a d’unités dans le nombre qui indique le degré de I'équation.
32. Corollaire. Le premier membre de toute équation est décomposable
en autant de facteurs simples ,de I'une des formes 22,2 ot by/ =1
qu'il y a d’unités dans 'exposant du degré de cette méme équation,

PHILOSOPHIE MATHEMATIQUE.

Extraits de deux lettres, 'une de M. J. F. F'rangals, professeur
d I'école impériale de Tartillerie et du génie, et Tautre
de M. Servois, professeur aux écoles d’artillerie ,

Au Rédacteur des Annales;
Sur la théorie des quantiteés imaginaires,

Letire de M. FRANGAIS.

EN attendant que le mémoire de M. Argand, que vous me faites
l'honneur de m’annoncer me soit parvenu, je prends, Monsieur,
Ya liberté de vous indiquer brievement les résultats auxquels jai
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été conduit par mes rétlexions sur la maniére d’étendre la nouvelle
théoric des imaginaires & la géométrie & trois dimensions.

D’aprés ma définition 4.° ( pag. 64 ) , les angles, tant positifs
que négatifs , sont censds situés dans un méme plan que , pour
abréger , j’appellerai plan des 3. 1l serait denc naturel de supposer
que les angles imaginaires sont situés dans des plans perpendiculaires
a celui des zy; et I'analogic seule justificrait cette supposition ; mais
on peut en démontrer la légitimité comme 1l suit : Tangle 44/ =7
est moyen proportionnel de grandeur et de position entre -5 et
—¢ ; done il est situé par rapport a l'angle -+g comme langle
—3 est situé par rapport a lui; ce qui ne peut avoir lieu quiau-
tant que le plan qui contient l'angle g/ =1 partage en deux
parties ¢gales l'angle formé par les plans des angles —-¢ et —g;
or, ces deux plans se conlondent en un seul; donc le plan qui
contient l'angle 1 gy/—r1 est perpendiculaire au plan des ay. Ré-
ciproquement , tout plan perpendiculaire & celui des xy, partageant
en deux parties égales l'angle formé par les plans des angles po-
sitifs et des angles ndgatifs ; tout angle g, situé dans un plan
perpendiculaire 4 celui des 2y peut étre considéré comme moyen
proportionnel de grandeur et de position entre les deux angles ¢
et —p ; donc sa valeur de grandeur et de position est g/ =T,

Il suit de la, et de mes théorémes 2.° et 3.° ( pag. 66 ct 638 )

qu'on a :
Grm— A v N
]ﬁ _I=e(ﬁ"—x) V=t =, F— 2% =Cos.(/a\/:-1)-{-\/—-_xSIn.(ﬁ\/:T).

Voild donc aussi les sinus et cosinus hyperboliques de LAMBERT
rattachés a la méme théorie que les arcs de cercles , les logarithmes
naturels et les racines de l'unité.

Il suit encore dc 13 qu'on a

=e"\/:. (i'(ﬁ\‘_”\/'-'“—;ze(“’"}"3 —OV=E ;
x+£\];.x

Yty
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— N § Cos.(3y/ =1)~y =1 .5in.(ey/ =)}
= CoswwCos.(8y/ T)+y/ 7. SinueCos. (51 T0) 1/ 7.e*V ™" Sin. (s ).

Donc

a“+13\/j;:aCos_u.Cos.(ﬁ\/:)-l—\/: aSin.oc.GOS-(,BV:)-}-\/:ae“\/:T.Sin,(p\[-—;).

Les projections de @ sur les trois axes des coordonnées , ou plutdt
ses trois composantes seront denc

aCos.2Cos.(y/=1), /=1.aSin.e.Cos.(6y/=7), vV —=1.2,Sin.(ey/=0).

Voila, Monsieur, le résultat auquel je suis parvenu; mais je
vous avoue que je mn’en suis pas encore satisfait. Je voudrais
élaguer ecntitrement la notation imaginaire , comme je lai fait
pour la géométric 3 deux dimensions. Je m’explique : pour
la géoméiric & deux dimensions, jai réduit les droites obliques de
la forme A-4-B\J=1 a celle a,, o a représente la grandeur ab-
solue de la droite , et « I'angle qu’elle fait avec I'axe des abscisses.
Dans la géometrie & trois dimensions, je youdrais exprimer la po-
sition d'une droite quelconque par Tuys ol @ exprimerait la gran-

deur absolue de la droite, « l'angle qu’elle fait avec I'axe des
abscisses , et A4 celui que le plan de langle  fait avec le plan
des xy ; mais toutes mes tentatives a cet égard ont ¢t¢ jusqu'ici
infructueuses. Je désire que quelqu’un plus habile que moi vienne
A bout de completter cette lacune. Quoi qu'il en soit , je suis
persuadé que le vrai moyen d'étendre mnotre théorie des imaginaires
2 la géométric A trois dimensions réside dans la considération des
angles imaginaires.
Mctz , le 8 de novembre 1813.
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P. S. Je viens de recevoir, 3 l'instant, le mémoire de M. Argand ;
que j'ai lu avee autant d'intéreét que d’empressement. Il ne m’a pas
été dillicile d'y rcconnaitre le développement des idées contenues
dans la lettre de M. Legendre & feu mon frére; et il n’y a pas
le moindre doute qu'on nc doive & M. Argand la premitre idée de
représenter géométriquement les quantités imaginaires. C’est avec bien
du plaisir que je lui en fais hommage ; et je me félicite de l'avoir
engagé a publier ses idées, dans l'ignorance ou j'étais de leur pu-
blication antérieure. J’ai vu aussi que ®us nous étions rencontrés
dans le principe qui doit servir & ¢tendre cette nouvelle thcorie des
imaginaires & la géomdtrie & trois dimensions ; mais, en partant
d’'un méme principe , nous parvenons & des résultats différens.
J'ai dit plus haut que je n'avais pu parvenir & ramener ['~x-
pression de la position d'une droite quelconque dans Iespace a la
forme Dey: Voici quels sont les motifs de ceite impuissance. J'avais

essayé de faire , par analogie , u4=u.eA\/_l-:x(Cos.A-}-\/:TSin.A) ,
d'ou l'on tire
— e AN C e
1 mA:(goc\/‘ 1) =(Cos.e~4-y/=7. Sin, ) COs A4V~ . Sin.)
ce qui, dansle cas de = {=, A==!=,donne 1, . =(‘/:)\/:7
3 :' »

comme le trouve M. Argand. Mais, en faisant le déVeloppement du cas
général , on a

T A= —
I“A:-..(e“V"‘) ¢ =t >\/""’~—_=g(“Cos‘d+\/-1.uSin.A)\}vt

= —1.4Cos.4 . e(\}—-l . uSin.A)\/-::

= { Cos.(#Cos. )4V 71810 (Cos.4) f Cos.(V-358in. )V Tin. (3 Tra St }
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=Cos.(«Cas.A4)Cos.(y/ =1.eSin.4)+y/ 7 'Si“’(“COS-H)COS-(‘/:—x.aSin.'A)

eV T G (S uSin ) 5

expression qui , vu la double transcendance de ses termes , me parait

inadmissible. Sa comparaison avec
»

— —_— = =, —
N PNy =C0s.2C0s.(AV=1)4\=1.5in.AC0s.(u\/=1) 4\~ TL.e Sin. (N —1)

me l'a fait rejeter entitrement ; parce que les angles « et A sont
aisés 4 déterminer en A et par la trigonométrie sphérique. On
trouve, en effet,

Cos.aCos.(xy/ =1)=Cos.« ;
Sin.aCos.(¢y/ =1)=Sin.«Cos.(A}/ =) »
Sin.(ey/ =1)=8in.aSin.( Ay =1) ;
d’ot I'on déduit

Cos.« . Sin,«Cos.(y/ 1)
In,u= ,
V 1=SinceSinc(dy =) '/ 1—SinaSin(Ay/ —1)

COS-(L-——

On a donec

Sin.uSin.(A\/:T} —_—
\/ 1=Sin2aSin(A\23) ‘/-.x } ‘

Y m:{Cos.u-{-\/ =1.8in.«Cos.(4y/ =)} 14

Il me parait prouvé , d’aprés cela, que «4 ne doit. pas étre déter-

r
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miné de la méme manidre que a,, et que l'analogie supposée entre
les angles et les lignes ne subsiste pas.

Vous avez di remarquer, au surplus, Monsieur, que M. Argand
ne démontre pas ma proposition a,=a(Cos.«=-y/=1Sin.2); et que
cctte proposition fondamentale n’est chez lui qu'une simple suppo-
sition , justifiée seulement par quelques exemples. (*)

Je n’ai pas trop vu non plus, Monsicur, pourquoi M. Argand,
n.° 11 (pag. 144 ), introduit une nouvelle unité , en posant 2z=r;
cela m’a paru répandre de l'obscurité sur le reste de son mémoire.

\

Enfin jaurais peine a passer a cet estimable geométre son asser-

tion sur la non réductibilité de (L‘;/:x)d\/—l 4 la forme A+By/ =I.
Ona, en effet,
ﬂV::eIJOg'(C\/:—I—)Z eLog.c-}-Log‘\/—;:eLog_c_‘_; 'V::—_aLO&C‘e{ ’\/.__I. ;

donce

ey S NTF = o V=Rt

=™t d"{Cos.)dLog.c)—!— V' =31.Sin.(dLog.c)}

qui est bien de la forme A4-By/ (. Je crois donc &tre fondé a

—d\—1 . . ..
ne regarder la forme (2y/ <1 qu’il assigne ¥ la troisi¢tme coor-
donnée que comme une simple conjecture sujette a une séricure

contestation.

() La démonstration de cette proposition n’était point nécessaive dans le sys-
téme de M. Argand qui a almis , comme définition de nom , que la somme
dirigde de plusieurs droites dirigées se compose de P'ensemble des expressions
de ces droites piises eu égard a leurs signes de direction; et M. Argand n'a
fait en ceci que donner une extension fort naturelle & une d!finition généralement
admise en algébre.

J. D. G.
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Lettre de N. SERVoOIS.

J'accueille ordinairement avec faveur , mon vieux camarade , les
iddes nouvelles en fait de doctrine , sur-tout loréqu’elles se présentent
sous la garantie de noms connus honorablement, par d’autres travaux
scientifiques. Loin donc que je songe a donner aux idées de MM.
Argand et Francais sur les imaginaires les qualifications odieuses
d'inutiles , d’erronées , cte., qui ne prouveraient autre chose que
peu de courtoisie et beaucoup de prévention de ma part ; je désire
vivement , au contraire , qu'elles puissent acquérir, avec le temps,
ce qui leur mangue encore , sous le rapport de P'évidence et de
la fecondité. C’est donc dans cet esprit; c’est autant dans l'intérét
de la science que pour satisfaire au veeu que vous manifestez de
connaitre mon opinion personnelle sur cc sujet, que je hasarde ici
les réflexions suivantes.

1.° La démonstration du 1.°* théoréme de M. Francais ( pag.65)
est, & mon avis, tout a fait insuffisante et incompléte. En effet,
cette proposition N qui en fait la base: « la quantité Tday/ " est
» unc moyenne proportionnelle de grandeur et de position entre
» =a et —a » , équivaat a ces deux-ci , dont une (Fay/=%
moyenne de grandeur entre 4a et —g) est évidente , et dont l'autre
(FZay/ =1 moyenne de position entre —a et —a) n'est pas
prouvée , et renferme précisément le théoreme dont il s’agit. (*)

¢ La moyenne proportionnelle de grandeur entre -fa et ==z n'est et ne
saurait étre que a; car, lorsqu'on parle uniquement de grandeur, on doit faire
ahstraction des signes ; et \/(T;—_‘a. Mais lorsqu’on prend pour la moyenne _-_i:a\/: ’
on annonce par la méme quon a eu égard aux positions inverses de —a et
=2 ; la moycnne doit donc alors conserver l'emprcinte de cette considération;
elle est donc, par le fait méme, unc moyenne de position aussi hien que de

Cela



DES IMAGINAIRES. 229
Cela est d’autant plus ficheux que tout le reste du mémoire porte
sur ce premier théoréme. Quant a M. Argand , il s’est contenté
d’appuyer cette proposition sur une sorte d’analogic et de convenance.
Or , il me parait que, lorsqu’il s’agit de fonder une doctrine ex-
traordinaire , opposée en quelque sorte aux principes recus , dans
une science telle que l'analise mathématique , la simple analogie
n’est point un moyen suffisant (*). Au surplus, on doit croire que
M. Argand a porté de la démonstration de M. Francais le méme
jugement que moi; car , dans le cas contraire , il n’aurait sans doute
pas manqué d’en étayer son analogic, ne fiit-ce que par une simple
citation.
2.* Mais la nouvelle théorie est-clle au moins justifide, @ posieriorz,

grondeur : l'interprétation du symbole ia\/:z— est donc réduite & chercher une
droite de laquelle on puisse dire quelle est posée par rapport a —f-a comme
=g est posée par rapport a elle.

M. Servois trouve évident que, dans l'ancienne doctrine -_f-_a\/:-_x- soit mio-
yenne de grandeur ‘entre 4-a et =—a. 1l me parait pourtant difficile de concevoir
qu'une négation de grandeur , un étre de raison puisse citre dit moyen entre
deux grandeurs effectives. '

(* Il serait sans doute fort & désirer que Desprit humain procédat constam-
ment comme on le fait dans les traités ex professo et sur les bancs des ¢coles ;
mais malheureusement cela n’arrive presque jamais. M. Servois, qui fient ici un
langage a peu pres pareil a celui de Viviani, dans des circonstanccs assesz sem-
blables a celles-ci , a-t-il donc oublié que ce w'est qu'aprés plus d'un sicele de
méditations et d’essais infructueux qu’on est enlin parvenu & asseoir le calcul dit
infinitésimal sur des bLases solides? et encore trouve-t-on aujourd’hui des gens qui
prétendent qu'on n’y a pas complctement réussi. Od en serions-nous pourtant
si Uon avait exigé des premicrs invenieurs de ce ca'cul , qu'ils ddmontrasscnt rigou-
reusement leurs méthodes avant d’en faire des applications 7 Il en a été cxactement
de méme & légard des quantités négatives isoldes ; ct il en sera toujours ainsi
de toutes les théories ; Phomme les apergoit par une sorle dinstinct, bien long-
temps avant d’étre en ¢tat de les démontrer en rigucur.
J. D. (5,

Tom. 1V, 33



230 THEORIE

par de nombreuses applications ¥ C’est du moins de ce cété que
M. Argand semble avoir voulu spécialemeut diriger ses moyens.
Cependant , il convient lui-méme , avec [ranchise, ( page 143)
quon pourrait ne voir la que /le simple emploi dune notation
particuliére. Pour moi, j'avoue que je ne vois encore, dans celte
notation , qu'un masque géométrique appliqué sur des formes ana-
litiques dont l'usage immédiat me semble plus simple et plus ex-
péditif. (*) Je n’en donnerai qu'un exemple sur la premieére appli-
cation de M. Argand, dans laquelle il se propose de trouver les

développemens de Sin.(a4-24) et Cos.(a~+5). De la formule générale
c“\/:;:Cos.u-}-\/:'i Sin.« ,
je tire
(@I — Cos. (a4-B)4y/ =3 . Sin.(a+5)
et ensuite
NI V=3 =1 o504/ =5.Sin.a)Cos. by ZiSinb).

ou

c@HHIV=i (Cos.aCos.b-Sin.aSin.b)41/ =7.(Sin.aCos.t+Cos.2Sin.2) ;

(" Voild encore le langage de Viviani. M. Servois compterait-il donc pour
peu de voir enfin l'analise algébrique débarrassée de ces formes inintelligibles et
mystérieuses , de ces non-sens qui la déparent et en font , pour ainsi dire, une
sorte de science cabalistique 7 J'ai toutes sortes de raisons pour ne point lui préter
cette pensée. Or, c’est 1 principalement ce que M. Argand a eu en vue, comme
il nous lapprend lui-méme , au commencement de son opuscule.

J. D. G,
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égalant donc ces deux valeurs de LOFON=T gy séparant le réel
de I'imaginaire, on aura

Cos. (a4-1)=Cos.aCos.b—=Sin.aSin &, Sin.(a4-b)==Sin,aCos.b-4Cos.aSin0.

Toutes les autres applications géométriques dérivent de la méme
source , avec la méme facilité. On les trouve développées dans
différens ouvrages, et notamment dans la Théorie purement algé-
brique des quantités imaginaires , par M. Suremain -de - Misséry
( Paris 1801 ). L’application unique & l'algebre ( pag. 142), laisse,
suivant moi, beaucoup i désirer. Ce n’est point assez, ce me semble,
de trouver des valeurs de x qui donnent au polynéme des valeurs
sans cesse décroissantes ; il faut de plus que la loi des décroissemens
améne nécessairement le polynéme & zéro, ou qu'elle soit telle que
zéro ne soit pas , si l'on peut s’exprimer ainsi, asymptote du
polynéme. Je ne dirai rien de I'extension du principe dont s’occupe
M. Argand & la fin de son mémoire : d’autant qu’elle est aussi
uniquement fondée sur l'analogie ; mais je ne puis pourtant passer
sous silence une assertion que je crois inexacte. Selon M. Argand

(pag 146), la forme (v =5 \/:qﬂ}“e Pexemple le plus simple d'une
quantité non réductible a la forme générale p-+qy/ —1. Ge géométre au-

rait-il donc oublié qu’Euler a démontré que I’expression (\/:_I)V:’ n’est

.
. . . e . , —
point imaginaire, mais égale ae Y

(*» On a, en effet,

exv“":COS,x—l—‘/: Sing dol € "=(Cosax(/ =1 Sin..r)v:—;

qui, en faisant x==1 =, devient
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3.9 Les glomdtres ; exprimant assez souvent Ia position d’un
point sur un plan , par un rayon gecteur et une anomalie , n’ont
certainement point ignuré les conséquences que fournit la définition 4.0
de M. Frangais, et sont conséquemment a labri du reproche que
leur adresse ce géometre ( pag. 66 ). Mais, se contentant de con-
sidérer séparément la grandeur et la position d'une droite sur un
plan, ils n’avaient point encore formé U'/dée composée de ces deux
idées simples ou , si l'on veut , ils n’avaient pas créé un nouvel
étre géométrique , réunissant, a la fois, la grandeur et la position.

e T T=(y =)V

Mais , sans rien préjuger sur le fond de l'assertion de M. Argand ; assertion
qu'il n’énonce , au surplus, qu'avec le ton du doute ; j'observerai avec lui ( pag. 147 )
que , tant qu'on n’aura pas une théorie bien claire des formes algibriques, non
rigoureusement ct immédiatement évaluable , il sera tout au moins permis de
regarder comme précaires les démonstrations fondées sur l'usage de ces mémes
formes.

C’est probablement aussi 'opinion de M. Servois lui-méme ; car, lui observant,
il wy a pas long-temps , que léquation évidente

M i I (1==m) (1===m)(1==2m) . .
‘/1+m:I+_l—+ 1.2 + 1.2.3 +“"

v

devenant , dans le cas ot m=o,

I I

1 1
0/ =
V I:I+ - + —+ By 2/
I 1.2 123 @ 1.23.4
il paraissait s'ensuivre que \/y qui, en général, se présente sous la forme dou.

o
blement indéterminée (2)*, est cependant ¢zal & e il parut ne pas goiter ce rai=
sonnement , précisément pour les raisons que je viens d'expliquer.
J. D. G.
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La grandeur d’une droite , et sa position , Cest - a - dire , I'angle
quelle fait avec un axe fixe, sont deux quantités quon peut méme
regarder comme komogénes ; or , comment les liera-t-on pour en
faire le nouvel éire appelé ligne droite de grandeur et de position
ou, plus brievement , droite dirigée? voila une question qui ne me
parait pas cncore asscz approfondie. & étant la longeur d’une droite,
« l'arc du rayon =1 compris dans langle qu’elle forme avec un
axe fixe, on pourra, sans doute, représenter , en général, la droite
dirigée par ¢(a, «), et il faudra tacher de déterminer la fonction
¢ d'aprés les conditions auxquelles elle doit essentiellemont catic-
faire. Ainsi, 1.° il faudra qua «=o0, «=2% ,....#=2n= réponde
@, y=-a, et qua «=%, «=3a,.....«=(2n41)= réponde
¢(a, «)=—a: c’est évident ; 2.° il faudra que, de ¢(a, «)=0¢0, 8) ,
on puisse conclure ¢=5, «=pg: c’est ecncore évident. Mais faudra-
t-il, 3.°, eomme M. Frangais le demande ( pag. 62), que de la pro-
Pla, &) _ @lc, ¥)
I ‘
Je ne vois pas que cela découle nécessairement de lidée de la

. . a c
portion on puisse conclure =3 et a—p=yp—y?

. . . . A ¢(a ”)
fonction ¢. La sngmﬁcatlon méme du rapport ¢(b’ 5
H

cure. Comment, en effet, peut-on dire d’une droite dirigée qu’elle
est double, triple,..... d'une autre? Clest cc qu'on n’apergoit point
@ priori. M. Francais lui-méme parait I'avoir bien senti, puisqu’il
ne parle de la somme des droites dirigées que comme conséquence
de scs deux premiers théorémes ( pag. 67 ). Cependant,je ne m’oppose
point & ce quon admette cette condition comme un des caractéres
essenticls de la fonction ¢; mais alors la définition compléte de la
droite dirigée sera unc définition nomints , non rei ,ou,en d’autres
termes, droite dirigée sera le nom d’une certaine fonction analitique
de la grandeur et de la position d’une droite. 1l suivra de Ia mal-

heureusement qu'on ne construit plus les imaginaires , mais sim-
plement qu'on les raméne 2 une méme forme analitique. Quot qu’il

en soit, voyons quelle sera cette fonction, Il est d’abord clair que

est fort obs-
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satisfait aux trois conditions annoncdes,

, — 0‘,-—! —

En effet, on a 1.° ¢la, 0,=a.c =a; ¢la,=)=acV "

=a(Cos.w+V:_1 .Sin®)=-—a ; 2.° I'dquation ¢(a, «,)==0¢(0,8) devient

234

Yexpression ¢, ©)=a.e

= -1 . :
2.2V =506V ; ou bien , en prenant les logarithmes , séparant

et rcpassant ensuite aux nombres,a=24, «=g; 3.° enfin la pro-

. . . a c
portion ci-dessus donne , par de semblables transformations, — =7
et #—pg=y—3. Mais la forme a.c*V7T st elle la seule qui satis-
facco & voa trois conditions ? Je nec le crois pas ; et il me parait
méme ¢évident qu’on y satisferait également en substituant un coeffi-

cient arbitraire & 'imaginaire 1/ =7. Ainsi la forme 2.V ne sera,

4 mon avis, qu'un cas particulier de celle que doit affecter Pex~
pression analitique de la droite dirigée , dans sa signification de
convention. Y a-t-il encore d’autres conditions qui dérivent de cette
signification ¥ C’est cc qu'on ne dit pas; et c’est cc que je ne vois
pas non plus. '

4.° La table & double argument que vous proposez dans votre
note ( pag. 71) étant appliquée sur un plan congu divisé par points
ou carreaux infinitésimes , de maniére qu'a chaque carreau corres-
pondit un nombre qui en serait ’Zndice ou la cote , serait trés-
propre a indiquer la grandeur et la position des rayons vecteurs
qu’on ferait tourner autour du point ou carreau central portant 1 o;
et il est bien remarquable qu’en désignant alors par & la longueur
d’un rayon vecteur, par « l'angle qu'il ferait avec la ligne réelle...
—1. to, ~1,...., par 2, y les coordonnées rectangles du
point extréme opposé & l'origine, rapporté & cette ligne réclle, comme
axe des z, la cote de ce point serait exprimée par 2-+yy/ —1 . et
par eonséquent , a cause de a=aCos.« , y=aSin.«, par a.e?Y7r,
Ainsi, voila une nouvelle interprétation géométrigue de la fonction

a1 qui vaut bien , & mon avis , celle de MM, Argand et Frangais ;
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mais certes, on n’en conclura pas que ce soit un nouveau moyen
de construire géométriguement les quantitds imaginaires , car les
cotes ou Indices dont il s’agit impliquent d¢ja.I'imaginaire. Quoi qu'il
en soit, il est clair que votre ingénieuse disposition tabulaire des
grandeurs numériques peut étre regardée comme une tranche cen-
trale d’'une table a triple argument qui rcmpli‘rait I'espace suivant
ses trois dimensions, et pourrait servir a fixer, de grandeur et de
position , les droites dans l’espace. Vous donneriez sans doute 2
chaque terme la forme trinomiale; mais quel coefficient aurait le 3.°
terme ? Je ne le vois pas trop (*). L’analogie semblerait exiger que le
trinéme fat de la forme pCos.«4-gCos.p4rCosy : #, g, » ctant
les angles d’une droite avec trois axes rectangulaires ; et qu'on- et

(pCos.t4-g Cos.p4-r Cos.a) (p'Cos.a~t-g'Cos. g41/Cos.9)==Cos.24--Cos.284-Cos.2y==1.

Les valeurs de p, ¢, r, p/, ¢/, r/ qui satisferaient 4 cette con-
dition seraient absurdes; mais seraient-clles imaginaires, réductibles:
d la forme générale A4-4-By/=1? Voila une question d’analise fort.
singuliere que je soumets 4 vos lumitres, La simple proposition
que je vous en [ais suffit pour vous faire voir que je ne crois. point

que toute fonction analitique non réelle soit vraiment réductible X
la forme A--By/ 7.

Lafére, le 23 novembre 18:13.

(*) Mon estimable ami fait ici beaucoup trop d’honneur 4 ma pénétration. La
vérité est que , lorsque jimaginai cette petite table , je n'avais aucunement la
pensée que l'on pit songer & Iétendre aux trois dimensions de lespace , et
que j’élais méme fort disposé & croire que Ies grandeurs numériques ne s'étendaient
que suivanl deux de ces dimensions seulement. La lecture des mémoires de MM.
Frangais et Argand m’a bien fait soupgonner qu’il n’en était pas ainsi ; mais sans
m'apprendre encore de guelle manicre je devais. construire la table & triple ar-
gument.,

J. D. G.
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QUESTIONS PROPOSEES.

QUESTIONS PROPOSEES.

Problémes de Géomélrie.

I DE tous les traptzes qui ont les deux mémes cotés paralltles

et la méme section perpendiculaire 3 ces cotés , quel est celui de
moindre contour ?

II. De tous les troncs de prismes triangulaires qui ont les trois
mémes arétes paralleles et la méme section perpendiculaire A ces
arétes , quel est celui de moindre surface?

I1I. De tous les troncs de parallclipipedes dans lesquels les arétes
latérales sont égales , chacune & chacune, et ou la section qui leur
est perpendiculaire est donnée de¢ grandeur et d'espéce , quel est
celul de moindre surface?

IV. De tous les troncs de parallélipipédes dans lesquels deux
faces latérales opposées sont données de grandeur et d’espice , et
od la section perpendiculaire aux arétes latérales est aussi donnée
de grandeur et d’espece, quel est celui de moindre surface?
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ASTRONOMIE.

Essar d'une nouvelle solution des principaux problémes
d'astronomie ;

Par M. KrAamr , professeur , doyen de la faculté des
sciences de lacadémic de Strasbourg.

( Deuxiéme mémoire. ) (*)

L.Vl Vo Vi Vo Wl Vo Vo V)

38. LEs élémens de l'orbite d’un corps céleste, assujetti aux lecis
de la gravitation , sont au nombre de siz ; savoir : la longitude
du nceud , linclinaison de 'orbite , la position de la ligne des apsides ,
le grand axe, Pexcentricité, et 'instant du passage par 'une des deux
apsides. T'rois observations complétes , en nous faisant connaitre les lon-
gitudes et les latitudes géocentriques de ce corps dans trois instans don-
nés, nous fournissent six équations lesquelles suffisent pour déterminer
un nombre pareil d'inconnues. En continuant de désigner par Sin.a
I'excentricité connue de l'orbe terrestre , nous ticherons de repré-
senter chacune de ces six inconnues par une série ordonnée selon
les puissances ascendantes de a, telle que

A~4Br+4-Cr*~+-Dr’+-.....

Le premier terme A4 est ce que devient eette série, dans le cas
de a=o, qui est celui d'un mouvement de la terre supposé uni-

(*) Voyez la pag. 161 de ce volume.
Tom. 1V , n.° VIII, 1.°% féerier, 1814. v 32
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forme et circulaire; et on voit que ce premier ferme suffira, dans
le cas ou l'observateur se trouverait prés de 'une des deux apsides
de lorbite terrestre. Comme cette excentricité est une fraction assez
petite , égale & wn soiwantiéme, & peu prés ; la série sera trés—
convergente , méme dans les cas les moins favorables. En réservant,
pour le mémoire qui suivra celui-ci, la recherche du second et
du troisitme termes de la série , nous nous bornerons , dans le
mémoire actuel , a4 la recherche du seul premier terme que nous
avons désigné par la lettre A.

39. PROBLEME V. Les élémens de lorbite étant supposés connus ,
on demande , pour un instant quelconque, I'cxpression littérale de
la longitude et de la latitude géocentrique de lastre ?

Solution. Soient (lig. 1)

S, le centre du soleil ;
EZAT, l'orbite de la terre;
MBN/, Vorbite de lastre ;
SN/, la ligne des neeuds;
SE, la ligne des équinoxe
T, un lieu de la terre;
M, le lieu correspondant de I'astre ;

MN une perpendiculaire sur la ligne des nceuds;

ML, une perpendiculaire sur le plan de Pécliptique ; et soient
menées ST, SL, SM,LN et TL prolongée jusqu’a la rencontre de
SN/en Q, etenfin 87 parallele & TQ, projection sur Vécliptique
du rayon visuel TM. Alors ,

Les triangles MLT, MLS, MLN seront tous trois rectangles en L

ST et SM seront respectivement les rayons vecteurs de la terre
et de 1astre;

L’angle MNL mesurera Vinclinaison de l'orbite;

Et les angles ESZ et MTL seront respectivement les longitude
et latitude géogemriques de la plantte ou de la cométe.



D'ASTRONOMIE. 239
4o. Faisant ST=a, SM=r, lc triangle MN3, reciangle en N,
donnera

MN=r.8nMS8N , SN==r. Cos\ISN.

Le triangle MLN, rectangle en L, donnera ensuite
ML=NMN. §/n.MNL=r. $/n.MSN.S5/n.MNL ,
NL=DMN.CCos MNL=r.85/n.)SN.CCos.MNL ;

et si, du puint T, on abaisse sur la ligne des neeuds SN la per-
pendiculaire TO, et qu'on méne la paralieie LP 4 cctte méme ligne
SN, on aura

SO=a.Cos.NST , TO=4a.5:n.NST ;

d’ou on conclura
NO=LP=SN—-SO=r.Cos.MSN—a.CosNST ,
PT=TO—LN=¢.85nNST—r.S/n.MSN. Cos.MNL ;

on aura donc

a . Sin.NST —r.Sin.MISN . Cos. MNL,
7eCos.MSN==ga,Cos.NST ?

Tang. TLP=Tang. TQS=Tang NSZ=

cet angle pourra donc étre regardé comme donné , dés que lon
connaitra l'inclinaison MNL de lorbite , les deux rayons vecteurs
ST=a et SM=r , et les angles TSN, MSN qu’ils font avec la
ligne des neeuds. On n’aura qu’a retrancher ensuite cet angle NSZ
de la longitude ESN du nceud, pour avoir la longitude géocen-
trique ESZ.

41. Aprés la recherche de la longitude, celle de la latitude est
wrés-facile. Des deux triangles LTP, rectangle en P, et MLT,

rectangle en L/, on tire les deux égalités qui suivent
NO=LP=LTCos.TLP=LT.CosNSZ ,

LM=LT.Tang MTL ;
d’od
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r.Sin.MSN.S/n,.MNL.Cos.TLP

="M c0s.NSZ
/ = — . = .
Tang MTL =5 Cos 7.Cos MSN—a.Cos.NST

t telle est la tangente de la latitude géocentrique.

42. Il reste donc & exprimer les angles NST , MSN , MLN,
ainsi que les rayons vecteurs @ et r, en dautres quantités qui,
d’apres Pénoncé de notre probléme, doivent étre regardées comme
données : et ce sont les ¢lémens de l'orbite de l'astre. Soient donc

>, langle ESM , longitude du nceud ;

£, Uangle MNL, inclinaison de Vorbite;

s, angle BSN que [ait la ligne des nceuds avec celle des apsides 3

b, le demi-grand axe de la plantte ou cométe ;

Sin.z , le rapport de I'excentricité au demi - grand axe ; ce qui
donne

bCos e, pour le demi-petit axe ;

¢Sin.., pour la distance du foyer au centre ;

a, l¢ demi-grand axe de la terre;

P> le temps périodique de Ja terre;

¢, le temps périodique de lastre ;

p est connu et, quant a ¢, nous savons quon a

pr_ 4

g» b7
ainsi , les deux quantitds désignées par & et ¢ pourront toujours
étre remplacées I'une par lautre.

43. A ces cinq élémens , savoir 9, £, ¢, #, &, il faut en ajouter
un sixiéme : c’est celui qui doit fixer le moment du passage de
I'astre par son aphélie. Nous supposerons donc qu'a cet instant la
terre était au point A de son orbite. Notre sixiéme élément sera
donc l'angle ASN=» que faisait alors la ligne des nccuds SN avee
le rayon vecteur SA de la terre.

44. En continuant de désigner par ¢ I'anomalie vraie de l'astre,
nous emploirons la lettre * pour exprimer l'anomalie excentrique

qui lui appartient. La longitude de la terre , supposée au point T
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de son orbite, ou I'angle EST , sera désignée par #, ce qui rend
Fangle NST=¢—j, et l'angle AST=¢—y—7. Le temps employé

p(é-—J‘—’!)

par la terre & parcourir I'arc AT sera donc ; et , comme.
R 23

Pastre emploira le méme temps pour parcourir 'arc BM de la sienne
(B étant le licu de son aphélic ) , et pour décrire ainsi I’anomalie
vraie BSM=¢ , & laquelle répond l'anomalie excentrique =, et le
rayon vecteur SM=r , on aura les équations qui suivent :

bCos.2pe " Cos.2Sin.@ Cos.p—Sin.z
r= ——m————, Sinix= ———— , Cos.*= —m—,
1—3Sin..Cos.@ 1=—=5in.. Cos.9 1=S5in. £ Cos.@

p(t—y—7) =g x+Sin.xSin.x).

45. 1 parait convenable de réduire toutes les formules aux ano-
malics excentriques et d’éliminer entiérement les anomalies vraies.
Cetie réduction est facile ; nous aurons

r=>5(1+4Sin.xCos.x)
. Cos.zSin. Cos.x~}-Sin.
Sm.¢=—'—-.—ﬁ‘——x—”—- N Cos.p= ‘.+ £ ’
14-Sin.xCos.x 1+4-Sin.xCos.x

rSin.¢=4Cos.uSin.x ,  7Cos.o=5(Cos.x+-Sin.x).

46. En conséquence, si l'on ddsigne finalement

par A la longitude géoeentrique ,

par B la latitude géocentrique de l'astre au moment ol la terre
est parvenue au point T de son orbite ; l'angle TLP=NSZ sera
s—A; Vangle NST, que fait le rayon vecteur ST avec la ligne
des neeuds SN, sera ¢—j ; Vangle MSN que fait avec cette méme
ligne SN le rayon vecteur SM de Vastre sera «}¢; I'angle MTL
sera B, et l'angle MNL , qui exprimera l'inclinaison de lorbite
sera g, Les formules des n.°® 4o et 41, qui nous faisaient con-
naitze les tangentes des deux angles p—dA et B deviendront ainsi

aSin (f=3)==rSin.(1¢)Cos.8
rCos: (4=¢) ==a Cos. (b= )

2

Tang.(3—~A)=



PROBLEMES
Tang.B——" r$in.(e+@}(}os.(§-—- A)Sin.8
rCos.(e~42)=~aCos.(6—27)
46. Multipliant ces deux équations par le dénominateur commun
des fractions qui forment leurs seconds membres, elles deviendront
-en réduisant

aSin.(¢—A)=rCos.[s-}+2)Sin.($ —A)~}7Sin.(c}¢)Cos.(3—A) Cos. 2.
aTang.BCos.(¢—y) =rCos.(i+ o) Tang.B—rSin.(s-+¢)Cos.(s—A)Sin.4.

s
-
[N

7. Arrétons-nous 4 ces deux produits 7Cos.s+9¢) et 7Sin.(st-¢),
qui font fonction de facteurs dans ces deux formules, et qui ne
sont autre chose que les deux coordonudes rectangulaires SN, MN
du point M de l'ellipse rapportées au foyer S comme origine , et
a la ligne des nceeuds SN comme axe. En les désignant respectivement
par 6P et bQ, et en employant les développemens donnés au n.° 45,
nous aurons

P =(1+Sin.xCos x)Cos.(s-f¢) ,
Q=(14Sin.xCos.#)Sin. +¢) ;
ou bien
P=Co0s.Sin.x~+Cos.Cos.* — Sin.sSin.»Cos.x ,
Q=Sin.Sin.x~+4Sin «Cos.*+Cos.:Sin #Cos.& .

En employant cette notation, on aura
aSin.(¢—A)=bPSin.(y—A)+-5QCos.(3—A)Cos.z ,
aCos.(¢— ) Tang.B=5bPTang.B—5QCos.(3—A)Sin.s.

LM _ rSin.(e4@)Sin.z

Laligne MT, distance de I'astre  la terre, égale a TR S B ,
50QSin.g

deviendra ar cette méme notation .
» P ' Sin.B

48. Si on multiplie la premiére de ces équations par Sin.g, I'autre
ar Cos.s , et quonr les ajoute ensemble , on aura une nouvelle
P q ) )

équation débarrassée de @ et ne renfermant que P seul. Multipliant
de méme la premi¢re par Tang.B , la seconde par Sin(y—dA) et
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les 4tant I'une de l'autre, en remarquant que (O—A)=(9“3)+(J—A).
ce qui rend Sin.(a-—A)-Cos.(o—3)Six1.(5--——A)=Sin-(‘-é‘>C05-(5‘—A);
on aura une nouvelle équation débarrassée de P, et ne renfermant
plus que Q. Ces deux équations seront

1334 _ Cos.8Cos, (8=3)-4Sin.ASin.(d=~A)Cot.B

& Cos.p4Sin.sSin.(d—A)Cot.B ’

»Q Sin.(—9)

"o T Cos.p4-Sin.gSin.(d—ACot.B
Leur forme nous mect dans le cas de procéder par degrés i la
solution du probléme, en lc partageant dans les trois qui suivent:

49. PROBLEME V1. La position du plan de Porbite étant sup-

posée connue , et connaissant de plus le grand axe de lellipse,
et linstant du passage par l'une des deux apsides ; on demande

de déterminer , moyennant une seule observation , lexcentricité et
la position de l'axe ?

50. Solution. Les quantités connues du probléme seront ainsi:
Vangle » , longitude du nceud ; langle g inclinaison de lorbite ;
les angles A4 et B, ou la longitude et la latitude géocentriques,
données par l'observation ; Vangle 4, longitude de la terre dans ce
méme instant ; 'angle 4 que faisait la ligne des nceuds avec le rayon
vecteur de la terre, au moment du passage de l'astre par son aphélic;
enfin le demi-grand axe & de Vorbite, et par conséquent la fraction
%. Les deux inconnues sont lexcentricité & ct Vangle s que fait
la ligne des nceuds avec celle des apsides.

5t. Les deux équations données (48) nous mettent dans le cas
de déterminer immédiatement les deux facteurs P et Q. De plus,
Pangle » étant supposé connu , on aurait , pour déterminer I'ano-
malie excentrique », l'équation (44)

plt=mpmr, = g(x+Sin.pSin.s)
gui , outre cette momalie , renferme cncore’ l'exeentricité 4, in-
connue comme elle. Heureusement eile y est réductible; car ayant (47)
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= {(14Sin.xCos.x, Cos.(s--¢) ;
Q=(14Sin.xCos.xSin.(s+9) ;
on en tire
1+Sin.xCose =/ P4Q ;
quantité entiérement connue. En la désignant donc par B, on obtient

Re=1

Cos.x

Sin.faz

?

ee qui change notre derniére équation en

p—y—n)=g[x+-(R—1)Tang.«].
On en tirera ’anomalie = par une simple application de la regle
de faussc position; et , aprés l'avoir trouvée, il ne restera plus que
le seul angle « a déterminer. Or, des deux équations (47)

P =Cos.sSin.x-+Cos.sCos.x—Sin sSin,xCos.x
Q@ =Sin.sSin.~4-Sin.cCos.x+ Cos.«Sin.xCos.x ;

on tire

PCos.s+QSin.e=Sin.p+Cos.x ,
QCos.s—PSin.e=Sin.x+ Cos.ie 3
ce qui donne
RCos.e= P(Sin.x4-Cos.*)+QSin.xCos.z
RSin.e = Q(Sin.x4-Cos.#)—PS&in.xCos.¢« ;

Le probléme sera ainsi résolu. Il pourra servir & déterminer , dans
les orbes planétaires, Ie lieu de l’aphelie et I'excentricité, les autres
€lémens étant supposés connus.

52, PROBLEME V1I. Connaissant la position du plan de Por-
bite , on demande de déterminer , moyennant deux observations,
les quatre élémens qui restent ; savoir : [l'instant du passage par
Faphélie , ou Pangle n; la position de la kgne des apsides , ou
Vangle «; lexcentricité de lorbite , ou langle w; enfin le demi-

grand
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grand axe b, dugucl J.icnd ic rapport des deuw temps périodiques
P e q wu moyen de lecquaiten p*bi=q’a’ ?

53. Solution. Ea conservant , pour la premiére observation , les
notations du prebléme precedent, on marquera par un accent celles
qui sc rapportent a4 la seconde. On ddsignera donc

par 4, A’ les deux longitudes géocentriques;

par B, B’ les deux latitudes géocentriques ;

par x», » les deux anomalies excentriques;

par 7, 7/ les deux rayons vecteurs.

On aura ainsi

=0(14-Sin.xCos.x) , 7/=5(14Sin.kCos.x").
54. Les lettres P, P/, Q, (/ désigneront encore les fonctions tri-
gonométriques qui suivent
P =Cos.:Sin.x~4Cos.sCos.» —Sin.sSin.x Cos.pe
P/=Cos.sSin.p~Cos.:sC0s,»’—Sin.:Sin.»’Cos.p
Q =Sin -Sin.x4-Sin.sCos.» 4-Cos.:Sin.x Cos.pe ,
@/ =Sin.«Sin.x4Sin.sCos.#'—4-Cos.:Sin.»/Cos.o .

E%. On aura donc, en vertu de (48),
P Cos.8Cos.(8==3)4Sin.pSin.(¢—A4)Cot.B

o Cosp4SinpSin(o—A)Col.B ’
bP’ _ Cos.pCos.(¢~—09)4-Sin.pSin.(¢'—A")Cot.B/
Y Cos.84-Sin.Sin. (—") Cot.B! ?
Q Sin.(¢—23)

T = Cos.~4-Sin.gSin.(8—~A)Cot.B ’

1104 Sin. (¢—3)

T = Cos.p4-Sin. gSin,(d—A4")Cot B ¢

56. Ainsi, la position du plan de lorbite étant supposée con-
nue , on pourra regarder comme connues les quatre fractions

/ bQ . b .
P bP LA ; mais le rapport — est une des inconnues
a a

— — Py

] a a

Tom- IV. 33
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du probléme ; ce qui porte & cing le nombre de celles que ren-
ferment les qllatl'b equatnons precedcntes

. La siziéme inconnue , c’est Vangle 7, qui fixe I'instant du
passage par l'aphélie. La théorie de l’ellipse fournit les deux équa-
tions (44)

Pl—o—7=¢(*4+Sin.xSin.x) , p¥—y—r)=g¢{x’4Sin..Sin. x./) H
desquelles on tire, par une simple soustraction

P ~6=g[(x'—*4Sin.x(Sin.«'—Sin.x)].
I’angle 4 étant ainsi déterminé, le nombre des équations , de méme
que celui des inconnues, sc trouvera de nouveau réduit a cing.

58. Les quatre équations de (54) pourront étre réduites a trois,
par l'élimination de l'angle «. On a dabord (51)

R=1-4Sin.xCos.x , R/ =14Sin.uxCos.* ;
d’olt l'on tire
‘ R—R/=Sin.u(Cos.x—Cos.») ,
A+ R = 24-Sin.x(Cos »+Cos.») ,
BRIV =1+4Sin u(Cos.x4Cos.x’)+Sin.? uCos.xCos.»’.

59. 1l conviendra de remarquer les deux expressions littérales de
PQ'—P/Q et de PP/4-QQ/, que l'on obtiendra encore, entitre-
ment dcébarrassées de l'angle ¢, & I'aide des formules données (47) ;
savoir

P =(1+4-Sin.xCos.5) Cos.(++9) , Q =(1~4Sin.xCos.x)Sin.(e49) »

P/=(14Sin.xCos.x)Cos.(s4¢') , Q'=(14-Sin.xCos.#)Sin.(s4¢') ;
il en résulte |

PQ/—P/Q=RPR'Sin.(¢'~¢) ,
PP/4-QQ'=RR/'Cos.(¢/—0) ;
d'ot P'on obtient la formule simple et remarquable
PQ'—=P'0)

Tang.(¢/ —¢)= o +QQ’
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Ainsi donc, ayant trouvé , & laide des [ormules (55), les quan=
b . v
titss P, P/, Q, @/, multiplides par le facteur— qui , quorquin-
a

connu , est commun & toutes, et disparait dansla division, on en tirera
immeédiatement l'angle ¢’—9; c’est I'angle décrit par le rayon vecteur

de la comete, dans l'intervalle de temps qui separe les deux ob-
servations.

Go. Si l'on développe les sinus et cosinus de ¢’—¢ , en réduisant

tout aux anomalies excentriques , moyennant les formules (45),
on en déduira les deux qui suivent:

PQ/—P/Q=[Sin.(x'—x)+4(Sin.»’— Sin.z)Sin.x]Cos.e ,
BR/—PP/— Q@ =[1—Cos.(x'—x)]Cos.2.
61. Pour donner & nos formules encore plus de simplicité, faisons

"/+x=27¢ s He—rz2X

d’ ol
f=x+¥ , x=x—1 ;
il en résultera
Sina/~4-Sin.,=2Sin.xCos.y , Sin.’—Sin,x=2C0s.xSin.¢ ,
Cos.» —Cos.»’=2SinxSin.¥, Cos.x4Cos.x’=2Cos.%6Cos.¥ ;
et par conséquent
RB—R/=2SinuSin.x. Sin.y ,
R+4-R/—2=2Sin.xCos.xCos.¢ ,
P(Q/—P/Q=2Cos.£51u.3(Cos.+4-Sin.xCos.x) ,
RR/'—PP/—QQ/=2Co0s.2xSin.2¥ ;
la derniére des équations (57) prendra alors la forme
p@—6) =g(2¥+28in xCos.xSin¥) ,
et comme

R4-R/—2=28in,xCos.xCos.¥ ,
elle deviendra fnalement
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p(d’——(?)=q[2‘1’+(H+R/——2)Tang.‘4/1
. . b .
G2. Mais n’oublions pas que la fraction —, qui multiplie P, P/,
a
Q, ¢/, dans les formules (55) , est elle-méme une de nos inconnues.
Faisons , pour ‘abréger , i; =n; faisons de plus
P=nM , Q=nN , R=n0 ,
P'=nM’', ()=nN , R=n0),
Les quantités M, N, O, M’ , N/, O/ seront alors celles qu'on

aura pu immédiatement déduire des formules (55) , et que, par
conséquent , on pourra regarder comme connues , tandis qu’il faudra

considérer comme inconnue la fraction -;- =n, deméme que -é;-=\/5
Les équations du numéro précédent deviendrent donc
n(0-—0"y= 28in.#Sin.xSin.¥ , (1)
n(040")—2=2Sin.xCos.xCos.¥ ,
n*(MN'—M'N)=2Cos.£Sin.¥{Cos.+~4Sin..Cos.x) , (2)

n*(0'0—MM/'—NN")=2Cos.*«Sin.*¥ , 3)
(¥ —0)y/ B = 2¥4-[n(0+0")—2] Tang. . (4)

63. Ce sont la les équations desquelles dépend la solution du
probléme. 1l faut employer la régle de fausse position; et, pour
dviter les équations au-dessus du second degré, il faut commencer
par supposer une valeur numérique & langle x. A Daide de cet
angle , on déterminera I'excentricité . Pour ccla , on diviscra le
quarré de l'équation (1) par I'équation (3), ce qui donnera

(0—=0)2
2(00'—DMM/==NN)Sin2z

Tang.?,=

64. De la, on passera & l'angle . Posant, pour abréger,
OO'—=IM'~NN! p
MN—MN T

#t divisant la troisicme dquation par la seconde, il viendra
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Cos.#Sin.d—~ACos.v=7Sin xCos.x

équation ol l'on traitera l'angle ¥ comme linconnue, et que Pon
résoudra par les méthodes connues (*). De plus , cet angle ¥ étant
la demi-différence des deux anomalies cxcentriques, pour peu que
ces deux anomalies ne soient pas trés-éloignées 'une de lautre,
il sera assez petit pour que son cosinus puissc étre confondu avec
V'unité, sans erreur sensible, sur-tout s7il faut vérifier le premicr
essai d’unc régle de fausse position. On aura ainsi
h(14-SingCos.x)

Sin.l= o .

65. A Taide des trois angles z, » , ¢ , on aura, par I'équa-
tion (1)
2Sin. xSin. xSin.y
- O—(y

Substituant ensuite les valeurs numériques des quatre quantités dans
Véquation (4), on s’assurera de la différence entre deux quantités
qui, dans le cas d’une supposition exacte pour x , devraient étre rigou-
rcusement égales, Une seconde supposition donnera un nouveau
résultat qui, comparé au premier, servira a diriger les suppositions
ultéricures , et & conduire , par quelques essais, et par 'application
des méthodes usitées en pareille rencontre, 4 une valeur suffisamment
approchée de 5 ; ct, par suite, i celles de p, ¥ et n.
66. Les deux anomalies excentriques =, x/ sc trouveront ensuite
par les formules (Go) 5 savoir:
x=x—y o, WS=r
L’angle » se déduira de l'une des deax équations (57)
(e~-3=—1'y/ 3= % 4-Sin.uSin.x ,
(¢~=p—t)y/ ni==%/==Sin.4Sin.*/,
1l restera donc & counaitre le seul avgle ¢ et on aura pour le
déterminer, l'une des quatre équations (54
G=. Telle est done la solution du problime , dans le cas ol la

) Voycr li page B4 du % voluge de co 1ecucily J. D, G.
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position du plan de l'orbite peut étre supposée connue. 11 est trés-
possible de déterminer cette position A part, indépendamment des
autres élémens de cette orbite; les méthodes qui y conduisent sont
assez connues ; et elles sont encore susceptibles d’étre perfectionnées.
Toutefois nous donnerons, dans un prochain mémoire, la solution
générale et compléte du probleme.

GEOMETRIE PRATIQUE.

PROBLEME.

Prolonger une droite accessible au-deld d'un obstacle
gui borne la vue, en n’employant que léquerre d'ar-
penteur, et sans faire aucun chainage?

Solution ;

Par M. Servois, professeur aux écoles dartillerie.

[a Ja Via Vi Vo Vo o ¥l ¥

SOIENT A, B (fig. 2) deux des points de la direction d’une droite
qu’il faut prolonger au-deld d’un obstacle’ O qu’elle vient rencontrer
et qui borne la vue.

1.° Aux points A, B, pris pour sommets, soient formés , 3
volonté , les angles droits LAD, LBD, en déterminant les points L
et D de maniére que de 1. on puisse voir au-deld de l'obstacle O.

2.° Au point L, pris pour sommet, soit fait 'angle droit DLF ;
F étant lintersection de LF avec BD ou son prolongement.

3.° En cheminant dans la direction de AD , soit déterminé, sur
cette droite, le sominet E de l'angle droit AEF,
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4.° Fnfin, en cheminant dans la direction EF, soit détermind,

sur cette droite, le sommet C de l'angle droit LCL , et ce point

C sera un de ceux du prolongement de AB , au - dela de l'obs-
tacle O.

On pourrait achever le prolongement, en déterminant, par une
semblable opération , un autre point de la direction AB; mais on
trouvera peut-étre plus commode de procéder comme il suit.

1.° Au point A, pris pour sommet , on formera l'angle droit
BAH.

2. En un point quelconque H de la direction AH, pris pour
sommet , on formera l'angle droit AHG.

3.° Cheminant dans la direction de HG, on cherchera , sur
cette droite , le sommet G de l'angle droit HGC.

4.° Enfin formant au point C langle droit GCK, la droite CK
sera le prolongement cherché.

La méthode qui vient d'étre indiquée plus haut pour déterminer
le point C, repose sur le théoréme suivant, qui est, je crois, de
Simson,

THEOREME. Les pieds des perpendiculaires abaissées sur les
directions des cdtés dun triangle , d'un méme point quelconque
de la circonférence du cercle qui lui est circonscrit, sont tous trois
sur une méme ligne drotte. (*)

(* Ce théoréme revient & celui-ci : si, sur frois cordes , partant d'un méme
point d'une circonférence , prises pour diamétres , on décrit trois ccrcles , les in-
tersections de ces cercles deux & deux seront toutes trois sur une méme ligne
droite, Ce théoréme se démontre assez simplement comme il suit.

Soit pris le diametre qui passe par le point commun aux trcis cordes pour
axe des x, et la tangente au méme point pour axe des y ; et soient respec-
tivement

y=mx |, y=mx |, y=m'x ,
les {quations des trois cordes. Si r estle rayon du cercle, son équation sera

ey ITZArX,
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On voit , en effet , qu'a cause des deux angles droits opposés
DEF , DLF, le quadrilattre DEFL est inscrit & un cercle ; que
par conséquent L est un point de la circonférence du cercle cir-
conscrit au triangle DEF; d’ou il suit que les pieds A, B, C des
perpendiculaires LA, LB, LC, abaissées respectivement du peint
L sur les directions ED, DF , FE dcs cotés de ce triangle doivent
étre sur une méme ligne droite.

Remarque. L’Equerre d’arpenteur est, en général, un instrument
beaucoup moins estimé qu’il ne mérite de 1'¢tre. Jai taché de le
relever de son discrédit, dans mes Solutions peu eonnues de diffé~

D’aprés cela on trouvera, pour les équations des extr{mités non communes de
ces trois cordes ,

ar ar or
xr= ) == N == N
1-§-m2 14-m/2 1-4-m'2
amr am'r am/lr
— . T ——————— ¢ T e———
Y 14mz ’ 14-m/>’ ¥ 14-miz’

Dot on conclura , pour les équations des cercles dont elles sont les diamétres ,
(14m 2) (e yy=2r(x-t+m y) ,
(-m! 2) (x>} y2)=2r(x-$m'y) ,
(14-m/2) (x2my )=2r (x4-m"y) .
Les intersections de ces cercles, deux a deux, auroni pour équations
2(1—mm/)r 2(1=—m/m"r 2(1~—m"m)r
= G Gmmatmr > T G G ?

a(m-m’)r 2(m/~-m"\r . __ 2(m'4m)r .
Y= Fmvates T Gramagm © VY T Gy

Si Ton cherche quelle est la drote qui passe par deux quelconques de ces

trois poinls , on trouvera, toules réductions fa'tes, que I’¢quation de celte droite est
(m~-m/~f-m""—mm'm*)y=(mm'4-m'm"~m"m=—1)x--2r ;
et , comme cette équation est symétrique en m, m’, m”, on en conclura que
la droite quelle exprime contient & la fois les trois points.
J. D. G.
Fens
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rens problémes de geamétrie pratigue (7). Mais , en particulier,
Véquerre a miroir , exceute d'abord je crois par Adam , rappelé
ensuite , avec distinction , par Fallon , dans la Corre:pondance de
Zach , est, sans contredit , celui qui réunit le plus de projreids.
Il a’ sur-tout l'avantage precieux de douner, sans tatonnement , le
pied de la perpendiculaire abaissée sur une droite accessible, d'un
point seulement visible et non accessible.

' QUESTIONS RESOLUES.

Démonstration du théoréme de géomeélrie énonce a la
page 92 de ce volume ;

Par MM. BerArD, principal et professeur de mathématiques
au collége de Briancon, et GoBerT , éltve du lycée
d'Angers.

(o Vo Vo Vo Vo V1, Vo Vi V]

THE'OBEME. Les rectangles qui ont respectivement pour dia-
gonales deux diamétres conjugués d'une ellipse ou d'une hyperbole,
et dont les cdtés sont paralléles aux deux axes de la courbe , sont
équivalens. (**)

Démonstrations. Les démonstrations données par MM. Bérard et
Gobert revienment , en substance, 4 ce qui suit.

Soient 24 et 26 les deux axes de la courbe. Si z/ et y/ sont

(*» In-8.0 d’environ 100 pages (an XII); chez Madame veuve Courcier, & Paris.
(™ L’énoncé de ce théoréme a été indiqué par M. Bévard.
J. D. G.

Lo, IV . 34
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les deux coordonndes, par rapport a ces axes, de l'une des ex~

trémités d'un diamétre , ce diamétre fera avec l'axe 22 un angle
. Y e

dont la tangente tabulaire sera = ; désignant donc par @/, ¥ les

xl

coordonnées de l'une des extrémités du conjugué de ce diamétre,
. i .
ce qui donnera — pour la tangente tabulaire de I’angle que formera

X
sa direction avec le méme axe, on aura les trois équalions
b:x/aia:},/:za:ba , (1>
bz tatyr=ah* (2)
—— . *
ValzlTatyly'=o0 5 ()  (3)
les signes supéricurs répondant a Vellipse , et les inféricurs a I'’hy-
8 p P pse,
perbole.

Si, entre ces trois équations, on élimine a* et 2, comme deux
inconnues au premier degré , I'équation résultante pourra étre mise
sous cette forme

y_ ) Sl gl arl)
- ) (a x =o0.
(L =L ) @yraryry=o
Or, il est aisé de voir que, ni pour lellipse ni pour I'hyperbole,
le premier des deux facteurs du premier membre de cette équation
ne saurait étre nul ; d’ou il résulte quon doit avoir , pour I'une
et pour l'autre courbes,

(") La tangente & l'extrémité du premier des deux diamétres ayant pour équation
bra/

ag.y, (x— x/) L

— = 1
Y=y =—
. S , 5" . .
et I'équation du second diamétre étant y==— x, pour que ces diamétres soient
</
conjugués I'un A Tautre , il faut que les deux droites soicnt paralléles ; ce qui
donae , en effet,

— bax! _)’"
=T o bearreyyi=o.

J. D. G,
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zly/tay"=0 , (4) ou 2a/.2y/=—22.2y";
ce qui fait voir que les deux rectangles dont il s'agit ne different
que par le signe et sont conséquemment équivalens.

M. Berard a remarqué qu’en transposant, dans les équations (3)
et (4), et en les multipliant et les divisant ensuite l'une par lautre,
on en conclut les deux suivantes

Taryr=bz/ (5) taryr=ba" ; (6)
équations en vertu desquelles les équations (1) et (2) deviennent
arati=at, (7))  yhAyt=th. (9)

Or, en ajoutant ensemble les équations (7) et (8),1l vient
("o )= a0
équation qui exprime la relation connue entre les longueurs des
axes d’une ellipse ou d'une hyperbole ct celles de deux diametres

conjugueés.

Si, ensuite , du produit des deux mémes équations (7) et (8) ,on
retranche le quarré de I’équation (4) on aura

(zy/—z'y)*=Ta*b* ;
autre équation qui exprime la propriété connue des parallédlogrammes
construits sur les diamétres conjugués. (*)

Remarquant aussi que les équations (1), (2), (3) , desquelles
résulte I’équation (4), ont lieu également lorsque 24 et 25, au lieu
d’étre les dcux axes de la courbe, sont deux diameétres conjugués
auxquels on la rapporte; M. Bérard en conclut cet autre théoréme,
plus général que le premier :

THEOREME. Les parallélogrammes qui ont respectivement pour
diagonales deux diamétres conjugués d'une ellipse ou d'une Ly-

(*) Cest li, bien certainement, le moyen le plus simple d’arriver & ces deux
relations auxquelles la plupart des auteurs d’¢lémens ne parviennent qu'a travers

des calculs assez compliqués.
J. D. G,
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perbole , et dont les cétés sont paralléles @ deux autres diamétres
conjusués, sont équivalens. )

Nous observerons, a notre tour , que la vérité de ce théoreme
s'apercoit sur-le-champ , pour Iellipse, en considérant sa projection
circulaire , dans laquelle les projections des deux parallelogrammes,
dont les aircs sont proportionnelles a celles de ces deux figures
elles—-mémes , sont des rectangles , non seulement équivalens , mais
mume superpesables. Et, comme on passe de l'ellipse & I'hyperbole
en changeant respectivement y/ et y”/ en y/y/—1 et y”/y/ =1, ce
qui ne change rien au theoréme , il s’ensuit qu’il a également lieu
pour cette dernitre courbe.

Solutions du probléme d’architecture proposé a la
page 92 de ce volume.

ENONCE. La base ¢t la monile d'une anse de panier , dont
le nombre des centres est 2n--1, étant données ; consiruire la
demi-anse , dont par conséquent le nombre des centres sera n—+1,
avec la condition quetous les arcs de cette demi-anse soient semblables ,
et que leurs rayons forment une progression géométrigue ?

Faire une application de la solution générale au cas particulier
ou n==2, et ou, par conséquent , chacun des arcs de la demi-anse
serait de 30.° ?

Premiére solution ;
Par M.. ArcaAxD. . -

Soient M la montée Ue de Vanse de panier (fig. 3), B la demi-
base ¢P, n le nombre des centres, z le premier rayon AP, z le
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1 in 'B——Q.-—-CR— —IEL:{ ’ o e :-u: =TEU
quotient — = 5G == br * * langle PAQ=0QBR

=

—

. On aura d’abord les équations
an

AP=AQ=x , AB=x (z—1), IC=/B4BC,
BQ=BR=zxz , BC=uxz(z—1), D=¢C+CD,
ET=EU=xz*"'; DE=xz":—1); dJE=JD+DE.

Tous les angles des triangles ABS, 6Cc,....dEe sont connus;
ainsi, en partant du c6té AB, on déterminera successivement les
edtés Ab, be,....,de, et ¢E, au moyen des équations précédentes
et de la proportionnalité entre les sinus et les cotés.

On aura ensuite

M=zxz"""wmeE , B=a4Abdbc+...}de.
En faisant, pour abréger,
Sin.na—Sin.(n=—1)a=P, ,

Sin.(n—x}x——Sin.(n-z)a=Pn-x ;

Sin.e—Sin.o=P, ,
on trouvera, réductions faites,
M=z(P,z""'~+P,_,z" *+uod-P,z4-P,) ,
B=az(P 2" '"+P, z'"*~4...4P,z+P,) . ®

En éliminant #, entre ces deux équations, on a , pour la dé-
termination de z, l'équation du (r—1)™e degré

(BP,—MP )" '+ (BP, ,—MP,)z" ..
-(BP,—MP* ) z-(BP, —MP )=o.

Les équations (1) peuvent sc mettre sous la forme définie.
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2x[z"(z41)Sin. L a—=(z=1)Cos. L 4]Sin. L &

z2e=22C0s. § a-1

M=

22[z"(z==1)Cos.} a-(z=4-1)Sin. £ «)Sin. 2 «

z22=—22C05+ ; a1

N=

Lorsque 2 est un grand nombre, ces dernitres formules sont plus
commodes que les précédentes, pour appliquer la régle de fausse
position & la détermination des inconnues.
Pour le cas de =3, en posant, pour abréger
B4+M=S§, B—M=D,
on trouve d’'abord
z= Dj’:\/ol—le
S—vys
et ensuite
2M .
= (e—\3)z24- (V3= 1) z41 ‘
Soient ; par exemple, B=3, M=z ; d'ot §=5, D=1 ; il
viendra

z= 11\/2—3
S—V3

L’adoption des signes supérieur et inférieur donne respectivement

z=-41,78 , z=—1,16,
d’od on conclut

z=—41,27 , x=-47,81;
en trouve enspite, pour les autres rayons
zz ==42,26 , 2z =— 9,08,
rz*=—4,01 3 x2=-410,55 ;

le tout, en se bornant aux centiémes. Le signe négatif qui affecte
e deuxiéme rayon dans le second cas, indique que ce rayon doit
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étre pris en sens inverse des deux autres. Les figures 4 et 5
mndiquent de quelle maniére les arcs s’assemblent dans les deux cas.

Soient encore

B= _‘._/_.?.1 y M= .‘_/_‘i_—'_l .
Il vient
11
< = 3—\/3- .
En prenant les signes supérieurs, z devient infini. Alors z et 2z
2Dz2 2M

sont nuls; mais zz2=

NP et a3 Y - La
demi-anse se réduit donc ainsi au troisitme arc ; le premier et le
second se confondant alors avec l'origine du troisieme.

Le signe inférieur donne & z une valeur indéterminée 2 ; mais
on trouve par les régles connues que cette valeur est z=—/3; d'ou
resulte une construction analogue a celle de la figure 5.

Si Lon supposait,, au contraire,

’

B= V3=t M= \/;‘{" ;

2 2
on trouverait pareillement que la demi-anse doit se réduire 4
un seul arc, lequel devrait alors étre le premier, avec l'extrémité
duquel se confondraient le second et le troisieme, ainsi que cela
doit étre d'ailleurs; car il est évident que les suppositions B=g,
M=/ et B=h , M=g conduisent 4 deux constructions qui ne
different que par la situation de la courbe.

A

Deuxiéme solution

Par M. BErarD , principal et professeur de mathématiques
au collége de Briancon,

Ce probléme n’est qu'un cas particulier d’un probléme plus gé-
néral qui fait partie d’un petit traité sur les anses de paniers que
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j'ai plaeé 3 la suite de ma statique des voiutes (page 149) (*)
Je pourrais donc me contenter de renvoyer A cet ouvrage ; mais,
en faveur de ceux qui ne Pont pas, je vais entrer dans quelques
détails sur ce sujet.

Une anse de panier est assemblage de plusieurs arcs de cercles
de rayons différens, qui se touchent consécutivement : autrement,
cest une des développantes d’un polygone ou d’une portion de
polygone convexe, '

Scient

A, la demi-base de I'anse de panier;

B, sa montée ;

72, le nombre des arcs ou centres de la demi-anse ;

Ty 3Ty Ty 5.0eeTy 5 los rayons successifs , de lIa naissance & la claie s

#y, %y, #;,....%,, lc nombre des degrés des arcs , en allant
toujours de la naissance 4 la claie ;

€yy €3y C5yeenncy, les cotés consécutifs du polygone formé par
la rencontre successive des rayons 7, , 7,, 7'y ,ee.. 7"

@,,a,,a;,....a,, les projections de ces cotés sur la demi-base A ;

b,,0,,b,,....0,,les projections des mémes c6tés sur la montée B 3

D’aprés quoi on aura ¢,=¢,=r,, b,=o.

Il est aisé de voir qu'alors on aura cette suite d’équations

A=a,4a,Fa,4u...4a, ,
: ro—B=b,+b,4b,4 ...+, ,
u,+u,+x;+......+x,,:£# >

a,=c, , b,=o0,
a,=c,Cos.x, ; b,=c,Sine, ;
a;=c;Cos.(«,4«;) , by =c;Sinu(e,F=,) ;

© + e e o e s @ N D I Y

a,=¢,Co5.(xy Fa,Foctan_y) 5 by=c,Sn.(uyFa,ddun_,)

" In-4.° de 160 pages; chez Firmin Didot , Paris 1810.
4. D. G,
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T =y
r1=r'+[3
ry=r,+c;

rnzrn—l+[ﬂ'
lesquelles seraient insuffisantes pour déterminer les inconnues du
probleme.
Mais , si I'on veut que les arcs soient égaux,et qu'en désigne
“ . .
Pun d’eux par a=—, et si I'on veut de plus que les rayons
forment une progression géométrique dont le premicr terme soit r

et la raison A, on aura en outre

*®
T
-
+
&

Il
S
sla

o

I

i

S

~

B 6 6 e s s e s s s 8 e e s s g N ]

ns

"‘1+“z+°‘;+'"+"‘n: P 7'n=i.“-rf'§

au moyen de quoi on aura d’abord
€1=T
c,=r—1)r,
c;=Ar—1)r ,

e & & o o o o o o

=" (r—1,r 3

et par suite

a,=r, b,=o ,
’ Gd - ( . ca
=(r==1)rCos. — =(r—1)rSin.—
a,=(r=1)rCos. — ; b,=( S ol
27

. 2w
ﬂ,=7\(7\-—1)rC05.?n— 5 ,—_—-'A(A—I)I‘Sm.:;- ,

s 6 8 o 4 s e s 8 s g 8 &,

Tom. IV.
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(n—1n= (ne=1)w
a,= "1 (ra—1)rCos, ——— ; b= ’O—-I)rCos.-—-——— .
n an 2n

d’ou on conclura

A—r:r‘().-—l){COS. %+7.Cos.z+ﬁC0 —-+ 2" Cos, ———
2 K 2n

(n—-x)r)

2n

. “ . 2@ . —_—1)w
A""r—B:r(A—x)gSm.—-—{—xSm.-—-.}—A’Sm —-+ +A”"’Sm ) ;;
2n 2n
et telles sont les équations qui doivent déterminer les deux inconnues
» et r du probléme.
St l'on prend la somme de leurs produits respectifs par A et B,
cette somme deviendra divisible par 7, et en observant qu'en gé-

néral Sil).w—Cos -—k-i on aura
2n
A[C + Cos + 4" Cos. -——]

AT A-B={a-1)
+B[Cos —+}\COS —_ + ~4-an=2Cos. <n—l)ﬁ]
an 2an 2an
équation qui ne renferme plus que la seule inconnue a.
Dans le cas de I'anse de panier & cinq gentres , en posant , pour abréger
ACos. t a+4-BCos. ;a=M ,
ACos.f—a—}—BCos.iw._N s

il viendra (A—M)»*4-(M—Nr—(B—N)=
dod 5 —(M—N) 2 (H—=N)24-4 (A —D) (B—N)
A=—]T
la premitre des deux équations en a et r donnera ensuite
A

= 14(a—1)[Cos. L 3+rCos. L a]

Si , par exemple on suppose A=200, B==100 , on trouvera
ra=2,6 , r,=44 , r,=115, r,=300.

Remarques. Lauteur du probléme proposé a eu raison de demander
que les rayons forment une progression géométrique , parce qu’alors
les changemens de courbure , d'un arc & Pautre, suivent le méme
rapport; mais il n’a pas été aussi bien fondé & exiger que les arcs
soient semblables ; en effet , dans ce cas, les longueurs des arcs



RESOLUES, 263
sont en progression gdométrique, et ce systéme n’est pas celui qui
présente le plus d'avantages ; il parait plus convenable que tous
les arcs soient de meéme longueur et que l'anse ait beaucoup de
ceatres , 4 moins qu'on n’ait intérét & augmenter U'espace renfermé
par lanse, ou le volume d’cau qu’elle doit laisser passer. On peut
voir toutes ces questions dans 'ouvrage cité : on y trouve ( pag. 133,
prob. 6) , I'équation d’une courbe dans laquelle les changemens
de courbure se font par des degrés dgaux.

Par analogie , on peut demander I'équation d’une courbe telle
que les rayons de courbure, infiniment proches et également inclinés
entre eux , forment une progression géométrique.

Soient z et y les coordennées d’un point quelconque de la courbe,
r le rayon vecteur de ce point et s la longueur de l'arc comptée
depuis un certain point fixe ; on voit que l'angle formé par l'axe
des x avee la normale est le logarithme du rayon de courbure;

c’est-d-dire , qu'on a
Arc. (I‘ana -———) =cLogr ,

¢ ¢tant une constante. En dlffcrentmnt, il vient

(%) _ar

dx r
+(dy

Substituant pour r sa valeurd d( ), il vient

ds=cdr , d'ot s-4c'=cr ; (1)
¢/ étant unc nouvelle constante,

Pour intégrer de nouveau lI'équation (1), j’y mets pour r sa

dxds -
valeur qux, en supposant ds constant , est ——(—J———, et )'al

“—i—c"—-—c‘dx(h _ cds\/dsz—-—d‘yﬁ
K; =

S v,

T

d'ol, en faisant dy:pds » il vient
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dp cds
— 1—p2 - s=f=c! ?

dont l'intégrale est
Arc. Cos.=p)=cLog.(s~c/,+Log.c’ ,
ou =Cos {Log.c/(s4¢/ f} . (2)

Remettant dans {2) pour p sa valeur %i:, et intégrant de nouveau,;

il vient
y=c""4-fds.Cos.{Log.c// (s4c"} . 3)

Mecttant enfin pour p cette meéme valeur dans dz=dsy/ 1—p> et

intégrant , on aura
x=c""!4fds.Sin. { Log.c"! (s} . (4)

On déterminera les cing constantes par les conditions suivantes :
1.° qu'a Porigine onap=1ct s=0; 2.° qu’au sommet de la courbe
on a p=o0, a=b, y=a ; 3.° que, quand 2=A , on doit avoir
y=2B; 4.° que, quand s=o, on doit avoir #=o0; 5.° enfin que,
quand s=o, on doit avoir y=o.

La courbe donnée par les équations (3) et (4) est celle dans laquelle
( suivant le langage de M. Francais ) les rayons de courbure sont
en progression de grandeur et de position. (*)

(* La recherche de celle courbe se rattache bien simplement & la théorie dé-
veloppée & la page 42 de ce volume. On a ici aozﬁ, a étant une constante;
d'olt di=ARd#, A étant une nouvelle conslante. D'un autre coté on a ( pag. 49 )
dR=11'd¢ ; donc R'=AR , ct par suite (pag. 51)

Spyr—r4p?) A
(/2
En traitant cette équation comme son analogue de la page 53, il viens
dy Axy
A = Ax—y ?
¢ qui donne, en intégrant, et posant, jour ahréger,

V A=A =C ,

A4-14-C A41-C
Bxs(‘f-* A—!—C§————2€ ___ii A= C e
x 2 <X 2 '

J. D. G
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ARITHMETIQUE.
Essai sur la transformation des fractions;

Par M. Pexson, professeur de mathématiques au lycée
d’Angers.

[ Via Wi Wb, Vio Vo 3o Vi V)

IL est cornu, depuis long-tcmps, que, par un procédé analogue
a celui quon emploie pour le developpement d'une fraction en
parties décimales, toute fraction peut étre développée en une suite,
finic ou infinie , d’autres fractions dont les dénominateurs sont les
puissances successives d’un méme nombre donné quelconque (*).
Je vais essayer de compléter ici la théorie de ces sortes de déve-
loppemens.

A . .
1. Soit 5 une fraction proprement dite que nous supposerons

essentiellement réduite 3 ses moindres termes ; ct soit # un nombre
entier quelconque. Soient , de plus, ¢, , ¢, , 5 e Ty 572y T3 5ume
les quotiens et les restes que l'on obtient successivement, en divisant

bAd, br,, br,,.....par B; on aura

bA=Bg,~4r, , )
Z’rIZB71+rg ’
bro=DBqg,4r, , ) {«)
5'”;=B94+"4 ’

* ® 4 v e % e s e @

(M Voyez, entie avrss, le Complément d'algéore de M, Lacroix.
Tom, 1V , 1.7 1X, 1.¢* mars 18 44 36
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Dans ces équations , les restes 745 755 Ty 5e0nn étant tous néces-
sairement moindres que B, ct ne pouvant étre conséquemment que
quelques-uns des nombres 1, 2, 3,.....(B—2), (B—1); il s’en-
suit qu'a moins que quelqu’un des B premiers ne soit nul, auquel
cas tous les suivans le seraient aussi , aprés un nombre de divisions
tout au plus égal & "B—1 , on devra retomber sur quelqu un des restes
d¢ja obtenus. Or , Vinspection des équations («) suffit pour faire voir que
le procédé par lequel on déduit chacun desrestes 7y , 75, 7y, 00ue,
ainsi que chacun des quotiens ¢, , ¢, , ¢;,..... de celui qui le
précéde immédiaternent est uniforme ; d’ou il suit que si , par
exemple , le reste r, est ¢égal au reste r, , les reste et quotient
Thtr €6 Gry, seront respectivement égaux aux reste et quotient
Terr € ggy 3 quil en sera de méme des reste et quotientr,,,
gh+, comparés aux reste et quotient rg, ., et ¢z, , et ainsi de
suite ; c’est-a-dire , que, si les deux suites 7, , 7., 7, ..., 9
G2 G5 re.... ne se terminent pas d’elles~mémes , elles seront né-
cessairement périodiques , soit immédiatement, soit a partir d’un
terme dont le rang ne surpassera pas B—r1; de maniére que, dans
tous les cas, le nombre des termes qui précéderont les périodes
augmentées du nombre de ceux de I'une des périodes, sera toujours
moindre que B. On peut méme observer que le cas ou les deux
suites se termincraient d’elles-mémes ne fait point exception 3 la
régle , attendu que lasuite 0,0, 0,.... est elle-méme périodique.

2. Si, apres avoir mis les équations («) sous ccite forme

A _ 9T w
B~ b 2B

Ty q2 7":

bB b., + ZB b)
Fr_ 0540 5 ()
LB b3 5B ’

T e 4 Te

BB~ b+ 6:B °

- e 3 e @ « o ® o-; J
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on prend successivement la premiére , puis la somme des deux pre-
mieres , puis la somme des trois premiéres , ct ainsi de suite, en
supprimant les termes communs aux deux membres des équations ré-

sultantes , il viendra
3

A_f e

B b 4B '

A VA

_._.:_—.__+ ,‘

B

A__ q! (/3 $<7)
= = + + +be )

A_‘ir qz q;

® ¢+ % o . o e @ v e e 8 s s s s e @ o+ s s @

En observant que les derniers termes
Tt T2 T'; 7'4

VB’ 7B’ 0B’ 0B

4000000

de ces suites sont continuellement décroissans , on en conclura qu’on
peut écrire , par approximation R

;1 +f/z+‘73+ L ()

développement qui donnera une valeur d’autant plus approchée de
oA
la fraction & quon en prendra un plus grand nombre de termes,
et quen méme temps & sera plus grand. A 'avenir nous appellerons
e , A
ce nombre arbitraire 4 la base du développement de -

3. 1l s’agit présentement, 1.° d’assigner les caractéres auxquels
on pourra reconnaitre a Pavance si le développement se termincra
ou si, au contrairc, il se prolongera indéfiniment; 2.° de recon-
naitre quand ce développement devra étre immédiatement périodique
ou avoir ses périodes précédées de termes n’en faisant pas partie;



268 TRANSFORMATION

3° enfin de déterminer géndralement tant le nombre des termes des
périodes que celui des termes de la partie non périodique dont elles
se trouvent precedees.

4. Peury parvenir, soient désignés généralement par m le nombre
des termes qui precédent la premicre période , et par 2 le nombre
des termes dont chaque période est composée 5 auquel cas on devra
avoir m=+n< B il est clair qu'alors on pourra écrire

A g 92 q q 3
—= g 13 R AL
B b i"‘ b'l T i + S i e 0 0 0 00w + om
Im+ ¢ Im4 ‘]m-}-;- dm-n
+ Bmar pmez ¥ pmrs +ot bm-+n
Gm .y Im--1 Im-3 gm4n s <e)
+ bm—-n+4x +b'n-‘r.x-,. 1 + pm--n 3 +""+ bm+an
Ima-t [+ PR dm--3 dm+4-n
+bm+zu+, +1,m+-zn+z bm+1'm+'“'+ bpm-+3n
+'--v...-......-o...-tol.o¢‘
ou encore
A gdm=rggdm— g =3 A m ]
B ™

+ Im4-1 b= L S/ zb"_2+‘Im+ ;b"" 3+-""-+‘7m+u
* pm—n

+ ma a1 b= e gm =2y b= 3o g (g)

bm—en

+qm+lbn_l+qm+zb”“‘1+9m+;b""‘3+ ..... Fimtn
' - gn

posant donc, pour abréger
ql5m—x+qzbm—z+735m—;+m._._{_qm:M , (v)
9m+15“*,+7m+1&”—2+7m+36’,’,+.--».o+7m+u=N 5 (6)

il viendra enfin

* et s s s e &

.
“ e s e e & 8 ¢y
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A M N N N
_BT = Z;+bm+n+ +bm+3”+”"

{m+1n

|5
D
Ne]

M N 1 L\ 1\’
=5t (7 )+ (3 )+ () e
Iy N 1 M N b

_ -Z,—% bm—n 1 pm pm+n " gy ?

— — .

c’est-a-dire ,

A M N M —1y4N
B 17"7+bm(b"—1) T pmen—ry ()

5. Cela pos¢, soit misc I'équation (x) sous celte forme
Abmdn—1)

=M"—1)+N. »)

Il faut que le premicr membre de cctte équation soit un nombre
entier ; et, comme B et A sont supposés premiers entre eux, il
s'ensuit que 4™()"—1) doit étre divisible par B. Soit donc [ait
Be=CD: C ¢tant le produit des facteurs premicrs de B qui se
trouvent dans &, et D le produit de ceux qui ne s’y trouvent pas.
Attendu que 0™ et d"—1 sont nécessairement premiers entre eux,
il faudra que

m Dltemm
—_ et _—
C D ’

soient séparément des nombres entiers. Ainsi, 1.° Je dénominateur
de la fraction génératrice ne saurait renfermer aucun des facteurs
premiers de la base de son développement & unc puissance su~
péricure a celle dont I'exposant est le nombre de fois que ce facteur
premier setrouve dans la base , multiplié¢ par le nombre des termes
qui précedent la premiére période ; 2.° le produit des facteurs pre-
miers du dénominateur de la fraction génératrice qui sont éirangers
@ la base de son développement , est toujours diviseur d’up nombre
moindre d'une unité que la puissance de cette base dont le degré
est marqué par le nombre des iermes des périodes.
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6. Dans le cas ou le développement se termine , et ol consé-
quemment N=o0, on a simplement

Apm
B

d’olt l'on voit qu'alors 5™ doit étre exactement divisible par B; et
dans le cas ot ce développement est immédiatement périodique, et
ol conséquemment /M=o, on a simplement

ApN==1)
“ B =N;

d’ou lon voit qu'alors d"—1 doit étre exactement divisible par B.
Ainsi, 1.° lorsque le développement de la fraction génératrice se
termine, son dénominateur est diviseur exact de quelque puissance
de la base de ce développement , c'est-a-dire , gu’il ne contient
aucun facteur premier étranger & cette base ; 2.° lorsque ce dé-
veloppement est immédiatement périodigque , le dénominateur de la
Jraction génératrice , premier & la base , est nécessairement di-
viseur exact de quelque nombre moindre dune unité qu'une
putssance de cette base. (*)

7. Soit toujours B=CD, C et D étant les mémes que ci-dessus
(5). Soit m la moindre des puissances & qui soit divisible par C,
et soit ~» la moindre des puissances de ce méme nembre & qui,
diminuée d’une unité, devienne divisible par D ; il suit de ce qui

e e A .
a été dit ci-dessus , que le développement de 5 suivant la base

% ne pourra avoir moins de 7 termes avant la premiére période,
ni moins de 2 termes & chaque période. Nous allons prouver de

(" De la résulte ce théoréme : a et b étant deux nombres entiers premiers
entre eux , l'équation

b¥—1==ay

est foujours résoluble en mombres entiers.
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plus que ce deéveloppement aura précisément m termes avant sa
premiére période , et que ses périodes seront précisément de 7 termes;
et nous donnerons en méme temps un procédé différent du premier
pour exécuter ce méme développement.

8. Soient faiis

CC'=i" , DD/=b'—~1 , d'od CDC'D'=BC/D/=b"}b"=1) ,
on aura alors
A _ACD _ ACD

—

B ~ BCD'~ bmpr=—1) "’

Soit divisé AC’D’ par dn—1 , et soient M le quotient et N le
reste de cette division ; nous aurons alors

A MEP—0O+N _ M N
5 = T = s
QU encore
A M N N N \
B =t + przreie ahrreryie sRURRRED (=

Seit divisé m—1 fois consécutivement M par &, le quotient par
b, le nouveau quotient par & , et ainsi de suite , en ne prenant
que les quotiens entiers; soient ¢, Gmers Gmeyr--+ G, les restes
de ces divisions et Qp.y 5 Q@m-2y Qmwuy,ee.00 ¢, leurs quotiens,
nous aurons

M =Qm-15+7"‘ 2

Qm-x=Qm~z&+7m-x ?

Qm-z:Qm-;b_l—qm-: ’

e 8 ¢ o s o s s+ s 0o s 9

Q.=q¢.b4q. ,
g.= o+yq,,

en prenant la somme des produits respectifs de ces équations par
v, b, &, 4 ,.....0™", et réduisant, il viendra
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M:q,&m-l’l-qzém.!+q’5m-’+......+7m: (7)

En opérant de la méme maniére sur N , faisant n—1 divisions

sculement , de’signant Par Imyns dman-r s Imin-25 ¢ Gmyz les
restes successifs et par ¢m., le dernier quotient, on aura pareillement

N ' g B A G B A s (0

Substituant enfin ces valeurs de M et N dans l'équation (x), clle
prendra d’abord la forme (¢) et ensuite la forme (s) ; c’est-a-dire , que le

A
développement de la fraction = suivant la base & se trouvera étre

exactement conditionné comme nous l’avons annoncé.

9. Il convient au surplus d’observer que la recherche des nombres
C, D, m, n nexige nullement la décomposition de B en facteurs
premiers. En cherchant successivement le plus grand commun di-
viseur entre B et &, 4, 3,..... jusqu’a ce qu'on rencontre deux
puissances consécutives pour lesquelles ce diviseur soit le méme ,
l’exposant de la moins élevée sera m , et le diviseur sera €. En
divisant B par C, le quotient sera D ; enfin , en divisant successivement
par D les bindmes b—1, b*—~1, b°—1,....., jusqu’a ce qu'on
en rencontrc un pour lequel la division réussisse , I'exposant de &
dans ce binéme sera la valeur de 7.

10. Pour donner un exemple de ce procédé, proposons-nous de
développer la fraction % suivant la basc 3. Nous aurons ici m==z,
C=q, n=2,D=8;dot C’/=1,D'=1, AC'D'=7 ;donc ¢,=o0,

GJ1=0, §3=2, J,=1, §4=2, §¢=1,....., et partant
SEHR RS A SRSt

11. L'application de tout ce qui précéde au développement des
fractions en partics décimales est trop facile pour ue nous croyons
nécessaire de nous y arréter,

CHRONOLOGIE.
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CHRONOLOGIE.

Solution directe des principauce problémes du calendrier :

Par M. J. F. Frangais , professeur & I'école impériale
de Tartilleric et du génie,

[o Sla Vo Wo Vb W Vo Wo W

L’EXAMEN de lingénicuse table A triple entrée donnée dans ce
volume ( pag. 84 ) par M. Servois, m’a engagé a revoir, dans la
Correspondance astronomique et géographigue de M. le baron de
Zach (aout 1800 ), larticle de M. Gauss qui luien a fourni lidée,
ct ou cet illustre géometre enseigne a trouver, sans épacte, nombre
d’or ni lettre dominicale , le jour de la [éte de pique, pour une
année quelconque, et présente ainsi, en deux pages, toute la thécrie
du calendrier , tant Julien que Grégorien. Cette belle solution d'un
probléeme d’analise indéterminée assez compliqué mériterait d'étre
mieux connuc en France (*). Jai cru cependant ndcessaire , pour
la rendre vraiment perpétuelle , de lui faire subir unc petite cor-
rection , au défaut de laquelle elle cesserait d'¢tre exacte dos
Pannée 4200. La nécessité de cette correction tient 3 ce que Ié-
quation lunaire , qui a lieu sept fois consécutivement au bout de
trois siccles , n’a lieu, la huititme fois, qn’aa bout de quatre siccles
seulement; de sorte que la période , qui a commencé en 1800,
est réellement de vingt-cing siécles. Je vais d'abord denner la md-

(*) Cest sans doute dans celte vue que M. Delambre vient d'en donner un
extrait @ la fin de son Abrgé d'astronomie.
a

Tom. 1}, <7
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thode pour la détermination de la féte de pique ainsi corrigée ; je
chercherai ensuite a déterminer le jour de la semaine qui répond

Y une date donnée dans une annde quelconque. .

PROBLEME I Assigner la date de la féte de pdque, pour
unc année quelconque , soit dans le calendrier Julicn , soit dans
le calendrier Grégorien?

Solution. Pour le calendrier Julien faites m=15, n=0.

Pour le calendrier Grégorien, soient

s, le quantiéme séculaire ;
7, le quotient entier de s—17 par 25 ; abstraction
v, le quotient enticr de s—r par 3 .
g, le quotient entier de s par 4 faite des restes.
m, le reste de la division de 15-4~s—p—g par 3o ;
n, le reste de la division de 4-=4-s—g par 7.
Soient alors ( pour les deux calendriers )
A4 , le quantitine d’année;
a, b, c, les restes respectifs de la division de 4 par 19,4,7 ;
d, le reste de la division de 19¢-4m par 30 ;
e, le reste de la division de 2p-~+4c40d+n par 7;
la date de paque scra
le (22+4d+4-¢) de mars, ou le (d4-e—q) doavril.
Exception 1. Si 'on a d=29 , e=6
d’avril au 26.
Exception II. Si T'on a d=28 , e=6G , et si 11m~+411, divisé
par 3o, donne un reste plus petit que 19, on substituera le 18°
d’avril au 25.

, on substituera le 19

Exemple. On demande le jour de pique pour 'année =433 ?

- ;
Dans le calendrier Grdgaricn » 0N Q successivement s==-,, r==2,
— 2 — - — s 2L — put
p=24,q9=18 , m=17 , n=4, A=7453 |, a=5 , b=1, ¢=3,
4 . M ! \ Ay
d=22, e=4; dolt il suit que, cette année-la, pique tombera
le y7 davril.
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Dans le calendrier Julien , on a m=15, n=06, A=7453,
a=5, b=1,c=5, d=20, e=1 ; ce qui donnc pique fe 12
d’avril.

PROBLEME Il. Déterminer le jour de la semaine qui répend
@ une date donnée d'une annie quelconque , tant dans le calendricr
Julicn que dans le calenaricr Gregoricn ?

Solution. Soicnt s, le gnanti¢me séculaire ;

a, l'année dans le siccle, en sorte quon ait 4=10cs+a;

d, la dute du jour douné, compté du 1.°F jinvier;

@, B. v, >, s, les restes respectifs de la di\'iaion_dc s,a,a,
d, 6s4-5, Par 4, 45 7,5 7. 7

g > le reste de la division de 5458435~} par 7 ;

%, le reste de la division de 58+43s-454: par 73

Alors g et 4 scront respectivement , dans les calendriers Gri-
gorien et Julien, le rang du jour dans la semaine, le dimanche
étant compté pour le premier.

Remarqgues. 1. En calculant & , dans les années bissextiles , il
ne faudra tenir aucun compte du jour intercalaire , et ne compter
conséquemment février que pour 28 jours sculement,

1. Si alors la date 4 ne passe pas le mois de février, il faudra
diminuer d’unc unité chacun des nombres g et /4.

III. On peut obtenir immédiatement » , en ajoutant a la date
du mois, le nombre correspondant de la table suivante

janv. | féve | mars, | avril. | mai. | juin. | juil. | aodt, | sept. | ocl, | nov. | déc.
o 3 3 —1 1 4 —1 2 5 o 3 5

Exemple 1. On demande le jour de la semaine qui répond au 17
davril =433, dans le calendrier Grégorien ?
Onaicis=7{ , a=53, a=2 , g=1, =4, s=17—1=10,

e=1 , g=1t; ainsi le 17 duvril {35 sera un dimanche.
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Exemple 11. On demande le jour de la semaine qui répond au 12
d'avril 7433, dans le calendrier Julien?

Onaicis=74, a=53 , «=2 , =1 , y=4 ; y=12=—I==1II,

s=1 , g=1 ; ainsi le 12 d’avril 7453 sera un dimanche.

RECREATIONS MATHEMATIQUES

Reclierches sur un lour de cartes;

Par M. GERGONNE.

[a Vi Vi VL, W, V1, o Ve %3

ON trouve , dans les Récréations physiques et mathématiques de
Guyor ( derniére édition , tome 1II, page 267 ) , un tour de cartes
assez curicux, fondé uniquement sur la théorie des combinaisons.
Ce tour a pour objet de faire trouver une carte pensée , parmi
H ) . el omd K1 "
vingt-sept, a un rang dLngne. Pour cela on prend vingt-sept cartes,
,toutes différentes les unes des autres , que l'on étale aux yeux
d’une personnc & qui I'on dit d’en penser une et d’en conserver le
souvenir dans sa mémoire ; on méle ensuite les cartes, et on les
fait meler & une ou plusicurs personnes de la compagnie.

On forme alors trois paquets de ncuf cartes chacun ; en posant

paq 5
d’abord , de gauche & droite, la premiére carte de chaque paquet,
la coulcur en dessous, puis laseconde par dessus la premicre, tou-
jours de gauche a droite , puis la troisicme , et ainsi de suite , jusqu’a
ce qu'on ait épuisé les vingt-sept cartes , dont la derni¢re devra con-
séquemment sc trouver au-dessus du troisitme paquet , & droite.
11 faut, durant cette opération, que celul qui fait le tour soit
’ . Y ’ . . . 5o y .

placé vis-i-vis de la personne qui a tiré la carte qu’il s'agit de
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deviner, 1 a soin, avant de poser chaque carte sur le paquet dont
elle doit faire partie , de la lui montrer , de manicre qu’il ne puisse
la voir lui-méme. 1l fera bien de ne point regarder cette personne,
afin qu'on ne croie pas que, lorsque la carte qu’il lui montre est
celle méme qu’elle a tirée, il s’en apercoit au jeu de sa physionomie.
Il convient aussi qu'il ne se place pas en face d'une fenétre cu
d'unc lumiere, afin de ne pas donner & penser que la transparence
des cartes peut lui étre de quelque sccours.

Cela fait, il prie cette personne de lui indiquer quel est le paguet
qui renferme la carte pensée ; il pose ensuite les paquets les uns
sur les autres , sans les mcler , ayant soin de remarquer le rang
qu’il assigne & celui qu'on lui a désigné : ce rang dtant compté
du dessus au-dessous, la couleur étant toujours en dessous , comme
nous le supposons. Ces cartes étant ainsi rassemblées , celui qui les
tient recommence a faire des paquets, exactement comme la pre—
mictre fois, et avec les mémes attentions, en [aisant encore la méme
question, lorsque les paquets sont terminés. Il rassemble de nouveau
ces paquets , ayant encore l'attention de remarquer ct de retenir
le rang qu’il assigne 4 celui qui contient la carte pensde.

Il recommence enfin une troisitme fois les mémes opérations et
la méme question , et releve de nouveau les paquets avec la méme
précaution, et dés-lors le rang de la carte pensée dans le jeu se
trouve absolument déterminé,

Si donc on a sous les yeux un tableau qui présente la corres—
pendance entre les vingt-sept manieres dont on a pu relever les
paquets trois fois consécutivement, et le rang que chaque systtme
de relevement assigne a la carte pensée, rien ne sera plus facile
que de trouver cette carte.

L’ouvrage cité prescrit de faire construire une lunette mystdricuse ,
telle qu'en y regardant on n’y apercoive que ce tablcau, qui sy
trouvera caché intérieurement. A chaque opératien, on feindra de
regarder les paquets avec cette lunctte , comme pour ticher de
discerner la carte pensée; et on en prendra occasion de contempler
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le tableau, et d’y lire ce qu'on a a faire, pour que cette carte se
trouve 4 la fin dans le jeu & la place quon lui aura assignée 2
I'avance.

Mais , outre qu’il n’est pas trés-commode de cacher, dans l'in-
térieur d’une lunette , un tableau assez étenda; outre la géne d’avoir
toujours cette lunette avec soi, on concoit que, soit quon la livre
aux spectatcurs, soit qu’on la leur dérobe , ce ne pourra étre sans Oter
beaucoup au jeu de ce qu’il peut avoir de merveilleux a leurs
yeux.

Je me propose , & la fois, ici de généraliser cette petite récréation,
et d'indiquer un moyen simple de se passer de l'usage de Ia lu-
nette, de manitre qu’on puisse I'exécuter partout ou I'on rencontrera

des cartes.

Soit , en général , un jeu composé de m™ cartes , toutes diffé-
rentes les unes des autres , et parmi lesquelles une personne en

ait choisi une secrétement.
Soient faits m fois consécutivement , avec ce jeu, m paquets ,

de m™ T cartes chacun , avec toufes les attentions indiquées ci-dessus.
2

Soient n, , 7, , 7y ,..... n, les rangs assignés successivement
au paquet indiqué comme contenant la carte choisie.

On va voir que les nombres 2, , n,, n, ,....nm sont suffisans

~ termi o . oy s
pour déterminer , aprés les 72 opérations , le rang # qu’occupe dans
le jeu la carte pensée.
) P

En effet, 1.° 4 la premitre opdration la carte pensée ne peut
occuper dans son paquet que le rang 1 au moins et au plus le rang
Innl—l.

. . > » . x N "

Mais , puisqu’on n’assigne & ce paqnet que le rang 7, , on met donc
au-dessus de lui (2,—1) autres paquets de 2™ * cartes chacun; il
s’ensuit qu'apres les cartes relevées, la carte pensée se trouvera occuper
dans le jeu au moins le rang (ny—1 mm= et = n  mm= e (pb)

et au plus le rang (ny=—1)m™ V™ =y ™1,
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2. En réformant de nouveau les paquets, on posera d'aberd au
moins (7,—1)m™ ", distribuces en m paquets de {(n,—1)™ " cartes
chacun, dont aucnne ne sera la carte pensée , laquelle conséquemment
cn aura au moins (7,—1,m™"* sous clle dans son paquet; tandis
¢u'on n'en pourra pas poser 2,m™ ', ¢t conséquemment 2,7~ * dans
chrque paquet, sans faire passer la carte pensée qui, en conscquence ,
en aura au plus 7,m™"*—1 au-dessons d'elle dans son paquet;
pris donc que chaque paquet est en tout de m™ ' cartes; il s'en-
siit que cette carte occupera au moins, dans son paquct, le rang
mmt—(nm™t —1)= —n,m"™*+4m"" 41 et au plus le rang
"t —{n,—1)mm"r =—n,m™" *mm m™ R,

Mais , puisqu’on assigne 4 ce paquet le rang 7, , on met donc
an-dessus de lui (2,—1) autres paquets de ™" cartes chacun;
d’ott il suit qu'aprés la seconde opdraticn, la carte pensée occupera
dans le jeu au moins le rang (n,—1)m™ *—n m™m—t ™=t
=n,m™ " '—n,m™"*~41, et au plus le rang (n,—1)m™"*—pn mm"*
Sm™ m™ Tt = ™ —n, T ™R

3.2 1l suit de la qu’en réformantles paquets, on poscra au moins
dans chacun 7,m™"*—pn,m™™3 cartes , sans avoir employd la carte
pensée , mais quon ne pourra en poser dans chacun z,m™=?
—n,m™ "3 ~4-m™™3 sans avoir employé cette carte; elle aura donc,
dans son paquet, au moins z,m™™ *—n,m™ "% et au plus n,m™?
—n, ™73 ~4=m™= 3 —1 cartes au-dessous d'elle ; clle y occupera donc
au moins le rang m™ ' —n,m™ = —4n,m™ "3 —=m™ " 3~4-1 , ctau plus
le rong 2™~ t—n,m™ " *~-n,m™ 3.

Mais, puisqu’on assigne 4 ce paquet le rang 7, on place donc
an-deesus de Jui (ny—1) autres paquets de m™™' cartes chacun;
d'ol il suit qu’apres la troisicme opération, la carte pensée occu-
pera dans le jeu au moias le rang (n,— 1 m™ = 4=-m™ = —pn m™?*
s ST et = T ™ T e ™ (T 1),
et au plus le rang (n,—1,m™ '4m" " —n mm— -, mm 3
=, mmt e — e M3,

I'n poursuivant le méme raisonnement , et appliquant, si 'on ne
s PpPq ’
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ne veut point se contenter de linduction , un tour de démonstration
trés-familier aux analistes , on trouvera qu'en général aprés un nom-
bre d’opérations désigné par 2k, le rang de la carte pensée dans
le jeu sera au moins
Mme1__ M2 M - - .
nlkm ”zh—-xm +n1k—.zm ’—--..+72,m’" zk’“—n‘mm Zk+x,
et au plus
Ry ey 2™ R ™ T — e
+nzmm—1k+l_lllmrn-zk+m1n~zk ;
b . .
et qu'aprés un nombre d'opérations désigné par 2k~+1, le rang
de la carte pensée, dans le jeu, sera au moins,
U el N il o RIS /Ll B
—n,m™m" Rt M kT (PR )
et au plus
I L
Or, 1.° si m est pair et =2k , les deux premitres limites se
confondront en un seul nombre, et 'on aura
— =T - - .
=0, gy ™ Ay Y — =1y PR =1 1
ct 2.° si m est impair et =24-1, les deux derniéres limites se
confondront aussi en un scul nombre, et on aura
x=nym"  —n . ™, ™ b M —n mn,
ainsi , dans I'un et dans I'autre cas, les nombres n, ,n, ,7,,....nm
étant donnés , on pourra en conclure z.
Ainsi, par exemple, si m=4, c'est-a-dire, si le nombre total

des cartes est 256, et qu'on ait successivement assigné au paquet
qui contient la carte pensée,les rangs 3, 4, 1, 2, on aura

z=2.64—1.1644.4—3+1=126.
Si au contraire m==3 , c’est-i-dire , si le nombre total des cartes

est 27, et si, en outre, les rang assignés au paquet contenant
ta carte pensée , sont 1, 3, 2, on aura

x=2.9—3.3+1=10.
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Le probléme inverse , c'est-a-dire, cclui ot I'on demanderait quels
rangs n,, n,, ny ,.....n, il faut assigner, a chaque opération ,
au paquet qui contient la carte pensée, pour qua la fin cctte carte
se trouve & un rang x ,assigné dans le jeu, n'est guere plus difficile
3 résoudre ; en voici la solution.

Divisez #—1 ou x par m , suivant que m sera pair ou im-
pair , en faisant la division en delors, dans le premier cas, ct
en dedans , dans le second, ct prenant le quotient de maniére que
le reste ne soit ni nul ni >m , abstraction faite de son signe. Ce
reste sera la valeur de #,. _

Divisez le quotient par 72 en faisant la division en dedans dans
le premier cas , et en dehors dans le second , et prenant encore le
quotient de maniére que le reste ne soit ni nul ni >m , abstraction
faite de son signe.

Continuez a diviser ainsi successivement les quotiens par 7, en
faisant alternativement les divisions en dedans ct en dehors, et prenant
les quotiens tels que les restes alternativement positzifs et négatifs
ne soient jamais nuls ni >m ; opérez ainsi jusqu’d ce que vous
ayez obtenu un dernier quotient qui n’excéde pas m ; alors la suite
des restes pris positivement et le dernier quotient scront les va-
leurs de n, , 7,, n, ,.....n,,.

Si, par exemple, m=4 et =126 ; en divisant en dehors 125
par 4 , on aura pour quoticnt 32 et pour reste négatif 3=n,;
divisant en dedans 32 par 4 , on aura pour quotient 7 et pour
reste positif 4=n, ; divisant en dehors 7 par 4, on aura pour
quotient 2 et pour reste négatif 1=n,; divisant enfin 2 en dedans
par 4, on aura pour quotient o et pour reste positif 2:=n,; en
sorte qu’on aura, comme ci-dessus,

n,=3 ,n,=4{,n,=1,n,=2.

Si, au contraire, on a m=3 et =10} en divisant en dedans 10
par 3, on aura pour quotient 3 et pour reste positif 1=n,; di-
visant en dehors 3 par 3, on aura pour quotient 2 et pour reste

Tom. IV, 38



282 TOUR
nézatif 3=n,; divisant enfin en dedans 2 par 3, on aura pour
[®

e e
quotient o et pour reste posmfz.—n; ; en sorte qu’on aura, comme
ci-dessus ,

— )
=1 , N;=9 ) 72,:2.

T.a plus petite valeur que lon puisse donner & m est 2, et

<y
alors le jeu sc joue avec quatre cartes seulement. Si V'on fait m=4,
le jeu devra avoir 256 cartes ; on me pourra donc le jouer avec
un jeu de cartes ordinaire, ct il faudra avoir des cartes ou soient
peintes des figures d’hommes ou d’animaux, des feurs ou .des ffuits.
On ne rencontre pas cette difficulté en prenant m=3; ce qui porte
le nombre des cartcs & 27 seulement, et on a de plus cet avan-

tage qu'alers les calculs peuvent étre exdcutés de téte avec facilité
et promptitude ; car on trouve

a=pr,—3n,-gn,.

Il convient pourtant de remarquer qu’d mesure .que 7 devient
plus grand , le tour doit paraitre de plus ¢én plus merveilleux ;
attendu que le nombre des cartes parmi lesquelles il en faut deviner
une, croitdans un rapport incomparablement plus grand que le nombre
des opérations ct interrogations nécessaires pour la découvrir. Si,
par excemple , on employait dix billons de cartes, lesquelles tien-
draient 4 peine dans un espace cubique de 23 metres en tout
sens , il suffirait de dix questions seulement pour découvrir la carte
pensée, C’est & peu prés de la méme manitre que dix questions
suffisent pour discerner un nombre parmi tous ceux qui sont moindres
que dix billions.

Lorsqu’on veut exécuter ce tour plusieurs' fois de suite, il con-
vient d’en masquer l'artifice en variant son dénouement de plusieurs
maniéres, Ainsi, par exemple , on peut, une premiere fois, chercher
la carte pensée dans le jeu, les mains derritre, et Ja poser ensuite

y
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sur la table. On peut, une scconde fois, annoncer & l'avance, et
avant méme que la carte soit pensée , le rang qu'clic occupera dans
le jeu; ou bien on peut demander & l'un des spectateurs de deé-
signer lui-méme le rang qu’il veut qu’clle y occupe, et ainsi du
reste.

Rien n’empéche, au surplus, que, pour mieux fasciner les veux
des spectateurs, on ne fasse le semblant de s'aider d'unc lunette;
mais elle doit étre construite de marniere qu’on ne puisse rien voir
3 travers , ou qu'on n'y voie que des caractéres ou figures ma-
giques, ou , mieux encore , des objets ou devises propres 4 punir
Pindiscrétion des curieux, & qui, au surplus, il conviendra de se
défendre d’abord beaucoup de la livrer.

Ce petit tour peut trés-bien étre exécuté par un homme privé
de la vue , ou qui sest fait bander les ycux , et il n’en devient
ainsi que plus merveilleux.

On peut aussi ne point toucher les cartes ; faire former succes—
sivement les paquets par un ou plusieurs des spectateurs, en ayant
sculement chaque fois l'attention de remarquer le rang qu'on as-
signe au paquet que I'on dit contenir la carte pensée.

On pourrait enfin faire penser a la fois des cartes & plusieurs
personnes , en tenant note et dcs paquets qui les contiendraient ct
du rang qu'on aurait assigné chaque fois a4 chacun d’eux. (*)

(") Dans le tome viI des Meémoires présentés & Pacadémic des scicnces, on
trouve un mémoire de M. Monge sur un tour de cartes qui a quclque analogie
avec celui-ci.
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QUESTIONS RESOLUES.

Solution de deua problémes de géométrie, proposés &
la page 132 de ce volume

Par M. BErarp , principal et professeur de mathématiques

au collége de Briancon, membre de plusieurs sociétés
savantes,

[a Vi “la Via Vo Vi o Vo Vo Vo ¥

P ROBLEME 1. Déterm'ner lellipse de plus grande surface ins-
criptible & un irianglé donné ?

Solution. Soient @ , b deux des cotés du triangle donné et
Pangle compris. Soient pris le sommet de cet amgle pour origine,
le coté @ pour axe des zx et le c6té & pour axe des y; si alors
on désigne par 2/, y/ les coordonnées inconnues du centre de l'el-
lipse cherchée, son équation sera de la forme

A(x—2z'P4B(y—y/P42C(x—a’)(y—y ) +1=0 ;
‘A, B, C étant des coefficiens qu’il s’agit de déterminer et qui,
avec z/ et y/, forment les inconnues du probléme.

1l faut d’abord exprimer que cette ellipse touche chacun des
cotés du triangle. Pour cela , soit d’abord fait dans son équation
y=o; en cxprimant que les valeurs qui en résultent pour x sont
égales, on trouvera, pour l'abscisse du point de contact avec'le
coté a,

Py £ %
A ]

avec la condition
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A+y*(4B—C*)=c. (1)
Si, dans la méme équation, on fait x=0; en exprimant que

les valeurs qui en reésultent pour y sont égales , on trouvera, pour
Vordonnee du point de contact avec le coté &,

C
y=y'+—5a,
avec la condition
B4-2/*(4AB—C*)=o. (2)

Combinant enfin la méme équation avec 'équation dz4-ay—ab=o0
du troisitme c6té, mise , pour plus de commodité, sous cette forme
bla—z")+a(y —y/ 4 (ba’+ay’—ab)=o , et exprimant que les deux
systtmes de valeurs qui en résultent pour # et y se réduisent 2
un seul ; on trouvera, pour les coordonnées du point de contact
avec ce troisitme coté,

(aC=bB)(bx'<-ay'—ab)
a2 A4-b2B—2abC

z=a-4

(0C—a A)(bx'4ay'—ab)

Y =y/+ a*A~4-b2B==2abC

avec la condition
a* A4-b*B—2ab C+(ba'4-ay’'—ab)*(AB—C*)=o0 ,
laquelle,, si on en retranche les produits respectifs des équations
(1), (2) par @*, b*, se réduit simplement i
2C+4-(2ba’'42ay’—22'y! =—ab)(A B—C*)=o0. (3)
Si donc #/ et y/ étaient connus, c’est-d-dire, si le centre de

Vellipse était donné, les scules inconnues 4 , B, € du probléme

seraient donndées par les équations (1), (2}, (3), desquelles on tire,
en négligeant les valeurs zéro, qui ne peuvent étre admises,

4‘}‘/2
T (2ba'zay 2y —ab)i—ix'2y s
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4:\3’2

= (2bx/42ay!==2x!yl—ab) 2= x/2y 2 ’

B

2(2bx/42ay’=—22'y!==ab)

- (2bx/<f2ay/——2x'y!—ab)2—fx/2y!2 ¢

Nous avons donc résolu le probléme oi lon proposérait de dé-
crire une ellipse d’'un centre donné, qui touchat les trois c6tés d’un
triangle donné.

Rendons actuellement a 2/ et 4/ leur indétermination, et assujet-
tissons Dellipse & étre la plus grande possible. On sait que laire
d’une ellipse n’est autre chose que le nombre = multiplié par le
produit de ses deux demi-diamétres principaux ; dou il suit que,
pour remplir la condition exigée, il faut que ce produit, ou son
quarré , soit un maxzimum ; or , d’aprés les résultats obtenus
dans le troisitme volume des Annales [ pag. 106, équat. (4) ],
ce quarré est '

Sin.2g -
AB==C3 ’
ce qui donne pour la condition du maximum
d(4B—(C*)=o0 , (M)
ou en développant
BdA+4AdB—=2C0dC=o0. (p)

Différenciant pareillement les équations (1), (2), (3), en ayant
égard a D’équation (M) et faisant varier 2/ et y/, il viendra

dAd4-2y/(A4AB—C*)dy'=o0 , (9)
dB4-22/(4AB—C*)da’/=o0 , )
dC—(AB—C*){(a/ —a)dy/+(y'—b)d2’} =o. (s)

Si, entre les quatre équations (p, ¢, 7, s), on élimine dA, dB,
dC, on trouvera, toutes réductions faites,

{a/ A+(y/—0)C ) da/+{y' B4(2'—a Cldy’'=o0 |

?

et, comme les variables x/, ¥/ sont indépendantes, on en conclura
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2/ A4+(y'—b,C=0o , (4) y/ B4 {a'—a;0=0 ; (5)
équations qui , jointes aux dquations (1), (2), (3) résolvent le
probleme.

En mettant dans ces derniers pour 4 et B leurs valeurs données
par les équations (4) et (5), et divisant par €, on obtiendra pour
C trois valeurs au premier degré, et en égalant chacune des deux
premieres a la troisitme , les deux cquations en a2/, y/ qui en
résulteront , pourront étre mises sous cette forme

(22/—a) bx'~+2ay'—ab)=o0 ,
(2y/—b{ay'~-2ba’—ab)=o0 .

Comme il suffit, pour satisfaire a ces équations d'égaler 4 zéro
un quelconque des deux facteurs du premicr membre de chacune
d’elles, il s’ensuit qu’clles doivent donner, pour les inconnues a2/,
¥/, quatre systémes de valeurs. De ces quatre systémes trois doivent
étre rejetés , parce qu'ils appartiennent aux milicux des cotés du
triangle donné , lesquels ne sauraient étre des centres d’ellipsﬁés

inscrites ; quant au quatriéme systéme qui résulte de I’égalité des
derniers facteurs & zéro, il donne

/o= X y— .
a=:a, y'=1b;
on en conclut ensuite
6 12 _ 12
o emmm -;Z— ) T v ;—2- ’ — — -b_;- H
. 108
AB—C*=
a*bz

%Sin.y =
VAB—C: ~ 3\3'
et les points de contact seront les miliecux des cotés.
Ainsi , la plus grande ellipse inscriptible ¢ un triangle a son
centre au centre de gravité de Uaire de ce triangle, et touche ses

trois cdtés & leurs milieux ; dou il suit que le triangle dont les

TabSiny ;
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sommets sont aux points de contact a ses cOtés respectivement paral-
liles 4 ceux du triangle donné. L'aire de cette ellipse est & celle
du triangle donné ::=:3y/3. Son équation est
120°(x— a4 120" y— L b)Y ~12ab(2—2 a) (y — 2 b) = 0?57,

PROBLEME II. Déterminer lellipse de moindre surface cir-
conscriptible & un triangle donné ?

Solution. En conservant les mémes conventions et notations que
dans le probléme précédent, I’équation de lellipse sera encore

A(x—a’ P 4-B(y—y/ P~42C(x—az')y—y’')+1=0.

Cette ellipse devant passer par lorigine, on aara d’abord

Az"+By*~4-2Ca’y'4-1=0 ; (¢)
et 'équation de sa tangente en ce point sera
(A2'4-Cy")z4-(By'+Ca’)y=o. (p)

Cette ellipse devant ensuite passer par le point dont les coordonnées
sont @ et o, on aura

A(x/—a)*~+By*+2Cy(a'—a)+1=0 ,

équation qui, en en retranchant ’équation (¢), se réduit 3

29/ C4-~(20/—a)A=o ; (1)
et 1’équation de la tangente en ce point est
{ By/4-C(2/ —a)} y+ { Cy'+A(x'—a) § (z—a)=o0. )

Cette ellipse devant enfin passer par le point dont les coordonnées
sont 0 et &, on aura encore

By/ by Az *~+-2Cax/(y'—=b)4-1=0 ,

équation qui, en en retranchant I’équation (¢), se réduit 3

22/ CH4-(2y'—b)B=o0 ; (2)
et ’équation de la tangente en ce point est
{Aa'Cly'—B)} a4 Co'H By —b) y—Dy=0 (1)

Si ensuite on retranche le double de I'équation (¢) de la somme

des
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des prodvits respectifs des équations (1) et (2) par a’ et par ¥/,
il viendra

ax’ 4+ ly'B-+2=o. (3)

Et, au moyen des équations (1), (2), (3) celles des tangentes aux
trois sommets deviendront respectivement

adx+0By=o, (P)
(lB—=2aC)y—ad(x—a)=o0 , @
(e 4d=20Cx—bB(y—0b)=o. n

Les mémes dquations (1), (2), (3) donnent

. oy —=h 2 m—
A= Y , B=— ,
&' (b x'+ay'—ab) ¥ (ba'~ay'—ab)

(2x/—a) (2y'—b)

.

- 2x’y! (bx'4ay'—ab) ?

et telles seraient les valeurs des inconnues, si les coordonndes 2/,
g/ etaient données , c'est-d-dire , si I'on proposait de decrire une
ellipse d'un centre donn¢ , qui passat par les trois sommets d'un
triangle donné. .

Bendons présentement & a2/ et y/ leur indétermination, et assu-
jettissons Vellipse & étre la plus petite possible. Peur cela il fiudra
encore que la differenticlle de 4 B~ C* scit nulle; or, d'apies les
valeurs qui viennent d’étre assignées a 4, B, €, ona

dom. 1V. 39
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4( 4B (= (2&'—a)(2y"—b) (2bx’+-2ay'—ab)
{ xy'(bx'ay'=—ab) }

prenant donc la différentielle de cette fraction , par rapport & a/

et y/, et égalant séparément a zdro les multiplicateurs de dz/ et de
dy’, il viendra , toutes réductions faites,

y/(2y/—b) 2ba'tay'—ab){ 2(a/—a)(ba'Fay)+a’b} =0 ,

a!(2x'—a)(2ay'+ba'—ab) § 2(y/—b)(ay'+ba)tb*a} =0 :
La combinaison de ces facteurs semblerait devoir fournir scize so-

lutions du probléme ; mais , en discutant ces solutions, on voit que

la scule qui puisse ¢re admise est celle qui est donnce par les
dcux équations

2ba'+ay'—ab=0 , 2ay'--ba'—ab=o ,

desquelles on tire

el cnsuite

3 3 3
A=——, = C=——,
a* E 20b
AB=(r= -1 |
4203
d’olt
‘::c';)! " q
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d’aprés ces valeurs de a/, y/ les équations (P}, (Q), (R) des tan-
gentes menecs a lcllipse par les sommets du triangle deviendront

simplement

ay+br=o0 , xz—a=o , y—p=o.

Ainsi, la plus petite ellipse circonscriptible @ un triangle donné
a son centre au conire de gravilé de aire de ce triangle , et ses
tangentes par (cs irols sommets sont respectivement paralléles aux
cotés opposés 3 ot il osuit que le triangle donné a ses sommets
aux milicux des cetés de celul que forment les trois tangentes.
L’aire de cette cliipse est a celle du triangle :: 4« :3y3. Son

équation cst
3b*(w—a)*+-3a*(y—20)'4-3ab(x— : a) y—1 b) = a*b.

On voit donc que , si deux triangles sont inscrils et circonserits
lun & lautre, de maniére que leurs cdlés soient paralliles chacun
@ chacun , une méme ellipse scra, en méme temps, la plus grande
ellipse inscrite au plus grand et la plus petite ellipse circonscrite
au plus petit.

PROBLEME I1I. Déterminer lellipsoide de plus grand volume
inscriptible & un tétraédre donné ?

En ddésignant par @, &, ¢ les trois arétes d'un méme angle du
tétracdre dont il s’agit, prenant ces ardles pour axes des coordonndes
ct denotant par 2/, y/, z/ les coordonnces du centre de l'ellipsoide

cherché , I'équation de cet cllipsoide sera de la forme

A(x—a’ 424 y—y" (z—2z)
+By—y)toB/(c—z)(x—2a’) ‘4170,
+C(e—2/ 420/ (w —al) y—y7)
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el les inconnues du probléme, au nombre de neuf, seront 4, B, C,
A, B!, C', 2, y/, 2.

Il faudra dabord exprimer qu’en faisant successivement chacune
des coordonnées nulle , I'dquation résultante entre les deux autres
exprime un point unique. La condition d’oti dépend cette circonstance
est facile & déduire de I'equation (4) de la page 106 du 3.° vo-
lume des Adnnales, On aura donc ainsi trois équations de condition
au moyen desquelles Uellipsoide se trouvera tangent aux trois plans
coordonnéds, en dés points qu'il sera facile d’assigner.

Il faudra exprimer, ecn outre, que cet cllipsoide est tangent &
la quatriéme face du tétratdre dont I'équation est

bex~-cay--abz=abc

et pour ccla il suflira d’cxpri;ner que l'une quelconque des trois
projections de leur intersection se réduit 4 un point.

On n’aura ainsi que quatre équations de relation entre les six
coeficiens 4, B, €, 4/, B/, C/; d'ou Yon voit qu'une infinité
d’ellipsoides de méme centre peuvent étre inscrits & la fois 8 un méme
tétraedre.

Supposant donc, en premier licu , pour plus de simplicité,, que
le centre est donné, on cherchera, entre tous les ellipsoides a qui
ce centre appartient , quel est celui de plus grand volume. Pour
jr parvenir , il suffira d’exprimer que le produit des trois demi=
diamétres principaux, produit dont j'ai donné I'expression , page 110
du mémoire d&ja citd, est un maximum. Diflérenciant ensuite les
quatre équations de condition, en y traitant 2/, ¥/, z/ comme des
constantes , on aura en tout cing équations diffirenticlles entre les-
quelles on ¢liwinera quatre des six diflérenticlles d4, dB . dC,
d4’/, dB’, dC7; égalant donc séparément & zéro les multiplicateurs
des deux différenticlles restantes, on obtiendra deux nouvelles équations

finics qui, jointes aux quatre premiéres, détermineront les valeurs
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des six cocfficiens qui répondent aux maximum , du moins lorsque
le centre est donre.

On substituera ensuite ces valeurs dans 'expression du produit
des trois demi-diamétres principaux, et exprimant de nouveau que
ce produit est un maximum , mais cn faisant , pour cette fois,
varier 2/, ¥/, z/. Egalant ensuite séparément a zéro les multipli-
cateurs de dz/, dy’/, dz/, il en résultera trois ¢quations qui donneront
les coordonnées du centre.

On parviendra ainsi a cette conclusion remarquable : Le plus grand
ellipsoide inscriptible & un téiraédre donné a son centre au centre
de gravité du volume de ce tétraédre et touche ses faces aux centres
de gravilé de leurs aires respectives ; d’ou il suit que le tétraddre
qui a ses sommets aux points de contact,a ses faces respectivcment
paralleles 4 celles du tétratdre donnd.

PROBLEME 1V. Déterminer Iellipsoide du plus petit volume
circonscriptible @ un tétracdre donné ?

Cc probleme se traite exactement comme le précédent, avec cette
scale différence que les quatre équations qui expriment que lel-
lipsoide touche les fuces du tétraddre, y sont remplacées par celles
gui expriment qu’il passe par ses sommets.

On parvient ainsi 4 ce résultat non moins remarquable que celui
qui vient d’¢tre c¢noncé : le plus petit ellipsoide circonscriptible a
un tétracdre donné , a son cenire au centre de gravité du volume
du tétraidre , et ses plans tangens par les quatre sommets sont
respectivement paralleles ¢ ceux des faces opposées ; d'ou il suit
que le tetraidre donné a ses sommets aux centres de gravité des
aires des faces de cclui que forment les quatre plans tangens.

On voit done que, sZ deux tétraédres sont inscrits et circonscrits
lun a lautre , de manitre que leurs faces soient paralléles cha-
cune & chocune , un méme cllipsoide sera , en méme temps , le
plus grand cllipscide inscrit au plus grand el le plus pctit ellipsoide
circonscrit av plus petit
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Ceux qui désireront plus de détail sur ces quatre problimes
pourront consulter un ouvrage que je viens de faire paraitre sous le titre
d dpplication du calcul différentiel & la discussion et & la cons-
truction des lignes et surfaces du second ordre rapporties a des
coordonnées quelconques avec plusieurs probléemes et théorémes
nouveauzx (*); ouvrage daus lequel ces problémes, ainsi que beau—
coup dautres du meéme genre, se trouvent traités avce tous les

développemens convenables.

Démonstration du théoréme enoncé & la page 160 de
ce volume ;

Par M. EncongreE , fils.

ENONCE. CA et CB sont deux demi-diambtres conjugués d’'une
ellipse ou d'une hyperbole. On a mené la droite AB; et , par un
point quelconque M de la courbe, on a mené a cet/e droite une
paralléle coupant respectivement CA et CB en A’ et B/. On propose
de démontrer que , quelle que soit la situation du point M sur

—_—2

- z
la courbe , la quantité \NiN/ +MB/  est constante.
Démonstration (**). Soit mende MP , ordonnée au diamétre CA ,

™ A Paris, chez F. Didot; et a Turin, chez Pic.
") On sous-entend la figure qu'il est tres-facile de suppléer,
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et conséquemment paralléle 3 CB ; et soient CP=2, PM=y,
CA=a, CB=b, AB=c.

Les triangles semblables BCA, MPA’ donnent

Z):a::y:PA’z%, b:c::y:l\lA’:c.%—,

donc

CA/=CP4PA/= o L = 2FY

D’un autre c6té, les triangles semblables CAB , CA’B’ donnent

ay<-bx cay-bx)
a:c::—J—}_—:A’B’z-—)-F—x ;
ab
d’otr il suit que
MDB/= A’B/—MA/ — claytbe) ey —. = N
- ab b a '

done

e )

MA/ ii\iﬁ/zzczzﬁ +£—§ ;

donc, dans les deux courbes, on doit avoir respectivement

MA/ +MB/ =c* =AB . (*)

(* Si Ion désigne par N lautre point dintersection de A’B/ avec la courbe,
on aura parcillement
—2 —1 —2 — 2 —_— ——1 —_—
NI £ENAN =AB ,; dot MA/ XMB/ =NB £Na’ ,
d'ott, cn dévcloppant , on conclura ,
MA/=NB.

Celte dernilre proposition , et conséquemment la premicére qui peut en étre
aivdmeat diduite, se démontre facilement pour I'ellipse , en recourant & sa pro-
jection circulaive, dans laquelle les projections des deux diaméires conjuguds sont
d-ux diamitres perpendiceladres Tun & Pautre. Ceel peut donc former un petit
¢ Lment au mémoire de M. Ferviot, inséré & la page 240 du 2.° volume de

recaetls J. D. C,

ce
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QUESTIONS PROPOSEES.

Problémes de Géomeétrie.

I INSCRIRE ou circonscrire 3 une ellipse le plus grand ou le plus
petit triaugle semblable & un triangle donné ?

Il Inscrire ou circonscrire & un ellipsoide le plus grand ou le
plus petit tétraedre semblable 4 un tetraedre donné ?

ITL Assigner l'ellipsoide du plus grand volume entre tous ceux
qui ont pour tangentes les six arétes d’un tétraédre donné ?

Théoréemes de Geomelrie.

1. Dans toute surface du second ordre qui a un centre , les
parallelipipédes qui ont respectivement pour diagonales trois dia-
metres conjugués quelconqgnes, et dont les arétes sont respectivement
paralleles a trois autres diamelres conjugués , aussi quelconques ,
sont tous trois équivalens.

IL. Si, & une méme ellipse, on meéne deux tangentes paralléles
sous un angle déterminé quelconque, le produit des parties de ces
tangentes comprises depuis leurs points de contact jusqu’a leur ren-

coatre avec une troisiéme tangente , aussi quelconque , mais variable,
sera une quantilé constante.




DIVISION ET EXTRACTION DES RACINES. 297

|

ALGEBRE ELEMENTAIRE.

Deémonstration ge’ne’mle et rigourcuse des procedes

connus , pour la division et l'extraction des racines

des polynomnes ;

Par M. GERGONNE.

[o Sa Wl Vo Vo 1 Ve WLV

DANS tous les traités d’algtbre, on se contente , pour établir les
régles de la division et de l'extraction des racines des polynémes ,
d’exécuter ces opérations sur un petit nombre d’exemples, ct de
conclure ensuite, par induction, dua particulier au géncral. Cette
mani¢re de procéder convient peut-étre pour des commencans qu'on
pourrait craindre de rcbuter par des raisonnemens trop généraux
et trop abstraits ; mais clle ne saurait dispenscr, ce me semble ,
de revenir ensuite , de nouveau, sur le méme sujet, pour le traiter
d’une manitre plus large et plus rigourcuse, dés que ceux qu'on
enseigne ont acquis un peu d’habitude des méthodes algébriques.
Voici de quelle maniére je congois que la division et I'extraction
des racines des polyndémes doivent alors leur ¢tre présentdes,
Dans tout ce qui va suivre , je supposerai constamment que tous
les polynémes que je considérerai sont ordonnés par rapport a une
méme lettre , et je ddsignerai leurs termes par le rang qu’ils occu-
peront en allant du plus clevé & celui qui l'est le moins; je sup-
poserai d’ailleurs les polynomes complets , ce qui est toujours

permis.
Tom, IV, ne° X, 1.°7 geril 1814. 40
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§ I

Division des polyndémes.

LEMME 1. Le produit du premier terme d'un polynéme par
le premier terme dun autre polynéme est , sans réductions ni
modifications quelconques , le premier terme du produit de ces deux
polyromes.

Démonstration. 11 est évident en effet que tout autre produit
de deux termes, pris, comme on le voudra, dans les deux poly-
némes , détant moins élevé que celui-la , ne pourra ni passer avant
lui ni se réduire avec lul,

Remargue. On preuverait , de la méme manitre , que le produit
des derniers termes des deux polynémes est , sans réductions ni
modifications quelconques , le dernier terme du produit de ces poly~-
nomes. Quant aux termes intermédiaires de ce méme produit , ils
sont, géncéralement , des résultats de réductions opérées entre des
monémes semblables.

LEMME 1I. 8¢ du produit de deux polyndmes on retranche le
produit du premier par les v premiers termes du second, le pre-
mier terme du reste sera, sans réductions ou modifications quel-

conques , le produit du premicr terme du premier polynéme par
le (r+4-1™¢ terme du second.

Démonstration. Soient les deux polynémes

D e
AaTe o Gl IS e

il sagit de prouver que le premier. terme de

(At F) A2 s A= G T e Y e A7)
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R e T AN C A S )
est
AaP X} H/a9~r,

Or , cela est évident , puisque cette différence est la méme
chose que

(AP eiiie FF ) HOa T 57
dont le premier terme est, en effet, ( Lemme 1),

AaP > H/a9-r,

HRemargue. On prouverait, de la méme manitre, que, si du produit
de deux polynéwmes on retranche le produit du premier par les r
derniers termes du second , le dernier terme du reste sera , sans
réductions ou modifications quelconques , le produit du dernier terme
du premier polynéme par le terme qui, dans le sccond, occupe
le (r+41)™¢ rang, & partir du dernier.

PROBLEME. Déterminer le quotient de la division de deux
polynémes ?

Solution. En divisant le premier terme du dividende par le premier
terme du divisecur , on obtient ( Lemme 1) le premier terme du
quotient. D’un autre coté, les r premiers termes du quotient étant
trouvés , si, aprés avoir multiplié le diviseur par Pensemble de ces
termes , et retranché le produit du dividende, on divise le premier
terme du reste par le premier terme du diviseur, on obtiendra pour ré-
sultat ( Lermmme I1') le (r-41;™¢ terme du quotient. Ainsiona, 4 la fois,
par ce qui précede, 1.° le moyen d’obtenir le premier terme du quoticnt;
2.° le moyen d’obtenir un terme quelconque de ce quotient, lorsque tous
ceux qui doivent le préceder sont déja obtenus ; ce qui renferme impli-
citement la solution complete du probleme, et conduit immdédiatement
aux méthodes connues.
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Remarque 1. Draprds les deux remarques précédentes, on voit qu’on
a aussi 1.° le moyen d’obtenir le dernier terme du quotient; 2.°
le moyen d’obtenir un terme qnelconque de ce quotient, lorsque
tous ceux qui doivent le suivre sont deji obtenus ; ce qui peut
fournir une scconde solution du probleme (*).

(") Cest & peu prés sur les mémes principes quwest fondé le procédé que 'on
prescrit dans les traités d'arithmétique pour la division numéiique ; mais ces
principes se trouvent alors modifi¢s par des circonstances qui en rendenl l'ap-
plication incomparablement plus difficile.

Comme cest principalement la nécessité d’exécuter la division numérique , en
procédant de gauche & droite , que les commengans ont peine & bien sentir ,
je erois devoir , en leur faveur, placer ici les considérations suivantes.

I. Lorsquon multiplie un nombre de plusieurs cliffres par un nombre dun
seul chiffre ,- chaque produit partiel, avant d’étre écrit, subit, en général , deux
sortes de modifications , savoir, 1.° une augmentation de quelques unités, pro-
venant des dixaines enlevées au produit précédent 3 2.° une diminution de toutes
ses dixaines, qui doivent dlre ajoutées comme unités au produit suivant. Les denx
produits extrémes seuls ne subissent , avant d’étre écrits , que I'une de ces mo-
difications , savoir, le plus & droite une simple soustraction de dixaines, et le
plus & gauche une simple addition d'unités; d’olt l'on voit, en derniére analise
que c'est ce dernier qui, de tous, est le moins altéré. Donc, la comparaison
de ce produit avec le chiffre le plus & gauche du multiplicande sera le moyen
le plus propre a faire retrouver ce multiplicateur §'il est perdu; et si,au con-
traire , c’est le multiplicande que l'on cherche, il conviendra de chercher d’abord
son chiffre le plus & gauche, en comparant le multiplicateur & la partie gauche
du produit.

IL. Pareillement, dans la multiplication de deux facteurs de plusieurs chiffres ,
chaque produit partiel n’entre dans le produit total quaprés avoir été augmenté
a droite par les produits d'ordres inférieurs, et a gauche par les produits d’ordres
supédricurs. Les deux produits partiels extrémes font pourtant exception i cette loi,
puisque le plus & droite ne subit aucune altération vers sa droite , et que le plus
A gauche n'en subit aucunc vers sa gauche ; d’ot I'on voit quencore, ici , c’est
ce dernier produit qui subit la moindre altération , avant de venir se placer dans
le produit total. Si donc il sagit de déterminer le multiplicateur, & Paide du
multiplicande et du produit, ce quil y aura de mieux 4 faire sera de chercher
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Remarqgue 11, Lorsque le quotient ne doit avoir que deux termes,
on les obtient immediatement, en divisant les termes extrémes du
dividende par les termmes extrémes du diviseur, respectivement ; sauf

ensuite a s’assurer , par la multiplication, si le quotient obtenu
est exact.

§. 1L
Extraction des racines des polyndmes.

LEMME 1. Le premier terme de la m.™¢ puissance dun poly-
néme est, sans réductions ni modifications quelcongues , la m.™°
puissance du premier terme de ce polyndéme.

Démonstration. 1l est aisé¢ de voir (§. I. Lemme 1) que le premier
terme du produit de m polynéme est , sans réductions ni modi-
fications quelconques, le produit des premiers termes de ces poly-
némes. Or, si les polynémes sont tous égaux , leur produit devient
la m.™¢ puissance de l'un d’eux, et le premier terme de ce produit
devient, en méme temps, la 7.™¢ puissance du premier terme du
polynéme , ce qui démontre la proposition annoncée.

HRemargue. On prouverait, de la méme manitre , que le dernier
terme de la m.™° puissance du polynéme est, sans réductions ni
modifications quelconques , la m.™¢ puissance du dernicr terme de
ce polynéme.

LEMME II. 8¢ de la m™® puissance d'un polynéme on re-
tranche la m.™° puissance de lensemble de ses r premiers termes ;
le premicr terme du reste sera, sans réductions ou modifications
quelcongues , m jfors la (m—1)™® puissance du premier terme du
polynéme , multiplié par son (r-f1)™¢ terme.

Démonstration., Soit

d’abord le chiffre le plus 2 gauche de ce muhiplicateﬁr, par la comparaison
du multiplicande avec la partie gauche du produit.

Au surplus, ceux qui &étonnent que la division numcrique commence par Ia
gauche devraient bien plutét s'¢tonner de voir commencer la soustraction pay la
droite; car c’est vraiment i ou est l'exception,
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Az v - GaF— - HaP = -V

le polynéme dont il s’agit; il faut prouver que le premier terme
du développement de

(AaP4 ot Gal =1t L Hal = oAV = (A 2P - GaP~rt1)m

est
m(AaP)m = X HaP~r,

Or , en traitant la premiére partie comme un binéme , développant,
par la formule de Newton, et réduisant, il vient

1(AdP e G2l ="+ Ym= 8 (HaP =" F)
. T (AP s GaP = Haf o P )

m  me=x

Fet ....'"":+‘ (A2P+...

2
+Gx1’-f+")m’"(H.1F"r+ .....+V)"+ e (A)

sur quoi on doit remarquer qn'a cause du premier terme qui manque,
la plus petite valeur de 2 doit étre l'unité.
Considérons présentement a part le terme général

m meI m
~.

”':"" (AaP e GaPmr+ VY m=n(Fa P - V)"

) § 2

et cherchons quel est le terme le plus élevé de son développement.
Dabord ( §. II. Lemme 1) le terme le plus élevé du dévelop-
pement de

(Axl’_l_ ..... A Gab—rt x)m—-n

est
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Q
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M~ m—pn
A’n an P ;

et le terme le plus élevé du développement de

(HaP =~ o Py
est

B A T .
Iiarn=rn .

done (§. 1. Lemme I) le terme le plus clevé du développement du
terme géncral sera

_7_71 . 1) 0 T " m—-n+t Am— lx/’m-—[’n xlInxpn—ru
I 2 n
ou -
_77_1- .m—-l ""m—-n+1 ) Am"'"II",er'_"”,
I 2 n

On aura donc le premicr terme de la fonction (4Q), en donnant
ici & 7 unc valeur qui rende l’exposant de & le plus grand possible,
)\

cest-2-dire , en donnant & 2 la plus petite valeur qu’elle puisse
avoir , c’est-a-dire, en posant =1, ce qui donne

mA™ Y Har™=r =m(Axf " X HaP™"

comme nous l'avions annoncé.

Remargue. On prouverait de la méme maniére que , si de la m. ™
puissance d’un polynéme on retranche la 7.™¢ puissance de I'ensemble
de ses r dernier terme , le dernier terme du reste sera , sans réductions
ou modifications quelconques , m fois la (m—1)™¢ puissance du
dernier terme du polynéme, multipliée par le terme qui, dans ce
polynome , occupe le (r~4-1)™¢ rang, a partic du dernier.

PROBLEME. Diterminer la racine m.™¢ d'un polyniéme ?

Solution. En extrayant la racine m.™* du premier terme du poly-
nome propos¢ , on obtiendra (§.11. Lemme 1) le premicr terme
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de la racine cherchée. D’un autre c6té, les r premiers termes de
cette racine ctant trouvés, si, aprés avoir retranché la m.™¢ puis-
sance de l'ensemble de ces termes du polynéme proposé, on divise
le premier terme du reste par m fois la (m—1)™® puissance du
premier terme de cette racine , on obtiendra pour résultat ( §. IL
Lemme 11') le (r-1)™¢ terme de cctte méme racine. Ainsi on a,
a la fois, par ce qui précede , 1.° le moyen d’obtenir le premier
terme de la racine; 2.° le moyen d’obtenir un terme quclconque
de cette racine ; lorsque tous ceux qui doivent le précéder sont
déja obtenus ; ce qui renferme implicitement la solution compléte
du problé¢me , et conduit immédiatement aux mdéthndes connuecs.

Remarque 1. D'aprés les deux remarques précédentes , on voit
qu'on a aussi 1.° le moyen d’obtenir le dernier terme de la racine;
2.° le moyen d’obtenir un terme quelconque de cette racine , lorsque
tous ceux qui doivent le suivre sont d¢ji obtenus j ce qui peut
fournir une seconde solution du probleme.

Remarque II. Lorsque la racine ne doit pas avoir plus de quatre
termes , on peut l'obtenir assez simplement par le procédé que voici ,
et qui n’exige que des opérations sur des monomes: en extrayant
les racines m.™¢* des deux termes extrémes du polynéme proposé,
on obtient les deux termes extrémes de la racine; divisant ensuite
le second et l'avant-dernier terme de ce polynéme, respectivement,
par m fois la (m—1)™¢ puissance du premier et du dernier terme
de la racine , on obtiendra pour quotiens le second et I'avant-dernier
terme de cette racine; il ne scra donc plus question alors que de
vérifier si la racine obtenue est exacte.

Observation générale. On voit , par tout ce qui précede , que;
dans la division et Iextraction des racines des pclynomes , ce n’est
que pour plus de commodité qu’on ordonne ces polynomes ; mais
on voit en méme temps qu’il est essentiel d'opirer , dans tous les
cas , de la méme maniére qu'on le ferait, siles polynomes étaient
ordonnés,

DYNAMIQUE
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DY NAMIQUE.
Veritable solution du probléme de la tractoire ;

Par feu Francats , professeur aux écoles dartillerie. (*)
la e Mo Vio Vo Vi o v o S ¥

.PBOBLEME. Sur un plan horisontal , on a pratiqué une rainure
rectiligne , dans laquelle un corps P est assujetti ¢ se mouvorr
uniformément. Ce corps est lié, par une verge inflexible et inex-
tensible , avec le corps M, qui pose sur le plan, et qui est supposé
avoir re¢u une impulsion primitive quelconque , dans le scens de
ce plan. On demande la nature de la courbe décrite par le corps
M, et les autres circonstances du mousement , en faisant d’ailleurs
abstraction du frottement ?

Solution. Soit prise pour axe des z la droite que le corps P
est assujetti a parcourir , et pour axe des y une perpendiculaire
quelconque a cette droite.

Soient & I'époque #, z et ¥ les coordonnées du point M, et 2/
Iabscisse du point P; le mouvement rectiligne de ce dernier point
ne pourra étre que leffet d’une force accélératrice , dirigée suivant
I'axe des x et troublée par la réaction de M sur P. Soit p cette
force accélératrice.

L’équation générale du mouvement sera donc, en supposant £ la
variable indépendante ,

(* Cette solution a été communiqueée au Rédacteur des Annales par M. J.
F. Frangais, professcur & I'¢cole impériale de lartilleric et du ginie , fréve de
lauteur,

Tom. 1V. 41
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die — S /o= » *
Ma—zsx+7”dﬂ w+P (d, §w o; ()

. da’
eu simplement, a cause de 5 constant ,

M-E;a z+M —~sy—PPM’=o (1)

En désignant par ¢ la longueur de la verge, la liaison des parties
du systtme sera exprimée par 'équation unique

(v—a')*+y'=0a* , (2)
laquelle donnera

(=) (sx=—=33")+ysy=0 ;

d’ott
RETES D A )
substituant donc cette valeur dans Péquation (1), elle deviendra
y_ Pry
g Id—t,""PP}M-FgM — ,§a}' 0; 4]
3# et py devant alors étre indépendans, on aura séparément
doz dy _ Ppy -
M de2 =Fp M dir T et (%)

d’olt , I'dlimination de p, on conclura
yd*r=(ar—az")d>y. (6)

Puisque da’/ est constant , cherchons & obtenir une équation en
z/ et y. Pour cela , différentions deux fois consécutivement 1'é-
quation (2); il viendra ainsi

d
dr=do'— XL

Gre—y?

b

(") Yoyez la DMécanique céleste , tome 1.°T, page 51,
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ydzy ady?

Vo  @=yit’

dr=—

or, I'dquation (6) donne
d= '\’ PR
drr= 22VI—7 ; S

égalant donc ces deux valeurs, il viendra, toutes réductions faites,

dzy ydy?

Vo Vaomm=> O
équation qui a pour intégrale
d
\/a:i.y, +Cdz'=o. (8)

Cette derniére éqnation, intégrée de nouveau, donne

Arec. (Cos. = —‘Z—) =Ca/+-C’ ;
ou bien , en remettant pour 2/ sa valeur donnée par I'équation (=)
Y ’ —_—
Arc. (Cos.= L ) = Cla—y/ T —C". (9)

Pour déterminer les constantes € et €/, supposons d'abord que

. . . . da’
la vitesse constante de P soit &; de maniére qu'on ait — =2. En
’ 1 de

mettant cette valeur dans l'équation (8), elle deviendra
d —_—
E)z: +bCy T =o. (10)

Supposons ensuite qu’d lorigine des temps le point P soit 4
Porigine des ceordonnées, et que la verge a forme alors un angle
« avec l'axe des . Supposons de plus que la vitesse initiale de
M paralltlement 3 Paxe des y soit ¢, en sorte que pour /=0 et

y=aSin.« on ait -a{-:c; I’équation (10) deviendra ainsi
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[

abCos.a ’

c+abCCosia=0 , dou C=—

L’intégrale seconde (9), rapportée au méme ¢tat initial, devient

Arc.(Cos.=Sin.e)=C', dou C'=1z—a,
On a ainsi

abCos.«

/ ¥
- %APC.KSM'::;)—”%. (r1)

C'est T'équation demandée de la courbe décrite par les corps M.
On voit que cette courbe est une cycloide générale, rapportée 2 la
droite parcourue par lec centre du cercle générateur ; ce cercle a

pour rayon la longueur @ de la verge; son centre est l'extrémité
P de cette verge ; ct le rapport des vitesses de translation du centre
ct de rotation des points dec la circonférence autour de ce centre est

= ‘/aﬂ—)'2+

celui de 6Cos.« a ¢; de manitre que la cycloide sera allongée or-
dinaire ou raccourcie , suivant quon aura 6Cos.z>c, bCos.w=¢
ou bCos.z<e.

L’équation (11) contient, comme une des données, la vitesse
initiale de M dans le sens des y; on aurait pu y introduire sa vitesse

dans le sens des . Si, cn effet, 'on met dans lintégrale pre~

- ly doa/—dx
micre (8) pour ===, sa valeur , On aura
Var—y? y

da! da’ dx

E—i—cy-&—a =0.

Soit ensuite ¢/ la vitesse initiale de M dans le sens de x, en sorte
dx

qu’on aitEE =c¢/, cette ¢quation deviendra I~4@bCSin.u~é'=0,
d’od

)

abSinez ’
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introduisant donc cette valeur dans I'équation de la courbe , elle
deviendra

abSin, . .
=\ ai—y:+ _b"‘slArc. <S'm.= %)—-—a} ; (12)

c'

de sorte qu’il y a entre les vitesses initiales ¢ et ¢/ la relation
¢'Cos.a4cSin.«=0Cos.x.

L’équation (11) est en défaut, lorsquion a «==:=; mais alors
on emploic I'équation (12) qui devient

ab :
=y o —yi— = Arc. (Cos. = —}) .

De méme, si «m=o, I'équation (12) est en défaut; mais alors 1'é-
quation (11) devient

) b .
= \/az—-—y2+f;' Arc. (Sm.: _)’_) .
a

Pour déterminer la vitesse de M, en un point queclconque de
la courbe, nous avons les ¢quations

dx abCos.a==cy dy c\/a:——-y;
dt = aCos.x ’ dt ~ "aCos.a

donc

ac2=2bcy Cos.ad-ab2Cos.2a

PP ==

aCos.?a

Ainsi, suivant qu'on aura y=a ou y=w==g, ON aura aussi

4 c

R ou p=bt—".

Cos.x Cos.x

p=p—

Il est aisé de voir que ce sont li la plus petite et la plus grande
vitesses du point I ; la premitre a lieu au point le plus haut et
la seconde au point le plus bas de chaque cycloide. donc , dansla
cycloide ordinaire , pour laquelle on a ¢=4Cos.«, la vitesse du

point M est nulle, chaque fois qu’il parvient & son mazimum d'elé-
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vation, et elle est double de celle du point P, chaque fois qu'il

parvient & son maximum d’abaissement. (*)
cdt

Y
Vai—y2 " aCos

Arc.(Sin.: L ).—_ i +cr
a

aCos.x

Le temps se trouve par la formule , laquelle donne

et , comme on a en méme temps y=aSin.e et =0, il sensuit
que C”=u, ce qui donne

’= “CZS"‘gArc. (Sin.=2';>—u§. (13)

Ainsi, lorsque y=a, on a
aCos.x ( 2n-4-1
i= g

c 2

!,

n étant un nombre entier positif quelconque ; d’ott il suit que lc

. . . . =aCos «
temps employé & parcourir une cycloide entiére est == .
¢
" L M d2x .
La force accélératrice p= — -—; mais
P der
dx ¢ dzx cd
Z=p L , dou T ;
de aCos.x dez adtCos.x
et , comme on a d’ailleurs
Y _ eo—yi
de aCos.
il s’ensuit qu'on doit avoir
AP
P ""a:Cos.a
. o o M c?
ce qui donne, pour la valeur initiale de p , p=—— . :
P aCos.e

(") Voyez la page 98 du deuxiéme volume de ce recueil.
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Reflexions et recherches sur le méme probléeme;
Par M. GERGONNE.

Ce probléme se trouve traité par Clairaut , ainsi que plusieurs
autres problémes analogues , dans le volume de 'Academie des
sciences de Paris pour 1736. Ge géométre prouve trés-bien , par
des considérations purement synthétiques , que D'espace élémentaire
parcouru par le point P dans un instant quelconque , divisé
par langle que forment entre elles les deux directions de la
verge @, au commencement et & la [in de cet instant, est une
quantité constante ; d’ou il suit que le point M décrit une circon-
férence autour du point P, d’'un mouvement uniforme , pendant
que cc dernier sc meut uniformément sur une droite, ct qu’ainsi
la Tratoire est une cycloide.

Clairaut s'était occupé de ce probléme & T'occasion d’une dis-
cussion qu’il avait cue avec Fontaine, lequel prétendait que, dans
le mouvement , la direction de la verge devait constamment étre
tangente a la courbe ; d’ou il concluait que la Tractoire n’dtait
autre que la courbe aux tangentes égales; ce qui réduisait le pro-
bléme & un simple probléme de géométrie.

Malgré la solution de Clairaut , beaucoup de géomctres ont continud
jusqu’ici , avec Fontaine , 4 ne pas distinguer la Tractoire de la
Courbe aux tangentes égales. 1ls en ont méme conclu, et ont di
en conclure, en cffet, que, ni la vitesse constante ou variable du
point P, ni le frottement ni la résistance du milieu, qui agissent
toujours dans la direction du mouvement, laquelle est ici la méme
que celle de la verge @, ne pouvaient aucunement modifier la
nature de la courbe. Quant a Clairaut, 1l accordait bien a Fon-
taine , ce qui , ce me semble, était beaucoup trop, que lorsque
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le corps J{ frottait sur le plan horisontal et qu'il n’y avait aucune
vitesse imprimée , la Tractoire pouvait étre une courbe aux tan-
gentes égales , ct son dessein était seulement de demontrer que
ce devait étre une cycloide , dans le cas ol le frottement et les autres
obstacles étaient nuls,

Dans un mémoire que jai lu, il y a quelques mois, 4 l'académie
du Gard, yai ¢bauché la solution du probleme genéral des tractoires
dans les milieux résistans, en supposant que le point P décrit, dans
Pespace , une courbe donnde quelconque, & double courbure, et
quil la déerit d’an mouvement varié aussi quelconque; on voit qu'il
suflirait de supposer la verge pesante et flexible , et d’aveir dgard
4 son poids et & sa courburc, pour obtenir la théorie compléte du
Cerf-volant.

En particularisant mes résultats pour les rendre propres au cas
présent, je suis parvenu , en général, & des conclusions semblables
a celles de M. Francais. Cependant, comme ma marche différe un
pen de la sienne , je pense qu'on ne sera pas fiché de trouver
ici un rapprochement des deux méthodes.

Pour me dcbarrasser de la rainure ct de la considération des
masses , je me suis proposé ce cas particulier du probléme, ainsi
qu'il suit: )

PROBLEME. Un point P parcourant laxe des x d’un mou-
vement uniforme , avec une vitesse connue égale a b , exerce une
Jorce atiractive ou répulsive inconnue, constante ou variable , sur
un autre point M, absolument lilre d'ailleurs , posé sur le plan
des coordonnées que lon suppose rectangulaires. L'action de P sur
M est telle que ces deux points sont toujours maintenus a une
distance constante a I'unc de lautre. On demande, d'aprés cela,

la nature de la courbe décrite par le point M , ainsi que les
autres circonstances du mouvement ?

Solution. Soient, & une époque quelconque , z et y les coor-
donndes de M, a/ labscisse de P, ct p l'action de P sur M ; cette
action s’exer¢ant suivaot la droite qui joint ces deux points, il s'en-

suit
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suit que ses composantes paralleles aux axes des z et des y sont

x—/

respectivemnent P "Z-,n, d'ot il résulte que les ¢quations du

mouvement du pomt M doivent étre , ¢ étant la variable indé-
pendante ,

d2x xe—z! d2y b4
= (1) Pt (2)
3 quoi il faut joindre
\n a dr, ’
(z—a/+y*=a , (3) e =05 . (4

Cela posé, si l'on différencie deux fois I'équation (3), en ayant
égard 2 Pequation (4) , il viendra

d
(x—-x/){r—5§+y-j§-=o, )

(a—a) o + dt=+§—-—&§+< >—o. )

Mais , d’un autre c6té , en éliminant p entre les équations (1) et
(2) , on obtient

dyy dza
e ) e Y e =
(% x)dzz Y=o (7)
A dr dx i , . " - \ N
En ¢é¢liminant 2, i entre les équations (3) , (5), (G, (7

on aura

@—y) 5 4y (55 ) =0 ®)

équation dont I'intégrale premiére est

Y tvaTr=Ca—r) ; ()
valeur qui, substituée dans I'équation (3), donne
A —_—
:5 =) Oy ==Cy/ G (z—ur')> . (10)

Tom, IF. n2
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Eliminant donc # entre les équations (9) et (10); on aura pour
équation differentielie de la tcajectoire

Y
dx =gy ' (1)

équation que lon reconnait déja pour étre celle d’une cycloide,
lagnelle sera allongée, ordinaire ou raccourcie , suivant les diverses
valeurs quon attribuera a la constante C.

Pour determiner cette constante €, M. Francais considére suc—
cessivement les deux composantes , paralleles aux axes, de lim-
puision initiale qu’il suppose avoir été imprimée originairement &
M, ce qui le conduit & unc dquation de relation entre ses com-
po-entes 3 dquation qui entraine cette conséquence paradoxale
que 'une de ces composantes est donnée lorsquon donne lautre ,
et qu'ainsi on n'a pas la liberté d'imprimer & M une vitesse initiale
qui soit a la fois arbitraire d'intensité et de direction.

Il m’a semblé qu’on ne pouvait gueére expliquer cette sorte de paradoxe
qu'en considérant qu’il n’entre point dans Desprit des procédeés ana-
litiques d'admettre que le point P commence brusquement i se
mouvoir avec la vitesse finie et constante 4, et que les formules
ci-dessus doivent supposer tacitement que ce point était déja en
mouvement avant d'¢tre parvenu au lieu ou on le suppose arrivé
a l'instant par lequel on compte #=o0. Ce qu’on appelle ici vitesse
initiale ne doit donc étre autre chose que celle qu'il faudrait imprimer &
M, a cette époque, afin de suppléer au défaut ellectif du mou-
vement de ce point, antéricurement a cette méme c¢poque ; et voild
sans doute pourquol cette vitesse initiale n’est point & la fois arbi-
traire de grandeur et de direction. Je ne propose ceci, au surplus,
que comme une simple conjecture , qui a besoin d’é¢tre marie par
la reilexion.

Afin donc de déterminer la constante €', je supposerai qu’a I'époque
pour laquelle on compte #=o0 , le point M se trouve avoir une

\itesse ¢, soit imprimée , soit antéricurement acquise , dans une di-
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rection formant un angle g avec l'axe des 2, et dont les compo=-
santes , respectivement paralicles aux axes des & et des ¥, serent
conse \i.,e'umﬁnt cCos.z et ¢Sin.a; je suppescrai dailleurs, avec M.
Francais, qu'a la méme époque le point P est a lorigine et que
la verge @ fait un angle « avec l'axe des @ ; cest-a-dire , que je
‘supposeral qu'on a en méme temps

dr dy . .
t=o, o =¢Cos.z3, ——i—z— =Sin.g, a=acCos.« , y==aSin.« .
C

A Vaide de ces diverses suppositions , les équations () et (10) de-
viendront
cSin.g=CaCos.« ,

cCos.g=b—CaSin.z ;

2

cSin.2 b—cCos.p
C= = — (12)

aCous.ee aSin.e

ce qui donne l'équation de relation
cCos.(p—u,=bCos.«. (13)

Si présentement on intégre ’équation (r1) on trouvera

“ Are. (Sin=2 )4’ ;
x:‘/a~—]-+erxc. (Sm.—- . )-{—C ;

les circonstances initiales du mouvement donnent , en réduisant
ab
0= —=~ “+C/ >
C
en sorte qu'on a définitivement
ab . y
= \/a=—J-z+-(J—‘-§Arc.<Sm.=—— >——x§. (Ii)
a

équation dans laquelle , en vertu de la relation (13), on pourra

substitucr pour € l'une quelconque des deux valeurs données par

s

les équations (12). On aura cnsuite

o= (B Y=y
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Mais Déquation (9) donne, en intégrant et ayant égard aux cir-
constances initiales du mouvement ,

Cl—a=Arc. (Sin.:z-) ;
a
d’ott
y=aSin.(Ct—a) ;
done

p?== C*a*~4-24bCSin.(Cl—u)—0*. - (15)

Il parait bien établi, par tout ce qui précéde, que, tant qu'on
fera abstraction du frottement et de la résistance du milieu , et
quon supposera le mouvement du point P rectiligne et uniforme,
la tractoire plane sera une cycloide. Supposons présentement , s'il
est possible, qu’en ayant (gard soit au frottement, soit 4 la résis-
tance du milieu, soit & tout autre obstacle agissant dans un sens
directernent opposé & celui du mouvement du point M, la trac-
toire put devenir la courbe aux tangentes égales; la suppression
de tous ces obstacles revenant & lintroduction d'une force dgale
et contraire a leur somme , dirigée dans le sens du mouvement,
ne devrait altérer en aucune sorte la nature de la courbe, et n’aurait
d'autre cffet que d’augmenter ou diminuer plus ou moins la tension
ou compression de la verge @ , et de faire varier Iintensité et la
direction de la puissance variable & appliquer au point P pour lui
faire décrire une ligne droite d’'un mouvement uniforme , avec la
vitesse &; la tractoire devrait donc dans ce cas , comme dans le premier,
étre une courbe aux tangentes égales; or , nous venons de voir
qu’alors elle est une cycloide ; donc dans le premier cas elle ne
saurait étre une courbe aux tangentes égales. Ainsi, loin que jamais,
par Veffet du frottement et de la résistance du milieu, la tractoire
puisse devenir une courbe aux tangentes égales, cette courbe est
peut-étre la seule au contraire que le paint # ne puisse jamais
décrire , du meins tant que ce point ne sera soumis a l’action d’au-
cune force étrangtre au systéme.
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Pour ne rien laisser & désirer sur ce sujet, je vais finalement
chercher quelle est la force accélératrice qui devrait agir sur le point
M pour lui faire décrire la courbe aux tangentes egales ; clest-a—
dire, que je vais résoudre le probléme suivant :

PROBLEME. Pendant guun point T parcourt l'axe des x,
d’'un mouvement uniforme, avec la vitesse b, un autre point M
se meut d'un mouvement varié et curviligne sur le plan aes xy.
Le mouvement de ce dernier point est tel que toujours il se trouce
@ une méme distance constante a du point P et gu'en outre la
droite mobile qui joint ces deux points est perpétuellement tangente
@ la courbe décrire par le point M. On demande d'aprés cela quelle
est la nature de cette courbe , ct quelle est la jforce accélerairice
qui agit sur M P

Solution. Soient conservées les notations et conventions du pro-
pléeme précédent. L’invariabilit¢ de la distance entre les points M
et P scra exprimée par l'équation

(e—a)hyi=a* 5 (1)
et la propriété dont jouit la droite qui les joint, d’étre perpétucllement

tangente & la courbe décrite par M , sera exprimée par cctte autre
équation

y _ dy _ dy
Zo=g o yEE=a)g. @

Eliminant x—x’ entre elles , il viendra

_(_]1 — ._‘y__. [3
de  Vari—y2 '’

équation dont l'intégrale est

x=\/5'z——?-—aLog.‘ii‘__;_2_—Z.:+C.

Si, pour déterminer la constante , on supposc , comme ci-dcssus,
quon ait en méme temps
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2=aCos.« , y=aSin.«

il viendra
x+Cos o

C=alog. —-aLog.Cot. fa=—aLog.Tang. 2« ;

ce qui donne, enfin, pour I'équation de la courbe aux tangentes égales,

+\/;:)_: (3)

- \/a——_yz—aLog T Is

Présentement, en considérant # comme la variable indépendante,
nous pouvons mettre I’équation (2) sous la forme

dx dy
Y TVE g =o @

d’'un autre cé6té, en différenciant I'équation (1), il vient, & cause
dx’
de — =b
dt ’
\/az—y2 +)’ =0\far—y2 » (5)

De ces deux équations on tire

dx _ b(az—y?)

a

On trouve ensuite , par une nouvelle différentiation ,

(le:.- 21)2‘).2\/"1—]‘2 (8)

—
?

de= a+
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5’)‘(0 a_—zy:)

da2y _
==t (9)

at

En désignant donc par X, ¥, respectivement, les composantes de
la force accélératrice , parallelement aux axes, on aura

) TR e boy(az—2y2)
Nm— VT oy VD

a4 at

et, conséquemment, si l'on désigne cette force par ¢, on aura

a

—_— b
=/ X Y2 = -

et elle fera, avec 'axe des #, un angle dont la tangente tabulaire sera

02_2)'2

2yVar—y?

3

x]~

d’ott il est facile de conclure que ses composantes, suivant la fan-
gente et suivant la normale , seront respectivement

Z-?Zf b")’\ ’az_.y: )
2 a3 .

ald

On voit donc que la puissance ¢ n’est point dirigée suivant JMP.
Rien ne serait plus facile maintenant que d’obtenir z , ¥,
dx dy d2x dxy
T w0 e @
supertlu de nous arréter & la recherche de ces diverses expressions.

et ¢ en fonction de Z; mais nous croyons
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QUESTIONS PROPOSEES.

Probléme de dynamique,

LE point de suspension d’'un pendule simple , & D’état de repos,
étaut subitement entrainé d’un mouvement rectiligne et uniforme,
avec une vitesse connue , le long d'une droite horisontale , on pro-
pose d’assigner la nature de la courbe décrite par Vextrémité in-
férieure de ce pendule , ainsi que toutes les autres circonstances de
son mouvement ?

On fait abstraction ici de la résistance du milicu,

Theéoreme de Geomeélrie.

Les pieds des perpendiculaires abaissées sur lcs plans des faces
d’un tétraddre, de l'un quelconque des points de la surface de la
sphere circonscrite , sont tous quatre situés dans un méme plan.
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ASTRONOMIE PRATIQUE.

Memoire sur lusage du réticule rhombe , pour les
observations des taches du soleil et de la lune;

Par M. H. FrAvcERGUES , astronome , correspondant de la
premicre classe de I'institut.

[a %o Sla Vi Vg Vi W Vo ¥

IL ne parait pas que les astronomes aient, jusqu'a présent, em-
ployé le Réticule rkhombe (*) pour observer les taches du soleil (**)
et de la lune. Toutes les cbservations de ce genre qui me sont
connues , et pour lesquelles on s’est servi de réticules, ont été faites

(*) Clest ainsi quon doit nommer le réticule dont Bradley passe pour &tre
Iinventeur, et non pas Réticule rhomboide , puisque le parallclogramme formé
par les cotés de ce réticule est équilatéral , ce qui caractérise le rhombe et le
différencie du rhombhoide , suivant la définition d'Euclide s Popfes , o icomhrcvgor....
Popboudis , 8, 3 & icsmnevgor. (Euclidis, Elem. lib. v, définit. 32 et 33.) 11
est inconcevable que, depuis plus de soixante ans, les astronomes se soient tous
accordés & se servir d’une expression aussi impropre.

(**) L obscrvation assidue des taches du soleii, outre son utilité
détecrminer les élémens de la rotation de cet astre, et pour décider la question
fameuse si ses taches appartiennent aux mémes points physiques du globe du soleil ,
ou si elles naissent spontanément dans la zone qui leur est allcctée , peut encore
conduire & la découverte des pelites planctes qui peuvent exister dans Pespace,
entre Mercure et le soleil , ainsi qu'a celle des cométes dont le périhélie étant
trés-pres de cet astre passent par ce point de leur orbite aux envirows de leur

générale pour

conjonction inféricure , avee peu de latitude , €l ne peuvent ainsi étre apergues
que daus leur passage sur le dirque du soleil. Clest sans doute un phénoméne e
ce genre que vit M. Dangos, le 18 janvier 1798, et qu'il avait déja apercuen 1784
9

Tom. IV, n° XI, 1.5" mai 1814. 43
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au moyen des passages des taches et des bords da soleil et de la
lune, ou des cornes de ce dernier astre,, lorsqnil était en eroissant,

aux fils horisontal et vertical de la lunett dun quaxt de cercle,

ou par le il horaire et les obliques d’un rv.acule de 45°

l] (.;L b
astronome () pensait méme que

le rcticule rhombe ne pouveit
sersir pour I'ebseivation des astres qui ont un diaruetre considerable,,
comme le solcil et la lune; et,

pour le rendre propre a cet usage,
il avait fait

appliquer au reticale de sa lunctte parallactique deux
fifs paralleles & la grande diagonale et passant par le sommet de
chaque angle obtus ; mais cette addition , qui complique V'observation ,
est fort inutile, et Von peut trés-facilement et tres-exactement de-
terminer la position d'uae tache & I'égard du centre du soleil ou
de la lune avec le réticule rhombe, tel qu’il est déerit dans l'as-
tronomie de M. de Lalande (**) en s’y prenant de la manicre suivante.

Soit VYXZ (fig. 1) un réticule rhombe, dont la petite diagonale
ZY est parallele & Péquateur. Pwprcsentons par le cercle S l'image
du soleil , qui est supposée se mouvoir en rasant par son bord le
fil parallele passant sur la diagonale ZY, et dont le centre deerit
par conséquent la ligne AA”/ , paralltle 4 cette méme diagonale
et & l'équateur. Supposons que , ce centre étant en A, le bord
précédent de l'image du soleil touche en B le eoté ZX du réticule;
cette image continuant d’avancer , ct son centre étant parvenu au

point A/, le méme bord touchera le c6té XY du réticule au point

B’. Ce centre parvenu au point A/ , le bord suivant touchera le

( Clef des cabinets des Souverains , n.o 386,
Jespére que la méthode facile de déterminer
trouvera dans ce mdémoire
important. Au reste

du =21 pluvidse an 6, pag. 3385).
la position de ces taches que l'on
raménera lattention des astronomes sur ce sujet
, il est possible que cette méthode ait été déja trouvée par
des astronomes dont les écrits ne me sont pas connus. Il serait & propos de con-

sulter la-dessus le tome 4.5 des (QCuvres du P. Boscovich , ot il est beaucoup

arlé du réticule de Bradley ; je n’ai pu me procurer cet ouvrage.

P : Y 3 ) P P &
(*) M. Darquier , Lettres sur l'astronomie pratique ; Paris 1786 , page 57.
(**) Astronomie de M. de Lalande, 3.% édit., tom. 2, pag. 569 et suiv,
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ctté ZX du réticule au puint B”; et enfin, le centre de l'image
du soleil parvenu au point A7, le meme bord touchera le cotéd
XY du réticule au point B7. Je nomme contacts exiéricurs les
contacts qui ont lieu aux points B ¢t B | et contacts intéricurs ceux
qui ont lieu aux points B/ et B”. Puisque la ligne AA// est la ligue dé-
crite par le centre de l'image du soleil , dans son trejet par le reticule,
la ligne EI' scra la corde decrite par ce centre, en dedans du ré-
ticule. Si on tire la diagonale XV, cette ligne sera perpendiculaire
a EF qu'elle divisera en deux parties égales au point D. Cette diagonale
divisera parcillement Pangle YXZ du réticule en deux angles éganx
EXD, FXD. Nommons 4 un de ces angles et menons enlin du
centre de I'image du solcil , dans ces quatre positions A, A7y A7, A/
aux points de contact correspondans, lesfrayons AB, A/B/, A”B7,
A7B/, dont le second et le troisieme se coupent en H sur XV,

Cela posé, les triangles rectangles BAE, DXE, ayant les angles
en E opposés au sommet , sont scmblables; et, parla méme raison,
les triangles rectangles B7/A7/F et DX} qui ont les angles en F
opposés au sommet, sont aussi semblables.

Les triangles rectangles DAL, VX , qui ont les angles en H
opposés au sommet , sont scmblables ; et parcillement les triangles
rectangles DAZH , B”XII, qui ont les angles opposés au sommet
au méme point H, sont aussi semblables. .

Par conséquent les angles BAE , B”A”E sont égaux chacun A
langle DXE; et les angles B/AZF, B/A/F sont dégaux chacun a
Vangle DXF ; c¢’est-a-dire , que les quatre angles BAE , B/AF,
B/AVE , B7A/F sont égaux chacun 4 la moitic de Jangle du
réticule ou a 4 ; et puisque les cotés AD, AL/, AvDB/7, Ar/Bim
sont égaux, les triangles ABE, A/IVE , AZB7E , A/B7/I" sont égaux
en tout.

I est évident gu’au moment du premier contact extcrieur, le
centre de Vimage du soleil ctant au point A, sa distance au milicu
D de la corde EF est AD=A\E+41EF, ¢t quau moment du premier
contact intéricur , le centre de limage du soleil étant parvenu au
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point A/, sa distance au méme point D est A/D=AF—IEF. Si
on retranche cette dernitre cquation de la premitre ( en faisant
attention que A’/F=AE ) , on aura AD—A'D=AA’=AE41FF
—AF+4+-EF=EF. On prouvera tout de méme { puisque A/F==A7E),
que AYD—AYD=A"A'=AWF~4tEF—A/E+EF=TF, dou
Ton tire ce théorime général : La ligne parcourue par le centre
de l'image du soleil, dans [I'intervalle de temps entre le premier
contact extérieur et le premier contact interieur , est égale a la
ligne que parcourt le méme centre dans I'intervalle entre le second
contact interieur et le second contact extérieur ; et ces deux lignes
sont chacune dgale & la ligne que décrit le centre de l'image du
soleil en dedans du réticule.

D'aprés ce théoréme , qui a lieu dans toute espéce de réticule
rhombe , on peut, avec la plus grande facilité , trouver la valeur
de la corde que décrit le centre de I'image solaire en dedans du
réticule , puisqu’il ne faut pour cela que reduire en degrés l'inter-
valle de temps entre le premier contact extérieur et le premier
contact intérieur, ou l'intervalle de temps entre le second contact
intérieur et le second contact extérieur. On comparera ensuite , suivant
la méthode qu’exige la nature du rhombe formé par les cotés de
ce réticule , cette valeur avec la valeur de la corde décrite par la
tache en dedans du réticule, déterminée au moyen du temps que
cette tache a employé a le traverser réduit en degrés, et l'on aura
la différence de déclinaison entre la tache et le centre du soleil.

Par excmple, dans le réticule de Bradley , o la moitié de la
grande diagonale est égale & la petite diagonale, si 'on nomme T
le temps écould entre les deux premiers et les deux seconds contacts,
¢ le temps que la tache a employé pour traverser le réticule , et D
la différence de déclinaison, on aura

D={Tw¢).(15C0s.Décl.O) ,

(en supposant que la pendule est réglée sur le moyen mouvement).
Le signe @ indique que l'on doit retrancher ¢ de T ou T de ¢,
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suivant que Tze. La tache sera au nord du centre du soleil si,

la déclinaison du soleil étant boréale , cet astre a passé dans la
partie supérieure du réticule, et que le temps que cette tache a
employé pour traverser ce reticule soit plus long que le temps que
le centre du soleil a employé a le traverser. Si une de ces conditions
vient 4 changer , ou toutes les trois ensemble , la tache sera au
sud du centre du soleil.

On doit observer les quatre contacts autant qu'il est possible,
parce que lobservation des deux derniers sert & vérifier celle des
deux premiers. Cependant , si le champ de la moitié du réticule
n’était pas assez grand pour qu'on put y observer les contacts in-
térieurs , ce qui arrive lorsque le diameétre de I'image solaire est &
la moitié de Ja grande diagonale du réticule dans un rapport plus
grand que celui du rayon 4 la moitié de la somme du rayon et
du sinus de la moitié de I’angle aigu du réticule, on déterminera la
corde décrite par le centre du soleil , en dedans du réticule, au
moyen seulement des deux contacts extérieurs ; car , dans le triangle
rectangle ABE , on a ( en supposant le rayon des tables =1 )

AD
AE :AB::1:Cos.b; donc AE= — . par la méme raison A”/F
Cos.b

AmBm AB

vy S AL puisque AA”=EF-4}AE+4A”F , on a

2AB

Cos.b

EF=AA/"—

)

cest-i-dire , que Ja corde décrile par le centre du soleil en dedans
du réticule est égale @ la ligne décrite par ce centre dans lin-
tervalle de temps écoulé entre les deux contacts extérieurs, diminuée
du quotient de la division du diamétre du soleil par le cosinus
de la moitié de langle aigu du réticule.

Si, & raison de l'interposition des nuages, ou par quelque autre
accident , on ne pouvait observer que les deux contacts intéricurs,
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on déterminerait de méme la valeur de la corde décrite par le centre
du solcil, en dedans du réticule; car il est évident que , lors dun
premicr contact intérieur, la distance du centre du soleil au milieu

A'B/ .
D de la corde EF est AAD=A/F—DF= E——b—{EF,etqu’bl’mS-
0S.
tant du second contact intérieur cette distance est AVD=A”E—DE
A//B// .
= c b-—}EF; ajoutant ces deux équations , en faisant attention
0S.
que A’B’=A”B”=AB, on aura
AA/= AD4HAD=AA/= 222 _FF |
Cos.b
d’ott Pon tire
QAB
EF = —A’AY -
Cos.b A ’

cest-d-dire , que la corde décrite par le cenire du soleil en dedans
du réticule est égale au quotient de la division du diaméire du soleil
par le cosinus de la moitié de langle aigu du réticule , moins la
ligne décrite par le centre du soleil dans Pintervalle de temps écoulé
entre les deuzx contacts intéricurs.

Lorsque le réticule est si petit ou Dlamplification de la lunette
si grande que le rapport du demi-diametre de l'image du soleil &
la moitié de la grande diagonale du réticule est plus grand que
celui du rayon au cosinus-verse de la moitié de 'angle aigu du réti-
cule, les coutacts de Iimage soliire ne peuvent plus avoir lieu, ni
en dedans ni en dehors du réticule , ct cet instrument devient
alors inutile pour l'usage que nous proposons ici.

Ainsi , par exemple, dans le réticule de Bradley, ou la moitié
4 de P'un des angles aigus est de 206.° 33/ 54, si le rapport du demi-
diameétre de l'image solaire a la moitic de la grande diagonale du
réticule est plus grand que celui de 1 & 0,7230 , ou que cette
demi-diagonale sous-tende dans le cicl un angle plus petit que 22/ 4¢
(le diametre du soleil apogée étant de 317 317 ) , on ne peurra
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observer, daus (o rcticule, les contacts interieurs: ct si ce rapport
est plus grand que celui de v & 0,5528 , ou que cette moiti¢ de
la grande disgonasle scus-tende dans le ciel unangle moindre 8/ 317,
ce reticule ne pourra étre d'avcun usage pour P'observation des taches
du soleil. Hors ce dernier cas, si on a observé sculement les deux
contacts extéricurs , et quon reduise en degrés le temps ¢eoulé entre
ces deux contacts, c’est-3-dire, entre le commencement de l'entrdée
et la sortie totale du soleil hors du réticule ; on retranchera de cect
arc le diamdétre du soleil divisé par le cosinus de =20G° 33/ 347,
ou, ce qui revient au mcéme , multiplié par la sécante de cet arc,
gni est égale & 1,11803 3 le reste sera 'arc que l'on peut prendre
pour une ligne droite décrite par le centre du soleil en dedans du
rcticule. On retranchera , au contraire, du diamétre du seleil multiphié
par 1,11803, le temps écoulé entre les deux contacts intérieurs re-
duits en degrés, si on n’a observé que les deux contacts intérieurs ,
et on aura également la corde décrite par le centre du soleil en
dedans du réticule, dans ce dernier cas.

Pour déterminer la différence d’ascensions droites on additionncra
les temps des deux contacts extérieurs ou les temps des deux contacts
intéricurs , et l'on prendra la moiti¢ de la somme , cec qui donnera
le temps du passage du centre du soleil par la diagonale XV ou
par le cercle horaire qui passe par le milicu du réticule. On addi-
tionnera de méme les temps de entrée et de la sortie de la tache
du réticule, et la moitié de la somme donnera le temps du passage
de la tache au méme cercle horaire. La différence des temps de
ces dcux passages scra la différence en ascension droite dont la
tache scra plus avancée que le centre du soleil , si le passage de
ce centre au cercle horairc a précédé le passage de la tache , et
au contraire moins avancée , si le passage de cette tache a suivi
le passage da centre du soleil.

Si on obscrve le premier contact extéricur et le premier contact
intéricur ou bien le second contact intéricur et le second contact

extérieur, on pourra ¢également déterminer le temps du passage du
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centre du soleil par le cercle horaire qui passe par le milieu du
réticule. Pour cela , on remarquera que la distance du centre de
lI'image solaire a la grande diagonale du réticule a I'instant du premier

1. r AB .
contact extérieur est égale X c b—|—§EF, et que cette distance , a
0S.
) . . . AB
I'instant du premier contact intérieur, est égale 2 b-—-;EF;dOHC:
0S,

au milieu du temps écoulé entre le premier contact extérieur et le
premier contact intérieur, la distance de I'image solaire a cette diagonale

g r ) AB . 90
& droite est égale & Cop b Par la méme raison, le centre de I'image

solaire , au milieu du temps écoulé entre le second contact intérieur
et le second contact extéricur est eloigné de la méme diagonale &

ke de la me e 28 , ;
gauche de la méme quantité Tooy i Par conséquent, pour avoir le

temps du passage du centre du soleil au cercle horaire qui passe
par le milieu du réticule , on additionnera le temps du premier
contact extérieur avec le temps du premier contact intérieur , on
prendra la moitié de la somme & laquelle on ajoutera la quantité
AB . , v 1 - o e

o réduite en temps, c’est-a-dire, le demi-diametre du soleil divisé par
15C0s.Déc.@Cos.b ; on retranchera au contraire cette méme quantité

de la moitié de la somme des temps du second contact intérieur et
du second contact extérieur; et, dans les deux cas, on aura le
temps du passage du centre du soleil au cercle horaire qui passe
par le milieu du réticule ; et, en comparant ces temps avec le temps
du passage de la tache par le méme cercle, on aura la différence
d’ascension droite de cette tache avec le centre du soleil.

Le réticule rhombe peut , comme on voit , servir pour déter-
miner la position des taches d’un astre dont on ne peut voir qu'un
seul bord : comme cela a lieu pour la lune (le jour de Popposition
excepté ) ; puisqu’il suffit, pour avoir la corde décrite par le centre

de la June, d'observer le premier contact extérieur et le premier
contact
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contact intérieur du bord précedent, lorsque la lune est en croissant,
ou le second contact interieur et le second contact extéricur, lors-
que la lune est en décours. On prendra la différence entre le temps
écoulé entre ces deux contacts, respectivement dans chaque cas,
et le temps que la tache a mis pour traverser le reticule, en re-
tranchant le plus petit du plus grand ; et on multipliera cette dif-
férence de temps, pour la réduire en arc ( si le rcticule employé
est celui de Bradley ) par

360.2(Cos.Décl.App.»)
Q

’

( © étant le temps écoulé entre le passage de la lune au méridien
qui a précédé et celui qui a suivi l'observation ) le produit scra
la différence de déclinaison entre la tache et le centre de la lune,
La tache sera au nord du centre de la lune si , la lone étant au
nord de I’dquateur et passant par la partie supérieure du réticule ,
le temps employé par la tache pour traverser ce réticule est
plus long que le temps écoulé entre les deux contacts. La tache
sera , au contraire, au sud du centre de la lune , si une de ces
conditions vient & changer , ou toutes les trois ensemble.

Pour déterminer le passage du centre de la lune par le cercle

horaire qui passe par le milieu du réticule , on remarquera, comme

nous 'avons déja fait, que la distance de ec centre & ce cercle horaire ,

1 . . r . AB

a l'instant du premier contact extéricur cst égale & +-LF, ct
° Cosd ~ + 7

que cette distance, & linstant du premier contact intérieur cst égale &
AB

Cos.b
contact extérieur ct le premier contact intérieur, la distance da contre
de la Iune au cercle horaire est ¢gale i AB -onsé

Coug i PAT consequent, pour
avoir le passage de ce centre 4 ce cercle, on additionnera le temps
du premicr contact extéricur avec le temps du premier contact im-

térieur, et on prendra la moiti¢ de la somme 3 Jagrelle on ajoutera

Tom, 1V, 4+

—:EF; donc, au milieu du temps écoulé entre le premicr
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AB vy e ’ v e
la quantité —— réduite en temps, c’est-a-dire , le demi-diambdtre

horisontal de la lune multiplié par

&)
360.°Cos.Décl.App.»Cos b ;

on retranchera au contraire cette méme quantité de la moitié de la
somme des temps du second contact intérieur et du second contact
extéricur, et on aura, dans les deux cas, le passage du centre de
la lune par le cercle horaire qui passe par le milien du réticule;
et, en comparant ce temps avec le temps du passage de la tache par
le méme cercle, on conclura la différence d’ascension droite entre
la tache et le centre de la lune.

On corrigera cnsuite les différences d’ascension droite et de dé-
clinaison trouvées par les méthodes précédentes des effets du chan-
gement de la réfraction et de la. parallaxe en déclinaison pendant
le temps du passage par le réticule , suivant les formes connues (*).

Le calcul de la différence des déclinaisons est un peu plus simple,
en se servant du réticule de Bradley ; mais ce petit avantage ne
compense pas la difficulté qu’il y a de construire exactement ce
réticule. Je propose aux astronomes de substituer au rhombe choisi
par Bradley un rhombe composé de deux triangles équilatéraux
opposés, et décrits sur une méme ligne servant de base qui devient
la petite diagonale de ce rhombe représenté dans la figure. La
description du triangle équilatéral qui fait le sujet de la premicre
proposition des élémens d'Euclide , est la plus simple et la plus

facile de toutes les opérations géométriques. On pourra donc cons-

(*) Voyez 'Astronomie de M. de Lalande , 3.° édit. , tom. 2, pag. 679 et

suiv., ou le Traité de trigonoméirie rectiligne et sphérique par M. Cagnoli ,
2.¢ ¢édit,, pag. 476 et suiv,
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truire , avec la plus grande exactitude, le réticule que je propose ;
et, pour réduire les observations que l'on fera avec ce nouvel ins—

trument , il suffit de remarquer que la moitic CX de la grande
diagonale est a la petite diagonale YZ ( égale au coté du rhombe )

comme /3 est & 2. Il faut donc multiplier par V' la différence
des cordes décrites dans ce réticule par les astres que I'on compare ;
c’est-d-dire ( en conservant les dénominations précédentes ) , quon
a, pour les obscrvations faites & ce réticule,

2

D=(TwrJ). (i\_/_’ . Cos.Décl.@)

=T «¢) . (12,0904. Cos.Décl.O).

On pourrait méme , sans craindre d’erreur sensible , multiplier simple-
ment la différence des temps des passages par 13 fois le cosinus de la décli-
naison du soleil ; et le calcul des obscrvations, faites au nouveau réticule
sera aussi simple que celui des obscrvations faites au réticule de Bradley.

A l'égard des formules que nous avons donndes pour les obser-
vations des taches de la lunc, on les réduira & ce nouveau réti—

cule, en les multipliant parlﬂ ou par 0,866 ; et comme , dans
2 -

cc nouveau réticule , Vangle & est de 30.° , il faudra diviser le
diamétre du soleil par le cosinus de 30.°, ou, ce qui revient au
méme , le multiplier par la sécante qui est égale a 1,1547 , dans
toutes les formules ot entre I'expression da diamétre du soleil |
divisé par le cosinus de la moiti¢ de l'angle aigu du réticule. Dans
ce réticule la moitié de la grande diagonale doit sous-tendre dans
le ciel un angle de plus de 23/ 39 pour que les contacts intéricurs
puissent avoir lieu , ct de plus de 7/ 537 pour les contacts extericurs,
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DYNAMIQUE.

Solution nouvelle du probléme de la Tractoire plane, et
éclaircissemens sur ce probléme ;

Par M. Dusuvar, professeur & I'école de lartillerie et du
génie,

AN NN

Lettre de M. Frangais, professeur & I'école de lartillerie
et du génie,

Au Redacteur des Annales ;

MONSIEUR ,

SI javais prévu que vous dussiez publier aussi prochainement la
solution donnée par feu mon frére du probléme de la Tractoire (*),
je n'aurais pas omis la phrase suivante , qui vient immédiatement
aprés I’équation ¢/Cos.a-cSin.a=5Cos.«.

« Il faut faire attention que ces vitesses initiales ne sont pas celles
» qu’on a pu imprimer au mobile M par quelque impulsion ; ce
» sont les résultats et de I'impulsion imprimée & M et de Taction
> de P sur M; de sorte que, ¢l n’y a point d’impulsion, elles

" Voyez la page 305 de ce volume,
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» sont dues uniquement & l'action de P. La vitesse 5 n’est pas non
» plus due i la seule action de la force accelératrice p, mais & cette
» action modifiee par l'effet de I'impulsion donnée & M. »

Cette phrase aurait servi a éclaircir I'espéce de paradoxe que vous
trouvez dans cette équation de condition. Mais voici une note,
sur le méme objet, qui m’a été remise par mon collégue M. Dubuat;
elle explique completement la signification de cette équation, ct offre
un trés-bel exemple de la maniére de déterminer les vitesses initiales
dans les problemes de mécanique. Vous penserez sans doute comme
moi , Monsieur, qu’elle ne scra pas déplacée dans les Annales.

1. L’équation ¢/Cos.a=-cSin.e=4Cos.« n’est autre chose que 1'¢-
quation genérale de condition (x—az/)(do—da/,+ydy=o0, dans laquelle
on a mis pour les variables dz/, dz , dy , #—a’/, y les valeurs
bdt , ¢/dt, cdt, aCos.e, aSin.z, qu'clles ont & l'origine du mou-
vement.

2. Or, I'équation générale (r—2/)(dx—da’)4ydy=o0 signific que

) dx d . . .
les vitesses variables — —(Ti-’- du point M, dans la direction des

13 . . dx .
axes des coordonnées, sont telles que, si de la vitesse = > Sui-
G

. da! . .
vant l'axe des 2, on rctranche la vitesse v du point P, la vitesse

restante ff_;_dz forme , avec la vitesse j—{— suivant l'axe des y, une
résultante perpendiculaire au rayon vecteur PM ; d’ou il suit que
la vitesse du point M, considérée soit au commencement soit dans
la suite du mouvement , peut toujours étre décomposée en deux
vitesses , I'une parallcle & I'axe des 2 constante et égale a &, lautre
perpendiculaire au rayon vecteur , et dont la valeur peut étre
quelconque,

3. Donc, si la vitesse imprimée au point M, & l'origine du mou-
vement , n’est pas décomposable en deux vitesses suivant la méme
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loi, cette vitesse n'est pas la vitesse initiale d'aprés laquelle il faut
déterminer les constantes d’intégration.

4. Soit, a lorigine du mouvement , 7 la vitesse imprimée au
point M, et g l'angle que fait sa direction avec I'axe des x : ses
composantes sont }Cos.g, dans le sens des #, et FSin.g, dans le
sens des ¥.

La premitre composante FCos.g est équivalente aux deux vitesses
b et PCos.e—b, dont la premitre b subsiste seule, en verta de
Véquation de condition; mais la vitesse #’Cos.s—& n’est pas détruite
en totalité : en la décomposant en deux vitesses , 'fne suivant le
rayon vecteur , et lautre perpendiculaire & ce rayon; celle-ci, dont
Vexpression est (FCos.t—5)Sin.« , subsiste , tandis que lautre est
détruite.

La vitesse /Sin.g, imprimée dans le sens des y , étant aussi dé-
composée en dcux vitesses , l'une suivant le rayon vecteur, et
lautre perpendiculaire 4 ce rayon ; la seconde subsiste seule , et
son expression est VSi.n.ﬁCos.u.

5. La vitesse initiale, résultant de la vitesse imprimée 7, est
donc composée d’une vitesse b, parallele & laxe des x, et d’une
vitesse (¥ Cos.a—2)Sin.«4FSin.gCos.« , perpendiculaire au rayon
vecteur ; ce qui donne pour la composante ¢/ de la vitesse initiale,
suivant l'axe des x

/=51 { VSin.(«-}-8)—bSin.«} Sinue ;
et pour la composante ¢ de la vitesse initiale suivant l'axe des y
c="{ ¥Sin(at£)~bSin.z} Cos.«.
6. Mais voici une autre difficulté que présentent les équations

(11) et (12).

Si Ton fait , dans la premiére ¢=o0 , ou ¢/—b=o0 dans la se-
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conde, on a a=y/a— i+ o ; ce quin’a pas de signification. Pour
lever cette diificulté, je remarque qu’en vertu de l'équation de con-
dition (¢/—0)Cos.«+cSin.z=0, I'hypothese c=o0 donne (¢/—5)Cos.«=0,
et par conséjuent ¢’=04 ou €os.a=o.

Soient d'abord ¢=o0, ¢'=2. Ces dcux équations signifient que
la vitesse initiale du point M, parallele & I'axe des y est nulle, et
que sa vitesse initiale parallele a l'axe des y est &, et ¢gale par
conséquent a la vitesse du point P dans le méme sens; les deux
points M ct P sont donc animés, a l'origine du mouvement , de
vitesses ¢gales et paralleles ; I'équation de condition laisse subsister
ccs deux vitesses dans le premier instant et dans toute la suite du
mouvement. Le point M décrit donc une droite paralltle & Vaxe
des &, avec une vitesse constante ct égale & &; ce qui donne y=Const.
et w="5bi+4Const.

Soit , en second lieu, c=o0 et Cos.e=o0. Ces deux équations si-
gnifient que la vitesse initiale du point M parallélement avx y .
cst nulle, et que lordonnée du méme point est aussi nulle, &
Vorigine du mouvement, sans rien dcterminer sur la vitesse initiale
paralléle aux #. Les deux points M, P, & l'origine du mouvement,
sont donc sur l'axe des z, et le point P a une vitesse 4 qui , cn
vertu de P’équation de condition, ne pcut ni augmenter ni diminuer,
Il est aisé de conclure de la que le systtme des deux points s
mouvra , dans le premier instant et pendant toute la durée du mou-
vement , sur l'axe des z, avec une vitesse commune & ; c¢’est-a-dire,
qu'on aura y=o , z=bt-}-Const.

Au surplus , le probléme peut étre résolu de la maniére suivante:

7. Les équations de condition sont , en faisant le rayon vec—
teur =1,

(#—z/)y*=1, a'=bt;

i

celles du mouvement sont
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dxx dzy
T meE—a) =y

» étant une indéterminée. Soient y=Sin.¢ et —2/=Cos.¢ ; en subs<
tituant ces valeurs dans les équations du mouvement, on trouve

d2o . d2p
— Sin.p— T Cos.p=xCos.p ,
dzo

dze _, .
T Cos.p-—zt—2 Sin.¢ = xSin.¢ ;

et, en éliminant
d*¢=o0, donc e=Ar+A4", et
2=bt-4Cos.(At4A4) , y=Sin(Adi4-4).

En déterminant les constantes d’aprés la vitesse initiale 77, faisant
avec l'axe des # un angle g, on a

x:bt+Cos.{ [VSin.(u—{-p)—&Sin.u]t—}—u} ,
y:Sin. g [VSil’l.(u-‘—-ﬁ)—bSin.m]t—l—u} .

Ces formules expriment que le point M se meut autour du point
P d’un ‘'mouvement uniforme et continu , avec une vitesse J'Sin.(a45)
~—bSin.e.

8. Si l'on suppose , comme ci-dessus , que la vitesse initiale du
point M, paralitle & P'axe des y est nulle, et que celle parallele
% laxe des z est b ; on trouve, en faisant F'=b et g=o0 , y=Sin.«,
#=>5t+4Cos.« ; résultat conforme & celui du n.> 6. Si 'on suppose
encore que la vitesse initiale du point M, parallelement aux y est
nulle, et que lordonnée du méme point est aussi nulle, & lorigine
du mouvement; on trouvera, en faisant «=0, g=o0, conformément
A ces hypothéses, y=o, a#=br4-1, comme ci-dessus,

Metz , le 25 avril 1814.
CHRONOLOGIE.
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CHRONOLOGIE.

Supplément @& Particle sur le calendrier inseéré a la
page 275 de ce volume ;

Par M. J. F. Fraxgats, professcur & I'école de lartillerie
et du génie,

[a T Sla ¥l Vi Vi Vo Vo V]

PBOBLEME II1. Trouver ldge moyen de la lune , pour une

date donnée d’'une année quelcongue , tant dans le calendrier Julicn
que dans le calendrier Grégorien ?

Solution. En conservant les notations du probléme 1.°* et repré-
sentant de plus par 7 le reste de la division de la date du jour
donné, comptée depuis le 1.6 janvier, par 59, et par L lige
cherché de la lune, on aura

L=534i—d=53+i—d—30=534+i—d—5q=>53-+i—d—8qg.
on choisit, entre ces quatre valeurs, celle qui donne L < 3o.

Remarque. On peut obtenir immédiatement 7, en ajoutant & la
date du mois le nombre correspondant de la table suivante.

l

fév. [mars. [ avril.| mai. | juin. | juil. aom.‘svl)t.‘ oct, | nov. | déc,

janv,

37 ‘ 9 | I

o 31 o 31 2 33 4 35 , 7

Ezemple, On demande dge de la lune au 17 d'avril -453, dans
le calendrier Grégorien?
On a ict d=-22, /=48; done

dom, 1}. 3
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L=53+48-—-22—59:=20 ,

ainsi la lune aura zc¢ jours.
§'il ‘s’agissait du 12 d'avril de la méme année, dans le calendrier

Julien, on aurait d=z2>, /=43 ; d’ou

-_—20

—52.d.77 —
L=53-4-4{3—20—5g=17 ,

ainsi la lune aura 17 jours.

Je ne pense pas que I'ige moyen de la lune, donné par cette
méthode , differe jamais d'un jour entier de son age vrai.

Ce probléme joint aux deux autres me parait présenter un ca-
lendrier perpétuel aussi complet qu’il soit possible , du moins pour
Vusage civil, qui est I'objet principal d’un calendrier. 4

Metz, le 25 d’avril 1814.

GEOMETRIE.

Recherche de la surface plane de moindre contour ,
entre loutes celles de méme étendue , et du corps

de moindre surface, entre tous ceux de méme ¢o-
lume ;

Par un ABONNE,

(rerconne

b Ya U Vo Vi o Vo Vo 5

DANS ce qui va suivre, j'admettrai , comme propositions faciles
3 établir, les deux lemmes suivans:

LEMME 1. Entre tous les trapizes qui ont les deux mémes
cdtés paralléles et la méme section perpendiculaire a ces cdtés ,
celul dans lequel la somme des cités non paralléles est un mi-
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nimum, est /e trapéze dans lequel la droite gui joint les milicux des c6-
tés paralléles est perpendiculaire & la direction commune de ces cotés.
LEMME 1I. Entre tous les troncs de parallélipipedes qui ont
les quatre mémes arétes latérales ct la méme section perpendiculaire
a ces arétes, celui dans lequel la scmme des aires des faces non
paraliéles est un minimum , est lc tronc de parallélipipéde dans lequel
les milicux des arétes latérales se trouvent situés dans un miéme
plarn perpendiculaire & la direction commune de ces arctes. (*)

PLOBLEME I. Entre toutes les surfaces planes d'une méme
étendue donnée , quelle est celle qui a le moindre périmétre ?
Solution. Le caractere de la surface cherchée est qu’en conservant

la méme étendue, elle ne puisse changer de figure, sans augmenter

8
de contour.

Concevons qu’on nous donne une surface plane comme étant celle
de moindre contour, parmi toutes celles d’une étendue égale & la sienne.

Menons , dans cette surface , une corde quelconque C, et une
perpendiculaire P sur le milieu de cette corde. Concevons ensuite
une infinité d’autres cordes infiniment voisines les unes des autres,
et toutes paralltles & C; elles diviseront la surface donnée en élé-
mens que Pon pourra considérer comme des trapézes , dont les
c6tés non paralleles formeront , par leur réunion, le périmetre de
Ia surface dont il sagit.

Supposons que quclques - uns de ces trapézes n'aient pas les
milicux de leurs cotés paralltles sur la droite P, nous pourrons,
dans I'un quelconque de ceux-ci, faire glisser les cotés paralleles
perpendiculairement & P, jusqi’d ‘ce qu'ils soient parvenus a cette
situation ; nous pourrons cn faire ensuite de méme pour les deux
trapézes élémentaires entre lesquels celui-la se trouve situé , et
continuer ainsi, de proche en proche, jusqu ce que nous ayons
amené toutes les cordes parallcles & C A avoir leur milieu sur P

(*) Voyez , pour la d'monstration de ces propositions , wticle des Guestions
résolues , qui suit immédiatement celui-ci, J D.G.
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Par cette transformation, nous n’aurons rien changé & [Pdtendue
de la surface proposée, et nous aurons ( Lemme I ) diminué son
contour ; d’ol nous devrons conclure que ce contour n’tait pas
d’abord un minimum.

Lec caractére de la surface de moindre contour est donc que toutes
les cordes perpendiculaires & P aient leur milieu sur cette droite
ou, en d’autres termes, que I’ en soit un diamétre principal; et,
puisque la dircction de P est arbitraire , il en faut conclure que
tous les diametres de la surface de moindre contour doivent étre des
dfameétres principaux : proprieté qui appartient exclusivement au cercle.

Corollaire 1. 11 résulte de la que , de toutes les surfaces planes de
méme contour , le cercle est celle qui a le plus d’étendue.

Soient en effet C un cercle et $ unc autre surface plane quel-
conque de méme périmetre p. Concevons un cercle G/ équivalent
a S, et soit p/ sont perimetre. D’aprés ce qui précéde, on aura
p'<p, d'otion devra conclure C/<C; puis donc qu'on a C/'=S§,
on aura aussi S<C.

Corollaire 11. De toutes les surfaces planes de méme étendue,
terminées par une droite donncée @ ct par une ligne se terminantaux ex-
trémités de cette droite , celle de moindre contour est le segment de
cercle dont @ est la corde.

Soient ea effet S le segment et T' une autre surface équivalente
construite aussi sur &, et soient respectivement s et ¢ les longueurs
des deux lignes qui, avec @, terminent ces surfaces. Soit achevée
la circonférence dont s fait partic ; soient s/ I'arc ct &/ le scgment
supplémentaires ; on aura, par I'hypothtse S/4-S=S/-4T': si dons
on pouvait avoir s>, on aurait aussi s/-s>s/4¢, d’ou il résul-
terait cette conséquence absurde que le cercle nest point la surface
du moindre contour, parmi toutes celles de méme étendue.

Corollaire II1. De toutes les surfaces planes de méme centour,
termindes par une droite donnce @ , et par une ligne se terminant
aux deux extrémités de cette droite, celle de plus grande étendue
est le scgment de cercle dont a4 est la corde.
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Soient en effet S ce segment et T une autre surface construite

¢galement sur @, et ayant méme périmetre p que S. Soit construit

sur ¢ un segment S/ ¢quivalent 3 T et dont le périmétre soit p/;

nous aurons ( Coroll. 1I') p’<p, d’ott nous conclurons §’<S; puis
donc que nous avons §&’=T, nous aurons ausst T <S.

PROBLEME II. Entre tous les corps d'un méme volume donné,
quel est celui qui est terminé par la moindre surface?

Solution. Le caractére du corps cherché est qu’en conservant le
méme volume , il ne puisse changer de figure sans augmenter de
surface.

Concevons qu’on nous donne un corps comme étant celui de
moindre surface, entre tous ccux d’un volume égal au sien.

Menons , dans l'intérieur de ce corps , une corde quelconque C,
et, par le milieu de cette corde, conduisons un plan P qui lui
soit perpendiculaire. Par D'intersection de C et P, faisons passcr
arbitrairement , dans le plan P, deux droites M, N perpendiculaires
entre elles. Menons, dans le méme plan, une infinité de paralléles
a4 M ct une infinité de paralleles 3 N, et enfin par les unes et
les autres conduisons des plans perpendiculaires & P. Ces plans di-
viseront le corps proposé¢ en une infinité d’élémens , lesquels pourront
étre considérés comme des troncs de parallélipipeédes dont les faces
non paralleles formeront, par leur réunion , la surface du corps
dont il s’agit,

Supposons que quelques-uns de ces troncs de parallélipipédes n’aient
pas les milieux de leurs arétes latérales sur le plan P ; nous pourrons,
dans I'un quelconque de ceux-ci, faire glisser les arétes latérales,
perpendiculairement au plan P, jusqu'a ce qu’elles soient parvenues
a cette situation; nous pourrons ensuite en faire de méme pour les
huit troncs de parallélipiptdes ¢élémentaires entre lesquels celui-la
se trouve situé, et continuer ainsi, de proche en proche, jusqu'a
ce que nous ayons amené toutes les cordes paralltles & C a avoir
leur milieu sur le plan P.
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Par cette transformation, nous n’aurons rien changé au volume
du corps proposé, et nous aurons ( Lemme 11') diminué sa surface ;
d’'ott nous devrons conclure que cette surface n’était pas d’abord un
minimum,

Le caractére du corps de moindre surface est donc que toutes
les cordes perpendiculaires au plan P aient leur milicu sur ce plan
ou, en d’autres termes, que le plan P soit un plan-diamétre prin-
cipal ; et, puisque la direction de P est arbitraire , il en faut conclure
que tous les plans-diameétres du corps de moindre surface doivent
étre des plans principaux : propricté qui apparlient exclusivement
a la sphere.

Par un raisonnement tout a fait semblable & celui qui a été em-
ployé ci-dessus , on conclura facilement de ee résultat les trois corol-
laires suivans :

Corollaire 1. Entre tous les corps de méme surface, la sphére
est celui qui a le plus grand volume.

Corollaire 1l. De tous les corps de méme volume , terminés d’une
part par un cercle donné et de l'autre par une surface se termi-
minant 4 la circonférence de ce cercle , celui de moindre surface
est le segment sphérique dont ce cercle est la base.

Corollaire III. De tous les corps de méme surface, terminés d’une
part par un cercle donné ct de l'autre par une surface se terminant
a la circonférence de ce cercle , celui du plus grand volume est
le segment sphérique qui a ce méme cercle pour base.

Remarque. Yai cru d’autant plus utile de ramener la démonstration
des propridtés de minimum dont jouissent le cercle et la sphére &
des notions élémentaires que ces propriétés ne sont pas moins remar-
quables qu’clles sont importantes , et que les démonstrations qu’on
en a données par la méthode des variations , outre qu'elles reposent
sur des considérations trop élevées pour étre i la portée du vulgaire
des géometres , ne me paraissent point asscz developpées pour ne
laisser aucun nuage dans Desprit.
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Par exemple, Bossut, i la page 474 du second volume de son
Calcul intégrel , rameéne le probléeme a I'intégration des équations

dz=pdr+4-¢dy ,
Pdy4-Qdz=o ,

A

dans lesquelles on a

P=—L Q= -1 ..
Vit Vidpdgs '

mais, au lieu d'intégrer ces équations, il se contente de faire voir
qu’elles sont satisfaites par l'équation de la sphére , ce qui parait
prouver seulement que la sphére est un cas particulier de la surface
plus générale qui résout le probléme , et n’exclut pas conséquemment
toute autre surface qui pourrait également , comme cas particulier,
étre déduite de celle-la.

L’élimination de P et Q donne 1’équation du second ordre

() r—apgs-H(i-bpo )= CQutprnteg)

et c'est sous cette forme que la présente M. Lacroix  la page (717)
de la premitre édition de son Traité de calcul intégral; mais M.
Lacroix observe lui-méme que cette équation n’est pas seulement
satisfaite par l'équation d’une sphére , mais encore par celle d’un
cylindre. Voila donc une difficulté qui me paraitrait digne d’oc-
cuper les analistes , et dont Véclaircissement semblerait propre 2
jeter quelque lumiére sur les applications de la méthode des va-
riations ; applications communément trop peu développdes dans les
traités relatifs A cette branche d’analise.
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Solutions des quatre problémes de géomeélrie proposés
a lg page 236 de ce volume.

[a. %ia Via Vo Vi, ¥ Vo Vo V)

Solution du premier probléme ;

Par M. C. CAsTELNAU , éleve du lycée de Nismes,

THE'OBEME. De tous les trapizes qui ont les deux mémes cdiés
paralléles , et la méme section perpendiculaire & ces cdtés, celui
de moindre contour est le trapéze isocéle , ¢’est-a-dire , celui dans
lequel la droite qui joint les milieux des cdtés paralléles est per-
pendiculaire ¢ leur direction commune.

Démonstration. Soit le trapéze isoctle ABCD ( fig. 2 ) et un
autre trapéze A’B/CD de méme haateur , et dans lequel on ait
A’/B’=AB; et conséquemment AA’=BB/; il s’agit de prouver que
le contour de ce dernicr surpasse celui du premier.

La question se réduit évidemment a prouver que DA/4-CB/ est
plus grand que DA--CB.

Pour y parvenir, soit prolongé DA, au-dcld de A, de maniére
quon ait AE=AD et soit mende A’E.

Par cette construction, les triangles AEA’, BCD/ sont égaux ;
car on a AA/=BB/, AE=AD=BC, et Ang.A’AE=Ang.DAB=
Ang.CBB/; donc EA/=CB".

Mais , dans le triangle DA’E, on a

DA/
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DA/4A/E>DE=DA+AE ;

on aura donc aussi
DA’4-CB’>DA-4-CB. (*)

Solutions des trois autres problémes ;
Par un ABonNnNE,

LEMME. De tous les troncs de prisme iriangulaires dans les-
quels une face latérale , laréte opposée et la section perpendiculaire
aux aréles latérales sont les mémes, celui dans lequel la somme
des aires des bases estla plus petite | est celui ou les plans de ces
bases sont également inclinés sur celul de la face latérale donnée.

Démonstration. Soient (fig. 3) AGHB la face latérale donnée,
MN Jlaréte opposée et CKF la section perpendiculaire aux arétes,

ausst données.

Soient P, Q les projections respectives de M, N sur AGHB;
menons MP , NQ et PQ, rencontrant respectivement GA, FC,
HB en S, L, T; soit menée KL=MP=NQ ; des points P, Q
soient abaissées respectivement sur AG , BH les perpendiculaires PD,

(™ La méme démonstration prouve trés- simplement , 1.° que, de tous les
triangles de méme base et de méme hauteur, le wriangle isoccle est celui de
moindre contour ; 2.° que , dans tout triangle , la droite qui va d’un sommet
au milien du coté opposé est moindre que la demi-somme des deux autres cotés.

Par un raisonnement tout a fait semblable & celui de M. Castelnau, on par-
viendra aisément a démontrer que , de tous les ironcs de parallélipipides dans
lesquels les arétes latérales et la section qui leur est perpendiculaire sont les
mémes , et o deux faces latérales opposées sont des irapézes isocéles , celui
dont la somme des aires des bases , et conséquemment la surface totale est lg
plus petite est celui dans lequel les deux autres faces latérales sont aussi des

trapézes isocéles.
J. D. G.

Tom. 1V, 46
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QE, et solent mendes MD, NE, lesquelles seront aussi respecti~
vement perpendiculaires sur GA, HB.
Faisons
AG=a, Ang.GAC=«, PS=vx,

KL=MP=NQ=¢%.
BH=?% , AngHBC=p, QT=y,

Nous aurons.

Aire AMG = : AG.MD= TAG 1—\,1—1_) ' _*_-ﬁf)t =:a \/k2+x25in.2a ’

AireBNH=:BH.NE=:BH ]/ NQ +4-QE =:by/Tqy5mp ;

si donc on a

Aire AMGH-AireBNH=minimum ,

on devra avoir

ay/ igaSmrat-by/ oty Smag==minimum |,
gt par conséquent
axdxSin.zx bydySin.2p )
= =0; 1
Vi4x2Sinze ~ \Jk*4y2Sin2g ! (
mais , d’un autre c6té, on a

24y =SP4+QT=ST—PQ=ST—MN=Constante ;

4’0o
sz3sy=o. (2)
Par la combinaison de ces deux équations, on aura
axSin, 2« _ bySin.2g ) (3)
Vie4-z:Sinca ~ \fledy*Sinzg

mais , CF pouvant étre également exprimé par 4Sin.« et par 5Sin.g;
an doit avoir
4Sin.g=aSin.« ; )
dquation qui, multipliant la précédente, donne
2Sin.e ¥Sin.g . (5)
VEgzSince  \kdry*Sing
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PD _QE
o MD — NE °

ou encore CosMDP=CosNEQ , d'ott Ang.MDP=Ang NEQ,

comme nous l’avions annoncée.

THEOREME. De tous les troncs de prismes triangulaires qui
ont les trois mémes arétes latérales et la méme section perpen-
diculaire a ces arétes , celui de moindre surface est le tronc
de prisme triangulaire dans lequel les milieux des arétes latérales
sont dans un plan perpendiculaire & leur direction commune.

Démonstration. Ceci revient évidemment & dirc qu'il faut que
Pinclinaison du plan de I'unc des bases sur celui de chacune des
faces latérales soit égale a Dinclinaison du plan de lautre base sur
eelui de la méme face.

Supposons , en effet, qu'il n’en soit pas ainsi et qu’il y ait au
moins une des faces latérales sur laquelle les deux bases soient
inégalement inclinées ; en faisant mouvoir I'aréte latérale opposée
suivant sa propre direction, on pourrait toujours amener les incli-
naisons & étre égales ; et comme , par cette transformation la surface
du tronc se trouverait diminuée ( Lermme ), on devrait en conclure
qu’elle n’était pas d’abord un minimum.

Corollaire. Et, comme tous les troncs de prismes triangulaires
qui ont les mémes arétes latérales et la méme section perpendiculaire
a4 ces arétes ont aussi la méme surface latérale , il en faut conclure
que celui dans lequel le plan qui contient les milieux des arétes
latérales est perpendiculaire & leur dircction commune, est aussi celui
dont la somme des aires des deux bases est la moindre possible.

THEOREME. De tous les troncs de parallelipipédes qui ont
fes mémes arétes latérales et la méme section perpendiculaire &
ces arétes , celui de moindre surface est le tronc de parallélipipéde
dans lequel le plan qui contient les milicux des arétes latérales, est
verpendiculaire @ leur direction commune.

Démonstration. En effet, tous les parallélipiptdes formés avec
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les mémes arétes latérales et la méme section perpendiculaire & ces
arétes ayant la méme surface laterale , il suffit, pour remplir la
la condition prescrite, que la somme des aires des bases ou, ce
qui revient au méme , la somme de leurs moitiés soit la moindre
possible ; ce qui ramene la question au précédent corollaire, et prouve
la vérité de la proposition.

Corollaire. Donc aussi de tous les troncs de parallélipiptdes qui
ont les mémes arétes latérales et la méme section perpendiculaire &
ces arétes, celui dans lequel la somme des aires des bases est la
plus petite , est le tronc de parallélipipéde dans lequel le plan qui
contient les milicux des arétes latérales, est perpendiculaire a leur
direction commune.

THEOREME. De tous les troncs de parallélipipdes qui ont les
deuzx mémes faces latérales opposées et la méme section perpen-
diculaire aux arétes latérales , celut de moindre surface est le tronc
de parallélipipéde dans lequel les plans des deux bases ont des in-
clinaisons égales sur les faces latérales données.

Démonstration. En effet, dans tous les troncs de parallélipipedes
de cette nature, la surface latérale étant constante ; pour que la
surface totale soit un minimum,’il est nécessaire et il suffit que la
somme des aires des bases ou, ce qui revient au méme, la somme
des moitiés de ces aires soit la moindre possible, ce qui raméne la
question au cas du lemme ci-dessus , et démontre conséquemment
la vérité de la proposition.

Corollaire. 11 est facile de conclure de la que, siles deux faces
latérales opposées que l'on suppose étre données sont des trapizes
isoctles , les deux autres faces latérales opposées devront étre aussi

des trapczes isoceles. (*)

(*) La théorie développée dans le précédent aviicle (tant trés-claire , il serait
a désirer , afin de rendre cetle théorie teut A fait ¢lémentaire , quon piit trouver,
pour les trois dernicrs problemes, ou tout au moins pour le second , quelque
solution aussi simple que celle que M. Castelnau a donnée du premier.

J. D. G.
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GEOMETRIE.

Recherche du cercle qui en touche (rois autres sur
une sphére ;

Par M. GERGONNE.

sV Ve Vo T~ Vo Vo ¥}

DANS un mémoire adressé il y a quelques temps i l'académie
de Turin, jai déduit d'une analise trés-courte et trés-simple les
deux propositions suivantes :

1.° Trois cercles C, C/, G/ étant donnés d’une manidre quel-
conque sur un méme plan, soient menées les tangentes exlérieures
communes a C et C/, a G et C/; ces tangentes détermineront sur
C deux cordes de contact, se coupant en quelque point M ; elles
détermineront aussi sur les cercles G/ et C” deux autres cordes de
contact lesquelles , prolongées s'il est nécessaire , se couperont en un
autre point N ; or , si I'on joint ces points M et N par une droite ,
les intersections P, Q de cette droite avec C scront les points ol ce cercle
sera touché par deux cercles touchant & la fois les trois cercles C, C/,
C/’, et les touchant tous trois de la méme maniére ; c’est-a-dire , les en-
veloppant tous trois , ou les touchant tous trois extérieurement.

2.° Quatre sphéres S, S/, §7, §// étant données d’une manitre

Tom IV, n.° XII', 1. juin 181.4. 47
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quelconque dans Vespace , soient circonscrits extérieurement des cénes

aux sphéres S et &/, S et S, S et 8/ ces cones détermineront

sur la sphére S trois lignes de contact dont les plans se couperont
en un certain point M ; ces mémes cones détermineront aussi sur
S, S8, 8/ trois autres lignes de contact dont les plans, prolongés
s'il est nécessaire, se couperont en un autre point N ; or, si l'on
joint ces points M et N par une droite , les intersections P, Q de
cette droite avec la sphére S seront les points ot cetic sphcre sera
touchée par deux sphéres touchant a la fois les quatre sphéres S,
S/, 8, 8/’ ct les touchant toutes quatre de la méme manicre;
c’est-a-dire , les envcloppant toutes quatre ou les touchant toutes
quatre extérieurement.

Il est clair que ces propositions donnent la solution directe des
probléemes ou il s'agit de déerire un cercle qui touche trois cercles
donnés , ou de décrire une sphére qui touche quatre sphéres donndes,
du moins lorsqu’on exige que les trois cercles ou les quatre sphéres
donnés soient touchés de la méme maniére par le cercle ou par
la sphtre cherchés; mais jai fait voir, dans le mémoire cité, qu’en
faisant une combinaison convenable des angles et cénes cir-
conscrits intérieurement avec les angles et cénes circonscrits exté-
ricurement , on pouvait obtenir , par un semblable procédé , les huit
cercles qui peuvent toucher 4 la fois trois cercles donnés et les
seize spheéres qui peuvent toucher 4 la fois quatre spheres données.
Jai cherché en outre ce que devenaient les cordes de contact et
les plans de lignes de contact, lorsque les rayons de quelques-uns
des cercles ou de quelques-unes des spheéres donnés devenaient nuls
ou infinis , et j'ai ainsi établi le moyen de ramener a des pro-
cédds uniformes , et faciles 3 retenir, tous les problemes de Vilte
sur le contact des cercles, et ccux de Fermat sur le contact des
sphéres.

L’¢légante simplicité de ces solutions, indiqudes tout naturellement
par l'analise , m’avait fait désirer que cciles qui sont relatives a

trois cercles donnés sur un plan sappliquassent également a trois
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cercles donnéds sur une sphére (*) ; l'analogic m'avait méme fait
soupgonner fortement qu’il devait en étre ainsi. Le calcul m’a montré
que jétais dans lerreur a cet ¢gard ; mais en revanche, il m
fourni, pour trois cercles donnés sur une sphére , des constructions
qui peuvent facilement étre transportées & trois cercles donnés sur
un plan , et méme a quatre spheres données dans lespace , et
qui ne sont pas plus compliquées que celles que je viens d'indiquer
sommairement ; de maniére que j’ai enfin obtenu pour les probléemes
de 'une et de lautre sorte cette parfaite uniformité a laqueclle javais
principalement aspiré.

Avant d’entrer dans le détail des modifications que j'ai fait subir
3 mes premicres constructions , pour les rendre applicables a trois
cercles donnés sur une sphere, je dois présenter d’abord quelques
remarques propres a en faciliter lintelligence.

On sait que rien n’est plus facile quec d'obtenir P'équation de la
corde commune & deux cercles dont les équations sont données :
cette équation dtant rationnelle , il s’ensuit que la droite & laquelle
elle appartient est réelle, lors méme que les deux points qui doivent
en déterminer la situation sont imaginaires ; ¢’est-a-dire,, que deux
cercles tracés sur un méme plan ont encore une corde commune,
lors méme qu'ils ne se coupent pas ; c’est cette corde que M. Gaultier
de Tours a dénommée "Axe radical des deux cercles (**)

On démontre aussi bien facilement, par I'analise, et presque sans
calcul , que , trois cercles étant tracés sur un méme plan , soit
qu’ils se coupent ou qu’ils ne se coupent pas, leurs axes radicaux ou
cordes commnunes deux & deux concourent en un méme point
que M. Gaultier a nommé leur Centre radical. (***)

(* M. Carnot, A la page 415 de sa Géométrie de position y a donné I'¢hauche
d’unc solution analitique de ce problime. On peut aussi consulter la Correspondance
sur l'école puly.echniyue , tome IILC, n° 1, janvier 1814, pag. 10.

** Voyes le xv1. calier du Juurnal de Uécole polytechnique.

**") Méme ouvrage.
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Rien n’est plus aisé, comme on le voit, que de dcterminer 'axe
radical ou corde commune de deux cercles qui se coupent, Lorsqu’au
contraire les deux cercles ne se coupent pas , la chose n’est guére
plus difficile. Si en effet on décrit arbitrairement un troisiéme cercle
qui coupe a la fois ces deux-ld, il aura avec eux deux cordes
communes , et il résulte de ce que nous venons de dire sur le
centre radical , que le point de concours de ces deux cordes est un
point de l'axe radical des deux cercles donnés ; et, comme on sait
d’ailleurs que cet axe doit étre perpendiculaire & la droite qui joint
les centres, il se trouvera entiérement déterminé., Au surplus, on
trouvera peut-étre plus commode, dans la pratique , de chercher
un second point de cet axe , par un procédé pareil a celui qui
aura fait trouver le premier.

Sachant ainsi trouver P'axe radical de deux cercles , lors méme
qu’ils ne se coupent pas, la recherche du centre radical de trois
cercles , dans le cas méme ol ils ne se couperont pas, ne pré-
sentera plus aucune difficulté.

Tout ceci peut facilement étre étendu 4 des sphéres dans les-
pace. Ainsi le plan du cercle commun a deux sphéres, lequel plan
existe encore lorsque ces sphéres ne se coupent pas, est leur Plan
radical.

On détermine une droite appartenant & ce plan, en construisant une
sphére qui coupe 4 la fois les deux sphéres données et prolongeant
les plans des intersections jusqu'a ce qu’ils se coupent. Pour déter-
miner entiérement ce plan, on peut indifléremment , ou déterminer
une nouvclle droite qui y soit située , ou conduire par I'un quel-
conque des points de la premiére un plan perpendiculaire & la droite
qui joint les centres. .

Si trois spheres coexistent dans 'espace, elles donneront , en les
considérant deux & deux, trois plans radicaux lesquels se coupcront
suivant une méme droite qu'on appellera leur Aze redical, et dont
la constructicn n'effrira point de difficulté , d'aprés ce qui vient

B
“

clre dit.
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Si, enfin, quatre sphéres coexistent dans I’espace , elles donneront
étant prises trois A trois, quatre axes radicaux , lesquels concourront
en un méme point qui sera le Centre radical de ces quatre spheéres,
Ce centre pourra donc étre déterminé par ce qui précede.

Cela posé, soient 1. C, C/, C” trois cercles donnés sur un
plan; et soit O leur centre radical. Soient menées a ces cercles,
pris deux a deux, des tangentes communes extérieures ; ces tan-
gentes détermineront sur chaque cercle deux cordes de contact se
coupant en un point; soient , pour les trois cercles respectivement,
P, P/, P” ces points d’intersection. Si alors on meéne les droites
OP, OP/, OP” , elles détermineront sur G, C/, C” respectivement
les points ot ils devront étre touchés par deux cercles les touchant tous
trois et les touchant tous de la méme maniére.

2.° Soient S, 8/, §”, 87 quatre spheres données dans I'es-
pace ; et soit O leur centre radical. Soient menés i ces sphéres,
prises deux 4 deux , des cénes circonscrits extérieurs; ces cones
détermineront sur chaque sphére trois lignes de contact dont les
plans se coupecront en un point ; soient , pour les quatre sphéres
respectivement P, P/, P” | P/ ces points d’intersection. Si alors
on méne les droites OP , OP/, OP/”, OP// , elles détermineront
sur S, 8, 87, S/ respectivement les points ou elles devront étre
touchées par deux sphéres qui les toucheront toutes quatre , et les
toucheront toutes de la méme maniére.

En faisant encorc ici une convenable combinaison des angles et
cones circonscrits intéricurement avec les angles et cones circonscrits
exterieurement , on déduit de ces constructions, comme de celles
qui ont ¢té précédemment indiquées , la détermination des huit
cercles qui peuvent toucher a la fois trois cercles donnés et celle
des scize spheéres qui peuvent toucher A la fois quatre spheéres
données. De plus, en faisant & ces constructions les modifications
qui convienzent an cas ol les rayons de quelques-uns des cercles
ou de quelques-uncs des sphéres donnés deviennent nuls ou in-
finis, on raméne encore, comme dans le premier cas, a des procédds
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uniformes la solution de tous les probléemes de Vidte surle contact
des cercles et de ceux de Fermat sur le contact des sphéres.

Je ne prétends pas décider si ces procédés ont en eux-mémes
quelque avantage sur les premiers que j’inclinerais méme & regar-
der comme plus simples; mais c’est sous cette forme seulement que
la construction qui fait trouver les cercles qui touchent & la fois
trois cercles donnés sur un plan , donne aussi , sans aucune mo-
dification , les cercles qui touchent & la fois trois cercles donnés
sur une spheére.

Clest & prouver cette assertion que je consacre principalement cet
arlicle. Le probléme revient évidemment a celui-ci : Trois cdnes
de méme sommet étant donnés ; consiruire un quatriéme cone,
de méme sommet queux , qui les touche tous trois? et cest sous
ce point de vue que je vais l’envisager.

Soient C, C’/, C/ trois cénes donnés, de méme sommet , dont
les angles générateurs soient respectivement 7 , 7/, r”/. Soit pris
leur sommet commun pour origine des coordonnées que nous sup-
posons rectangulaires ; et supposons que l’axe du dernier soit I'axe
des z. Représentons en outre par @, b, ¢, @/, &/, ¢ respectivement
les cosinus des angles que forment les axes du premier et du second
avec les axes des coordonnées; ce qui, comme l'on sait, donnera
lieu aux relations

a**+b*tci=1, (1)
o H-blr =1 . (2)
Désignons ensuite par A, B, C les cosinus des angles que forme

I'axe du cone cherché avec les axes des coordonnées , ce qui donnera
pareillement

'_A:+Bz+c:= s (3)
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et soit B son angle générateur. Si Pon veut que ce cbne touche
extérieuremennt les trois cones donnés, il faudra que l'angle que
fera son axe avec l'axe de chacun d’eux soit égal a la somme

de leurs angles générateurs; ce qui donnera .
a A+ B~4c C=Cos./R+r ) , (4)
a/A+b/'B+4 ¢/ C =Cos.(R4r') (5)

C=Cos(B41") . 6)

Telles sont les équations qu’il faudrait combiner avec I'dquation (3),
pour obtenir Iangle générateur R du céne cherché, et les cosinus
A, B, C des angles que forme son axe avec les axes des coor-
données ; et l'on voit évidlemment que le probléme aurait deux
solutions.

Il 'y a donc deux coénes cherchés dont chacun a une ligne de
contact avec 'un quelconque des cénes donnés , avec C// par exemple ;
et il est clair, d’aprés ccla, que la recherche du plan qui contient
ces deux droites doit étre un probléme du premier degré seulement.

Soient donc x, ¥, z les coordonnées de la ligne de contact de
C’ avec le cone cherché ; nous connaissons déja un licu de cette
Jigne , et clest le cone C/ lui-méme , dont I'équation est

(@>4y*)Cos.*r"/=2z*Sin2r" ; )
il n’est done plus question que d’en chercher un second.
Or, cette ligne devant étre dans un méme plan avec les axes
des deux cones, il sensuit qu’on doit avoir

Ay=Bz ; )

et conséquemment , en éliminant A4, B, €, R entre les cinq ¢équa-
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tions (3), (4, (5), (6), (8), I'équation résultante, en z; y, &
sera celle du second lieu demandé.

Mais on sait qu’une ligne donnée par lintersection de deux
surfaces est aussi sur toute surface dont l'équation serait une com-
binaison des équations de ces deux -13 ; d’'ou il suit que, dans
I'élimination, nous pouvons nous aider de I’équation (7) pour sim-
plifier nos résultats. Nous ne ferons ainsi que substituer au lieu
cherché quelque autre lieu plus simple , coupant le céne C” suivant la
méme droite.

A laide de cette attention , 1’élimination devient trés-facile. On
tire des équations (3), (6), (8) , en ayant égard & l'équation (7),

a2 Cos.r"Sin.(R-4-r")

A=

zSin.r!

__yCos.r"Sin.(B-{-r")

B
zSinar!

bl

: zSin.r/"Cos.(R=4-r'")
¥ C: - ,
zSin.r/

ces valeurs étant substituées dans les équations (4) et (5) , elles
deviendront

(a 24-b y)Cos.r'Sin.(B=4-r'")4-¢ zSin.r""Cos.(B—4-r"y==zSin.r"Cos.(B~4r) ,
(@x4-b'y) Cos.r!'Sin.(R4-r'"")4-¢'zSin.rCos. (R~4-r")==zSin.r"Cos.(H~f-r") -
Mais on peut remarquer que
Cos.(R4-r )= Cos. f (B4r'Dy=(rf-r) }=Cos.(r”-r)Cos.(R+r”)+Sin.(r”-r)Sin (B4r'"y
Cos.(A+4-r"=Cos.{ (B+r")-(r"-r') }=Cos.(r""-r')Cos (R4r")4Sin. /'~ Sin.(R4r") «

on aura donc, en substituant et divisant par Cos./R-4r”);

{(ax4-by) Cos,r'==zSin.rSin.(r"=r) } Tang. (Rg-r")4-2Sin.r { c—=Cos. (rmr) } =0 ,

(@'&4-b'y) Cos.r//mmz Sinr"Sin. (r//==r')} Tang. (R4-r") 42 Sin.r//{c/mmCos, (r//mmr) }=0 ;
! ’d’
ol
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d’od I'on conclura, par lé¢limination de Tang./R-4r")

- I

(;:i;{-b_y)Cos.r”——zSin.r”Sin.(7 Yemr)  (a'x4-b'y)Cos.r” —zSinr"Sin.(r/'==r') (o)
c==Cos.(r'"—r) ¢'—Cos, (r''==r') J

équation d’un plan dent lintersection avee G/ doit déterminer sur
ce cone la droite suivant laquelle il doit étre touché par le cone
cherché. Cette équation restant la méme lorsqu’on y change simul-
tanément les signes de 7, 77/, 77, il s'ensuit que , pour les huit
combinaisons dont les signes de ces angles sont susceptibles, cest-
A-dire , pour les huit solutions du probitme, cetie équation ne prend
que quatre formes distinctes , & chacune desquelles répondent consé-
quemment deux de ces solutions.

Pour construire le plan exprimé par équation (9) , il est né-
cessaire ct il suffit de connaitre deux droites qui y soient contenuesy
c’est-i-dire , de trouver deux systtmes de dcux équations en x,
¥, 2z qui jouissent de la propriété de rendre I’équation (q) identique.
Et réeiproq..ement deux manidres distinctes quelconques de rendre
I'équation {¢) identique , sans établir entre # , ¥ , z des relations
qui excedent le premier degré , conduiront 4 la connaissance de
deux droites qui determincront le plan cherché. 7 »

Entre les diverses maniéres de rendre cette équation identique ;
lesquelles sont en nombre infini, nous choisirons les deux suivantes :
1.° nous poscrons séparément les deux membres de P’équation (g)

zSin.2r/

égaux a Coon, 3 2.° pous poserons les mémes membres égaux i
08.7

—¥Cos.r”’. Cela donnera, toutes réductions faites , les deux systémes

d’équations
(a 245 y)Cos.>r/’ = z(cSin.r”/—Sin.r )Sin.r’/ ,
(a’x4b'y )Cos.>r/’ = z/c/Sin.r”/—Sin.r’;Sin.r’/
(@ 240 y)Cos,r/=2z{Cos.r —c/Cos.r"),

(a’z4b'y)Cos,p#/=2z Cos.r/—e/Cos.r'’y .
Tom. 1V, 48
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Ainsi, en construisant la droite exprimée par les équations (10),
puis la droite exprimée par les équations (11), le plan conduit par
ces deux droites sera celui qu'exprime 1'équation (g).

Ce quil y a de mieux a faire, pour construire les droites (10)
et (11), c’est de construire les plans dont ces droites sont les inter-
sections. Or, avec un peu d'attention, on reconnait les plans (10)
pour ceux des lignes de contact du cone C/ avec les plans tangens
communs extérieurs tant a ce cone et au céne C qu’au méme cone
et au céme C/, et on reconnait les plans (11) pour ceux suivant
lesquels les cones C, G/ coupent respectivement le céne C”, ou,
en d’autres termes, pour les plans radicaux tant & C et C/ qua ¢/
et G/ (*) ; ce qui indique pour le cone cherché une construction

(0%

(*) Supposons, en effet , que I'équation du plan tangent commun aux cones C et C/
soit

Dx+-Ey+Fz=o, (12)

avec la condition

D2-E24-F2=1 ; (13)

si 'on veut que ce plan tangent soit extérieur , c’est-a-dire , si 'on veut que ce plan

laisse les deux cones d'un méme cdté, D, E, F seront déterminés par I'équation
(13) jointe aux équations

aD4-bE4-cF=Sin.r , (14)
F=Sinr"; (15)

et lon voit que le probléme est du second degré, de maniére qu'il y a deux plans tan-
gens.

Or, si I'on suppose que x, ¥ , z désignent les coordonnées de I'une ou de I'autre
ligne de contact avec C” , les équations (12), (13) , (14) , (15) devant avoir lieu en
méme temps pour ces droites , le résultat de 'élimination de D, E , F entre elles sera
I'équation d'une surface contenant ces mémes droites.

Ce résultat est facile a obtenir. On tire des équations (12) , (14), (15)
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qui , appliquée ensuite & la recherche du cercle qui en touche treis
autres sur une sphére , revient a celle qui a cté enseignée plus haut,

Celle-ci se trouve méme ¢tablic par ce qui preccde , puisquun
plan n’est autre chose qu'une sphére dont le rayon est infini,

(Sin r—cSin.r"y y+-bzSin.r
A= == .

>

ay—bx

(Sin.r—cSin.ryax-azSin.r

B=—

ay—bx
C=Sin.r";
valeurs qui substituées dans I'équation (13) donnent
{(Sin.r-—-cSin.r”)_y—{-bzSin.r”}1+{Sin.rh-cSin.r”)x-{-azSin r’/;zz(a)'—bx)!Cos_zr,f/;

telle est donc I'équation d’'une surface dont les intersections avec le céne C” détermi-
neront ses lignes de contact avec les deux plans qui tcuchent A la fois extérieurement

les cones C” et C.
Or en développant celte équation , la multipliant par Cos.>r/’ , et ayant égard A la
relation (1), clle peut étre mise sous cette forme
{(aar:—{-bac)Cos.2r’/---z(cS»inJ"’—Sin.r)Sin.r”}2l
={(c==Sin.r"Sin.ry2— Cos.2¥’Cos.2ri{z2—(x >~y >=422)Cos.2r"} ;
or en la combinant avec celle de C” qui est
z2=(x?=y2-22)Cos.2r";
elle se réduit simplement

(ax+4-by)Cos.2r/'==z(cSin.r”—Sin r)Sin.r" ,

. . .
qui n'est , en effet , autre chose que la premiére des équations (10).
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f

TRIGONOMETRIE.

Essai sur diverses expressions approchées de la
circonfeérence du cercle.

Par M. TH. Barrois.

[a Vi Sl V1, Vio Vi Vo Vo Vo Yl Vo 7

Soient m et n deux nombres entiers positifs quelconques , et soient
P et P respectivement les périmetres des polygones réguliers de 2™z
cotés inscrit et circonscrit au cercle dont le rayon est I'unité , et dont
conséquemment la circonférence est 2= ; on aura évidemment.

@
= Sin. "o
p =2"*n8in.— , P=2"%'pTang. — =2."+!n 3
2.1n 2."n =
Cos.
"n

En second lieu , les équations des deux cénes C, C” étant respectivement

(ax~4-by)4-cz)2=(x2~4-y24-z2)Cos.>r ,
22=(x=-|—_y2+z2)Cos.=r” :

en les multipliant en croix et extrayant la racine quarrde de I'équation-produit, I'é-
quation résullante du premier degré, ayant liew en méme temps que ces deux-la,
sera celle d'un plan contenant les droites suivant lesquelles ces deux cdnes se coupent ;
or celte équalion est

(ax~4-by)Cos.r’==z(Cos.r—cCos.r") ,

c'est-a-dire la premiére des équations (11).
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- . =
P—-p:z.”"“ng’l‘ang. — — Sin. —- } .
2"n 2. n

Mais on sait que , # étant un arc quelconque , on a
. x . x
Sin.z=2Co0s., —Sin. —
2 2

x x . X
=4Cos. — Cos. —Sin. —
2 4

x x x ., 2
=8Cos. TCos. ——4—Cos. -é-Sm. -

x x x x x . x
=5MCos. — Cos. —=Cos. — Cos. —+¢.7474.C05, =—=Sin. —
2 4 8 16 2m 2m
D’ou
. x Sin.x
2"Sin. Py x x x :
2 X
Cos. — Cos. —Co0s. — ¢...COS, —
2 4 8 2m

En faisant dans cette formule x:-’; , elle deviendra

w
Sin. —
n

k2 k4 a
Cos. — Cos. — Cos. —.... Cos.
an 4n 8n 2™.n

valeur qui, substituée dans celles de p et P, les change en celles-ci
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., @
2nSin, —
n

= @ @ - w ) (l)
Cos.— Cos.— Cos. —....Cos.
an 4n 8n 2mn
2nSin, —
n
P= = & = @ " (2)
Cos.— Cos.— Cos. — ....Co0s.? —

2n 4n 8n 2m,n

Et tels sont les périmétres des deux polygones dont il s'agit ; on

=

voit que leurs expressions ne différent que par le facteur Cos.

qui

n'est qua la premiére puissance dans le dénominateur de la pre-

2M.n

miére , tandis qu’il se trouve au quarré dans le dénominateur de
la seconde.
On a évidemment 2z>p et 2=<P; on aura donc aussi

., m
nSin, —
n

7> er T & C n (3)
,— . — L0s. — ..., \ —
Cos — Cos P 05. == 0s. ——
nSin. —

n
=< n (4)
Cos — Cos. — Cose — ... C08.? —
2n 4n 8n 27

Voila done deux limites de la valeur du nombre =3 limites d’autant
plus resserrées , toutes choses égales d’ailleurs , que m sera plus
grand. En prenant 1'une ou lautre pour valeur approchée de =,
la limite de l’erreur sera

m S Qe ™
2 .anang.zm.n Sm'z’".ns .
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Si donc on suppose m= o, on aura exactement, quel que soitn

nSin. ;:L
= 7z 7 7 n i (5)
Cos. —Cos. — Cos. — Cos.——.... I
2n 4n 8n 16n

le nombre des facteurs du dénominateur devant étre infini, et con-
sécquemment le dernier étant 'unité.

On sait que, # étant un arc quelconque, on a
Cos. > x=171/24-2Cos.x ,

Cos.2 o= 1/ 2+4+/742C0sr

Cos.;z= sz-{-\/ 2~4\/242Cos.x

.
L I T R R T ']

d'ou il résulte, pour Péquation (5), cette autre forme

N w
nSin, —

n
= _‘l__ T & 1 e V =
2 Vz-{—._COS. 7-:y2+V2+2C08. —.= 2+V2+V2’+'2C°5' % ool

Ainsi , toutes les fois que n sera 'un des nombres dans lesquels

5 (6)

la circonférence peut étre géométriquement divisée , c’est-a-dire,
quelqu’un des nombres de la suite 2, 3, 5, 17, 257 ,...., lex-
Pression de = scra enticrement algébrique.

. . n . n
Si, par exemple, on suppose n==2, d'ott Sin, ~=8in. — =1, et
n 2

e k4 . .
Cos. — = Cos.— =o0, il vicndra

n 2
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2

\/Z-%\/z-i-\/z'-%l/z+\/5-—i-ﬁ-%]/2+[/z+\/z+\/;""‘

& —_
T
3

e . . n . n -
Si, ensuite , on suppose n=3, d’ou Sin,— =Sm"§ =Iy3, et
n

k4
Cos.— = Cos. — =1, il viendra
n

w|a

_ V3
—:\/3.}\/;:'1'\/3-.1,/2—}-‘/:-1—\/3.§V2+’/2+‘/2-+\/‘3....1

=

et ainsi de suite.
Ces diverses expressions semblent propres 3 mettre en évidence
I'incommensurabilité du nombre = et de toutes les puissances de

ce nombre.

PHILOSOPHIE MATHEMATIQUE.

Sur la theéorie des imaginaires,

[a Ve Vi Vo Vo Vo Nl WL W)

Extrait d'une lettre adressée au Reédacteur des Annales ;

Par M. J. F. Francgais, professeur & I'école de lartillerie
et du génie,

JE vous remercie , Monsicur , de la réponse que vous avez faite
a l'objection principale de M. Servois , contre la nouvelle theorie
des
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des imaginaires (*). M. Serveis .a pas ¢té le premier 3 m’opposer
cette difficulté, et ma réponse a toujours eté exactement conforme
3 la votre. Les objections de cette nature me paraissent toutes avoir
leur source dans une meprise qui peut aiscment cchapper par 1effet
de Thabitude, et qui consiste & confondre des droites données de
grandeur et de position avec leur grandeur absolue.

Voici, Monsicur, quelgnes exemples de la manitre de passer de
mes notations aux notations ordinaires et aux rc¢sultats connus.

L’équation d’un triangle dont la base coincide avec l'axe des abs—
cisses est

a.+5_§::c s

d’olt on tire

aCos.e~+5Cos.e=c ,
aSin. «—0>Sin.g=o .
et par conséquent, en prenant la somme et la différence des quarrés
a*~+4-b*~+-2abCos.(«+p)=c*,
a*Cos.2a~+5*Cos. 28-+2abCos.(«a—p)=c".

L’équation d'un cercle rapporté au centre est

a@:x—}-y‘/_——x )

d’ot on tire

(") Voyez la page 228 de ce volume,

Tom. 1V . 49
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2Cos.o =2z , aSinp=y ;
'y =a.
L’équation d'un cercle rapporté au diamétre est

r¢+r%'_¢=za ,
d’ol on tire
1Cos.o—+oSin.p=2a ,
¢Sin.p—¢Cos.o=0 ,
p*=202Cos.¢ , z* -y =2az.
L’dquation d’une ellipse rapportée au foyer est
20=p) =2€
P¢+( P>'¢z ’
d’ol on tire

¢Cos.p-}(2a0=p)Cos.¥ = 2¢ ;

pSin,o-(2a4—p) Sin.¥=o0 .

O 2mmp 2
'-—

T gmeCos@

Vous voyez , Monsieur , avec quelle facilitd on arrive aux ré-
sultats connus.

Metz, le 19 d'avril 1814,
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Note transmise par BM. Lacroix ¢ AL, VECTEN , pro-
Jesseur de mathématiques speciales au lycee de

Nismes.

Dans la premiére partie des Transactions philosophiques de 1806,
page 23, je trouve un mémoire écrit en francais par M. Buée,
communiqué 4 la Société Royale de Londres, par M. William Mor-
gan , et dont lc sujet est le méme que celui des mémoires de MM.
Frangais et Argand ( Annales de mathémuatiques , tom. 1V ). L'au-
teur prétend « que /=1 n'cst pas le signe d’unc opcration arith-
» meétique ou d’une opcration purement giéomctrique : c'est un signe
» de perpendicularité. C’est un signe purement descriptif , un signe
» qui indique la direction d’unc ligne, abstraction faite de sa lon-
» gueur » ( ce sont les expressions mémes de lauteur ) (*).

(*) En publiant cette note, il est bien loin de notre pensée & chercher & en-
lever & M. Argand la propriété de ses idées. Son idée principale, je veux dire
celle qui consiste & considérer \/——-—x comme un signe de perpendicularité , est
d’ailleurs si simple et si naturelle que, loin d'étre surpris qu'elle se soit présentée
aussi & M. Bude, on a lieu de s’étonner , au contraire ,qu'elle ait tant tardé &
éclore, et qu'elle nc se soit pas offerte a la pensée d'un plus grand nombre de
géometres,

Ceux de nos lecteurs qui ont sous la main les Recuerls de la Societé royale
s'empresseront sans doute de faire une comparaison plus étendue entre les idées

de M. Buée et celles de MM, Argand et Frangais.
J. D. G.
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GEOMETRIE TRANSCENDANTE.

Démonsiration des principaux Théorémes de M. Dupin
sur la courbure des surfuces ;

Par M. GERGONNE,

[a Sla U ¥l Vo V5 VL Vo V)

Mo Dupin , capitaine du génie maritime , ancien éléve de 'école po-
lytechnique , a publi¢, vers la fin de 1813, sous le titre modeste de
Développemens de Géométrie (*) , un de ces ouvrages dont nous ne
croyons pas pouvoir nous dispenser de faire mention dans ce recueil , et
sur lesquels nous aimerions méme 2 arréter long-temps nos lecteurs, si
d’autres objets ne réclamaient I'espace dont il nous est permis de dis-
poser.

Nous avions d’abord songé & donner une simple analise de 'ouvrage
de M. Dupin ; mais, cette tiche ayant déja été remplie par plusieurs
journaux , nous avons pensé faire une chose plus convenable et plus
utile a la fois , en présentant ici les principaux points de la doctrine
de l'auteur dans un cadre assez resserré pour qu’il soit permis de I'in-
troduire dans les traités élémentaires, ou son importance doit désormais
lui faire trouver place.

Nous nous assujettirons , dans cet exposé , 4 écarter toute notion
d’infiniment petits, et A n’employer que le développement en série ,
suivant les principes de la Théorie des fonctions analitiques , persuadés
que cette attention, qui d’ailleurs n’entrainera guere plus de longueur,
ne pourra qu’étre -agréable 4 ceux de mnos lecteurs qui attachent
encore quelque prix a la rigueur des procédés.

(") In-4.0 d'environ 4oo pages; chez madame veuve Courcier , & Paris.
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Dans tout ce qui va suivre , nous ferons , pour abréger , et
suivant l'usage

dz _ dz
w7y T
d2z dp dzz dp dg daz dg
= — =T = e—— o= — == — I =T
da2 dx ’ dady dy dx ? dy? dy ‘s

X, Y, Z scront les coordonnées courantes dans I'espace , et nous
les supposerons constamment rectangulaires.

§. L

Théorie des TANGENTES CONJUGUEES.

Concevons que , par deux points pris arbitrairement sur une
surface courbe, on meéne une sécante & cette surface; et imaginons,
en outre, les plans tangens en ces deux points, lesquels se cou-
peront suivant une droite extéricure a la surface dont il s'agit.

Concevons qu’ensuite ’'un des points pris sur la surface courbe
se rapprochc peu 4 peu de l'autre, en suivant une courbe tracée
arbitrairement sur cette surface , et passant par ces deux points ; il est
facile d’apercevoir qu’alors la sécante etla commune section des deux
plans tangens tendront sans cesse & devenir deux tangentes se coupant
en celui des deux points qui sera demeuré immobile, et qu’elles
le deviendront en effet , lorsquenfin I'autre point coincidera avec
celui-Ia ; ce sont ces deux tangentes que M. Dupin a nommées
Tangentes conjuguées. Nous allons chercher la loi analitique qui les
lie 'une a lautre, et justifier ainsi leur dénomination.

Soient M, M/ deux points d’une surface courbe dont I’équation scit

Fz,y,z)=o0, (1)

et soient les coordonnées de ces points ainsi qu'il suit :
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X=zx , X=a+4g ;
pcur M ( Y=y , pour M/ =y-+i ,
Z=z; Z=z4k ;

d’'ol résultera, en vertu de la série de Taylor,
k=pgtqgh+(rg*t2sgh4-th)+ .. (2)

Les équations de la sécante MM/ seront
8 k
X—z= —k-(Z—-z) R Y—y= -;(Z—z) . (3)

Le plan tangent par le point M ayant pour équation
Z—z=p(X—z)+9(Y—y) ; 4)

P’équation du plan tangent par le point M/ sera

Z—z—k = (ptrg+sht. ) ( X—z—g)+(94sg+th4. N Y—y—Pk). (5)

Dans la recherche de lintersection de ces deux plans, on pourra,
& cette dernicre équation, substituer sa diflerence avec la premiere,
laquelle est, toutes réductions faites, et ayant égard & l'equation (2),

2(rg4sh=4u.) (X—x)F-2(sg4-th~4 e ) (Y—y)=(rg>-25gh4-th?)4-.... (6)
On aura , d’un autre c¢6té , pour I’équaiion de la projection de
MM/ sur le plan des XY

h Ed

Si présentement on pose

h=gTang.« (%)
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dot -
={p+¢Tang.« g+ : (r+25Tang.a+1Tang.*a'g 4.0 (9)
les équations (6) et (7) deviendront respectivement , en réduisant

2(r4-sTang.a+... (X —z) I
={r-2sTang.a4:Tang.*«\g—...
+2(s+tTang.«+....:(Y—y) S \ g« ang.«)g— (10)
Y—y=(X—x)Tang «. (11)

Si enfin on suppose g=o0 , auquel cas ces équations deviendront celles
des projections sur le plan des X¥ de deux tangentes conjuguées me-
ndes a la surface (1) parle point M on aura, pour les équations des
projections de ces deux tangentes ,

(r-4sTang.e)(X—2)4(s4=¢Tang.e)( ¥ —y =0 , (12)
Y—y=(X—z)Tang.«. (11)

Si, en place de la premitre de ces deux équations , on écrit simplement

Y—y=(X—z)Tang.s, (x3)
on aura
_ r4sTangws
Tang.p - s+t Tang.« ’
ou
7+s(Tang.«~Tang.g)4-:Tang.«Tang.e=o0 ; (14)

d’od l'on voit que ces deux tangentes sont parfaitement réciproques ,
et que la premiére peut étre déduite de la seconde comme celle-ci
peut létre de lautre.

Si présentement nous supposons que le point M ait été pris pour



372 COURBURE
origine des coordonnées , et le plan tangent en ce point pour

plan des XY, auquel cas l'axe des Z sera dirigé suivant la nor-
male ; nous aurons

=0 , y=0 , Z=0 , p=0 , J=0 ;

2

et conséquemment les équations (11) et (13), lesquelles deviendront
alors celles des tangentes conjuguées elles-mémes , se réduiront &

Y=XTang.« , ¥Y=XTangs ; (15)

« et g étant toujours liés par la relation (14).

Si l'on veut que les tangentes conjuguées soient rectangulaires ,
on aura, en outre,

1-+Tang.«Tang.e=o0 , (16)

équation qui, étant combinée avec I'équation (14), donne

r

Tang.u—{-Tang.ﬁ:-——:;— » Tang.«Tang.p=—1 ;

de manitre que les valeurs particulieres de Tang.« et Tang.s qui
répondent 3 ce cas seront données par l'équation

sTang.*¢ —(r—7)Tar g.e—s=o. (17)

nous appellerons & 'avenir Tangentes conjuguées principales , ou
simplement Tangentes principales, celles qui sont déterminées par
cette équation.

La direction des axes des x et des ¥ ne se trouvant pas fixée
par ce qui précéde , profitons de leur indétermination pour les faire
coincider avec les tangentes principales; il faudra, pour cela que,
des deux racines de l’¢quation (17), 'une soit nulle et l'autre in-
finie., Ces deux conditions concourent & donner s=o, en sorte que
I’équation de relation (14) entre les directions des deux tangentes
conjuguées quelconques se réduit simplement 2

r-}-¢
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r-+iTang.«Tang.s6=o0 ; (18)

« et g étant les angles que forment ces deux tangentes avec I'une
des tangentes principales.

On voit par ld que deux tangentes conjugudes quelconques passent
dans les quatre angles formes par les tangentes principales, ou
dans deux seulement , suivant que 7 et # sont de mcmes signes

ou de signes contraires.

§ 1L

Théorie des INDICATRICES.

Pour déterminer le cercle osculateur et conséquemment le rayon
de courbure d’une courbe plane, en un quelconque de scs points,
on peut, entre autres moyens, employer le suivant, qui se préte
assez commodément au calcul.

On meéne la normale au point dont il s'agit, et on méne une
perpendiculaire sur le milicu de la droite qui joint ce point & un autre
point quelconque de la courbe ; Iintersection de cette perpendi-
culaire avec la normale est évidemment le centre du cercle qui,
touchant la courbe au premicr de ces deux points , passcrait en
méme temps par lautre.

Si Pon suppose ensuite que le dernier de ces deux points, sans
quitter la courbe, vienne coincider avec le premicr, le cercle de-
viendra osculateur de la courbe au point donné ; son centre et son
rayon seront donc le centre ct le rayon de courbure de la courbe
en ce pont.

Un procédé analogue peut aussi étre employé & déterminer le
rayon de courbure d'une section normale quelconque faite a une
surface courbe. Retournons donc & nos points M, M/ du §. précédent.
Concevons une section par un plan passant par le dernier de ces

Tom. IV- 50
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points et par la normale au premier ; concevons un autre plan
perpendiculaire sur le milieu de la droite qui joint ces deux points;
ce dernier plan coupera la normale en un point qui deviendra le
centre de courbure de la section normale pour le point M de cette
section, lorsque le point N/ viendra coincider avec lui.
Traduisons ce procédé en analise ; les ¢quations de la normale
en M sont

X—or=—p(Z—z) , Y—T:—q:Z—Z> s (19)
celle du plan passant par cette droite et par le point M/ sera
(btgh)( X—=2)—(g +plt ¥ —y)+(ph—qg) Z—2z)=0 ,  (20)

enfin on trouvera, peur celle du p'an perpendiculaire sur le milieu

de MM/,
28(X—z)-2l (¥ —y) 42k Z—z)=g*-h*-k> (21)

Si T'on combine cette derniére équation avec celles de la nor-
male , on trouvera pour les équations du centre du cercle tangent
a la section normale en M et passant par M/, en ayant égard a
Péquation (2) ,

gk ‘

X—x=—p,. ,

(rg>~2sgh—-th>)+-...
_ gz+}lz+,l(z

Yoy=—g. —EX_ ) )
&2 2sghd-th>) ...

Fzm e . gr-F-h2-k2 .
(rg*-2sgh--th*)4...

le rayon de ce cercle sera donc

- - , gHh+he —
V S—ap Ty )t =)= cgymgigeiryn, Y o (23
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Soit fait présentement, comme dans le §. précédent, A=gTang.«,
I'équation de la projection de MM/ sur le plan des XY sera

comme alors
Y—y={X—~2z)Tang.« ; (11)
et le rayon du cercle aura pour expression

(1=4Tang.22) {(p—{—qTang @)= 1 (r4-25Tang arTang.2a'g—4... 12

(r42sTang a4t Tang.2 ) 4., V itpityn (30)

Si inalement on suppnse g==o, cctte expression deviendra celle
du rayon de courbure de la scction normale , de manitre qu'en

désignant par R ce rajon de courbure, on aura

(4p2)F2pgTang.at (14 Tong e
gy 2. 31
r4-2sTang.e4t'Tang.2e ‘/ ity ( )

=

Supposons encore , comme dans le §. précédent , qQu’on ait trans—
porté lorigine en M, qu'on ait pris les tangentes principales pour
axes des X ct des ¥ et la normale pour axe des Z; on aura,
comme alors

=0, y=0, 2=0 , p=0 , §=0 , $=0 ,

et conséquemment

14+Tang 2a
—ms (32)
r~4-tTang.2a

Désignons respectivement par 4 et B les valeurs de R qui ré-
pondent & Tang.a=o et Tang.e= o, c’est-d-dirc , les rayons de
courbure des scctions suivant les plans des XZ et des YZ; rayon
que, pour les distinguer des autres , nous appcllerons Rayons de cour-
bure principauzx , ou simp]ement Ba)fon.s' prinn}nﬂux; tout comme
nous appellerons Sections principales les sections faites suivant les

memes 18115' nous aurons ainst
?

p T
A=— B:—; . (33)

r
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Soit présentement C une longueur constante arbitraire quelconque ,

I

et concevons que, sur la tangente dont l’équation est
Y=XTang.«

en porte , & partir de lorigine, une longueur égale & {/TH; on
déterminera ainsi sur le plan des XY un certain point dont la si-
tuation variera avec langle « ; voyons donc i quelle courbe ce
point appartient.

Nommons 2, y les coordonnées de ce point variable ; nous aurons

Tang.«:l- et 2’4y*=CR ;

x

subtituant ces valeurs dans I'équation (32), elle deviendra
re*tyr=C ,
ou, en mettant pour r et # leurs valeurs, données par les équations
(33), et divisant ensuite par C,
x3 y!
— — = I -
C4  CB ?
posant donc
VCd=a , VCB=0b,
on aura finalement

o N
-;-2— -b—2-=l )
bu
bz +ary =ah? (34)

dquation d’une ellipse ou d’une hyperbole, suivant que A et B sont

de mémes signes ou de signes contraires. C’est cette courbe que M.
Dupin appelle VIndicatrice.

Si, dans I’équation (18), on met pour r et # leurs valeurs données
par les équations (33) , eclle deviendra

B+4-ATang.«Tang.p=o0 ,
ou, en multipliant par C et substituant
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b*~4-a*Tang.«Tang.s=o0 ;

équation qui exprime , comme l'on sait, la relation entre les angles
«, & que deux diamétres conjugués quelconques de la courbe (34)
doivent faire avec l'axe des x.

Voici présentement les plus importantes des conséquences qui
peuvent étre déduites de ces divers résultats. On voit d'abord que,
si ayant mené k2 plan tangent en un point quelconque d’une surface
courbe , et tracé des droites sur ce plan par le point de contact,
on imagine des sections planes faites suivant ces droites et la normale,
et qu’on porte sur ces mémes droites, a partir du point de contact,
et de part et d’'autre de ce point, des longueurs proportionnelles
aux racines quarrées des rayons de courbure des sections normales
qui leur répondent respectivement ; l’ensemble des points déterminés
par ce procédé formera une ligne du second ordre ayant le point
de contact pour centre, e: dont les diametres conjugués seront des
tangentes conjuguées de la surface dont il s’agit.

Donc 1. de toutes les sections normales qui peuvent étre faites
“en un méme point quelconque d’une surface quelconque, celles de plus
grande et de moindre courbure se ccupent toujours & angles droits.
On peut appeler Rayons principaux les rayons de courbure de ces
deux sections.

2.° En appelant Rayons conjugués les rayons de courbure des
sections normales dirigées suivant deux tangentes conjuguédes , on
peut dire que la somme de deux rayons conjugués quelconques
pris avec leurs signes est constante et égale & la somme des rayons
principaux , pris aussi avec leurs signes.

3. On peut dire encore que le produit de deux rayons con-
jugués quelconques et du quarré de l'angle des plans des sections
normales auxquelles ils appartiennent , est également une quantité
constante et égale au produit des rayons principaux.
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4.° On voit aussi que, connaissant seulement deux rayons con-
jugués , et l'angle que forment entre eux les plans des sections
normales auxquelles ils répondent, on a tout ce qu’il faut pour
assigner les directions des sections principales et la grandeur des
rayons principaux, et pour en couclure par suite la grandeur du
rayon de courbure d’une section normale donnée de direction, ou
la direction de la section normale & laquelle répond un rayon de
courbure donné,

5.° En général, chaque théoréme relat'f aux diamétres conjugués
d’une ligne du second ordre doit avoir son analogne dans la théorie
de la courbure des surlaces ; et 'examen des diverses circonstances
que peut présenter cette courbure en diflérens points d’une méme
surface , ou sur diverses surfasces , se reduit uniquement a la dis-
cussion des variétés que peuvent présenter les lignes du second ordre
pourvues de centre. Ainsi, par exemple, on voit que, si en un point
d’unc surface courbe , deux courbures rectungulaires sont egales ct
de méme signe , toutes les autres courbures en ce point scront
égales entre elles et a celles-1a. Si toutes les courbures c¢u un meme
point d’une surface ne sont pas de mémes sigues, cette surface aura,
en ce point, des courbures inhinies suivant deux dircetions telles que
les sections normales qui diviseront en deux parties egales les quatre
angles formés par ces deux dircctions, seront les sections principales.

Nous renvoyons, pour le surplus, a I'ouvrage meme de M. Dupin,
qui renferme un grand nombre d’autres recherches importantes, et

quon ne peat lire qu’avec beaucoup de fruit.
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QUESTIONS RESOLUES,

Démonstration du premier des deux theéorémes enonces
a la page 196 de ce volume ;

Par M. B.***, abonné.

la T Vla Vla Vi, V1o VL VL W V)

T HEOREME. Deuz hexagones étant tracés arbitrairement sur
le plan d’'une scclion conique ;

1.° 8 les sommets de l'un sont respectivement les péles des
cdtés de 'autre , les sommels de ce dernier seront réciproguement
les pbles des cités du premier.

2.° 87, en outre, les points de concours des prolongemens des
cdtés opposés de l'un des deux sont tous trois situés sur une méme
ligne droite , les diagonales joignant les sommets opposés de l'autre
se couperont toules trois au méme point, qui sera le pdle de cette droite
et réciproquement.

Démonstration. Soient ABCDEF , adedef les deux hexagones prow
posés.

1.° Supposons que @ soit le pole de AB et 5 le pole de BC, il
s'ensuivra que tous les angles circonscrits 4 la courbe dans lesquels la
corde de contact passera par @, auront le sommet sur AB , et que tous
les angles circonscrits & la méme courbe , dont la corde de contact pas-
scra par b, auront leur sommet sur BC ; donc I'angle circonscrit dont
la corde de contact passera a la fois par a.et &, aura 4 la fois son
sommet sur AB et sur BC ; ce sommet sera donc en B ; le sommet
B sera donc le pole du coté ab.

On démontrera de la méme maniére que , si les sommetsc, 4, e, f
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sont respectivement les poles de CD, DE, EF, FA | les sommets C,
D, E, F, A scront respectivement les poles de bc , ¢d, de, ef , fa,
ce qui etablit la verite de la premitre partic du théoréme.

2.° Soient G le point de concours de AB et LE, H le point de con-
cours de BC et EF , K le point do concours de CD et FA ; supposons
que les trois points G, I1 , K solent situes sur une méme ligne droite ,
et soit o le pole de cette droite.

G étant le point de concours de AB et DE , dont les poles
respectifs sont a et d, on prouvera, comme ci-dessuc, que G est
le pole de la diagonale ad; puis donc que G est sur GHK , dont
le péle est o , il s’ensuit que la diagonule @d pusee par le point
0. On prouvera de la méme maniére que les dew- =i s diagouales
be , ¢f doivent passer par ce point o.

Réciproquement si les diagonales ad, &¢, " se coupent en un
méme point 0, et que leurs poles respectifs soicat G, H, K, ces
trois points devront étre situés sur la droite dont o est le pole;
mais G , comme pole de a4, dont les extrémités 2 et & sont les
poles respectifs de AB et DE , devra étre le point de concours de
ces deux derniéres droites. Par une raison semblable, H et K doivent
étre les points de concours respectifs de BC et EF, CD et FA; ainsi
ces trois points de concours sont sur la droite dont le pole est o.

Corollaire. Si le polygone ABCDEF est inscrit & la section co-
nique , il est aisé de voir que le polygone abedef lui serait circonscrit
et la toucherait aux sommets du premier, et que, réciproquement,
si le polygone abedef est circonscrit i la section conique, le polygone
ABCDEF lui sera inscrit et aura ses sornmets aux points de contact
des cotés du premier avec la courbe.

Si donc il était seulement démontré que , dans tout hexagone
inscrit 3 une section conique, les points de concours des prolon-
gemens des c6tés opposés sont tous trois sur une méme ligne droite,
il se trouverait établi, par ce qui précede, que, dans tout hexagone
circonscrit & une section conique , les diagonales qui joignent les
sommets opposés , se coupent toutes trois en un méme point.

Et
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F: rdciproquement, sil était seulement démontré que , dans tout
hexagone circonscrit 4 une secction conique , les diagonales qui
joignent les sommets opposés se coupent toutes trois au méme point,
il se trouverait établi, par ce qui précede, que, dans tout hexagone
inscrit a4 une section conique , les points de concours des prolon-
gemens des colés opposés sont tous trois sur une méme ligne droite,

Démonstration de la proprieté des hexagones inscrits
et circonscrits @ une seciion conique

Par M. GERGONNE.

THEOREME 1. Dans tout hexagone inscrit & une section co-
nique , les points de concours des directions des cdiés opposés sont
tous trois sur une méme ligne drotte.

Démonstration. Soient A, B, C, D, E, F les sommets con-
sécutifs de I'hexagone dont il s’agit, G le point de concours de
AB et DE, H et K les points de concours de CB et CD , res-
pectivement , avec unc droite mende arbitrairement par G ; soit
enfin Z le point de concours de EH et AK. Supposons que I'ar-
bitraire HK tourne autour du point G, et cherchons quclle est la
courbe que décrira le point variable Z? (¥)

Soient C ['origine, CB l'axe des x, CD l'axe des y; et soient
les équations des points donnés ainsi qu’il suit

r=a , rz=g , r=o , =0 , x=d ,
A B C 1)) E
y=e , y=o , y=o, y=h , y=b,

Les équations de AB et DE seront respectivement

() Clest a dessein que je sous-entends la figure. Un des principaux titres de
supériorité de [unalise sur la géométrie est que , celle derniére raisonnant sur
des figures eonstruites d’une maniére déterminée , on est souvent en droit de
craindre que les résultals auxquels elle conduit ne dépendent de la nature indi-
viduelle de ces figures. Les solutions purcment analitiques ne prisentent point
w pareil inconvénient,

Tom. 1V. b1
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(e—gly=elz—g) ,  (b—Ma=dy=Ph);
d’aprds quoi, et en posant pour abréger
digb—h)=p , eg+hla—g)=q , de—(a—g)(b—lj=r
on trouvera, pour les équations du point G,

q 4
=d — —el
x - y=e=

I'équation de Parbitraire HK sera donc de la forme

Pes(z—adl ).
y—er-—A(x dr>,

d'aprés quoi on trouvera

Adg=—e rep—d
CH=22"% CK="2"79,
Ar Ar

les équations de EH et AK seront donc respectivement
rir(dy—bx)—dg(y—b)}+ep(y—b)=o ,
{r(ex—ay)—ep(x—a) }+rdg 2—a)=o0 ,
éliminant donc entre clles V'arbitraire » , réduisant et divisant par r,
on trouvera, pour la courbe décrite par le point Z , I'équation du
second degré
r(dy—b) ex—ay)—dg(ea—ay)y —b)—ep(dy—ba)(z—a)=o
laquelle montre déja évidemment que la courbe passe par les trois
points A, C, E. En la développant , remettant pour p, ¢, 7
leurs valeurs et réduisant , on parvient trés-aisément & lui donner
cette nouvelle forme ’
be[alb—rP)—d e—h | z—g)x
—+[de(d—g (e—h,—ab(a—g) b—1)] xy =o0;
~ad[bla—g)—c(d—g)](y—P)y
et I'on voit alors que la courbe passe , en outre , par les points
B, D; puis donc que deux sections coniques distinctes ne sauraient

passer par les cinq mémes points , il en faut conclure que la courbe
décrite par le point variable Z est la section conique donnée elle-
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méme ; il y aura donc une situation de l'arbitraire HK qui fera
coincider le point Z avec le sixiéme sommet F ; c¢t, comme les
trois points G, H, K ne cessent jamais d’étre en ligne droite, la
proposition se trouve ainsi etablie.

THEOREME 11. Dans tout hexagone circonscrit & une section
conique , les diagonales qui joignent les sommels opposés se coupent
toutes trors au méme point.

Démonstration. Concevons que l'on ait joint les points de contact
consécutifs par des cordes ; ces cordes formeront un hexagone inscrit
dont les cotés auront respectivement pour poles les sommets du premiier.

Par le précedent theoréme, les points de concours des directions
des cotés oppeses de I'hexagone inscrit seront tous trois situés sur
une méme ligne droite.

Donc, en vertu du théoréme démontré par M. B*** , les dia=
gonales joignant les sommets opposés de ’hexagone circonscrit se
coupent toutes trols au méme point.

Remarque. A la page 78 de ce volume, j’ai démontré ces deux
théoremes indépendammeat l'un de l'autre , par des considérations
géométriques et sans aucune sorte de calcul.

Les démonstrations de ce genre ne laissent sans doute rien 3 désirer du
coté de I'elégance et de la brieveté ; mais malheureusement il est rare
qu'elles ne soient pas sujettes a quelques exceptions ou limitations.

On connait, par exemple, la maniére dont M. Monge démontre
le concours en un méme point des cordes communes a trois cercles
pris deux 4 deux; mais on a pu remarquer que sa démonstration
est en défaut, lorsque les trois cercles, laissant un vide entre eux,
n’out point une portion qui leur soit commune & tous. La démonstration
que ce géomctre a donnée de la proprieté des péles, se trouve pareil-
lement en delaut, lorsque le pole d’une section conique est extérieur
a la courbe. On en peut cncore dire autant de sa démonstration de
la proprieté des tangentes extérieures a trois cercles pris deux a
deux, lorsque I'un de ces cercles se trouve compris entre les tangentes
cominunes aux deux autres.
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Par ces motifs , jinclinerais & préférer 4 la démonstration de Ia
page 78 la démonstration précédente qui n’est d’ailleurs ni longue
ni compliquée.

QUESTIONS PROPOSEES.

Problémes de Geomeétrie.

I Tnoxs points du périmétre d’une ellipse étant donnés de position,
et ses diametres principaux étant donnés de grandeur, construire
Vellipse ?

Il Six points de la surface d’un ellipsoide étant donnés de posi-

tion, et ses diamétres principaux étant donnés de grandeur, cons-
truire Pellipsoide ?

Théorémes de Geomeltrie.

1. Si deux ellipses, tellement situées sur un plan que deux dia-
mitres conjugués de l'une soient paralléles a3 deux diamétres conju-
gués de l'autre , se coupent en quatre points, ces quatre points seront
sur une troisitme ellipse dans laquelle les diametres conjugés égaux
seront respectivement paralléles aux diameétres conjugués que l'on
suppose étre déja paralleles dans les deux premiéres.

I1. Si trois ellipsoides , tellement situés dans 'espace que trois
diameétres conjugués de I'un quelconque soient respectivement paralléles
% trois diametres conjugués de chacun des deux autres, se coupent
en huit points ; ces huit points seront sur un quatri¢me ellipsoide dans
lequel les diameétres conjugués égaux seront respectivement paralléles
aux diamétres conjugués que l'on suppose étre déja paralleles dans
les trois premiers.

FIN pu TOME QUATRIEME,



TABLE DES MATIERES. 385

TABLE

Des matiéres contenues dans le 1V .¢ volume des Annales.

ALGEBRE ELEMENTAIRE.

ESSAI de démonstration de la régle des signes dans le calcul algcbrique 5 par M.

Cach, Pag. 1—6.
Démonstration élémentaire du théoréme de &' Alembert sur la forme des imagi-
naires ; par M. Du Bourguet. 20=—23
o

Réflexions sur le méme sujet ; par M. Gergonne. 23~—25.
Démonstration du théoréme de Newton sur les fonctions syméiriques, et de la
Jormule du bindme ; par M. Bret, 25~n8,
Rechierche du nombre des termes d'un polyndme complet d'un degré quclconque,
fonction d’un nombre quelconque de quantités ; par M. Gergonne. 115—118.
Démonstration générale et rigoureuse des procédés connus pour la division et
I'extraction des racines des polyndmes ; par M. Gergonne. 297-=305.

ANALISE ELEMENTAIRE.

Sur la démonstration du principe qui sert de fondement & la théorie générale des
p Pe q g

équations algébriques; par M. Du Bourguet. 56—158.

Sur le méme sujet ; par M. Bret. go—Q2.

Recherche du nombre des termes d'une équation compléte d’un degré quelcon-

que , entre un nombre quelconque de variables ; par M. Gergonne. 115118,

Démonstration du principe qui sert de fondement a lu méthode de M, Budan ,
pour la résolution des équations numériques 5 pac M. Gergonne. 120—123,
Développement de la théorie donnée par M. Lauplace pour I'¢limination au 1 ¢
degré ; par M. Gergonne. 148==1.6.

M¢moire sur les principes fondamentaux de la théorie générale des équautions

algébriques ; par M. D. Encontre. 201=—222,

Tome 1V. 52



356 : TABLE

ANALISE TRANSCENDANTE.

Rflexions sur la forme des imaginaires ; par M. Gergonne. 23e—25,
Intégration , sous forme finie , de quelques fonctions différentielles circulaires ;
par M. Du Bourguet. 72278,

ARITHMETIQUE.

Recherche des principales formules de la théorie des nombres figurés 5 par M.
Gergonne. 118—120.
Solution de ce probleme : connaissant le produit d’un nombre de plusieurs
chiffres par ce méme nombre renversé , trouver les deux fucteurs ; par un
Abonné. 123—130.

Essai sur la transformation des fractions 3 par M. Penjon. 265==273.

ASTRONOMIE.

Essai d'une nouvelle solution des principaux problémes d’astronomic 3 par M.
Kramp. ( Premier mémoire. ) 161—18o0.
Recherche des élémens d'une orbite elliptique dont trois rayons vecleurs “sont
donnés de grandeur et de position; par M. Kramp. 197=20T.
Essai d'une nouvelle selution des principaux problémes d'astronomie j; par DML
Kramp. ( deuxicme mémoire. ) 237==250.

ASTRONOMIE PRATIQUE.

Mémoire sur P'usage du Réticul Rhombe pour les observations des taches du
soleil et de la lune ; par M. Flaugergues. 321==332.

CHRONOLOGI1E.

Calendrier perpétuel 5 par M. Servois. 84—qo.
Solution directe des principaux problimes du calendricr 5 par M. J. F.
Frangais. 2~3=—276,

Supplément sur le méme sojet ; par le méme. 35
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CORRESPONDANCE.

Letrre de M. Du Bourguet au rélacteur des Annales , en réponse 3 une

lettre de M. Bret. 56==38.
Lettre de M. Bérard au rédactcur des Annales , en réponse a une lettre de
M. Bret. 58—=3g.
Letire de M. Bret au rédacteur des Annales , en réponse aux deux précé-
dentes. 9o=—Q2.

DYNAMIQUE.

Véritable solution du probléme de la tractoire plane 5 par feu Francais. 305=311,
Réflexions et recherches sur le meéme prolleme ; par M. Gergonne. 311—3z0.
Solution nouvelle du probléme de la tractoire plane et éclaircissemens sur ce

probleme ; par M. Dubuat. 332—~337.

GEOMETRIE.

Solutions d’un probléme sur les anses de paniers 3 par MM. Argand ct

Bérard. 250m=265..
Recherche de la surface plane de moindre contour entre toutes celles de

méme aire , et du corps de moindre surface entre tous ceux de meme volume
par un Abonné. 338=—344%
Solutions de quatre problémes de géométrie , relatifs aux Maxima et aux Dli-
nima 5 par M. Casielnau et un Abonné. 344—349.
Recherche du cercle qui en touche trois autres , soit sur un plan, soit sur une
sphére , et de la sphere qui en touche quatre autres dans lespace 5 par M.

3
Gergonne. 34y—360.

GEOMETRIE ANALITIQUE.

Mémoire sur les surfaces du second ordre , précédé de la recherche des for—

mules fondamentales de la géfoménie analitique a trois dimensions , dans le cis
g »

des coordoundes obliques 5 par M. Bret. 93—115.

Rechierche de Pellipse de plus grande surface inscriptible & un triangle denné

I & P ~ ’

de PPllipse de moindre surlace circonscriptible & un triangle donné, de I'dllipsoide
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de plus grand volume inscriptible & un tétra¢édre donné et de l'ellipsoide de
moin Ire volume circonscriptible 3 un tétraddre donné 3 par M. Bérard. 28;—294.
Recherche du cdac tangent & trois cones donnés, de méme sommct que lui ;
par M. Gergonne. 345—360.
Démonstration analitique des propriétés des hexagones inscrits et circonscrits
aux sections coniques ; par M. Gergonne. 381—384%.

. GEOMETRIE DES COURBES.

Essai sur Pexpression analitique des courbes, inlépendamm:ut de leur situation
sur un plan; par M. Gergonne. 4 .==50.
Solution d’un probléme de géométrie , relatif & la théurie des selutions parti-
culitres § par M. Servois. ) 157 —160
Démonstrations d'une propriété de la parabole jpar MM. Plassabicau , Guilhcumes
Gobert , et Bérard. 183—18-.
Solution de ce probléme : le foyer et trois peints du périmitre d'ui.e ellipse
étant donnés , consiruire lellipse 5 par M. Kramp. I47=—=201.
Démonstrations de ce théoreme : les rectangles qui y ayant respectivement pour
diagonales deux diamitres conjugués quelconques d'une scction conique , ont
leurs cotés paralléles & ses axes, sont équivalens ; par MM. Lérard ct

Gobert. 2)53=256.
Démonstration d’ane propriété des scctions coniques ; par M. Encontre [ils.
294—2G06.

Démonstration d'un théoréme relatif & la glométurie de la régle 5 par M. B.
79=—381.

Démonstration analitique de la propriété des hexagones inscrits et circonscrits
aux sections coniques 3 par M. Gergonne. : 381—=354.

GEOMETRIE PRATIQUE.

Solation de ce probleme : prolonger la direction d'une droite au-deld d'un
obstacle , avec Péquerre d’arpenteur seulement , et sans employer aucun chainage
par M. Seryois. 250=253.

GEOMETRIE DE LA RLEGLEF.

Applicakon de la doctrine des projections 2 la démonstration géométrique des
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propriétés des hexagones inscrils et circonscrits aux sections coniques ; par M.
Gergonne. 78=81.

GEOMETRIE TRANSCENDANTE.

Essai sur l'expression analitique des courbes, indépendamment de leur situation

sur un plan; par M. Gergonne,. +2=306.
Recherche sur le lien géométrique des sommets des cones de miéme base

Y e 3 seile . . - ———
dont Pangle au sommect a méme capacité; par M. Kramp. 187=—:q0.

Recherche de la surface de moindre contour entre toutes celles de méme
aire ¢t du corps de moindre fuiface entre tous ceux de méme volume ; par un

Abonné. 338—344.
Démonstration des principaux théorémes de M. Dupin sur la courbure des
surfaces ; par M. Gergonne. 368—379

MATHEMATIQUES APPLIQUEES.

Recherches analitiques sur la construction des thermométres métalliques en

forme de montre ; par M. Argand. 2Q=—42.
Recherches sur le tracé des voutes en anses de paniers ; par MM. Argand
et Bérard. 256==205.

OPTIQUE PRATIQUE.

.

Recherches sur la construction des miroirs concaves de grandes dimensions ;
par M. A. 180—183.

PHILOSOPHIE MATHEMATIQUE.

Réflexions sur la théorie des quantités ndgatives; par M. Gergonne. Gom 0,
Nouveaux principes de géométrie de position , ct interprétation géométrique
des symboles imaginaires ; par M. J. F. Francais. Gr—--z.
Essai sar une mani¢re de représenter les quanlités imaginaires dans les cons~
tructions géométriques ; par M. Argand. 133—148.
Lettres de MM. Frangais et Servois au rédacteur des Annales sur la nouvelle
théorie des imaginaires. 222==230,
Autre lettre de M. Frangars au rédacteur des Annales sur le méme sujet, 364-56-.



Note de M. Lac¢roiz sur le méme sujct. 367—368.

RECREATIONS MATHEMATIQUES.
Recherches sur un tour de cartes ; par M. Gergonne, 276==284.

TRIGONOMETRIE

Essai sur diverses expressions approchées de la circonférence du cercle ; par
M. Th. Barrois. 360—364.
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392 CORRECTIONS ET ADDITIONS.
e __________

CORRECTIONS ET ADDITIONS

Pour le tome quatriéme des Annales,

[a a e Via Zia Via Vo Vo Vi %o S

: PAGE 91 , mettez an bas de la note J. D. G.
Page 92, ligne 7 == cn remontant ; mettez une vz'rgulc apré: an--1.
Page 260, lignes 13 et 15~ claie lisez : clé
Ligne 17 ==rn; lisez : 1, .
Ligne 23 —r_ ; lisez: 1y .
Ligne 27 =— «, ;lisez: a, .
Page 262, au dénominateur de la valear de A==, au lieu de A==M ; lisez:
2(A=~=M).
Page 264 , ligne 13 — x=b ,y==a ; lisez: x=A , y=B. )
Page 338, ligne 6, gjoutez : dans le cas des années bissextiles, il faudra appli=
quer ici les remarques qui suivent le probléeme II ( page 275.)
Page 367, ligne 5= je; lisez : on.

Supplément ¢ I'Errata du Tome 11.°.

Page 11, ‘équalion 31 == plactl—qlxl! ; lisez : ply/lemmg!x!,
Ligne 4 , en remontant = ( a3=y2)J ; lisez : (x2~}-y2)3,
Page 13, a la note = (32, 33) ; lisez: (33, 34).

. m_—n+! s bl (L
Page 207, ligne 5, en remontant — ——— lisez : —— .
n-1 n+4y
. =T . me=—n
Ligne 2 , en remontant e —— lisez : —— .
. n n—-1

Supplément & I'Errata du Tome I11I.°

Page 107, ligne 8 ==2c; lisez: 2C.





