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Essai sur la théorie des quantités négatives ;

Par M. CACH , licencié es sciences , professeur de
mathématiques au collège de Tours*

l'équation

a? -\-a—h = c ;

on en déduit

(i)

Si, au lieu d'opérer de cette manière ? on retranche de chaque
membre le binôme (a—h), on aura

x~c—(a—h). (2)

La quantité c restant quelconque 9 je vais faire successivement,
sur a et b y les deux hypothèses suivantes , a'p-h et b>a. Soit

Tom* IK , n* I, i,er juillet 1813* 1



d'abord ayb ou a^b-%-% \ on aura, après la substitution dans
équations (i) et (2) ,

résultats parfaitement identiques.
Soit, en second lieu , b^>a ou bzza-\-$ ; les mêmes substitutions

donneront

La dernière expression se présente sous une forme inintelligible,
puisqu'elle exige qu'on exécute une soustraction impossible , et que
l'on retranche de c le résultat de cette soustraction. La valeur c-)r£
peut servir à l'interpréter ; car on l'a obtenue en faisant passer les
quantités a et b du premier membre dans le second ; ce que Ton est
toujours libre de faire, quelles que soient les valeurs de ces quantités ;
de sortç que Ton pourrait en conclure que

c—(—f)=c+$.

Quoiqu'il ne manque rien à cette conclusion, du côté de la rigueur,,
la marche que Ton a suivie n'éclaire pas assez sur la difficulté en
question , et ne fait point assez bien voir comment on passe de
l'expression c—(—%) à l'expression £+^« Afin de le mieux apercevoir,
il faut remonter à l'équation primitive, et y substituer à la place de b
sa valeur tf+^. On trouve alors

ce—$~c.

Ainsi 5 c'est à tort que Ton avait considéré la suppression du binôme
(a—b) comme une soustraction , puisqu'il est évident qu'il fallait ,
au contraire, ajouter à chaque membre la quantité $ pour avoir œ.
Lorsqu'on opère sur des quantités numériques ? il est clair qu'on
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ne peut jamais éprouver le moindre embarras; mais ? en opérant sur
l'équation littérale

x-\-a—b~c y

où a et h peuvent avoir telles valeurs que Ton veut , rien n'indique
s i , pour dégager l'ineonnue ^ , o n a réellement une addition ou une
soustraction à effectuer. Si Ton suppose donc qu'on en ait tiré

$-=.c—(a—F) 7

c'est qu'on a tacitement regarde a comme étant plus grand que h,
et par conséquent cette expression sera en défaut , lorsqu'on aura
a<b ; mais alors il* est évident que la proposée aurait pu être mise
6ou.s la forme

d'où Ton aurait tiré

Réciproquement, cette dernière expression sera en défaut , lorsqu'on
aura b<a\ et alors la première sera la véritable. On voit donc que,
si Tune des valeurs se présente sous une forme inintelligible par
elle-même, on est en droit d'en conclure qu'on a opéré dans un
sens inverse de celui suivant lequel on aurait dû opérer 9 et que Ton
doit modifier le résultat, en prenant la différence dans le sens où
elle peut être naturellement prise , et l'affectant d'un signe contraire
à celui que le calcul a donné. D'après cela ? on aura évidemment
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Telle est la manière dont doivent être envisageas l'addition et la
traction des quantités négatives isolées.

De l'équation

%—A=ac—bc~~ad-$-bd , (3)

on tire

x=A-\-ac—bc—ad+bd 9

valeur qui peut ? en général , se mettre sous cette forme

x^AMa—b)(c-J). (4)

i.° Je suppose a<£b et £>d ou b=a-\-$ et c=-d-*r&* II vient
après la substitution dans l'équation (4) *

C'est-à-dîre , qu'on aurait à ajouter a A le produit d'une quantité négative
isolée par une quantité positive. Or, on peut remarquer que, dans ce cas,
on n'était point autorisé à mettre la valeur de x sous la forme (4)> puisque
l'identité de cette forme avec la forme (3) n'a été démontrée (Alg, MuL)
que pour le cas où a—b et c—d étaient des différences naturelles; mais
alors la valeur (3) , ou a<b , et par conséquent ac<bc et a
pouvait s'écrire de la manière qui suit :

x — A—(bc—ac)+(bd—ad)=A—(bc<-~ac—ld-\-ûd)

d'où l'on voit qu'on a été conduit à multiplier une quantité négative
isolée par une quantité positive, parce qu'on a regardé comme possible
la soustraction (a—b) qui, dans l'hypothèse actuelle est impossible;
et, dans ce cas , on compense Terreur qui a été commise , en formant
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le produit, comme si la quantité (—$) était positive, et en affectant
ensuite le produit du signe (—).

2,.° Si l'on avait a>h etd>c o\ia~t>~\~$ et d = £+*>; on trouverait,
en substituant dans (4)

Mais, par la même raison que précédemment, on n'est pas alors en
droit de mettre la valeur (3) sous la forme (4) ; et puisque , dans
le cas présent, on a a > # , d'où ac>lc et ad>bd', on peut écrira

x == A—(ad—bd)+(ac—le) — A-~ (ad-~ld~~ac-\'lc)

On voit ici, comme dans la précédente hypothèse 9 comment oiï a
été conduit à multiplier une quantité positive par une quantité négative
isolée s et comment on doit effectuer l'opération.

3.^ Enfin, en supposant , en même temps ; h^a et d^C ? c'est-
à-dire, è=za-]-$ et d~c*\~*> v on obtient

mais alors ? ayant hd>ad et bc>ac , on detaît donner à la valeur
(3), au lieu de la forme (4) > la forme suivante

x = A-\-(bd—ad)—{le—ae)=zA-\-(jbd—ad—le+ae)

D'où l'on conclut que le produit de deux quantités négatives isolées
est le même que celui de ces deux quantités prises positivement»

Quant à la division ? je considère l'expression
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<2—- b

*=A+7ZTd > (5)

qui résulte 5 ou qui5 du moins , peut être censée résulter de l'équation

{x-A){c—d)=a~~l> (6)

Or, si (a-—h) est négatif et (c—d) positif, il faudra que (#—A),

ou son égal —- ? soit négatif ; il en sera absolument de même , si

(a—h) est positif et (c—d) négatif; enfin, s'ils sont tous deux négatifs ?

ct—b
{x—A) ou son égal — - devra être positif.

Réflexions sur le même sujet;

Par M. G E R G O N N E .

N ne saurait disconvenir que la tbéorie qui vient d'être développée
ne soit très-exacte , très-simple et très-lumineuse , et peut-être de
beaucoup préférable à tout ce qui a été dit jusqu'ici sur le même
sujet ; du moins tant qu'on voudra demeurer attaché aux idées qui
sont aujourd'hui généralement en vogue sur la nature des quantités
négatives. Mais ces idées qui , en toute rigueur 9 peuvent être admises ,
ont-elles réellement, sur celles auxquelles on les a substituées , toute
la supériorité qu'on leur attribue ? Ces dernières étaient-elles tellement
défectueuses qu'il y ait eu une absolue nécessité aies écarter? Et *
en les rejetant 9 n'a-t-on pas fait rétrograder l'algèbre jusqu'au point
où elle était dans son enfance ? N'a-t-on pas ajouté à la théorie du
calcul une mutile complication? N'a-t-on pas ouvert une source féconde
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d'embarras pour le calculateur ? Telles sont les questions que ? depuis
longtemps , j'ai le dessein de discuter 9 dans ce recueil 9 avec tout le
soin et toute l'étendue que mérite leur importance. Le défaut de loisir
m'en a constamment détourné jusqu'ici; mais, puisqu'enfin l'occasion
vient s'en offrir, je veux du moins ? au défaut d'une discussion en
forme , hasarder quelques réflexions sur ce sujet, espérant que le
lecteur voudra bien suppléer à ce que les bornes étroites que je suis
contraint de me prescrire , pourront me forcer d'omettre.

Les adversaires de l'ancienne théorie des quantités négatives , je
veux dire de la théorie adoptée par Newton , Euler , d'Alembert, etc.,
conviennent eux-mêmes que cette théorie est extrêmement commode; et,
s'ils la rejettent, c'est uniquement parce que, suivant eux , il en nait
plusieurs difficultés assez graves ; mais il me parait qu'avant de lui
substituer une théorie nouvelle 5 il eût au moins fallu examiner, avec
soin , si ces difficultés étaient réellement de nature à ne pouvoir être
surmontées , et si on ne courrait pas le risque de ne faire que les
remplacer par àes inconvéniens beaucoup plus graves encore. 11 me
paraît qu'en présentant la doctrine des quantités négatives de la manière
que je vais expliquer, tous les nuages élevés contre elle peuvent être
facilement dissipés.

Il n'est pas besoin d'un grand effort d'attention pour apercevoir qu'in-
dépendamment de leur valeur absolue, on a sans cesse à considérer, dans
les quantités leur mode d'existence, c'est-à-dire, l'opposition qui peut se
trouver entre celles qui sont de même nature. Cette opposition est un fait
évident, préexistant à tout système 5 à toute convention, et généralement
aperçu par tout le monde. Ainsi ? par exemple 5 chacun conçoit claire-
ment que 12 francs de dettes ne sont point la même chose que 12
francs de biens ; qu'un effort de 12 livres , qu'il faut faire pour
empêcher un ballon de s'élever , n'est point la même chose que
'l'effort de 12 livres qu'il faut faire pour empêcher une pierre de
descendre ; que l'intervalle de 12 années, qui sépare l'époque actuelle
d'un événement passé , n'est point la même chose que l'intervalle
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de 12 années qui sépare la même époque d'un événement à venir, etc.

La science des grandeurs ne remplirait donc qu'une partie de sou
but ou , pour mieux dire 5 elie deviendrait une source continuelle
d'erreurs et de méprises , si 5 se bornant à considérer les quantités
sous le rapport unique de leur valeur absolue, elle négligeait d'avoir
égard à l'opposition qui peut souvent exister entre elles. Il faut donc
que cette science fournisse des symboles , non seulement pour repré-
senter les valeurs absolues 9 mais encore pour différencier entre eux
les divers modes d'existence qu'une même sorte de grandeur
peut offrir.

Pour remplir ce but important, il suffit uniquement d'une con-
vention et de deux signes : c'est-à-dire, que,lorsque plusieurs quantités
de même nature entreront simultanément dans une même question ,
et présenteront, les unes à l'égard des autres , l'opposition dont il
est question ici ? on affectera de l'un quelconque de ces deux signes
toutes celles d'entre elles- qui offriront le même mode d'existence,
tandis que l'autre signe affectera celles qui présenteront un mode
d'existence inverse de celui-là.

Concevons que Ton applique à cet usage les deux signes + et — %
comme on les appelle respectivement signe positif et signe négatif,
une quantité sera dite positive ou négative 5 suivant qu'elle se trouvera
être affectée de l'un ou de l'autre de ces deux signes. Ces dénomi-
nations peuvent être mal choisies ; mais elles ont cela de commun
avec beaucoup d'autres; et l'inconvénient n'est point très-grave,
lorsque le sens qu'on se propose d'attacher aux mots est nettement
déterminé. L'essentiel est de bien se rappeler que , toutes les fois
que , dans une même question , on a à considérer des quantités
dont le mode d'existence est opposé , il est nécessaire d'affecter de
signes contraires les symboles qui en représentent les valeurs absolues;
mais que ce n'est que par une convention tout à fait arbitraire , que
les unes sont positives , de préférence aux autres ; et cela à tel point
que 5 dans tout état d'une question 9 on peut changer la convention
d'abord établie , soit pour tous les élémens dont cette question se

compose ?
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compose 9 soit seulement pour ceux d'entre eux qui &mt d*une même
espèce quelconque.

On voit qu'ici je considère les signes + et — comme originaire-
ment institués ? non pas pour indiquer l'addition et la soustraction 9

mais uniquement pour différencier entre elles les quantités dites
positives et négatives. Il n'est pas difficile de faire voir ensuite que
cet autre usage de ces deux signes est une conséquence toute naturelle
du premier. Je sais bien que je m'écarte ici de la marche des inventeurs;
mais c'est que je pense qu'on doit toujours le faire quand on y
trouve quelque avantage.

On me demandera peut-être une définition , proprement dite 5 de
ce que j'appelle ici modes d? existence opposés ? je répondrai à cette
question 5 lorsqu'on m'aura donné de bonnes définitions de Y espace t

du temps 9 des substances , des modes > de Vangle , et notamment
de ce qu'on appelle aujourd'hui quantités directes et inverses. Cette
opposition est manifeste pour qui veut prendre la peine de l'observer ;
elle se fait même remarquer dans les êtres purement intellectuels ,
commue dans les êtres sensibles ; et qu'importe , après tout , qu'elle
soit définie ? pourvu qu'elle puisse être nettement saisie par les esprits
même les moins attentifs.

Voici , au surplus , un caractère propre à la reconnaître ; c'est qtffc
deux quantités entre lesquelles elle existe7 s'anéantissent parleur réunion
lorsqu'elles ont d'ailleurs la même valeur absolue. Ainsi ? par exe*nple P

parce que des poids égaux , placés dans les deux bassins d'une balance 9

se font équilibre , il y a opposition d'existence entre les rnouvemens
que ces poids tendent à faire naître dans le fléau (*).

Plus généralement, si l'on fait un tout de deux quantités de même
nature 9 mais de signes contraires s l'effet de celle qui aura la moindre
valeur absolue sera de détruire dans l'autre une portion égale a elle-

(*) C'est à cela que revient cette expression populaire , il lui manque quatre
liards pour avoir un sou , employée dans quelques provinces ? pour dire qu'io*
h n'a absolument rien^

Tom. IF.
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même ; en sorte qu'il s'en formera un résultat unique ^ égal a la
différence de leurs valeurs absolues ? et affecté du signe de la plus
grande.

D'après les idées que je viens de développer , lorsque l'expression
—a se présente à moi ? je n'y vois nullement une soustraction impossi*
Me à effectuer, et je n'y vois pas d'avantage une forme algébrique
inintelligible par elle-même. Cette expression —a m'annonce simple-
ment qu'il a été fait , sur les quantités de la nature de a, une
convention formelle ou tacite , en vertu de laquelle cm a différencié,
par les signes s celles dont le mode d'existence était opposé , et que
a appartient à la classe de celles qu'on est arbitrairement convenu
d'affecter du signe — • C'est ainsi que les quantités négatives isolées
reçoivent , dès l'origine , une interprétation simple et naturelle.

A cette manière d'envisager les choses, répondront des locutions
qu'il faudra bien se garder d'employer dans le langage vulgaire ; mais
qui pourront être utilement introduites dans la langue de la science ;
ainsi, par exemple, on dira d'un événement qu'il arrivera dans —-4 an$*
pour dire qu'il est arrivé il y a -J-4 ans ; ou , au contraire ? qu'il
est arrivé il y a —4 a n s » pour dire qu'il arrivera dans -j-4 ans \
et ces locutions n'auront rien de plus étrange que celles , générale-
ment admises { qui consistent à dire qu'on répète un nombre \ de fois ?

pour dire qu'on le divise par 4 ; et qu'on partage un nombre en \ de
parties égales, pour dire qu'on le multiplie par 4-

On me demandera maintenant si je considère les quantités négatives
isolées comme plus grandes ou comme moindres que zéro ? Avant
de répondre à cette question, je distinguerai d'abord deux sortes de
zéros : savoir , le zéro absolu, symbole d'un pur néant 7 et au-dessous
duquel conséquemment rien ne saurait se trouver , et un zéro limite
ou point de départ ? qui est de pure convention , et auquel se rapportent
constamment les quantités considérées comme pouvant être positives
et négatives. C'est, par exemple , le zéro du thermomètre; c'est le
plan de niveau duquel on part pour estimer les élévations et les
abaissemens ; c'est l'époque de laquelle partent les chronologistes
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pour fixer la date des événemens y soit antérieurs soît postérieurs ;
et c'est encore l'origine des coordonnées dans la géométrie analitique»
Présentement , lorsqu'on me demandera si une quantité peut être
moindre que zéro, je répondrai simplement qu'une quantité, considérée
absolument , ne pouvant être ni positive ni négative , ne saurait jamais
être moindre que le zéro absolu ; maïs que , dès lors qu'on a égard
au signe de cette quantité 5 on annonce par là même qu'il existe ,
pour les quantités de même nature qu'elle , un zéro limite ; et
qu'ainsi , si elle est négative , zéro doit se trouver entre elle et les
quantités positives.

Si , pour fixer les idées, on imagine toutes les quantités possibles,
d'une même nature quelconque , disposées par ordre de grandeur et
de haut en bas, depuis l'infini positif jusqu'à l'infini négatifv sur
une même ligne verticale , ainsi qu'il arrive pour la graduation du
thermomètre ; on pourra fort bien dire alors que , de même qu'une
quantité positive plus petite est au-dessous d'une autre quantité positive
plus grande , une quantité négative plus grande est , au contraire y

au-dessous d'une quantité négative plus petite , et, à plus forte raison,
au - dessous de zéro et des quantités positives. Mais il faut bien
remarquer que ce n'est ici qu'une pure fiction de l'esprit, et qu'aux
idées de dessus et de dessous on pourrait, tout aussi bien, substituer
celles de droite et de gauche , ou encore celles de devant et de
derrière.

La question des quantités au-dessous de zéro correspond exacte-
ment à celle des quantités au-dessous de l'unité ; car, de même
qu'il y a deux sortes de zéros , il y a aussi deux sortes d'unités ;
savoir 7 une unité absolue , au-dessous de laquelle rien d'existant ne
saurait se trouver9 puisque , pour exister5 il faut au moins être un,
et une unité conventionnelle , qui admet indistinctement des quantités
au-dessus et au-dessous d'elle. De même donc que l'on dit que ^ est
au-dessous de cette dernière unité 9 et que ^ est au-dessous de \ ;
pourquoi craindrait-on de dire, dans un sens analogue , que —4
est au-dessous de zéro ., et que —4 est inférieur à —3 ? En général,
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si —a est une simple forme algébrique ou une soustraction impossible

à effectuer , pourquoi — ne serait-Il pas aussi une autre forme algé-
brique ou une division impossible à effectuer ? il est aisé de voir
en particulier que tous les raisonnemens que M. Cach vient d'appliquer
au calcul des quantités —^ et—*> > pourraient être également appliqués

. , i i ,aux quantités— et — ; et ? puisqu on ne juge point ces raisonne-
à (à

mens nécessaires 7 pour établir les règles du calcul de celle-ci, pourquoi
les jugerait-on tels à l'égard du calcul des autres ?

En.résumé , je ne vois point pourquoi les géomètres , adoptant
un système tout pareil à celui de la double doctrine des anciens
philosophes 5 aujourd'hui tant et si justement décrié, professeraient exté-
rieurement des principes différens de ceux qui les dirigent eux-
mêmes dans leurs recherches; principes qu'ils ne pourraient abandonner,"
dans la pratique , sans le plus grand embarras , et dont Pextrême
lucidité est d'ailleurs de nature à frapper tous les esprits ? N'entendent-
îls pas répéter tous les jours autour d'eux que tel homme a moins que
rien, et cette locution triviale, si fréquemment employée , ne leur
annonce-t-elle pas que le vulgaire lui-même semble appeler des
notions que l'on se figure être inaccessibles pour lui ?

Tout ce qui précède ne eoncerne encore que les quantités concrètes;
mais que dirons-nous présentement des nombres abstraits ? Pourront-
ils aussi offrir, les uns par rapport aux autres , quelque opposition
dans leur rfianière d'exister ? en quoi cette opposition consistera-t-
elle ? et à quels caractères pourra-t-on la reconnaître ? Je n'ignore
pas que des géomètres dont je respecte les lumières ont établi, en
principe, que tout nombre abstrait est essentiellement positif'; mais?

à ce compte 7 je ne vois plus „ dans les puissances des nombres négatifs,
que des êtres de raison ; car enfin , dans toute multiplication 9 encore
faut-il bien que l'un des facteurs au moins soit abstrait ; d'ailleurs ;
ces mots nombre abstrait 7 ne sont au fond que des mots , et
peuvent ; comme tels ; être employés a signifier tout ce qu'on voudra»
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Ecartons-nous, toutefois, le moins que nous le pourrons ? des no-

tions communes , et voyons quels sont les cas où ce qu'on appelle
vulgairement nombres abstraits , se présente à nous. J'en remarque
deux principaux : le premier a lieu lorsque nous cherchons ^ assigne»
le rapport entre deux quantités de même nature 9 et on peut dire ,
dans ce sens , que le nombre abstrait exprime combien de fois une
quantité donnée doit être répétée pour former > une autre quantité,
aussi donnée? de même nature qu'elle.

Le second cas a lieu lorsqu'il s'agit d'assigner les rangs entre
une suite de grandeurs dérivées les unes des autres , suivant une
loi quelconque: on peut donc dire, sous ce nouveau point de vue;
que le nombre abstrait exprime le rang qu'occupe un objet parmi
plusieurs autres.

Ces notions ainsi admises, et elles le sônl universellement; si Ton
nous demande9 par exemple, quel est le rapport entre 12 francs
de biens et 4 francs de biens ? nous répondrons, sans hésiter 9 que
c'est le nombre abstrait 3 , et nous ferons exactement la même réponse y

si Ton nous demande quel est le rapport entre 12 francs de dettes
et 4 francs de dettes ; puisqu'il faut répéter 3 fois , soit 4 francs
de biens pour faire 12 francs de biens, soit 4 francs de dettes pour
faire 12 francs de dettes.

Que si Ton nous demande ensuite quel est le rapport, soit entre
12 francs de biens et 4 francs de dettes , soit entre 12 francs de
dettes et 4 francs de biens ? nous pourrons nous trouver d"abord
embarrassés , et même la question pourra , d'une première yue, nous
sembler absurde ; attendu que des biens répétés font toujours
des biens y et que des dettes répétées font toujours des dettes :
cependant , en y réfléchissant mieux , nous ne tarderons pas à
apercevoir qu'il existe un moyen de faire, soit 12 francs de biens

avec 4 francs de dettes , soit 12 francs de dettes avec 4 francs de
biens ; et que ce moyen consiste à répéter d'abord 3 fois les 4 francs f

soit de biens soit de dettes, et à changer ensuite le mode d'existence
du résultat obtenu.
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Or , très-certainement, rien n'empêche d'indiquer , tout d*un cotip ,

cette double opération , en faisant précéder du signe — le nombre
abstrait 3 , pourvu qu'on écrive ou qu'on sous-entende le signe +
devant le même nombre abstrait, lorsqu'il répondra au premier des deux
cas que nous venons de considérer. On dira , en conséquence , que
prendre une quantité *-J~3 fois , c'est la répéter 3 fois , en lui conservant
son mode d'existence ou son signe ; et que , prendre une quantité
—3 fois , c'est la répéter 3 fois, en changeant son mode d'existence
ou son signe : il y aura donc, dans ce sens 7 des nombres abstraits
négatifs aussi bien que des nombres abstraits positif s ; et l'on pourra
établir, en principe 7 que le nombre abstrait qui exprime le rapport
entre deux quantités de même nature } est positif ou négatif, suivant
qie ces deux quantités ont le même mode d'existence ou un mode
d existence opposé , c'est-à-dire , en d'autres termes ? suivant que
ces deux quantités ont le môme signe ou des signes contraires. Ainsi
se trouveront expliquées , par une convention toute simple et toute
naturelle, les règles des signes pour la multiplication et pour la division*

Quant à la seconde sorte de nombre abstrait ; concevons qu'après
avoir écrit une série dont on connaît la loi , on ait numéroté ses
termes , de gauche à droite , i , 2 , 3 , . . , . . Rien n'empêchera, à
l'aide de la loi connue de cette série, de la prolonger vers la gauche,
tout aussi bien que vers la droite ; e t , d'après les idées développées ci-
dessus , on sera tout naturellement conduit a numéroter successivement

les termes nouveaux , introduits sur la gauche , o P —1 , —2 > —3 , . . . ,•
auquel cas il deviendra nécessaire d'écrire ou de sous-entendre le
signe + devant les indices des termes déjà numérotés 1 , 2. 9 3 . . . .

On aura donc encore ici des nombres abstraits positifs et des nombres
abstraits négatifs ; et les differens signes dont, ils se trouveront affectés ^
annonceront qu'ils .indiquent les rangs de termes situés de part et
d'autre de celui qu'on sera arbitrairement convenu de numéroter zéro.
On voit par là que ces nojnbres abstraits doivent être soigneusement dis-
tingués de ceux de la première sorte. Ceux-ci sont positifs ou négatifs
intrinsèquement , ou du moins en vertu d'une convention générale
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qui , une fois établie, ne saurait plus être changée; tandis que les
autres ne sont tels que par la situation du zéro, qu'on peut déplacer
à chaque question nouvelle que Ton traite , et par la convention libre
que l'on a faite sur le sens positif et sur le sens négatif du numé-
rotage. En un mot , les nombres abstraits de cette dernière sorte
rentrent absolument dans ce que j'ai déjà fait remarquer des nombres
concrets , considérés comme positifs et comme négatifs.

Ce que je dis ici n'est , au surplus , que ce que les géomètres
pratiquent tous les jours. En est-il un seul , en effet , qui ignore
ce qu'il doit trouver, lorsque, dans le terme général d'une série,
il substitue 9 pour Pindice , un nombre négatif ? En est-il un seul
qui hésite sur le rang que doit occuper un terme dont il trouve
Findice négatif ? Que devient donc alors la maxime : tout nombre
abstrait est essentiellement positif ? Faut-il donc que la maxime
contraire demeure une sorte de mystère , entre les seuls initiés ? Et
n'ai-je pas eu raison de dire, tout à l'heure , que les théories modernes
avaient entraîné les géomètres , involontairement sans doute , dans
le système de la double doctrine. (*)

Les principes que je viens d'exposer sont 5 à quelques modifica-
tions et à quelques développemens près , ceux qui ont été généra-
lement professés jusqu'à ces derniers temps. Une expérience assez
longue m'a prouvé que non seulement ils étaient toujours nette-
ment saisis par les commençans , mais qu'en outre ils imprimaient
à toutes leurs recherches une marche ferme , exempte de toute
méprise et de toute hésitation ; avantages que ne me semblent pas
réunir, au même degré, toutes les diverses autres théories.

Il me resterait présentement à répondre aux objections, tant et si

{*) L'inconvénient n'est point encore très-grave à présent, parce que les deux
doctrines sont généralement connues, et que l'une d'elles n'est que de pur apparat;'
mais , si celle-ci venait enfin à être seule enseignée , nous pourrions fort bien en
revenir , dans quelque temps , aux racines vraies et aux racines fausses des contexn*
porains de Descartes,
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souvent rebattues, qui ont été opposées à ces mêmes principes; mais?
dans la nécessité d'abréger , je m'arrêterai seulement au petit nom-
bre de celles d'entre elles qui m'ont paru les plus spécieuses,

T .° On demande pourquoi le produit de deux quantités de signes
contraires a le privilège d'être négatif plutôt que positif , et s'il ne
devrait pas être l'un et l'autre • puisqu'en changeant d'hypothèse r

sur les quantités multipliées y + X — devient — X + , et devrait
alors donner un produit de signe contraire ? On demande , en se
fondant sur les mêmes motifs, pourquoi, si + X + = = 4 " ? on u'a
pas, en changeant d'hypothèse —X — = —?

La réponse à toutes les difficultés de ce genre est simple et facile?
Dans toute multiplication 9 l'un des facteurs est essentiellement un
nombre abstrait de la première sorte ? et le produit est de la nature
de l'autre facteur. Si donc on change d'hypothèse sur les quantités
négatives f cela entraînera uniquement le changement des signes du
multiplicande et du produit -, or , c'est là une condition à laquelle
satisfont en effet les règles connues, (*)

Cette difficulté est , au surplus * du genre de celle que se propose
Lacaille , dans les premières éditions de ses élémens , lorsqu'il se
demande pourquoi 12 deniers ; multipliés par 12 deniers, ne donnent
pas la même chose que 1 sou multiplié par 1 sou ? Et la réponse
à cette dernière est tout à fait analogue à celle que je viens de faire
à la première^ On peut tien changer d'hypothèse , relativement à la
grandeur de l'unité 4e mesure du multiplicande , et cela entraînera
nécessairement un pareil changement dans l'unité de mesure du produit;
mais le nombre des unités du multiplicateur étant un nombre abstrait,
est indépendant de toute hypothèse , et ne saurait conséquemment
être modifié dans aucun cas,

2.°" On demande aussi pourquoi , si les quantités ne sont positives

(*) On pourrait m'objecter que le multiplicande , comme le multiplicateur, peut
souvent aussi être abstrait et cela est vrai ; mais ces deux nombres abstraits n'en
seront pas moins de nature différente. Le multiplicande, comme le produit , est
un nombre de choses; le, multiplicateur seul e&t up nombre de Jois,

et
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et négatives que par convention , ^/— a2 est imaginaire ? tandis que
t/4-tf2 est réelle ? Cette difficulté rentre dans la précédente. \/~^l
est imaginaire , parce que —- £ 3 , ne pouvant provenir que de la multfT

plication de -±-a par — a , ou de — a par -\-a 5 n'est point un quarré.
Au contraire , \/4-^ est réelle 9 parce que , soit qu'on, suppose
~±-a2~JcaX'~r-a ou H-#- = — a X — a , cette, quauîité estr toujours
un quarré.

3.° Tout le monde admet, comme vraie , la proportion + 1 : —1 : :
—1 : + i ; or 9 dit-on ? si les quantités négatives sont moindres que les
quantités positives 9 il s'ensuivra cette conséquenceabsurde que ? dam
une telle proportion , tandis que le premier conséquent sera surpassé
par son antécédent ? le second conséquent, au contraire , surpassera
son antécédent. * ,

Je répondrai à cette difficulté en observant qu'en prîpcîpe on.ne
doit jamais chercher dan§ un objet que des propriétés qui résultent
inévitablement de son essence, c 'est-à-dire^ de sa définition. O r ,
l'essence d'une proportion géométrique est uniquement que le quo-
tient des deux premiers termes soit égal asu quotieiit des fïexix derniers \
et c'est parce qu'ils satisfont à cette condition primordiale que les
quatre termes que Von vient de citer sont reconnus pour être ceux
d'une telle proportion. Il arrive bien quelquefois 7 en effet, que f

le second terme étant moindre que le premier , le quatrième^ est aussi
moindre que le troisième5 mais cette propriété 9 essentielle aux pro**
portions arithmétiques, n'est, qu'accidentelle à l'égard des aptre$:,..-et
ne s'y fait remarquer que lorsque to>us leurs termes ontift niême signe.

Nous venons de rencontrer une proportion géométrique dans laquelle ^
le premier terme surpassant le second de deux unités, Je troisième
terme est au contraire surpassé de deux unités par le quatrième,.YcHci,
à l'inverse 5 une proportion arithmétique dans laquelle le premier terme
contenant deux fois le second , le troisième est au contraire eûnteBU
deux fois dans le quatrième : c'est la proportion .à. 1 ; - f i . — 2 ; et
cette proportion est exacte , parce qu'elle satisfait à la condition de
4éfinition , et que toute autre propriété 7 -isi elle n'est pas essentielle-

Tom. IV, * 3
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ment renfermée dans celle-là , ne saurait lui être qu'accidentelle;

4-° On cite enfin , dans les problèmes de géométrie , des valeurs
d'inconnues qui , bien qu'affectées de signes contraires , doivent
•néanmoins ê t r e portées du même côté. C'est, dit-on, ce qui arrive f

en particulier 5 dans le problème où il est question de mener à un.
cercle, par un point extérieur, une sécante telle que la corde inter-
ceptée soit d'une longeur donnée. Mais , on a négligé d'observer
qu'en résolvant le problème par rapport au cercle donné , on le
résout aussi pour un autre cercle , symétriquement situé avec lui
par rapport au point donné , et que c'est à ee dernier qu'appartient
•'là solution négative.

• Je crois devoir ^ à cette occasion , relever une fausse interprétation
que Ton rencontre dans l'algèbre de Bezout. L'auteur suppose que 175
frarics, devant être distribués , par égales portions 5 entre un certain
Nombre de personnes , l'absence de deux d'entre elles augmente de 10
francs la part de chacune des autres. En prenant pour inconnue
le nombre des personnes qui devaient d'abord entrer en par t , il

^ trouve ——5 pour Tune des solutions du problème, et il dit que
cette solution répçnd au das où , au contraire , deux nouveaux sur-
venans auraient diminué de 10 francs la part de chacun»

Mais cette interprétation ne me paraît point exacte. Ce ne sont
point, eh eiïet 3 ni les io francs ni le nombre des personnes absentes
gui sont devenus négatifs ,; et jamais lès données ne sauraient éprouver

;\~«unè semblable métamorphose ; c'est uniquement le nombre total des
.rp^tsonftea-'xjtti'â subi ce changement. Puis dorîc que5

sdans le1 premier
•< fcàs ,i il était question de personnes recevant, il devra être question
0 ici de petWnes donnant; c'fcst-à-dife 9 que le nombre — 5 , pris en - h ,
, '.répondra a là; question où ,' des p^sonnes devant se cotiser potir

fairferiin fonds de 175 francs ?, ï'abseîice âê deux d'eritre elles aurait
augmenté de. 10 francs la portion à fournir pat-chàtiufeè d'elles.

11 est, po3sible i au surplus , que cette inexactitude , ainsi que
plusieurs autres , ait déjà été relevée , :par quelqu'un des nombreux
.éditeurs et commentateurs du Cours de Bezout 5 ouvrage excellent
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sans doute, pour l'époque où il a paru , mais qu'il serait peut-être
temps enfin de laisser reposer en paix , à côté de la Caille et de
tous ceux du même temps.

Avant de terminer, je dois dire quelque chose des difficultés que
présente fréquemment aux eommençans l'ambiguïté des signes des
radicaux pairs. Quelques auteurs , au lieu da mettre ces difficultés
bien en évidence, et d'enseigner à les surmonter ? semblent au contraire
avoir apporté tous leurs soins à les éluder; c'est-à-dire, qu'Us se sont
appliqués à disposer leurs calculs de telle sorte qu'en extrayant les
racines sans aucun égard au double signe 9 on tombe précisément
sur le résultat qui convient au problème.

Mais on ne doit jamais perdre de vue que toute racine paire porte
inévitablement le double signe j ^ , sans qu'on puisse dire , dans
aucun cas, ni sous aucun rapport ? que l'un de ces signes lui soit
plus naturel que l'autre. A la vérité ? il arrive fréquemment que ,
par la nature individuelle de" la question dont on s'occupe , l'un de
ces signes doit être rejeté ; mais ? c'est tout aussi souvent le signe -f-
que le signe — ; et c'est -précisément de là que naît l'embarras. Le
moyen le plus simple et le plus uniforme de le dissiper me paraît
être de traiter le double signe JH comme Ton traite les constantes
arbitraires , dans le calcul intégral ; c'est-à-dire, d'en lever l'ambi-
guïté par quelques suppositions particulières qui ne fassent pas
évanouir les termes radicaux , et pour lesquelles on sache bien , à
l'avance y quel résultat on doit obtenir.

J'ai essayé , dans cette dissertation , de ramener la théorie des
quantités négatives à des notions qui me semblent plus claires, et
sur-tout incomparablement plus commodes pour le calculateur, que
celles qu'on leur a substituées depuis quelques années, et j'ai montré ,
par divers exemples , que les difficultés opposées à ces mêmes notions
ne sont pas aussi sérieuses qu'on pourrait l'imaginer. Si j'ai pu paraître
avoir quelquefois en vue l'introduction de la Géométrie de position 9

c'est uniquement parce que je ne connais aucun autre écrit où
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l'ancienne théorie soit attaquée et la nouvelle défendue d'une manière
aussi complète et aussi supérieure. Je prie donc mes lecteurs de
croire que je n'en suis pas moins pour cela pénétré de la plus
haute estime pour la personne et pour les productions de l'illustre
auteur de cet ouvrage; mais je pense que la Géométrie de position
ne perdrait absolument rien de ses avantages réels , et qu'elle gagnerait
peut-être même , du côté de la clarté et de la brièveté , si elle
était ramenée aux notions que je viens de chercher à établir, ou
plutôt à rappeler de Poubli.

ALGEBRE ELEMENTAIRE.
Démonstrations élémentaires du théorème de d'AhÈMBEBT

sur la forme des imaginaires ;

-Par M. BU BOUKGUET , professeur de mathématiques spéciales
au lycée impérial.

U'ÀLEMBERT a démontré le premier , mais par Us calculs diffé-
rentiel et intégral, que toute quantité imaginaire

peut toujours être ramenée à la forme

( Voyez le Calcul intégral de Bougainyille > page %.2 ). (*)

t*) Voyez aussi la Résolution des équations numériques de Lagrange, note IX.
J, D. G.
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11 y a environ onze ans qu'ayant vainement cherche , dans les

auteurs les plus estimés à cette époque > une démonstration élémen-
taire du même théorème , je m'occupai à en trouver une , soit
algébrique soit géométrique; j'en obtins, en effet., une fort simple de
cette dernière sorte ; c'est celle que j'annonçai en i8oa? dans un ouvrage
d'algèbre que je publiai à cette époque. Mais , depuis ce temps ,
M. Garnier ayant donné une démonstration semblable , dans un
ouvrage qu'il a publié en 1804 ? sous le nom àïÀnalise algébrique %

j'ai cru devoir reprendre mes recherches pour obtenir du même
théorème une démonstration purement algébrique. Voici celle que
j'ai obtenue, et qui me paraît préférable à l'autre ; car, outre qu'elle
est fort simple , il me paraît très-convenable de ne faire dépendre
la démonstration du principe général que toute fonction de quantités
imaginaires est réductible à la forme p^Zqs/^î > de la seule brancha
des sciences exactes dont ce principe fait partie.

On sait que 9 quels que soient a et h , on a

a ï " a ' L \ a ) — "y

on aura donc;, en changeant h en l\/—7

-d_m±??\/—i fb\]—i\ m±Ln\]~-—i m*»i ± n\J—i ( à__ *\ 2—»
— i \ a J i z \ a J ^

Or, toutes les puissances paires de ^ / ~ étant égales à IJIi 5 et
toutes ses puissances impaires étant égales à i l i /—7 ^ il s'ensuit qu'en
exécutant toutes les multiplications ? entre les accolades du second
membre de l'équation (i) , on obtiendra une suite de termes réels,
4ont l'ensemble pourra être représenté par g , et une suite de termes
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affectés de - H t / I ^ , dont l'ensemble pourra être représenté pa?
^hy/^l y en sorte que l'équation (i) deviendra simplement

00
Mais, par la théorie des quantités exponentielles, théorie indépendante
de l'exposant de la base , on a , en désignant par la le logarithme
naturel de a ,

(3) T ^ ± V r ô

qui , pour les mêmes raisons que ci-dessus , pourra être réduit à
la forme

substituant donc cette valeur dans l'équation (2) , il viendra 9 en
développant ; et posant pour abréger

cg—dh=p , chAfdg — q >

comme nous l'avions annoncé.

Voici présentement la démonstration géométrique du même théorème^
que j'avais annoncée , dans l'ouvrage d'algèbre publié en 1802,

Soit posé

0

il viendra .

donc

et
/̂ J

Multipliant les deux membres de cette dernière équation par rrï^Ji \/^l %

il viendra
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posant alors, pour abrdger

et repassant des logarilhme-s aux nombres , il viendra

posant donc enfin

en aura , de nouveau

Réflexions sur le même sujet ;

Par M. GERGONNE,

A forîne

est loin, ce me semble , d'être lia plus générale que puissent affecter
les fonctions d'Imaginaires. D'abord un radical imaginaire peut excéder
le second degré. A la vérité , dans ce cas , il peut toujours être
ramené au second degré , puisque ^/ *—AZ — \/ Asj^î > mais c'est là
une observation qui vaudrait bien la peine d'être faite aux commençans f

à qui on ne parle jamais 9 dans les élémens, que de la racine QUARRÉE
de moins un.

(*) Dans le vrai , cette dernière démonstration est tout aussi analitique que la
première ; puisque les fonctions circulaires ne sont, au fond , que des transcen-
dantes d'une espèce particulière > dont la, théorie peut être présentée d'une manière
tout à fait indépendante des considérations géométriques. C'est ainsi, en particulier,
qu'elles ont été envisagées par M. Suremain-de-Missery , dans sa Théorie des
quantités imaginaires ( Paris, F. Didot, 1801 , in-8.° ). On trouve, au surplus,
dans cet ouvrage ( pag. 72 ) , une démonstration du théorème de d'Alembert qui
diUère très-peu de celles de MM. Du Bourguet et Garnier.

J . D. G.
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E l sa bornant même aux seuls imaginaires de la forme am^rJb\/'Z^L x

n£ peut-on pas considérer des fonctions telles 5 par exemple , que
* Sin. Sin. S i n . . . . . . . . |

Cos. Cos. Cos. i

Log.Log.Log.. ( _ r

îe nombre des sinus , cosinus ou logarithmes étant quelconque, fini
ou infini s positif ou négatif, entier ou fractionnaire, conarnensurable
ou incommensurable, et pouvant même être imaginaire de la forme
m-\~nfy/-r-i ? Ne peut-on pas également considérer des fonctions d§
la forme

Ne peut-on pas aussi considérer des fonctions de la forma

ou de la forme

les * , « / , ^ , . . ; . i ; ^ , ^ , , . . . ir, *'., ^ , . . . . ^ 5 ^ , J ^ » ; ; ^
étant liés par une lai connue quelconque , et leur nombre pouvant
être indifféremment fini ou infini, positif ou négatif, entier ou fraction-
naire ,. commensurable ou incommensurable 5 ou même encore imagi-
naire.de la forme m^ns/—x ? Ne peut-on pas enfin considérer des
fonctions d'imaginaires , composées de toutes celles-là et de beaucoup
d'autres encore , telles que seraient , par exemple ? des différentielles
ou intégrales dont Tordre serait imaginaire de la forme m^rjis/1^11

II me semble que , dans tous les cas , la voie la plus simple
pour parvenir ? s'il est possible ? ' à la démonstration du théorèmeg

est celle que voici.
Soit posée l'équation

et supposons, en premier lieu , que la fonction ç soit algébrique.
Oft
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On pourra toujours, en chassant les dénominateurs et les radicaux â

ramener cette équation à la forme

or , il est démontré , par les éîémens , que toutes les racines d'une telle
équation sont de la forme p~^Zç\/^i , sans en excepter même les racines
réelles , puisqu'elles répondent à <?=o ; puis dofic que la fonction
ç est du nombre de ces racines , elle doit être aussi de cette forme.

Supposons, en second lieu, que la fonction <p soit transcendante ?

mais développable en une suite de termes qui soient algébriques ou
du moins développables eux-mêmes en séries , et ainsi de suite,
jusqu'à ce qu'on n'ait plus qn'une suite de termes algébriques ; ces
termes, d'après ce qui précède ? seront tous de la forme p^rç^/ZZl;
donc leur somme, c'est-à-dire, la fonction q> sera aussi dé la même forme.

Toute la . difficulté est donc maintenant réduite à savoir si vrai-
ment toute fonction non algébrique est développable en série. Je
regarde la chose comme extrêmement probable ; mais je ne crois pas
qu'elle ait encore été jusqu'ici généralement et rigoureusement démontrée*

ANALISE ELEMENTAIRE.
Démonstrations du principe qui sert de fondement ay,

calcul des Jonctions symétriques 9 et de la formule
du Binôme de Newton ;

Par M. BRET ? professeur à la faculté des sciences de
l'académie de Grenoble.

I. ^OIT représenté le produit des 772 facteurs simples
par

m"l+J2^"ï+ -\-Jm ; (1)
Tom. IF. 4
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et celui des mêmes facteurs, excepté le premier %-\-* > par

««-«4-J91^«--+-51o?ni-' + . . . . • + 5 m . l . (2)

II est évident qu'en divisant le polynôme (1) par # + # , on produira
le polynôme (2) ? et que , réciproquement , en multipliant le poly-
nôme (2) par # + * , on aura le polynôme (1). De là résultent les
équations

Bn~ x = An., —*Â t t - x-*r«?An^,—....., (3)

An=Bn+«Bn_x. (4)

L'équation (4) démontre que tout ce qui multiplie « dans An est
i5rt , ; or , d'après la composition des coeiïiciens Àx , Ax , À^ 5 , . . j
en «, /3, y , . . . . , si dans An on prend tous les termes multipliés
par u , puis successivement ceux multipliés par /3 ? y , J , . » . . , et
qu'on les ajoute ; on aura nAn ; donc

^ n =S(«Z? , , _ , ) , (5)

le signe S indiquant la somme des produits aBn^t que Ton obtient
en permutant successivement * avec chacune des autres lettres.

Cela posé, dans l'équation (5) substituons à 2?7J_, sa valeurj^S)^
il viendra

ou
nÀn+Àn. x S(-«)+An. t S[-*y+ +S(—)"= o ; (6)

e t , comme —u,, —$ , — y , . . . , sont les racines de l'équation (1) y
il s'ensuit que la formule (6) détermine les sommes des puissances
semblables de ces racines, savoir : S(—*) , S{—#)a , S(—»f ,
jusqu'à S(—ce)m

t On peut même pousser plus loin le calcul de ces
sommes, en multipliant l'équation (1) par #", et en appliquant ensuite
la formule (6) à l'équation résultante. (*)

(*) On trouve un article sur le même sujet à la page ^38 du IU.e volume
de ce recueil, J. D. G.
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II. L'équation

nÀtr-A^ xS*+-An_t S**—,. ; . . = 0 $

devient, en supposant «==£ = >*==£===

Changeant n 9 en 72—1, on aura

(n—1 )Atlm t —mÂn. % *-\-mAnm} *a—• . • • . * = o.

Multipliant cette dernière équation par et, et l'ajoutant à la précé-
dente ; il viendra

ce qui établit une relation entre deux coeiïiciens consécutifs du polynôme

d'où Ton déduit la formule du binôme.
On peut encore démontrer cette formule d'une manière plus directe j .

il suffit pour cela d'observer que 5 dans l'équation

le nombre des produits de n lettres du premier membre est égal
au nombre des produits de n lettres du second membre ; désignant
donc par JV̂ 1 le nombre des produits différens de n lettre qui sont
comptés dans rn lettres ?nous auron5 nJN™~m]S™~* , et par conséquent
la suite d'équations

= m

Effectuant le produit de ces équations 9 et omettant les facteur*
Communs , nous obtiendrons



*8 QUESTIONS PROPOSÉES.

^m TH. 772—1 772—3 772—72+1 *

Si l'on fait maintenant *=/3=7= ( j .= : on aura

donc

m— m I m m i m m ~ x

QUESTIONS PROPOSEES.

Problèmes de Géométrie.

ï. U N E droite mobile parcourt le plan d'un triangle de manière
que le produit des segmens qu'elle détermine sur deux de ses côtés,
vers leur point de concours , est constamment égal au produit des
deux autres segmens des mêmes côtés. On propose d'assigner la
courbe à laquelle , dans son mouvement , cette droite sera perpé-*
tuellement tangente ?
,, IL Un plan mobile coupe un tétraèdre de telle manière que le
produit des segmens qu'il détermine, du côté du sommet du tétraèdre 9

sur les trois arêtes qui y concourent, est constamment égal au produit
des segmens des trois mêmes arêtes qui se terminent à la base ? et
qu'en outre , le produit des aires des triangles qu'il intercepte du
côté du sommet , sur les trois faces qui y concourent , est cons-
tamment égal au produit des aires des quadrilatères qui 5 avec ces
triangles, complètent ces trois mêmes faces. On propose d'assigner
la surface courbe à laquelle , dans son mouvement ? ce plan ôera
perpétuellement tange.it ?
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MATHÉMATIQUES APPLIQUÉES.

Solution des deux problèmes proposés à la page 2À3
du Z//.e çolume des Annales (*), avec quelques appli-
cations à la construction des thermomètres métalliques
en forme de montre;

Par M. ARGÀND*

i . VJOIENT AT (fig. x) la tangente commune, BAD la perpendiculaire
à AT sur laquelle se trouvent les centres des arcs tangens, C un
point pris, à volonté, sur BD. Que de ce point, comme centre ;
et du rayon CA=z on décrive Parc AM=# > la longueur donnée
étant =2#. Qu'on abaisse sur ÀC la perpendiculaire MP , et soient

a

On aura (i)

X=:z( I—Cos.— J •

on tire de ces deux équations, par l'élimination de Sin. — et Cos. — ,

au moyen de celle-ci : Sin.3 — +Cos.2 — = i >

(*) Vo^ez aussi îa page 877 du même volume,
Tom. IF.
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2.JU

En substituant cette valeur de z dans chacune des deux premières
équations , on obtient celle de la courbe cherchée , sous ces deux
formes

Ces deux équations diffèrent non seulement par la forme , maïs
encore par l'étendue de leur signification. La première n'appartient
qu'à la courbe qui naît des arcs AM tracés dans le sens des ordonnées
positives. La seconde comprend , en outre 7 la courbe semblable formée
du côté des ordonnées négatives : car on voit qu'elle ne change
pas en mettant —a au lieu de *\-a. C'est donc cette dernière équation
seule qui résout le problème tel qu'il est énoncé , en y supprimant
toutefois la condition que les arcs touchent la droite donnée du
même cote \ car , par cette restriction 9 on n'aurait qu'une moitié de
la coxirbe ; savoir : celle qui est tracée du côté des abscisses positives ,
et la courbe se terminerait brusquement à la ligne AT.

2* Quant à la surface courbe qui fait le sujet du second problème ;
c'est une sphère dont le centre est le point de contact commun

À ? et dont le rayon = If —- , h étant la surface constante des

calottes , et CT la demi-circonférence appartenant.au rayon i. En
effet , la figure i peut représenter une section perpendiculaire au
plan tangent , et passant par le point A, Qu'on décrive le cercle

MN d'un rayon AM= 9/ — . Ce cercle sera la section de la sphère

dont il s'agit. Qu'on prenne ensuite , comme ci-dessus , AG à volonté ,
et qu'on décrive l'arc AM , qui sera la section d'une demi-calotte. Pcr

les élémens , la surface de la calotte =2^x\P.AC et AP= —L- 5
aAG
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donc en substituant et réduisant, cette surface = £. On doit ici, comme
dans le problème précédent, et par une raison semblable, retrancher de
Ténoncé du problème la condition que les calottes touchent le plan
du même côté*

3. Les applications pratiques étant propres à jeter de l'intérêt sur
les questions de théorie , auxquelles on reproche quelquefois de n'être
que des objets de curiosité , il ne sera peut-être pas hors de propos
de recueillir ici , à l'occasion de la courbe du premier problème,
quelques considérations utiles dans la construction des thermomètres
métalliques en forme de montre , instrumens dont plusieurs artistes
se sont occupés dans ces derniers temps.

Le mécanisme de cet instrument est porté sur une platine et
emboîté comme un mouvement de montre» La figure 3 en représente
les parties principales. Q est un pied ou talon, fixé sur la platine y

auquel est attachée une lame d'acier QTUA , dont la forme et la
position sont assez semblables à celle de ces ressorts qui , depuis
quelques années , ont remplacé les timbres des montres à répétition.
ABCD est la pièce destinée à donner le mouvement thermométrique*
Elle est composée de deux lames fort minces de métaux differens,
comme acier et cuivre , soudées Tune à l'autre par leurs faces > de
manière à ne former qu'un seul et même corps. Les deux lames
QTUA et ABCD sont réunies en A : à l'extrémité D de cette dernière
est adaptée une troisième lame fort mince abcd, qui en forme , en
quelque sorte ,1e prolongement» Le système QTUABGDtf^*/ ne tient
à la platine que par le pied Q ; tout le reste est porté en l'air et
se trouve éloigné de la platine de la distance requise pour le passage
des roues RS et FG. p est le pignon du centre dans lequel engrène
la roue RS. L'axe de cette roue porte le bras ou levier L qui appuyé
contre l'extrémité d de la lame abcd. FG est une roue auxiliaire ,
engrenant de même dans le pignon P : à la tige de cette roue est
adapté un ressort spiral s , dont l'effort tend à faire tourner de droite
à gauche les rouages FG et RS- Cet effort maintient le bras L contre
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le bout d de la lame. L'axe du pignon porte une aiguille ? du côté
du cadran , c'est-à-dire , du côté de la platine opposé à celui que
représente la figure.

En vertu de la différence de dilatabilité entre le cuivre et l'acier,
la lame ABCD se resserre ou s'ouvre , par les variations de tem-
pérature j de manière qu'étant fixée par une de ses extrémités r

l'extrémité libre acquiert, par ces variations , un mouvement thermo-
métrique très-sensible. On peut l'évaluer à environ 5 millimètres 9

dans les limites de la température atmosphérique , pour une lame
d'un demi-millimètre d'épaisseur et de 10 à 12 centimètres de longueur 9

et dont la courbure est celle d'un cercle de 25 millimètres de rayon.

La lame ABCD étant supposée avoir le cuivre en dehors et l'acier
en dedans , l'ascension de la température produira une contraction ,
le ressort d agira alors contre le bras L 7 et la roue RS tournera
de gauche à droite , ainsi que le pignon P , vu du côté du cadran.

On voit que l'arc ÀM (fig. 1) de longueur constante , mais de
courbure variable , peut représenter la lame thermométnque ; le point
À est l'extrémité fixe , et le point M l'extrémité mobile. Cette dernière
décrira donc une portion de la courbe n.° 1.

4. Voici maintenant les questions auxquelles on est acheminé en
cherchant à amener ce mécanisme à toute la régularité dont il est
susceptible. Il faut d'abord donner à la lame ABCD le plus grand
mouvement thermométrique possible. On y parvient en l'amincissant,
mais il faut lui laisser la force suffisante pour résister aux secousses
auxquelles l'instrument peut être exposé. La forme de la lame étant,
comme on le voit, celle d'une portion de cercle , il ne reste qu'à
en déterminer la longueur.

S'il s'agissait d'une lame droite ? il est évident qu'une plus grande
longueur donnerait un plus grand mouvement thermométrique ; mais ,
pour un arc de cercle , la question ne saurait être décidée au simple
coup d'oeil. Comme le mouvement thermométrique est fort petit ,
relativement à la longueur de la lame 7 la portion de courbe décrite
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par l'extrémité mobile peut être sensiblement regardée comme l'élément
às^z^/dx2-j-dj2 de cette courbe.

Or , par les équations ( i ) y on trouve

d ^ ^ d * 3 ) 2 + — —2C0S. -—2— Sin. — 1 .l z% z z z J

II s'agit donc de déterminer la valeur de a qui rend as un maximum 7

en regardant z et dz comme constans.
On trouva le résultat simple

— ou a^z

en prenant le rayon z de la lame pour unité , et en dénotant par
h un nombre entier quelconque. Dans la pratique 5 on ne peut prendre
que & = i ? ce qui donne a = 2w. On peut môme et on doit, pour

faciliter la distribution des pièces du mécanisme , réduire a à — 5

comme on le voit dans la figure. Ce qu'on perd sur le mouvement
d^ ; par cette réduction f est peu de chose ; en effet , les valeurs

de d^ , dans Jes deux suppositions de # = 2«r et a~— 9 sont

entre elles

, ou a peu près : : i 3 : 12.

5* Après avoir ainsi fixé la longueur de la lame , il faut
déterminer la direction de d^ à laquelle le bras L ( fig* 3 )
doit être perpendiculaire. On trouve , pour la sous - tangente

au point D , la valeur — ( 1 + -— J^1—-5,7 ; ainsi , la direc-

tion cherchée fait un angle d'environ io° avec le diamètre ÀQ f

qui répond à la ligne AD de la figure i . r e . On voit par là pourquoi

il a fallu donner au ressort abcd une forme rentrante et à inflexion.

On vient de dire que le bras L doit êlre perpendiculaire à la

direction ds ; mais , ce bras étant mobile 5 il faut entendre que
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cette perpendîcularité doit avoir lieu au degré de température moyen ,
entre les limites des variations atmosphériques.

La détermination ci-dessus fournit d'abord un à-peu-près ? pour
obtenir la situation requise ; mais il convient d'avoir un moyen d'y
mettre plus de précision. On peut y parvenir, par l'observation,
de la manière suivante.

6. Soient c , c*, cN , trois hauteurs observées sur un thermomètre
de comparaison 9 et m $ m

f, mf/
 ? les degrés correspondans , observés ,

en même temps , sur le cadran du thermomètre métallique. On réduira
d'abord m 9 m

/, m/f
 9 en degrés angulaires, en les multipliant par

? T étant le nombre de degrés thermométriques dans lesquels

est divisée la circonférence du cadran.
Soient ensuite (fig. 2) C le centre autour duquel tourne le bras ,

ÀD/X la direction ds sur laquelle se meut l'extrémité de la lame ,
D 9 D' , D" la position de cette extrémité au moment des obser-
vations , et par conséquent C*£D, Cd'D' , C////D// , les situations
correspondantes du bras.

Prenons la perpendiculaire CA pour unité , et faisons l'angle

Le mouvement de la lame étant sensiblement proportionnel aux
variations de la température , on aura d'abord

: D"D : : c'—c : c

La marche de l'aiguille fera connaître les angles dfCd, d/JCd. En
effet, le mouvement angulaire de l'aiguille est au mouvement angulaire
du bras, comme le nombre des dents de la roue est à celui des dents du
pignon. Dénotant dans ces nombres par r et p ? on aura

angles que, pour abroger, nous appellerons n1 et n11.
Or,
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D' D = AD' — ÀD = Tan

En substituant ces valeurs , la proportion ci-dessus donnera , pour
déterminer Tang.#, l'équation

En développant Tang.(#+^0 et Tang.^+zz^) , les deux membres
deviennent divisibles par i+Tang.2^ ; et Ton trouve

'—(c'—f )Tang. n"

Pour employer plus commodément les logarithmes au calcul de Tanger ̂
on peut prendre un angle auxiliaire $ 9 donné par l'équation

on aura ensuite

Soient maintenant M et CmM la position de la lame et du bras ,
à la température adoptée comme moyenne , y celte température
exprimée en degrés du thermomètre de comparaison ? et soit fait
l'angle ACM=^ ; on aura , comme ci-dessus

—ci

d'où Ton tire

;

ou , en employant, comme ci-dessus , un angle auxiliaire
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puis

L'angle p ; ainsi déterminé 7 fera connaître la quantité dont la
position de l'extrémité d (fig, 3) doit être avancée ou reculée. Cette
quantité sera #Sin./*, en dénotant par B la longueur de la partie
utile du bras , c'est-à-dire , la distance entre le centre de la roue
et Fextrémité du ressort, mesurée à la température moyenne.

Si , comme on le verra plus loin , cette opération peut se faire,
Pinstrument étant monté f on observera la marche de l'aiguille qui

devra parcourir —— degrés de l'échelle du cadran.

Kn prenant pour cu le degré le plus élevé et par c le plus bas ,
de manière que c , cf , cu suivent l'ordre de la température ascen-
dante, il faudra, si Tang.^ est positive , accourcir le ressort abcd9

ou faire reculer l'aiguille. Ce sera le contraire , si Tang.̂ * est négative.
7. La manière dont le mouvement de la lame se transmet au

rouage, a l'avantage d*occasioner le moins de frottement possible
et de donner beaucoup de facilité pour régler le thermomètre ,
ainsi qu'on va le voir ; mais elle a cependant un défaut qui frappe
au premier coup d'œil. En effet , les angles décrits par l'aiguille t"
a partir de la température moyenne % sont proportionnels , non aux
lignes AD > AD7 , AD" (fig. 2) parcourus par l'extrémité mobile ,
comme il le faudrait, mais aux arcs dont ces lignes sont les tan-
gentes. Il en résulte donc une erreur qu'il faut évaluer; mais, avant
d^examiner cette question ? il convient de faire ici deux observations,

i.* La marche de l'aiguille ( supposée d'ailleurs régulière ) est
en proportion inverse de la longueur dénotée par B au n*° précédent,
Or, cette marche n'est pas arbitraire ; elle doit correspondre à la
division du cadran , qui est supposé donnée. II faut donc , pour

obtenir
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obtenir cette correspondance , pouvoir faire varier ? à volonté ,
la distance S. C'est dans ce but qu'a été imaginé le ressort
Subsidiaire abcd (fig. 3) ? maintenu par Ja vis de pression t\ Par
le jeu de cette vis , on peut ouvrir ou refermer le ressort abcd:
mouvement qui approche ou éloigne l'extrémité d du centre de L , et
produit ainsi la variation demandée.

2.0 Cette correspondance obtenue ? l'indication de l'aiguille peut
n'être pas d'accord avec celle du thermomètre de comparaison 7 de
même qu'une montre bien réglée peut être en avance ou en retard.
Pour établir l'accord 7 on ne peut point, comme dans une montre
qu'on met à l'heure , faire tourner l'aiguille sur la tige du centre ;
car ici le rouage n'offre point de résistance / il faut donc enlever
l'aiguille de dessus son axe 9 et l'y replacer dans la situation con-
venable. Cette opération , toute simple qu'elle paraît y ne saurait
néanmoins s'effectuer avec une précision suffisante. Il est donc néces-
saire de pouvoir obtenir une plus grande approximation» Le moyen
suivant remplit cet objet.

La platine est ernboitée de manière que le poussoir P se trouva
vis-à-vis d'un point M de la lame extérieure Q T U A , tel qu'en
exerçant sur ce point une pression dirigée vers le centre p 9 il en
résulte à l'extrémité d un mouvement dans la direction ds ; ce point
se détermine facilement par l'expérience. Le poussoir étant traversé
par une vis V , dont le bout vient appuyer contre le point M 9 on
peut , par le jeu de cette vis , faire avancer ou reculer l'extrémité
dv sans rien déranger au reste du mécanisme ? et achever ainsi de
rendre l'indication de l'aiguille concordante a\ec celle du thermomètre
de comparaison. On doit observer ici que l'emploi de cette vis V
doit être mis à profit pour obtenir une dernière approximation ,
dans l'opération du n.° 6 , laquelle doit précéder celle dont on vient
de parler. A la vérité ^ cette dernière dérangera la position prescrite
par le n.° 6 ; mais tout ce qui en résultera 5 c'est que le bras L
qui devrait être perpendiculaire à la direction ds, à la température
moyenne y 9 ne le sera véritablement qu'à la température y^t un
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ou deux degrés 5 ce qui ne présente aucun Inconvénient sensible.

8. L'effet des vis p et V étant ainsi expliqué , on voit qu'il peut
être assimilé à deux constantes arbitraires au moyen desquelles on
peut faire en sorte que l'indication de l'instrument soit exacte à la
température moyenne y et à une autre température y-\-n* On voit
aussi que l'accord étant obtenu dans ces deux cas , il aura égale-
ment lieu à la température y—n. En général , on peut ne s'occuper
que de ce qui se passe en supposant n positif, car les mêmes effets
seront produits , mais en sens contraire , n étant négatif.

Soient maintenant (fig. 4) MN la direction as ^ CM, perpendicu-
laire à MN , la direction du bras à la température moyenne y , CN
cette direction a la température y-\-n. Faisons GM= i et Ang.MCN = a,
et prenons un autre angle indéterminé MCX=#. Pour que l'accord
demandé eût lieu lorsque le bras est en CX -, -il faudrait que l'on eût

MN : MX : : Ang.MCN : Ang.MCX ,

c'est-à-dire ?

Àng.MCX=

puis donc qu'on a réellement

Ang.MCX=#

il s'ensuit que Terreur est

Tang.a

Le maximum de cette erreur a lieu , lorsque Cos,2^= ce
x Tanga

qui donne

oc— j- a-\~ na - p

L'erreur elle-même est alors
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série dont il suffît de conserver le premier terme.
Maintenant on doit prendre pour n la moitié de la distance entré

les températures extrêmes de l'atmosphère. On peut donc faire /2 = 25a

centigrades ; l'angle a sera = — — ? en conservant a T9 r,p les

valeurs du n.° 6.
L'erreur au maximum, rapportée à l'aiguille et exprimée en degre'$

thermométriques 9 sera ainsi

8.253.w2/?2 __ 79146/?2

Soit donc « la plus grande erreur qu'on veuille se permettre ; il
. . 79146/?2 " Tr 281

taudra avoir <s ou — > —= .
Soit , par exemple «= j°( = 7 ° . Réaumur ) , on devra avoir

Tr
•~>562. Les valeurs de r et de p sont limitées par la nature deP r r
l'instrument. On ne pourrait guère faire r plus grand que 100.
Quant à p7 il faut bien se garder de le prendre trop petit. On ne
peut nullement employer ici 5 comme dans les montres, des pignons
de 6 ou 7 ailes. En faisant / ? = Ï O , on aurait T=56 ; mais, comme
il y a une certaine élégance à avoir pour T une partie aliquote de
l'unité thermométrique , on pourrait encore prendre p = Q , ce qui
permettrait de faire T=5o.

9. Il ne faut point omettre de faire mention ici d'un défaut qui
paraît inhérent à tous les instrumens où le corps thermométrique
est solide : défaut qui tient à un fait physique sur lequel M. Laplace
a appelé l'attention des observateurs ( Exposit. du syst. du monde,
liv. I ? chap. XII ). Il s'agit de la résistance que les corps > en
changeant de température , opposent à leur changement de volume
et de figure : résistance qui parait être due au frottement interne
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entre les molécules et à l'élasticité de ces mêmes molécules. Cet
effet est très-apparent sur l'instrument dont nous nous occupons.
Si on le met en action de manière que l'aiguille ait un mouvement
sensible et qu'on lui fasse subir un léger choc , pour lequel il convient
d'employer un corps dur 9 on verra l'aiguille faire un saut , dans
le sens de sa marche, puis rester stationnaire pendant tout le temps
qu'il lui aurait fallu pour parcourir l'espace qu'elle a franchi. Et
ce qui prouve que cet effet ne provient pas ? au moins en totalité,
du frottement externe, comme on pourrait d'abord le penser, c'est
la régularité qu'on y observe. L'espace dont il s'agit paraît être
de j à 70 centigrade , pour la lame dont les dimensions sont données
au n.° 3. Ces limites seraient beaucoup plus écartées , si une cause
aussi variable que le frottement externe exerçait la principale in-
fluence dans l'effet en question.

On peut ajouter que la même résistance a lieu relativement au change-
ment de figure qui provient d'une autre cause que la variation de la tem-
pérature; par exemple ? de la propre pesanteur du corps. En effet, si, en
maintenant le thermomètre dans un plan vertical, on le fait tourner au-
tour de Taxe de l'aiguille , la température demeurant constante , la pesan-
teur des parties mobiles de l'instrument, particulièrement celle de la
lame, produira un changement de figure d'où naîtra un mouvement dans
l'aiguille. Pendant ce mouvement, on pourra faire l'expérience dont
nous venons de parler, et on obtiendra le même effet. Cette variation
dans l'indication de l'aiguille , suivant la situation du thermomètre
est y au reste , un défaut qu'on doit corriger , afin que l'instrument
soit comparable à lui-même dans toutes les positions. On y parvient
facilement, en adaptant sur l'axe de la roue R$ (fig. 3) un petit
contre-poids ? semblable au bras L. On observera la position dans
laquelle l'action dont il s'agit de corriger l'effet est à son maximum*
La direction du contre-poids devra alors être horizontale , et dans
le sens où Faction de la pesanteur contrarie celJe de la lame.
Le poids de cette petite correctrice se détermine facilement pa<
l'expérience.
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10. Il y aurait encore plusieurs préceptes de pratique à indiquer

ici , mais on se bornera au point le plus essentiel. Comme la force
qui agit sur le mécanisme est proportionnelle à la variation de la
température, et qu'un frottement, quelque petit qu'il soit, demande*
une force finie pour être surmonté s on voit qu'il y aura toujours ?

dans la maehine , une inexactitude d'autant plus grande que la résis-
tance à vaincre le sera elle-même. On doit donc s'attacher , avec
un soin extrême à diminuer toutes les causes de frottement. Donner
au rouage la plus grande liberté , alléger les roues et l'aiguille ,
réduire la grosseur des pivots, employer un ressort spiral très-faible ;
éviter tout contact entre l'aiguille et le cadran ou la glace qui le
recouvre , tels sont les principaux moyens de parvenir à ce but.

On voit que la construction des thermomètres métalliques exigé
des considérations dont les résultats ne pourraient pas toujours être
connus par l'expérience et le tâtonnement ; ce qui explique pour-
quoi des artistes , habiles d'ailleurs , n'ont obtenu > dans ce genre ,
que des produits Imparfaits quant à l'exactitude. Quelques essais
dirigés sur les principes qu'on vient de présenter ont été plus satis-
faisans ; et on croit pouvoir assurer qu'avec un peu de soin , les
artistes obtiendraient une précision , sinon assez parfaite pour des
expériences très - délicates ? du moins suffisante dans bien de cas >
et pourraient ainsi offrir aux observateurs une nouvelle espèce de
thermomètre que sa forme portative leur rendrait trè$-commode en
voyage 5 et dans les excursions où le transport des instrumens est
souvent un sujet d'embarras,

Paris , le 27 février i8i3»



ÉQUATIONS ABSOLUES

GEOMETRIE DES COURBES.

Essai sur l'expression anaïitique des courhes, indêpen*
damment de leur situation sur un plan j

Par M. GERGONKE»

XL a été souvent remarqué que , si l'usage des coordonnées paral-
lèles à deux droites fixes, dans la théorie des courbes, réunit générale-
ment en sa faveur un tiès-grand nombre d'avantages ; il est néanmoins
certaines courbes , ou certaines recherches relatives à toutes les courbes ,
pour lesquelles d'autres systèmes de coordonnées semblent mériter
la préférence. On en voit un exemple remarquable à l'égard des
spirales qui, rapportées à des coordonnées polaires , ont 9 pour la
plupart , des équations très-simples et souvent môme algébriques*
Les lignes du second ordre en offrent un autre exemple; puisque,
rapportées aux mêmes coordonnées , elles ont leur rayon vecteur
exprimé sous une forme rationnelle , et qu'en particulier l'équation
du cercle prend alors la forme très-simple r^^ConsL qui met en
évidence sa propriété fondamentale.

J'inclinerais assez à penser , d'après ces réflexions , que 5 dans
les livres destinés à renseignement, il conviendrait, peut-être, d'in-
sister un peu plus sur ce sujet qu'on ne le fait commupément. Je
sens fort bien qu'on ne saurait exiger des auteurs de tels ouvrages
qu'ils traitassent , en détail , de toutes les transformations de coor-
données , dont le iiombre est illimité, et dont la plupart n'offriraient
d'ailleurs qu'une complication qui ne serait rachetée par aucun
avantage. Mais il faudrait du moins que Ton mit bien ceux qui
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étudient sur la voie des recherches de cette nature , qu'on leur
montrât bien que, toutes les fois qu'on élimine oc et y% entre trois
équations telles que

ç[x , y , t ,u)=o 7

^{x , y ,t 9 u) = o ,

on fait une véritable transformation de coordonnées , quelle que
soit d'ailleurs la forme des fonctions q> et ^ , et qu'on les exerçât
assez sur cette matière pour les mettre en état de découvrir la
transformation analitique qui répond à une transformation géomé-
trique donnée , et vice versa , du moins lorsque ces transfor-
mations ne sont pas très - compliquées (*). En particulier , on
pourrait , relativement aux lignes du second ordre , demander de
rapporter ces courbes , soit à deux points fixes , soit à un point et
à une droite fixes 9 tels que, / et u représentant les deux coordonnées ,
l'équation prît la forme fr^ru—Const*, ou cette autre t=.u. Cette
manière de chercher les foyers me semblerait, à la fois , plus naturelle
et plus analitique qu'aucun des procédés employés jusqu'ici à leur
détermination ; et elle pourrait , en outre , conduire à la découverte
de quelques points remarquables , dans les courbes des degrés su-
périeurs.

Mais , soit qu'on rapporte ujie courte à deux droites, ou à une

(*) Ce serait une question assez intéressante , mais qui ne paraît pas facile h
traiter généralement, que celle de savoir quelle devrait être la forme de
fonctions (p et $ ? Vouv ïu ' e n éliminant x et y entre l'équation donnée

Fcxtj)=o ,

et les deux équations

l'équation résultante fût une équation donnée
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droite et à un point , ou à deux points , ou enfin à tout autre
système de données invariables ; toujours la forme de son équation
dépendra de sa" situation par rapport à ces données ; toujours cette
équation renfermera des arbitraires, exprimées ou sous-entendues ;
en un mot , elle n'exprimera point , si je puis m'exprimer ainsi ,
la nature intrinsèque de la courbe 5 indépendamment de sa situation ?

et de toutes données extérieures et immobiles.

Cette observation 5 faite depuis long-temps y a conduit divers géo-
mètres à rechercher quel serait le système de coordonnées le plus
propre à rendre l'expression analitique d'une courbe indépendante
de tout terme de comparaison ? de toute convention étrangère à la
nature de cette courbe. M. Lacroix a proposé l'équation entre le
rayon de courbure et Tare correspondant , compté depuis un certain
point de la courbe (*) : et ce moyen serait , en effet , très-propre
à rendre l'équation d'une courbe indépendante de sa situation dans
l'espace ; mais M. Lacroix remarque lui-même que v dans ce sys-
tème , le point de départ des arcs serait nécessairement arbitraire. A
là vérité , on pourrait choisir celui pour lequel le rayon de courbure
est le plus petit ; mais, outre qu'il est un grand nombre de courbes
dont la courbure est la même en divers points , l'usage d'un tel
système de coordonnées , supposant la courbe déjà tracée , en son
entier 7 ne pourrait conséquemment servir à sa description. On peut
remarquer encore que , dans ce système , les courbes rectifiables
exceptées , les équations de toutes les autres courbes seraient inévi-
tablement différentielles.

M. Carnot qui , dans un ouvrage très-remarquable ? a présenté
sur la transformation des coordonnées , des reflexions du plus grand
intérêt (*), a proposé, pour exprimer analitiquement la nature d'une
courbe , le moyen que voici SI , par l'un quelconque des points

(*) Voyez son Traité de calcul différentiel et de calcul intégral , tome I ̂
page 4 ^ de la première édition , et page 4^4 de la seconde*

O. Géométrie 4c position , page 473,
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d'une courbe , on lui mène une tangente , et qu'après avoir mené
à la courbe une corde quelconque , parallèle à cette tangente , on
joigne le point de contact au milieu de cette corde par une droite,
cette droite fera avec la tangente un angle dont la grandeur variera,
généralement parlant , avec la situation de la corde. Si Ton conçoit
que cette corde, toujours parallèle à la tangente , s en rapproche
sans cesse , Pangle dont il s'agit tendra continuellement vers une
certaine limite qu'il atteindra enfin 7 lorsque la corde et la tangente
coïncideront ; c'est la relation entre cet angle limite et le rayon de
courbure que M. Carnot propose d'employer pour caractériser les
courbes '9 et Ton doit convenir 7 en effet, que cette relation gst bien
indépendante de toutes données fixes , de toute supposition arbi-
traire et conséquemment très - propre 9 à beaucoup d'égards, à faire
bien connaître 1̂  nature des courbes. On voit en particulier que 9

toutes choses égales d'ailleurs, plus l'angle sera aigu et plus aussi
la courbure de la courbe devra varier rapidement d'un point à l'autre ;
tandis qu'au contraire plus il approchera d'être droit et plus la courbe
tendra à prendre une courbure uniforme, comme celle du cercle.

Il paraît que M. Carnot a eu principalement en vue , dans le
choix de ces deux coordonnées ? la simplicité de l'équation trans-
formée ; et , en effet s l'application qu'il fait de sa méthode à la
parabole le conduit à une équation à peu près aussi simple que
l'équation ordinaire de cette courbe *, mais , outre1 qu'il peut paraître
peu naturel de faire entrer en considération , dans l'expression d'une
courbe ? une droite qui passe par deux points qui se confondent ;

et dont l'un appartient à une corde évanouissante, et conséquemment
insaisissable pour les sens; on ne voit pas trop comment on pourrait
déduire de cette expression une construction graphique approchée
de la courbe à laquelle elle est relative : objet qui , comme je l'aï
déjà dit ? me parait ne devoir pas être négligé dans cette recherche*

Dans un mémoire présenté à l'institut en i8o3 (*) , M. Ampère 9

(*) Voyez le Journal de F école polytechnique ̂  xxv cahier, page i$fy

Tom. L 7
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qui s'est aussi occupé de la même question , a proposé , pour la
résoudre , l'usage des Paraboles osculairices ; c 'est-à-dire, que >
pour un point pris arbitrairement sur une courbe donnée , 11 cherche
quelle devrait être la parabole qui aurait avec cette courbe , en ce,
point 9 un contact du troisième ordre , et qu'il prend , pour équation
de la courbe proposée , l'équation entre les coordonnées ordinaires de
cette parabole» On ne peut disconvenir que , déterminé à exprimer
toutes les courbes par leur relation avec une même courbe , choisie
arbitrairement, M. Ampère ne pouvait faire un choix préférable à
celui de ,1a parabole ; mais ? enfin , ce choix a toujours quelque chose
d'arbitraire ; il exige , en outre , la considération de deux courbes
au lieu d'une seule ; et la méthode qui en résulte., moins simple
que celle de M. Carnot, ne parait pas, plus qu'elle , propre à fournir
une construction.

Il y a fort long-temps que j'ai conçu l'idée d'un mode d'expression
absolue des courbes qui , d,'une première vue , m'a semblé devoir
offrir quelques, avantages sur tous ceux que je viens de rappeler,;
mais diverses distractions m'avaient toujours détourné jusqu'ici de le
soumettre à l'épreuve du calcul , et à présent même je ne puis
qu'en donner une simple esquisse. C'est, au surplus, tout ce qu'on
p̂ eut raisonnablement désirer de rencontrer dans un recueil du genre
de celui-ci, destiné plutôt à mettre sur la voie, des ^méthodes qu'à
en offrir de longs développemens. '

Une courbe étant donnée , et un point étant pris arbitrairement
sur son périmètre ; elle a nécessairement, en ce point , un certain
rayon de courbure R, dont la grandeur et la direction sont -.déter-
minées , tant par la nature de la courbe que par la situation 9 sur
son périmètre 5 du point particulier que Ton considère, - L/extrémité
de ce rayon R est un point de la développée , lié essentiellement
au point pris sur la courbe , et variant avec lui. Or 9. comme , lors-
qu'une courbe est donnée, sa développée est aussi donnée 5 non
seulement d'espèce ? mais encore de situation par rapport à elle ;
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il s'ensuit que le rayon de couibure de cette développée, en chacun
de ses points , doit aussi être donné de grandeur et de situation. Donc,
en particulier 7 le rayon de courbure R/ de la développée , qui
répond à l'extrémité du rayon de courbure R de la courbe primi-
tive , et qui est perpendiculaire à ce dernier , doit être lié avec
lui par une relation qui , étant indépendante de tout objet fixe
étranger à la courbe que l'on considère , et par conséquent à la
situation de cette courbe dans l'espace , ne doit renfermer, outre
les deux rayons R , Rf

 ? que les élémens nécessaires à la déter-
mination absolue de cette même courbe.

C'est l'équation de relation entre ces deux rayons R , R/ que j'ai
d'abord eu en vue de substituer à l'équation ordinaire des courbes 5
et Ton voit, en effet , qu'en même temps qu'elle est très-propre à
les caractériser, elle ne renferme rien d'arbitraire, rien qui ne soit
absolument inhérent à la nature intime de ces courbes. Il est même
aisé de prévoir que telle courbe dont l'équation ordinaire sera com-
pliquée et même transcendante , pourra souvent, dans ce système,
être exprimée par une équation algébrique très-simple. On en voit
des exemples remarquables pour la Cycloïde et la Développante du
cercle , dont les équations deviennent alors respectivement R2-\~R/Z

z=zi6a2 et R/=.av a étant, pour l'une et l 'autre, le rayon du cercle
générateur.

Le seul embarras que j'éprouvais , dans l'adoption de ce système,'
était de savoir comment je déduirais de l'équation d'une courbe une
construction approchée , telle que celles qu'on déduit des équations
différentielles entre des coordonnées parallèles à deux droites fixes.
Je songeai donc à substituer aux rayons R , R/ d'autres variables
plus propres à remplir ce but . que je ne perdais jamais de vue 7

et j'en trouvai, en effet , de telles ; mais , je ne tardai pas d'aper-
cevoir que ce que je considérais comme deux modes distincts d'exprimer
les courbes, n'en faisaient au fond qu'un seul, et pouvaient facile-
ment être déduits l'un de l'autre. La considération du dernier n/a
même permis de simplifier considérablement les procédés relatifs à
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la recherche du premier , ainsi qu'on va le voir tout - à - l'heure.

Soit MN (fig- 5) une droite prise arbitrairement pour l'un des
rayons de courbure d'une courbe connue , M étant un point de la
courbe. On sait qu'un très-petit arc de la courbe se confond sen-
siblement avec l'arc de cercle MM' , décrit du point N comme centre ,
et avec NM pour rayon ; en prenant donc cet arc MM' pour Tare
de courbe , si Ton connaissait , en général , pour un rajon de cour-
bure donné MN , quel est l'accroissement de ce rayon qui répond
au petit angle MNM' , dont varie sa direction ; en portant cet accrois-
sement sur le prolongement de MXN, de N en N ' , la droite M'N'
pourrait sensiblement être considérée comme un nouveau rayon de
courbure , répondant au point M/ de la courbe , et le point N'
comme le point correspondant de sa développée ; opérant donc sur
M'N' de la même manière qu'on l'aurait fait sur MN ? on déter-
minerait un troisième rayon de courbure M"N" et conséquemment
un troisième point N" de la développée; on parviendrait donc,
en poursuivant continuellement de la même manière ? à tracer la
courbe proposée , à peu près comme on trace les anses de paniers,
et l'on obtiendrait , en même temps, sa développée , qui serait donnée
par les Intersections .consécutives de ses rayons de courbure. Tout
se réduit donc à avoir une équation de relation entre le rayon de
courbure , son accroissement et l'angle qu'il décrit pour acquérir
cet accroissement. Or , cette équation ? lorsque du moins on considère
le rapport de l'angle a l'accroissement du rayon de courbure dans
sa limite , est très-facile à obtenir , comme nous Talions voir dans
un instant ; et elle est en même temps très-propre à caractériser la
courbe à laquelle elle est relative.

Présentement ? tout étant supposé d'ailleurs dans la figure 6 comme
dans la figure 5 , soient menées NP , N'P' , respectivement perpen-
diculaires à MN 5 M'N' ; NP sera sensiblement le rayon de courbure
de la développée , pour le point N , et P son centre de courbure
pour le même point. Soient faits, comme ci-dessus ? 3MN=/2 ,
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^ / ? / ; on aura NN'znA/î. Soit en outre désigné par ô l'angle
que forme MN avec une droite fixe quelconque ç l'axe des x , par
exemple ; on aura Jng.'NPN/=AngJSlNW=Aê ; et , en vertu du
triangle NPN', rectangle en N7 , on trouvera NN/

= NP5/^.NPN/; c'est-à-dire, AR = R'S\n.At, ou encore

Sin.Aé

Cette équation n'est qu'approchée ; mats , à la limite , elle devient
rigoureuse ? et Ton obtient alors exactement

Si donc on â une équation entre R et R; ; au moyen de la

précédente, on en déduira facilement tane équation entre R et — ;

et réciproquement, d'une équation entse R et — , on déduira, par

le même intermédiaire , une équation entre R et R; ; c'est même
ce dernier parti que nous prendrons , comme étant le plus facile,

Nous avons donc ici deux questions à résoudre ; car d'abord on
peut avoir l'équation d'une courbe , rapportée à des coordonnées soit
rectapgukires , soit obliques, soit polaires9 et on peut demander d'erï

déduire son équation , soit en R et— , soit en R et R* ; ou bien

âR
on peut avoir s au contraire 5 son équation . soit en R et — , soif

en R et R;, et demander d'en déduire son équation en coordonnées
soit rectangulaires , soit obliques , soit polaires; la solution de cette
dernière équation , qui dépend évidemment de la première dont elle
est l'inverse, ne conduit, généralement parlant, qu'à une équation diffé-
rentielle qu'on ne saurait toujours intégrer sous forme finie et algé-
brique ; et les constantes de son intégrale P lorsque cette intégrale
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est possible , servent à fixer la situation des axes. La première question
ne présente pas les mêmes difficultés.

De quelque système de coordonnées que Ton parte ? il est clair

que, pour une même courbe , l'équation , soit en R et — , soit en

M et R/ doit demeurer constamment la même. Mais , si la nature
des coordonnées primitives n'exerce aucune influence sur le résultat
définitif , elle peut rendre le calcul plus ou moins pénible. Nous
supposerons ? dans tout ce qui va suivre , que les coordonnées sont
rectangulaires, d'autant que la question peut toujours être amenée
à ce cas ; x sera la variable indépendante , et nous poserons , sui-
vant l'usage

ày dp
p

y p =9 ' 01 =r'

En conséquence,. nous mettrons l'équation (A) sous la forme

Cela pesé ; l'expression du rayon de courbure est

n=<l±Eni, (C)
1

Ay\xn autre côte, en appelant 0, comme nous en sommes convenus 9

l'angle que fait la normale ou le rayon de courbure avec Taxe
des ^ } on a

fe-Arc. (Tang. = 1 V d'où i l = - ! - ;
\ & p / àx i+p* '

substituant donc dans l'équation (B} , elle deviendra
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ou

ou enfin

^ ^ • ^ ' j ! . (D)

Soit donc

l'équation en coordonnées rectangulaires d'une courbe quelconque,
Par trois différentiations consécutives , on en tirera les trois nouvelle*
équations

/ / \ /TT\

<p\x 2 y 3 pj~o , (11)
È tf \ /TTT\

Q \°° î y> p i çj—o 9 ( " v

9/"(*>y>P9 9>r) = o , (IV)

auxquelles on joindra encore les deux équations (C) et (D) qu'on
pourra écrire ainsi

(V)

(VI)

e t , en éliminant entre elles les cinq quantités x%<y^p , q , r , on
obtiendra , pour résultat final, l'équation cherchée ; en R et et R',

dans laquelle on pourra ensuite substituer — à R;
 r si on le juge

convenable.
Si , au contraire , l'équation proposée était
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en y joignant les équations (V) et (VI) , pour en éliminer R et
R! , l'équation résultante-, en ̂  , y , /? , ^ , r , serait l'équation
différentielle du troisième ordre de la courbe en coordonnées rectan-
gulaires ; équation qu'il faudrait ensuite intégrer , soit exactement
soit par approximation.

Pour premier exemple , proposons-nous de trouver l'équation de
l'ellipse en R et R', za et zb étant les deux axes ; les équations
du problème seront

l*x^a*f=(?¥ , (i)

b2x-\-a2py=o , (2)

o , (3)

o , (4)

(6)

L'élimination de r , entre les équations (4) et (6) donnera d'abord

(7)

l'élimination de q , entre les équations (3) , (5) et (7) donnera
ensuite

=o , (8)

=o ; (9)

éliminant encore p entre ces dernières et l'équation (2) , on aura,
en ayant égard à l'équation (1) , et en transpo5ant et quarrant dans
l'équation (8)
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(a*—b*)^b*-y*)f-R> , (10)

la dernière donne

Substituant ces valeurs dans l'équation (10) , on obtiendra enfin
l'équation demandée, laquelle pourra être mise sous la forme suivante

Cette équation met parfaitement en évidence la propriété dont
jouissent les rayons de courbure de l'ellipse , d'être constamment

compris entre les deux limites — et — , et montre en outre que f
1 b et

lorsqu'ils atteignent l'une ou l'autre de ces limites , le rayon de cour-*
bure de la développée devient nul. Cette équation peut sembler un
p^u compliquée ; mais j'observerai que celle à laquelle parvient
M. Ampère , ne Test pas moins (*)• Si Ton y change b en b\/~ , on
la rendra propre à l'hyperbole dont le premier et le second axes sont
respectivement 2a et zb ; elle deviendra ainsi

et l'on voit ici que le rayon de courbure , qui n'a point de limite
b*

en grandeur , ne saurait être moindre que —5 et que, lorsqu'il atteint

cette limite, le rayon de courbure de la développée devrent nul.
Si , pour Tune et l'autre courbes 9 on désigne le paramètre par

p , leurs équations pourront être comprises dans la formule unique >

(*) Voyez au bas de la page 170 du volume déjà cité»

lom. IF.



54 ÉQUATIONS ABSOLUES
le signe supérieur répondant à l'ellipse et l'inférieur à l'hyperbole.
Si l'on veut passer de là à la parabole , îi suffira de supposer que
a est infini, ce qui donnera , pour l'équation de cette courbe ,

Si, dans les équations (E) et (H), on fait £ = #, elles deviendront
respectivement propres au cercle et à l'hyperbole équilatérale ; il
viendra ainsi

et Ton voit que la première revient a ces deux-ci

R=a , i^—o ,

ainsi que cela doit être

En mettant , dans toutes ces équations , pour R; sa valeur — ,

$t tirant ensuite de l'équation résultante îa valeur de dR, en fonction
de 72 et d^, on aura des formules qui pourront servir commodément
à tracer les lignes du second ordre , à la manière des anses de paniers ;
le tracé approchera d'autant plus d'être exact qu'on fera croître l'angle ê
par des degrés plus petits.

Pour second exemple , proposons-nous de déterminer l'équation,"
en coordonnées rectangulaires , de la courbe qui a constamment son
rayon de courbure égal à celui de sa développée ; les équations du
problème seront
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d'où , par l'élimination de R et Rf , on conclura sur-le-champ

en mettant successivement cette dernière équation sous les deux formes

p f

on verra aisément que deux de ses Intégrales premières sont

y ,

d'où , par l'élimination de ^ , on conclura l'intégrale seconde

x+y+B . ày x+y
p— o u simplement —- = ;

' l ax x—y

attendu que ? par un changement d'origine , on peut toujours faire
disparaître les deux constantes A et B» L'intégrale de cette dernière
équation est

C+Arc. fTang. =—

ou, en passant aux coordonnées polaires 9 et faisant commencer les
arcs avec les rayons vecteurs ,

équation de la spirale logarithmique 7 comme on pouvait bien s'y
attendre.

Je terminerai par observer qu'avec des modifications convenables,
il serait possible d'étendre aux surfaces courbes et aux courbes %
double courbure la théorie qui vient d'être développée.
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CORRESPONDANCE.

Lettre de M. Du BOURGUET , professeur de mathématiques
spéciales au lycée impérial,

Au Rédacteur des Annales ;

JLn réponse à la lettre de M. BRET , insérée à la page 5%
du 3»e volume de ce recueil*

MONSIEUR ET TRÈS-CHER CONFRÈRE ,

JuA nouvelle difficulté qu'élève M. Bret , contre la démonstration
que j'ai donnée à la page 338 du 2.e volume des Annales , et qui
n'est plus celle qu'il avait élevée à la page 33 du 3.e volume , et
à laquelle j'ai complètement répondu , à la page g4 du même volume ,
s'applique généralement à tous les renversemens d'équations indéter-
minées entre deux variables , et a par conséquent déjà dû être ex-
pliquée (*). Mais , comme il m'est beaucoup plus aisé , dans ce
moment , pour répondre à M. Bret , de donner moi - même une
explication de la difficulté en question , que de feuilleter , peut être
inutilement , un grand nombre d'auteurs , je ferai remarquer à ce

('*) En effet , si cette légère difficulté n'avait déjà été expliquée , il s'ensuivrait ?

par exemple , qu'on serait encore dans le doute sur l'identité des courbes respectives
des équations yz=.$x et &z=z<p'y f Lorsque cette dernière équation est le remerse-
ment de la première.
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géomètre que, s i , en s'exprimant comme il le fait à la page 36g
du ô.c volume , on représente par ab une des couples de x 7 y ?

non comprises dans celles *p 9 « y , ^ / / , . . . . de l'équation

,....y) , (2)

ee couple ne satisfait pas à l'équation

m'1+.....=y , (1)

dont celle (2) est le renversement; il s'ensuivra que, pour y
dans l'équatl 1) , on devra avoir

renversant cette dernière équation ? il est clair , d'après les éqâatîon$
(1) et (2) , qu'il viendra

mais ? par hypothèse ?

donc J —o , et, par conséquent, ah est aussi une 'couple de x, y,
dans l'équation (1) ; donc toutes les couples qui satisfont à Péquation
(2) satisfont aussi à l'équation (1). Cela démontré , je pense que
M. Bret admettra cette conséquence , et peut-être alors cessera-t-il
de croire qu'il soit très-difficile de ramener la démonstration du
principe qui sert de fondement à la théorie des équations > à des
notions purement élémentaires.

Agréez 5 etc.
Paris ? le 2 juin I 8 I 3 .



58 CORRESPONDANCE.

Lettre de M. BÉRÀRD , principal du collège de Brîançon.

Au Rédacteur des Annales ;

En réponse à la lettre de M. BRET > insérée à la page
du 3.e volume de ce recueil.

MONSIEUR K

M? ERMETTEZ-MOI, je vous prie , quelques observations très-courtes
sur la lettre de M. Bret que vous avez insérée à la page 369 du 3*e

^volume de votre intéressant recueil.
Le procédé de M. Bret et le mien , pouf construire la parabole ;

renferment deux points distincts.
i.° II s'agit d'abord de déterminer deux tangentes MO ? M'O ^

parallèles aux axes des coordonnées , ainsi que les points M , M /

où elles touchent la courbe. Pour cela M. Bret et moi employons
les mêmes équations. Mais, tandis qu'il construit leurs intersections,
Tnoi je les combine par élimination. Jusque-là le but est le même ,
et la différence des moyens peu importante,

2.0 Les deux tangentes étant trouvées , ainsi que leurs points de
contact M , M' avec la courbe 7 il s'agit de construire cette courbe.
M. Bret remplit ce second objet en déterminant d'abord le sommet;
tandis qu'au contraire je commence par chercher le foyer F , en
menant les deux rayons vecteurs MF , M'F.

M. Bret remarque , avec raison , que , lorsque les coordonnées
sont rectangulaires, les droites MF , M ;F , se confondant avec la
corde MM ;

 ? ne sont plus propres à déterminer le foyer ; par leur
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intersection ; mais , dans ce cas particulier 5 la construction devient
beaucoup plus simple ; le foyer étant alors le pied de la perpen-
diculaire abaissée sur la corde MM7, du point O de concours des
deux tangentes.

Ainsi ma construction ne souffre pas plus d'exception que celle
de M. Bret; et elle se simplifie même, dans le cas particulier où
elle semblait être en défaut. Je laisse , au surplus y au lecteur à
juger de ce que ces deux constructions peuvent avoir de commun;
et je crois devoir me borner à observer qu'ayant communiqué le
manuscrit de mon ouvrage à M. Bret, en août 1808, il n'est pas
surprenant que depuis lors il ait oublié les détails de ma cons-
truction.

Agréez y etc.
Briançon, le 18 de juin I 8 I 3 .

QUESTIONS PROPOSEES.

Problèmes de Géométrie»

I. JLJLU système de trois cercles donnés , tels que chacun d'eux
touche les deux autres , circonscrire un triangle de manière que
chacun de ses côtés touche en son milieu l'un des cercles donnés ?

IL A un triangle donné , inscrire le système de trois cercles tels
que chacun d'eux touche les deux autres et touche, en outre ? en
son milieu , l'un des côtés du triangle ?

Problème dHydro-dynamique appliquée.

Une roue est composée de deux plateaux égaux 9 en forme de
couronnes circulaires ? ayant leurs plans parallèles et leur axe commun*
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Ces plateaux sont unis l'un à l'autre par des ailes brisées , unifor-
mément réparties sur leur contour , formant des angles dièdres dont
les faces sont rectangulaires et perpendiculaires aux plans des deux
plateaux. Ces plateaux sont d'ailleurs solidement unis à l'axe de la
roue , par un nombre suffisant de pièces d'assemblage.

La figure 7 représente l'un des plateaux , vu en dedans , sut
lequel sont marquées ses intersections avec les ailes ; on a aussi
indiqué dans cette figure , les pièces qui unissent le plateau à l'axe
de la roue , et dont la forme et les dimensions peuvent d'ailleurs
être variées d'un grand nombre de manières diverses.

On s'est assuré qu'une telle roue , entièrement plongée soit dans
l'eau soit dans un courant d'air, de manière que son axe soit fixe
et vertical, y prend un mouvement de rotation.

Cela posé 5 on suppose donnés i.° le rayon extérieur des pla-
teaux -, 2.0 l'intervalle qui les sépare ; 3.° la vitesse du fluide ; et
Ton demande quels doivent être le nombre , les dimensions et la
situation des ailes, pour que la roue produise, en tournant, le plus
grand effet possible ?

Théorème de Géométrie.

M , M7 étant deux points quelconques d'une parabole , O le point
de concours des tangentes en ces points , et F le foyer 9 on propose
de démontrer que

MO 1 ^.
"MF

d'où il suit que , si F tombe sur MM7 , le sommet de l'angle O, qui
devient droit, est placé sur la directrice ? et la ligne OF est per-
pendiculaire sur la corde MM7.
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PHILOSOPHIE MATHÉMATIQUE.

Nouveaux principes de géométrie de position , et
interprétation géométrique des symboles imaginaires,

Par M- J. F. FRANÇAIS , professeur à l'école impériale
de l'artillerie et du géuie.

XL est si naturel de considérer , à la fols , en ge'ométrîe, la grandeur et la
position des lignes ? que, dès qu'on a commencé à cul tiver[cette science, on
a dû avoir besoin d'exprimer des rapports de grandeur et des rapports
de position , entre les différentes lignes composant une figure quelconque.
J'ose dire qu'il est surprenant, d'après cela , que les premiers principes
de la Géométrie de position ne soient pas encore complètement
établis. Cette assertion, elle-même, pourra, au premier abord , sembler
exagérée et paradoxale ; mais j'espère que sa vérité sera mise hors
de doute , par les détails qui vont suivre.

Notation i.T*. Nous représenterons ici la grandeur absolue d'une
droite par une simple lettre, comme a, b7 £ , . . . . . # , y , z , . . . . ;
e t , pour indiquer ? à la fols , la grandeur et la position d'une droite,
ÏÏOUS affecterons la lettre destinée à désigner sa valeur absolue d'un
indice exprimant l'angle que fait cette droite avec une droite fixe
et indéfinie, prise arbitrairement, et qui pourra être considérée comme
l'axe des abscisses positives. Ainsi, par exemple, a*>> &P, <*.*,Xz,fv,...:
représenteront des droites dont les grandeurs absolues sont a, è,*..9
SC y y , . . •. ? et qui font, respectivement avec l'axe des X positives 7

Tom.IF,n.° II > i.C][septembre I8I3* 9
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des angles * , £ , . . . . , € , » , . • • • Cette distinction est nécessaire ,
afin de ne pas confondre une idée coçnposée avec une idée simple f

une grandeur donnée de position avec une grandeur absolue.
Définition i. r e . Nous appellerons Rapport de grandeur le rapport

numérique entre les grandeurs de deux droites 9 et Rapport de position
l'inclinaison des deux droites Tune vers l'autre , ou l'angle qu'elles
font entre elles. Pour comparer entre elles deux droites données à
la fois de grandeur et de position 7 il faut considérer non seulement
le rapport que leurs grandeurs ont entre elles, mais encore comment
ces droites sont placées l'une relativement à l'autre ; c'est ce qu'ex-
prime notre rapport de position.

Définition 2. Nous dirons que quatre droites sont en proportion
de grandeur et de position , lorsqu'entre les deux dernières il y
aura même rapport de grandeur et même rapport de position qu'entre

Jes deux premières. Ainsi il ne suffit pas ? pour qu'il y ait proportion
dé grandeur et de position entre quatre droites, que le rapport dit
géométrique , entre le second antécédent et son conséquent , soit le
même que celui qui existe entre le premier antécédent et son
conséquent ; il faut, en outre , que le rapport que nous avons appelé
rapport de position , soit aussi le même.

Exemple. Ainsi, pour avoir la proportion de grandeur et de position

a^ : h$ : :cy : d^} il faut qu'on ait, à la fois., — =: — et £«—.*=$<—y.
et c

Corollaire i.er. Il suit de là que, dans une proportion de gran-
deur et de position , les grandeurs absolues des droites sont en
proportion géométrique, tandis que les angles que font ces mêmes
droites avec Taxe des abscisses positives sont en proportion arithmé-
tique.

Corollaire 2. Il s'ensuit encore que , dans deux figures semblables ,
disposées d'une manière quelconque sur un même plan , les côtés homo-
logues sont en proportion de grandeur et de position ; car les grandeurs
absolues de ces côtés sont en proportion géométrique, et les angles
qu'ils forment deux à deux sont égaux.
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Remarque. I/idée de proportionnalité , en géométrie , est fondée

sur la similitude des ligures ; notre définition 2.e repose donc sur
tin principe fondamental de la géométrie ordinaire , et nous ne faisons
qu'exprimer, d'une manière explicite > la double circonstance de la
proportionnalité des côtés homologues et de l'égalité des angles
compris entre ces côtés.

Définition 3. Lorsque , dans une proportion de ' grandeur et de
position , le conséquent du premier rapport devient en même temps
l'antécédent du second , la proportion de grandeur et de position
est dite continue ; et une suite de termes , dont trois consécutifs
quelconques forment une proportion continue de grandeur et de
position , est une progression de grandeur et de position. Ainsi 9

une suite de droites en progression géométrique ordinaire ne forme une
progression de grandeur et de position que lorsque les angles que
les droites consécutives font entre elles sont égaux.

Exemple i . c r . Pour avoir la proportion continue de grandeur et
h c

de position aa: b/s:i bp: cy y il faut qu'on a i t , à la fois , — = — et

fi—*=y—/3,

Corollaire i . c r . Donc, pour qu'une droite bp soît moyenne pro-
portionnelle de grandeur et de position entre a et cy, il faut qu'on
ait /3= ^(*-+-y) ; en sorte que bp partage en deux parties égales
l'angle formé par les droites au, c •

Exemple 2. Pour avoir la progression de grandeur et de posi-

tion — a** b$:c*, ••• />: m^ , il faut qu'on ait, à la fois. — = : - - = . ,,,9
m

=5— et 0—• a=y-— £=s . . . . !=^— A#

Corollaire 2. Donc , dans une progression de grandeur et de
position , les grandeurs absolues des droits sont en progression
géométrique , tandis que les angles qu'elles font avec Taxe des
abscisses positives croissent en progression arithmétique.

Notation 2. Nous pouvons maintenant séparer ? dans la notation,
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ce qui est relatif à la grandeur absolue d'une droite de ce qui
est relatif à sa position. D'abord on a ; par la première notation
ao = a, I O = I ; et ensuite on a , par la définition 2.e , i : \a : : a: aa,
d'où Ton tire agt'=a.ie6. Ainsi , nous pourrons représenter ? de gran-
deur et de position, la droite a0 par #,i* , où a est la grandeur
absolue, et i^ le signe de position.

Définition 4. Nous appellerons Droites positives celles qui , étant
parallèles à l'axe des abscisses , sont dirigées de gauche à droite ,
et Droites négatives celles qui 7 étant parallèles à Taxe des abscisses,
sont dirigées de droite à gauche. Nous appellerons , de même ? Angles
positifs ceux qui sont comptés depuis Taxe des abscisses positives ?

en mentant , et Angles négatifs ceux qui sont comptés depuis le
•même axe , en descendant. C'est là la définition ordinaire des quan-
tités positives et des quantités négatives en géométrie ; mais ? il s'en
faut de beaucoup qu'on en ait tiré toutes les conséquences qu'elle
est susceptible d'offrir. En combinant cette définition avec les pré-
cédentes , nous allons en déduire une manière simple , uniforme et
féconde de représenter les lignes de grandeur et de position.

Corollaire. i.er. Il suit de cette définition et de nos notations

qu'on a -j-i = i 0 ? et —1 = 1 ^ ^ , et par conséquent+#=#

•=#.ï0 , et — # = # X ( — i ) = ^ i ± s r .

Corollaire 2. On sait , d'un autre côté , que

et ^ i z r ^ ^ V " " " 1 ; on a donc aussi

et —a-

Remarque. Il est vrai qu'on a plus généralement P -f-i-=£—znir\j 1 ^

et —1 =£ "" ̂ 2W"« î)73\'~m'ï ^ n étant un nombre entier quelconque ; mais ?

dans le géométrie de position 9 on n'a besoin que d'un seul tour
de circonférence, pour déterminer la position d'une droite, ce qui
suppose « = o , et réduit ainsi les expressions de + I et de —1 à
celles du corollaire précédent.
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Théorème i.er. Les quantités imaginaires , de la forme ±a\/'^T'

représentent, en géométrie de position 5 des perpendiculaires à l'axe
des abscisses ; et réciproquement les perpendiculaires à l'axe des
abscisses sont des imaginaires de la même forme.

Démonstration. La quantité ^h^^/ZTï est une moyenne propor-
tionnelle , de grandeur et de position , entre H-a et •—a y c'est-
à-dire, entre aQ et a^^ \ donc , d'après le corollaire t.er de la

définition 3,e , la valeur de cette moyenne proportionnelle 9 de gran-

deur et de position, est tf^w-, c'est-à-dire ? qu'elle est perpendi-

culaire à Taxe des abscisses, et dirigée soit en dessus soit en dessous

de cet axe ; et Ton a -f-#y/ZI7:z:# , w-, et —as/^l — a »-. Réci-

proquement, toute perpendiculaire à Taxe des abscisses est représentée,
d'après nos notations , par a+.jr : elle est, par conséquent, d'après

le corollaire i.er de la définition 3 , une moyenne proportionnelle entre
flQ et am^mm 7 ou entre + # et —-a ; elle est donc une quantité ima**

ginaire de la forme ^t^V^"^-
Corollaire i.er. Il suit de là que ^s/^\ est un signe de position

qui est identique avec i 4. w-.

Corollaire 2. De plus , puisqu'on a — I S I ^ ^ Z

a aussi H^^/ZI7=i 5 = ^—V^ *

Corollaire 3. Les quantités dites imaginaires sont donc tout aussi
réelles que les quantités positives et les quantités négatives , et n'en
diffèrent que par leur position qui est perpendiculaire à celle de
ces dernières.

Remarque générale. Cette théorie des signes de position est une con-
séquence nécessaire et irrécusable des premiers principes. Elle est plus
conforme aux règles d'une saine logique que la théorie ordinaire où
Ton admet, un peu gratuitement ou du moins sans nécessité, deux
espèces différentes de quantités positives , et autant d'espèces de
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quantités négatives ( les abscisses et les ordonnées ) ; car , dès qu'on
admet la définition 4-e ^ e s quantités positives et des quantités négatives ;
il n'est plus permis d'en introduire d'autres qui ne soient pas comprises
dans cette définition ; et Ton est obligé forcément d'admettre toutes
les conséquences que cette même définition entraîne. Ces conséquences
heurtent, à la vérité , les idées reçues ; mais c'est que ces idées sont
f̂ondées sur un défaut de dialectique , qui consiste à admettre deux
principes, et deux principes incompatibles, là où un seul serait
suffisant.

Théorème 2. Le signe de position i# a pour valeur ^V—"1 . c'est-

à-dire , que taZze**"" .

Démonstration. Supposons que la demi-circonférence décrite d'un
rayon = 1 soit divisée , dans le sens des angles positifs, en m parties
égales, et qu'on mène des rayons aux points de division ; ces rayons
formeront, d'après la définition 3.e , une progression de grandeur
et de position : orf les deux termes extrêmes de cette progression

étant i o=-f- i et 1^= — i=£*V * ^ l e s termes intermédiaires

[ »y t Ï JJÎ I •••• 1 o«-o* auront pour valeurs em^ 1 ,<?""** f

; de sorte qu'en général on aura iMw»=r e

Tl'SF

et , comme — peut représenter un angle quelconque , on aura finale-

ment i^rz:

Corollaire i.cr Si Ton prend les logarithmes naturels des deux

membres de l'équation i ^ / ^ V " " 1
 ? o n a u r a -y/ZT7 = Log.(i -) : ce

qui fait voir qu'en géométrie de position les arcs de cercle sont les
logarithmes des rayons correspondais. Ces arcs de cercle sont, comme
on le voit > affectés du signe de position \/^î, ce qui paraît très-
naturel f puisque leur direction est dans un sens perpendiculaire à
Taxe des abscisses»
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Observation. Le corollaire précédent contient le germe d'une

théorie très-simple et très-lumineuse des logarithmes naturels, et
de leurs rapports avec la circonférence du cercle. Il explique l'ex-
pression énigmatique » les arcs de cercle imaginaires sont des
logarithmes « ; il donne enfin un sens raisonnable et intelligible à

l'équation symbolique et mystérieuse —\/—i=Log.(y/H7).

Corollaire 2. Puisque, d'après la notation 2. e , on a a^^za.i^;

il suit du théorème précédent qu'on a aussi a^^as*^ I .

Corollaire 3. Comme on a euy* I~Cos,*-4-Sin^.t/m7 > il s?en-
suit que <2^=#Cos.#-}-tfSin,#j/-— 1 c'est-à-dire que 5 pour exprimer
une droite de grandeur et de position , il faut prendre la somme de ses
projections sur deux axes de coordonnées rectangulaires : bien entendu
qu'on prendra chaque projection avec son signe de position.

Corollaire 4* H sui* de là qu'à une droite quelconque 5 donnée de
grandeur et de position , on peut substituer tant d'autres droites
qu'on voudra ? pourvu que la somme de toutes les projections de
ces dernières soit égale à la somme des projections de la droite
donnée ; c'est-à-dire 5 qu'à une droite x» on peut substituer les
droites a^ , hp , cy ,,.,,/72 , pourvu qu'on ait , entre ces quantitésr

la relation

^ ~ ^ ~ ^ : = : ~ I ^ : : i (A)
ou 5 à cause de l'indépendance du signe \/^\ y

(B)

On voit que toutes ces droites a^ > b^^ Cy,*..* peuvent être prises
arbitrairement, à l'exception d'une seule, dont la grandeur et la
position doivent être déterminées par l'équation (A) ou par ses
équivalentes (B).

Réciproquement, on peut substituer à tant de droites , données
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de grandeur et de direction , qu'on voudra une droite unique ,
que les projections de cette dernière, sur deux axes rectangulaires,
soient respectivement égales aux sommes de projections des premières
sur les mêmes axes ; et alors sa grandeur et sa position se trou-
veront déterminées par les équations (B).

Corollaire 5. Si les droites ar*, a^t ^ , cy, . ...77?^ du corollaire
précédent forment un polygone fermé , les équations (B) sont
évidemment satisfaites. Donc , on peut substituer à une droite quel-
conque donnée une suite d'autres droites > formant un polygone
fermé avec la droite donnée \ et réciproquement , à une suite de
droites formant un polygone non fermé , on peut substituer la droite
qui fermerait le polygone.

Application à la mécanique. Les trois derniers corollaires sont
immédiatement applicables à la composition et à la décomposition
des forces. En effet, une force, donnée d'intensité et de direction,
peut toujours être représentée par une droite donnée de grandeur
et de position , qui est le chemin parcouru , en vertu de cette
force , dans l'unité de temps. En substituant donc 5 dans les trois
derniers corollaires , les mots « force donnée dintensitè et de direc-
tion » à ceux-ci « droite donnée de grandeur et de position » ,
on aura immédiatement les théorèmes connus sur la composition et
sur la décomposition des forces. Cette théorie 9 qui était toujours
sujette à quelque difficulté, se trouve donc réduite à une question
de géométrie de position.

Remarque* II est bon d'observer qu'au moyen du signe de posi-
tion \/^i , les abscisses et les ordonnées se trouvent aussi indé-
pendantes , en géométrie de position , que le sont, en mécanique %

les forces perpendiculaires entre elles. Cette conformité seule éta-
blirait un argument non équivoque en faveur de notre théorie ,
si d'ailleurs elle ne se justifiait pas d'elle-même.

et

TMorème 3. Le signe de position i* a aussi pour valeur i**- ;

c'est-à-dire , que i * = i * y.
Démonstration*
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Démonstration* Si l'on divise la circonférence décrite d'un rayon
= I en m parties égales , et qu'on mène des rayons aux points de
division , ces rayons formeront , d'après la définition 3.e , une pro-
gression de grandeur et de position, dont les deux termes extrêmes

I 2

seront également l'unité. On aura donc i j j ^ i m , i_£5 = im, . . . .
m m

Jl .27237 72 • ce

jiM^z=:imt Supposant donc =# , on aura —=- —• ? et par con-
m

séquent i^=i*s>.
Corollaire i.er II suit de ce théorème, i.° que les rayons qui

partagent en m parties égales la circonférence dont le rayon est i y

représentent les m racines m.me de l'unité ; 2.0 que toutes ces racines
sont égales entre elles et à l'unité , et qu'elles ne diffèrent les unes des
autres que par leur position ; 3.° qu'enfin elles sont toutes égale-
ment réelles , puisqu'elles sont représentées par des lignes données
de grandeur et de position.

Corollaire 2, En comparant ce théorème avec le précédent, on obtient
immédiatement les valeurs connues des racines de l'unité ? qu'on peut

t , 1 - 2 " \ /~77 ~ -27223- . . 2725T .

exprimer9 en gênerai, par 1 m=ze m v ==: {jQSt -J-bm. « V—*•
^ x mm*

Remarque i . r e En combinant entre eux les théorèmes 2.e et 3.%
ainsi que leurs corollaires > on peut faire les rapprochemens les plus
curieux et les plus intéressans entre les arcs de cercles, les loga-
rithmes naturels et les racines de l'unité ? et rattacher ces trois branches
de calcul à une seule et unique théorie.

Remarque 2.e. On voit, par cette théorie" des signes de position,
qu'à la rigueur on pourrait se passer, en géométrie , des signes •+•,
— e t Z t l / " ^ " , comme signes de position ; et que nos signes i0 ,
1 * I 4 - z les remplacent, avec avantage, en conservant la liaison

de ces signes avec le signe général de position i^-^» II en résul-

terait encore cet autre avantage que les signes -[-et — ne serviraient

plus désormais qu'à indiquer l'addition et la soustraction ; de sorte

Tom. IF. 10
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que ces signes n'auraient jamais qu'une même signification ; ce qui
éviterait bien des embarras , et serait en même temps beaucoup plus
conforme aux règles d'une saine logique.

Théorème 4- Toutes les racines d'une équation d'un degré quel-
conque sont réelles > et peuvent être représentées par des droites
données de grandeur et de position.

Démonstration. Il est démontré que toute équation d'un degré
quelconque est toujours décomposable en facteurs réels , soit du
premier soit du second degré ; et conséquemment il suffit de faire
voir que les racines d'une équation du second degré peuvent être
représenlées par des droites données de grandeur et de position. Or,
les racines d'une équation du second degré étant de la forme
x=zp^2\/^ , sont immédiatement constructibles , par les corollaires 3.e

et 4-e du théorème 2.e ; car i.° si q est positif, x sera la somme
ou la différence de deux quantités positives ou négatives , comptées
sur l'axe des abscisses ; 2.0 si q est négatif, oc sera une droite partant
de l'origine et dont les coordonnées de l'autre extrémité seront p
et t/7-

Telle est l'esquisse , très-abrégée , des nouveaux principes sur
lesquels 11 me paraît convenable et même nécessaire de fonder la
géométrie de position , et que je soumets au jugement des géomètres.
Ces principes étant en opposition formelle avec les idées admises
jusqu'ici , sur la nature des quantités dites imaginaires , je dois
m'attendre à des objections nombreuses ; mais j'ose croire qu'un
examen approfondi de ces mêmes principes, les fera trouver exacts,
et que les conséquences que j'en ai déduites , quelque étranges qu'elles
puissent paraître d'ailleurs , au premier abord , seront néanmoins
jugées conformes aux règles de la dialectique la plus rigoureuse.

Je dois, au surplus, à la justice de déclarer que le fond de ces
idées nouvelles ne m'appartient pas. Je l'ai trouvé dans une lettre
de M. Legendre à feu mon frère , dans laquelle ce grand géomètre
lui fait part ( comme d'une chose qui lui a été communiquée 9 et
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comme objet de pure curiosité ) , du fond de mes définitions s.e

et 3.e
 ? de mon théorème i.e r , et du corollaire 3.e de mon théorème 2.e ;

mais ce dernier n'était avancé que gratuitement 9 et n'était justifié
que par l'exactitude de quelques applications. Ce qui m'appartient
en propre se réduit donc à la manière d'exposer et de démontrer
ces principes , à la notation 5 et à l'idée de mon signe de posi-
tion 1 ^ .

Je désire que la publicité que je donne aux résultats auxquels
je suis parvenu , puisse déterminer le premier auteur de ces idées
à se faire connaître , et à mettre au jour le travail qu'il a fait lui-
même sur ce sujet, (*)

Metz , le 6 de juillet 1813.

(*} II y a environ deux ans qu'écrivant à M. de Maizière f au sujet de son
mémoire inséré à la page 368 du i.er volume de ce recueil, je lui mandais qu'on
avait peut-être tort de vouloir comprendre toutes les grandeurs numériques dans
une simple série ; et que , par leur nature , elles semblaient devoir former une
table à double entrée qui, bornée aux seuls nombres entiers , pourrait être figurée
comme il suit :

+ 1 > +2. %

+!—2%/ 1 ? +2—2\f^l

en sorte que déjà y comme M» Français f je supposais les nombres de la forme

n\—i situés dans une ligne perpendiculaire à celle qui renferme les nombres
de la forme n ; et que % comme lui encore % je représentais les nombre* étraix-
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ANALISE TRANSCENDANTE.

Intégration , sous forme finie , de quelques fonctions
différentielles circulaires j

Par M. Du BOURGUET , professeur de mathématiques
spéciales au lycée impérial s

\_/N rencontre souvent , en mécanique , des fonctions différentielles
de la forme

gers à ces deux lignes par la somme de leurs projections sur l'une et sur l'autre.
Le même M. de Maizlère , au sujet de quelques difficultés que j'avais opposées

au mémoire que je viens de citer , me maniait , dès le mois d'avril 1811 : ce
que j'avance ici sur les imaginaires est une idée hardie que je suis bien aise
de jeter en avant, et dont , j'en suis sûr , çous aurez déjà reconnu Vexactitude ;
et , un peu plus loin : ce paradoxe cessera d'en être un , lorsque j'aurai prouvé
que les imaginaires du second degré , et par conséquent de tous les degrés ,
sont tout aussi peu imaginaires que les quantités négatives , ou les imaginaires
du premier degré ; et que nous sommes exactement, à Végard des uns , dans
la situation oii étaient nos algébristes du XVIIe siècle à l'égard des autres.

En rappelant ces circonstances , il est certes loin de ma pensée de chercher
à dépouiller M. Français > non plus que le géomètre dont il a si bien su mettre
les indications à profit , de la priorité de leurs idées ; mais je veux montrer que
ces idéee ne sont point tellement étranges que le fond n'en ait pu germer dans
plusieurs têtes à la fois. Il faudra sans doute faire beaucoup encore pour parer à
toutes les objections , pour éclaircir toutes les difficultés , pour dissiper tous les
nuages , pour étendre et perfectionner la nouvelle théorie et en rendre bien évidtns
l'esprit ? le but et les avantages ; mais, on ne peut espérer ces résultats que da
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z , znàzS\r\.mz.

Aucun auteur , du moins que je sache, n'ayant donné les intégrales ,
sous forme finie , de ces deux formules , j'ai pensé que l'on ne
serait pas fâché de les rencontrer ici.

L'intégration de ces deux formules pouvant toujours , comme
nous le verrons tout à l'heure , être ramenée à celle des formules

(jz)"d.Sin.(tfz) , (az)Hd.Qos.(az) \

lesquelles reviennent à

c'est par celles-ci que nous commencerons. A la vérité , nous poumons
en déduire les intégrales de notre équation générale (432) [ Traité
de calcul différentiel et de calcul intégral, tome II , page 206 ,
art. 425 ] , en y faisant X-=zxn , a=o et $ = 1 ; mais nous croyons
devoir > dans ce mémoire, les intégrer immédiatement.

Intégration de &nd*Sin,&\
On a

donc

temps et des efforts réunis de tous ceux qui voudront bien ne pas rejeter cette
théorie avec dédain , sans l'avoir sérieusement examinée.

Ce qui me paraît résulter, bien clairement, du mémoire qu'on vient de lire ;
ce qui peut en être regardé comme le résumé, est la proposition suivante : Lorsque
cherchant , sur une droite indéfinie , une longueur déterminée , mais inconnue ,
qu'on croit être d'un certain côte (Tun point Jixe pris sur cette droite , il arrive
que cette longueur est réellement du cote opposé de ce point Jixe , en trouve
•pour la longueur cherchée , une expression négative ; et si cette longueur riest
pas même située sur la droite donnée >J/o?> expression se présente alors soiîs
une forme imaginaire,

J. D. G.
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fxnd.$in.x=zxnSin<x+nfxn-là.Cos.x ; (a)

or ,

donc

De ces équations (a) et (#) , on conclura aisément les valeurs
y#n~"1d.Sin.j? ,yin~ îd.Cos.#, i/àrn">4d.Sin.^r , . . . . et, par des subs-

utions successives , à partir de l'équation (a), on parviendra au
sultat que voici :

(O fxnd

dont les séries , régies par une loi très-simple à apercevoir, sont
finies , lorsque n est un nombre positif et entier. Il est d'ailleurs
aisé de voir que le coefficient de Cos.or est égal à la différentielle
de celui de Sin.^p, divisée par àx.

Intégration de xnà*Cos*x.

Suivant la méthode des intégrations réciproques ( Art. 217 de
l'ouv. cité ) , on a

, (c)

fxn~l d^in a=xn~l Sin.# + (n—1 )fx11't dXos.#. (d)

Mettant successivement n—2, n—4 > • • • • dans les équations (c) et (d) ;
on forme une suite d'équations qui ont chacune leur dernier terme
affecté d'un facteur intégral qui est le premier membre de l'équation
qui suit immédiatement ; donc , par une suite de substitutions suc*
cessives 9 à partir de l'équation (c) , on parvient aisément à celle
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(2) fxnd.Costx={xn—nÇn~i)xn-*+n(n-~iï(n~-2)(rc—3)*«-*—..., }Co*#—

{ nx«- *—72(rc—1)(>2—a)*»' J+?2(n—i)(n—2)(72—3)(r2—4)^"^—M.. } Sin.a; ;

dont les séries sont les mêmes que dans l'équation (i)«

Intégration de ztldzCos.mz.

Des équations, connues en trigonométrie , qui donnent respective-
ment les valeurs des puissances paires et impaires du cosinus d'un
arc , en fonction des premières puissances des cosinus de ces arcs,
et que j'ai rappelées, sous les lettres (a) et (b), à la page 4 1 1 du
premier volume de mon Traité de calculs différentiel et intégral,
on tire pour le cas de m NOMBRE POSITIF ET PAIR,

fzndzCo$.(rn—2)^+

. ....
I a ;m—ï

e t , pour le cas de m KOMBRE POSITIF ET IMPAIR,

- ^ - j - {fznà.zCos>mz-\- —

m rn*~i m m—I
fndCsJm—4)^+ S—T

m m—1 f (/w+3)
.——

Multipliant et divisant , dans ces deux équations 5 chaque terme
du second membre par la Cn-\-i)me puissance du coefficient de z
sou$ le cosinus , en observant qu'en général
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MzCos.kz—d.Sin.kz ,

il tiendra , pour le cas de m NOMBRE POSITIF ET PAIR ,

(3) Jz*àzCos™z *= ~

I 2.

et pour le cas de m NOMBRE POSITIF ET IMPAIR ,

(4) /

m—i

Or, les valeurs de tous les termes intégraux des seconds membres
de ces équations (3) et (4) sont données , sous forme finie , par
l'équation ( i ) , en y faisant successivement x~mz , (m—2)2,...»;
donc on aura aussi, sous forme finie ? les intégrales demandées,

Intégration de zndz$in.mz*

Des équations , connues en trigonométrie , qui donnent respecti-
vement les valeurs des puissances paires et impaires du sinus d'un
arc simple y en fonction des premières puissances dès lignes trigo-
nométriques , soit sinus soit cosinus, des multiples de l'arc simple,
et que j'ai rappelées sous les lettres (a) et (b) 7 à la page 4°7 du
premier volume de mon Traité de calculs différentiel et intégral t

on tire, pour le cas de m NOMBRE POSITIF ET PAIR ,

I 772

m
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m m—i m m—i 7^2+2
— . fznàzCos.{m—4)z—....^_ — . .... î—-— f

1 2 - 1 2 . ^-771—1

I 3 777 1 I
— # . . . . . • . £»+ « •

e t , pour le cas de m NOMBRE POSITIF ET IMPAIR ,

fznàzSm*mz= ~~ {fz"dzSin.mz— — fzndzSi

Multipliant et divisant chacun des termes des seconds membres de
ces deux équations affectes du signe d'intégration ? par la (j2~J~i)me

puissance du coefficient de z sous le signe de cosinus 9 équation (e) 9

et sous celui de sinus, équation (f) 7 en remarquant qu'en général
kàzCos.kzz=.àSm.kz ? £dzSin.£z=-— à*Cos.kz , on trouvera, pour
le cas de m NOMBRE POSITIF ET PAIR ?

(5) /*»d*Sin.w*=±^ {-^J(mz)*à&m.{mz)~^^

^ 7

1 3 jn^ 2±!
mTm'mmmm • " 7 " • • • • • z >

2. 4 772—I I

les signes supérieurs devant être pris lorsque m est un nombre dou-
blement pair et les inférieurs dans le eas contraire*

Tom. IF. i\
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Et , pour le cas de m NOMBRE POSITIF ET IMPAIR ,,

(G) /^dzSin »zÏ=+ - ^ r -^rTA^?à.Cos.(mz)— - —^/[(/w—2)z]wd.Cos.[>-
v. [m—2.)

m m—i

77Î 772—1

i * 2

les signes supérieurs devant être pris lorsque m—x est un nombre
doublement pair, et les signes inférieurs dans le cas contraire.

Or , les valeurs des termes du second membre de l'équation (5)
affectés du signe d'intégration 5 sont données , sous forme finie ,
par l'équation ( i) ; et celles des termes du second membre de l'équa-
tion (6) sont également données , sous forme finie , par l'équation (2) ;
donc , quelles que soient les valeurs entières et positives de m et n,
on a exactement , et sous forme finie , l'intégrale demandée de
zndzSm.mz.

GEOMETRIE DE LA REGLE.
Application de la doctrine des projections à la démons-

tration des propriétés des hexagones inscrits et
circonscrits auoo sections coniques j

Par M. G E R G O N N E ,

V-/N connaît déjà diverses démonstrations des théorèmes relatifs aux
hexagones inscrits et circonscrits aux sections coniques (*). En

(*) Voyez , entr autres , la note de la page 335 du premier volume de ce recueil.
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Toîcl d'autres que* je crois nouvelles et qui me paraissent assez
simples pour permettre d'Introduire dans les élémens deux théorèmes
si féconds en belles applications.

ï

I. Hexagone inscrit.

1, Par les élémens de géométrie, il est facile de démontrer que, si deux
côtés consécutifs d'un hexagone inscrit au cercle sont respectivement
parallèles à leurs opposés , les deux autres côtés opposés de cet
hexagone seront aussi parallèles l'un à l'autre. (*)

.2. Il résulte de là que, si deux côtés consécutifs d'un hexagone
inscrit à l'ellipse sont respectivement parallèles à leurs opposés >
les deux autres côtés opposés de cet hexagone seront aussi parallèles
l'un à l'autre. Que Ton conçoive en effet 9 qu'après avoir rendu
le petit axe de l'ellipse parallèle à un plan fixe on fasse tourner
son plan autour de cet axe , jusqu'à ce que la projection orthogonale
du grand axe sur le plan fixe soit égale à ce même petit axe.

(*) Soient A , B , C, D 9 E , F les sommets consécutifs de l'hexagone , et suppo-
sons que AB y BC soient respectivement parallèles à DE , EF ; on aura

Arc.BC+Arc.CD=Arc.EF+Arc.FA ,

Arc.FA+Arc.AB=Arc.CD+Arc.DE ;

d'où, en ajoutant et réduisant

Arc<AB+Arc>BC=ArcDF+Arc.EF ,

ou, plus simplement

Arc.ABC=Arc.DEF ,

ce qui établit le parallélisme des côrés opposés CD , FA, du moins Ioî sque t

comme nous le supposons ici, ces côtés ne se coupent pas dans le cercle,
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La projection de toute la figure sur ce plan sera alors un cercle auquel
sera inscrit un hexagone dont deux côtés consécutifs seront respecr
tivement parallèles à leurs opposes , puisque les projections de
parallèles sur un même plan sont elles-mêmes parallèles. Donc ( i )
les deux autres cotes opposes de l'hexagone inscrit au cercle sont
aussi parallèles. Il en doit donc elre de même de leurs correspondans
dans l'ellipse , puisque les projections sur un plan de deux droites
situées sur un autre plan ne sauraient être parallèles , si celles-ci
ne le sont elles-mêmes.

3. 11 suit de là que , dans tout hexagone inscrit au cercle , les
points de concours des prolongemens des côtés opposés sont tous
trois situés sur une même ligne droite. Que l'on fasse, en effet, une
perspective de la figure , de telle manière que cette perspective soit
une ellipse à laquelle soit inscrit un hexagone dont deux côtés
consécutifs soient respectivement parallèles à leurs opposés (+) ; les
deux autres côtés opposés de cet hexagone seront également (2)
parallèles l'un à l'autre. Donc les droites menées de l'œil aux points
de concours des prolongemcns des côtés opposés de l'hexagone inscrit
au cercle sont toutes trois parallèles au tableau , et conséquemment
dans un plan passant par l'œil ; les points de concours sont donc
dans ce plan; et , puisqu'ils sont aussi dans le plan du cercle, ils
sont sur une même droite intersection de ces deux plans.

4. Comme toute section conique est la perspective d'un certain
cercle , et comme , d'un autre côté 5 la perspective d'une droite
est, elle-même une ligne droite ; on peut conclure de ce qui précède
que ? généralement , les points de concours des directions des cotes
opposés de tout hexagone inscrit à une section conique, sont tous
trois situés sur une même ligne droite.

(*) II suffit pour cela de mener des droites de_ l'œil à deux quelconques des
points de concours des prolongemens des côtés opposés de l'hexagone inscrit au
cercle , et de disposer le pian du tableau parallèlement à celui de ces deux
droites.
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IL Hexagone circonscrit.

Ï . Par les élémens de géométrie , on démontre facilement que,,
si deux des diagonales joignant des sommets opposés d'un hexagone
circonscrit au cercle se coupent à son centre y la diagonale joignant
les deux autres sommets opposés passera aussi par le centre du
cercle. (*)

2. Il résulte de là que, si deux diagonales joignant des sommets
opposés d'un hexagone circonscrit à une ellipse se coupent à son
centre y la diagonale joignant les deux autres sommets opposés pas-*
sera aussi par le centre de l'ellipse. Que l'on projette ? en effet, la figure
sur un plan tel que la projection de l'ellipse soit un cercle ; la projection

(*) Soient A , B, C , D , E , F les sommets consécutifs de l'hexagone et O
le centre du cercle ; supposons que les diagonales AD , BE se coupent en ce
point , et soient menées les droites OC , OF ; les deux triangles AOB , DOE
aya.nl un angle égal en O , on aura

Ang.OAB+Ang.ABO=Ang.ODE+Ang.I)EO t

ou ea doublant

Ang.FAB+Ang.ABC=zAng.CnE+Ang,DEF.

On a d'ailleurs

, Ang.BCO=Ang.DCO ;

en ajoutant ces trois dernières équations-membre à membre , on verra que la
aomme de quatre angles du pentagone OFABCO est égale à la somme de quatre
angles du pentagone OCDEFO ; on en conclura donc que leurs angles en G
sont aussi égaux ; puis donc que leur somme est quatre angles droits , chacun
d'eus doit en valoir deux, ou , en d'autres termes , les droites OC , OF n'en forment
réellement qu'une seule , laquelle est la troisième diagonale CE qui passe consé-

par le cenjtre O»
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de son centre s^ra le centre du cercle ; deux des diagonales joignant
des sommets opposés de l'hexagone circonscrit au cercle passeront donc
par son centre ; la troisième y passera donc aussi (1) y et consé-
quemment la correspondante dans l'ellipse passera également par le
centre de cette courbe.

3. 11 sait de là que, dans tout hexagone circonscrit au cercle,
les diagonales joignant tes sommets opposés se coupent toutes trois
en un même point. Que l'on fasse ? en effet, une perspective de la
figure , de telle manière que la perspective du cercle soit une ellipse
'ayant pour centre la perspective de l'intersection de deux quelconques
des trois diagonales de l'hexagone circonscrit a ce cercle. (*) Deux
des diagonales joignant les sommets opposés de Phexagone circonscrit
à l'ellipse se couperont à son centre; ces trois diagonales se couperont
donc au même point (2) ; il en sera donc de même pour leurs
correspondantes dans le cercle.

4. Comme toute section conique est la perspective d'un certain
cercle , et comme , d'un autre côté , les perspectives de droites qui
se coupent au même point sont des droites qui se coupent au
même point , on peut, conclure de ce qui précède que , géné-
ralement ? les diagonales qui joignent les sommets opposés de
tout hexagone circonscrit à une section conique se coupent au
même point.

I I I . Généralisation de cette théorie.

Dans les raisonnemens que j'ai faits ci-dessus , j'ai supposé taci-
tement, i.° que l'hexagone inscrit au cercle était tel que la droite

(*) Soient menées de l'œil trois droites , l'une à l'intersection des deux diagonales
dont il s'agit et les deux autres aux deux extrémités du diamètre qui contient
cette intersection. Par un point pris arbitrairement sur la première de ces trois
droites , soit menée , dans leur plan , une droite , se terminant aux deux autres >
dont ce point soit le milieu ; le plan du tableau devra passer par cette dernière
droite et être perpendiculaire au plan des trois premières.
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joignant deux des points de concours des directions des côtés opposés
était extérieure à ce cercle-, 2.0 que l'hexagone circonscrit était tel
que deux au moins de diagonales joignant des sommetss opposés se
coupaient dans l'intérieur du cercle.

Mais, lorsque les côtés de l'hexagone 9 soit inscrit soit circonscrit f

se coupent les uns les autres , entre leurs extrémités , il est des
cas nombreux où ces conditions ne peuvent plus être satisfaites ,
de sorte qu'il semblerait manquer quelque chose aux précédentes
démonstrations ; mais on peut les" compléter à l'aide des considérations
suivantes.

On sait que l'équation générale des lignes du second ordre ren-
ferme cinq coefficiens nécessaires et indépendans , dont on peut
disposer pour faire passer la courbe par cinq points ou la rendre
tangente à cinq droites données.

Si l'on veut au contraire assujettir la courbe à passer par six
points ou à toucher six droites données , on obtiendra entre les données
qui déterminent ces six points ou ces six droites une certaine équation
de relation , laquelle demeurera invariablement la même , quelle que
soit la situation respective de ces points ou de ces droites , puis-
qu'on peut parvenir à cette équation de relation, sans savoir aucunement
de quelle manière les points ou les droites sont situés.

Mais ? si Ton supposait leur situation telle que les exceptions
que je viens de mentionner n'eussent pas Heu , l'équation de relation
ne pourrait être que l'expression analitique de l'un ou de l'autre
de nos deux théorèmes ; puisque , dans le cas contraire ? on se
trouverait avoir deux équations de relation au lieu d'une.

Puis donc que cette équation de relation est invariable dans sa
forme , nos deux théorèmes doivent être vrais dans tous les cas.

Le tour de raisonnement par lequel ces deux théorèmes viennent
d'être démontrés peut s'appliquer à la démonstration du suivant qui
renferme la propriété des pôles des sections coniques ;

Deux îiexagones étant l'un inscrit et Vautre circonscrit à une,
même section conique , de manière que les sommets de tinscrit
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coïncident avec les points de tangence du circonscrit, si les diagonales
joignant les sommets opposés de Vinscrit se coupent en un même point ?

les points de concours des directions des cotés opposés du circonscrit
seront tous trois sur une même ligne droite , et réciproquement.

On ne doit pas perdre de vue ? dans tout ceci ? que le système
de deux droites tracées sur un même plan forme une véritable ligne
du second ordre 9 et doit conséquemment en avoir toutes les propriétés.

Concevons que le centre d'une surface conique quelconque , du
second ordre , coïncide avec celui d'une sphère ; le système total
des courbes à double courbure résultant de Pinterseetion des deux
surfaces jouira 9 par rapport aax arcs de grands cercles ? des mêmes
propriétés dont jouissent les lignes du second ordre par rapport
aux lignes droites»

En général , tout problème qui se résout , sur un plan , en
n'employant que la règle seulement, peut être résolu sur la sphère,
à l'aide d'une ouverture de compas constante et égale à l'arête de
l'octaèdre régulier inscrit.

CHRONOLOGIE.
Calendrier perpétuel ;

Par M. SERVOIS ? professeur aux écoles d'artillerie. (*)

J-JE calendrier dont ye vais expliquer les usages peut servir à résoudre
cette question générale , qui en renferme quatre particuliers : De

(*) Ce n'est qu'à la prière dti rédacteur des Annales que M. Servoîs , qui
lui avait communiqué cet ingénieux calendrier ? sans y attacher la moindre impor-
tance , a bien voulu permettre qu'il parut dans ce recueil > où l'on a pensé qu'il
ae serait point du tout déplacé» J, JD. G.

ces
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ces quatre choses , une année de l'ère vulgaire s le nom d'un mois
de cette année ? un quantième de ce mois et le nom du jour de
la semaine qui répond à ce quantième , trois quelconques étant
données , déterminer la quatrième ?

Des exemples , toujours beaucoup plus clairs que des explications 9

vont faire connaître le parti que Ton peut tirer de ce petit calendrier
( Voyez la Planche ) .

PROBLEME / . Déterminer à quel jour de la semaine répond
un certain quantième d'un mois désigné, dans une année donnée?

Exemple. On veut savoir à quel jour de la semaine répondra
le 28 de janvier 1821 ?

Cherchez dans la table la colonne qui renferme le nombre 21 qui
termine Tannée ; vous trouverez que c'est la première à gauche.
Cherchez dans la même colonne le mot janvier9 que vous trouverez ?

en tête 9 suivi & octobre* Marchez alors horizontalement sur la pre-
mière ligne , jusqu'à ce que vous vous trouviez verticalement au-dessus
du dernier des médaillons Inférieurs ? lequel renferme seul la date
donnée 28. Le mot dimanche , que vous trouverez dans le cercle
auquel vous vous serez arrêté f vous apprendra que le 28 de Jan-
vier 1821 sera un dimanche.

Remarque. Si Tannée est bissextile , c'est-à-dîre , si le nombre
formé par ses deux dernières chiffres à droite est un multiple de 4 %
il faudra , durant les deux premiers mois ? janvier et février, faire
usage de la colonne qui précédera immédiatement à gauche la colonne
qui en contiendra l'indication ; et de la dernière si cette colonne est la
première. Cette remarque est générale.

Ainsi y par exemple , s'il s'agissait du jour de la semaine quï
doit répondre au 28 de janvier 182^; comme 24, qui appartient
à la 5.e colonne , est un multiple de 4 > e t comme janvier est un
des deux premiers mois , il faudra se servir de la 4»e colonne ; on
y trouvera janvier suivi ^octobre dans le quatrième cercle en
descendant. Suivant donc horizontalement à droite jusqu'à la dernière

Tom. IV. 12
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colonne , au-dessous de laquelle se trouve le quantième 28 , le mot
mercredi , que Ton trouvera dans le cercle auquel on se sera arrêté,
annoncera que le 28 de janvier 1824 doit être un mercredi.

PROBLÈME IL Déterminer quels jours d'un mois désigné, dans
une année donnée, correspondent à un certain jour de la semaine ?

Exemple. On veut savoir quels sont les jours de février qui seront -
âes dimanches, dans Tannée i836 ?

Comme 36 qui est dans la 6,e colonne est un multiple de 4 >
et comme février est un des deux premiers mois, je me sers de
la 5.e. J'y cherche le mot février qui est en tête , suivi de mars
et novembre 5 et je file horizontalement jusqu'au mot dimanche ,
qui appartient à la dernière colonne -, ou bien je cherche le mot
dimanche dans la 5.e colonne , et je file encore horizontalement,
jusqu'à ce que je rencontre le mot février ; je tombe de nouveau
sur la dernière colonne, et je lis au bas que les dimanches de février
i836 seront les 7 , 1 4 * 2 1 et 28.

PROBLÈME I1L Déterminer quels sont les, mois d'une année
désignée , dans lesquels un certain jour de la semaine répondra à
une date donnée ?

Exemple. On veut savoir quels sont les mois de l'année 1825
qui commenceront par un lundi ?

s5 se trouve appartenir à la 6.e colonne dans laquelle je cherche
le mot lundi, je file horizontalement à gauche, en partant de ce
mot, jusqu'à la première colonne, au-dessous de laquelle se trouve
le quantième 1 9 et je lis dans le cercle qu'il n'y a que le seul
mois d'août de l'année 1825 qui doive commencer par un lundi.

S'il s'agit de Tannée 1828 , qui est bissextile , on cherchera d'abord
le mot lundi dan$ la 2.e colonne , qui précède immédiatement celle
qui renferme le nombre 28 ; filant alors horizontalement à gauche
jusqu'à la première colonne , au-dessous de laquelle se trouve le
quantième 1 , on trouvera d'abord les mois d'avril et de juillet,
qu'on rejettera , attendu qu'ils tombent au-delà des deux premiers ,
et qu'on a employé la colonne qui précède Tannée; prenant ensuit^
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le mot lundi dans la troisième colonne 9 et filant horizontalement
jusqu'à la première , on rencontrera les mois septembre et décembre ,
qu'on admettra tous deux , puisqu'ils tombent au-delà des deux
premiers, et qui sont conséquemment les seuls de Tannée 1828 qui
commenceront par un lundi.

PROBLÈME IV. Déterminer quelles sont les années dans les-
quelles un certain jour de la semaine coïncidera avec une date
donnée d'un mois désigné ?

Exemple* On veut savoir quelles sont les années où le i.er d'avril
sera un dimanche.

Le nombre 1 se trouvant au bas de la première colonne et avril
se trouvant dans le cercle le plus inférieur de cette colonne, lequel
renferme aussi le mot dimanche ; on en conclura que les années
où le i.er d'avril doit être un dimanche sont 1804 , 1810 9 1821 5

1827 , i 8 3 a , i 8 3 8 , 1849 , i855 , 1860 , 1 8 6 6 , 1877, i 8 8 3 ,
1888, 1894 5 etc.

S'il s'agissait de l'un des deux premiers mois de Tannée ; si ? par
exemple , on voulait savoir quelles sont les années dans lesquelles
le 7 de février sera un samedi ; le nombre 7 se trouvant dans la
dernière colonne , où le mot février est dans le 3.e cercle ; en
filant à gauche horizontalement,~ jusqu'à celui qui renferme le mot
samedi, on trouverait qu'il est dans la quatrième colonne. Mais il
faudrait rejeter toutes les bissextiles de cette colonne et substituer
aux astériques qu'on y rencontrerait les bissextiles de la colonne sui-
vante ; ce qui donnerait 1801 , 1807, 1818, 1824 , 1829, i835 ?

1846 , i852 , i 85 7 , i 8 6 3 , 1874 > 1880 > i885 2 1891 , etc.
Remarque. Ce calendrier n'est vraiment dressé que pour le siècle

actuel , mais on le rendra vraiment perpétuel, par une simple trans-
position des nombres qui expriment les années 9 d'une colonne à
l'autre , de manière que le nombre 00 se trouve dans la y.% dans
la 5.e , dans la 3 e ou dans la i. re colonne , suivant que la division par
quatre du nombre a gauche des deux derniers chiffres donnera pour
reste o , 1 , 2 ou 3 , en sorte qu'avec quatre tableaux seulement P
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on aura, un calendrier qui pourra servir pour tous les siècles passés
et futurs ; du moins tant que l'erreur , aujourd'hui insensible , ne
sera pas devenue, par l'accumulation des siècles, assez considérable
pour commander une nouvelle reforme. (*)

M. Gauss a donné , dans le 2.e volume de 1802 de l'excellent
journal Àstronomico-Gèographique de M. le Baron de Zaeli , une
méthode pour calculer, pour chaque année, l'époque de la fête de
pâques. J'en ai déduit la table suivante qu'il serait facile de pro-
longer , et qui , pour chaque année du XIX.e siècle, donne l'époque
de la pleine lune de mars.

i8o

181

182

i83

184

i85

186

187

188

189

0

9

18

-9

7

17

27

6

i5

26

4

1

-9

7

17

27

6

i5

,6

4

i3

24

2

17

27

6

10

26

4

i3

24

12

3

6

i5

26

4

i3

24

2

12

2 2

I

4

26

4

i3

24

2

12

2 2

I

IO

21

5

i3

-4

2

12

2 2

1

10

21

3o

9

6

2

12

22

1

10

21

3o

9

18

29

7

2 2

1

10

21

3o

9

18

-9

7

17

8

10

21

3o

9

18

29

7

17

27

6

9

3o

9

18

7

17

27

6

i5

26

(*) Je ne sais s'il a déjà été remarqué que Pintercalation persanne, je veux dire
celle de 8 jours sur 33 ans , un peu plus exacte que Pintercalation grégorienne ,
pouvait être répartie d'une manière tout à fait remarquable par sa riguçur et son.
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Les dixaines d'années sont à la gauche de la table et les unités
au-dessus , à peu près comme dans les tables de logarithmes. Les
dates inférieures à ao appartiennent au mois d'avril , et les autres
au mois de mars. La loi de cette table est fort simple : en écrivant
en cercle toutes les 3o dates , depuis le 21 mars jusqu'au ig d'avril
inclusivement, ces dates prises de dix-neuf en dix-neuf, dans Tordre
direct, formeront les lignes horizontales, et prises alternativement de
neuf en neuf et de dix en dix , elles donneront les colonnes verticales.

Si , à l'aide de cette table , on veut connaître l'époque de la
pleine lune de mars pour Tannée i 8 5 4 9 on trouvera, sur-le-champ ,
que c'est le 12 d'avril ; et si , au contraire, on veut savoir en quelles
années la pleine lune de mars doit tomber le 4 d'avril , on trouvera
que cela doit avoir lieu les années 1814> i833 , 1862, 1871 et 189CU

Et , comme la fête de pâques est fixée au dimanche qui suit immé-
diatement la pleine lune de mars, il est facile , au moyen de la
combinaison de cette petite table avec notre calendrier, de déterminer
l'époque de pâques pour chaque année , et d'assigner réciproquement
les années auxquelles cette fête arrivera à une époque désignée.

S i , par exemple, on veut connaître l'époque de pâques pour i852;
comme on vient de trouver que , pour cette année-là , la pleine
lune de mars arrive le 4 d'avril, e t , comme on trouve d'ailleurs,
par le calendrier 7 que ce 4 d'avril est un dimanche , on en con-
clut qu'en i852 la fête de pâques tombera le 11 d'avril,

uniformité ; il faudrait pour cela ajouter un jour, tous les quatre ans, le supprimer j
tous les siècles , le rétablir , tous l̂es quatre siècles , le supprimer, tous les dix
mille ans, le rétablir y tous les quarante mille ans, et ainsi de suite J cela don-
nerait en effet, pour la longueur de l'année moyenne ?

3 6 ^ 4 - 1 — -1--4 L_-*~ 1 1 *
v ^ I 4 2 0 0 I 4 0 0 1 o o » o I 4 0 0 0 o • • • • •

OU

eu

J. D. G.
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SI 9 à l'inverse , on demande en quelles années pâques tombera

le i.er avril; on a déjà vu que ce jour n'était un dimanche qu'en
1804, 1810, 1821 , 1827, 1882, i838 , 1849 5

 l 8 5 5 > 1860,
i866, 1877 , i883, 18885 e*c-î d'un autre côté,pour que pâques
tombe le i.er d'avril , il faut que la pleine lune de mars arrive
du 26 mars au i.er avril inclusivement , ce qui n'a lieu que pour les
années 1801 , 1804, 1809 » l 8 j t 2 > 181 7 , 1820 , 1823, 1828, i83i ,
Ï 8 3 6 5 i83g, 1842, 1847, i85o, i§55 , i858, 1861 , 1866,
1869 , 1874 , 1877, 1880, i 885 , 1888, i893 , 1896, 1899,
etc ; donc pâques n'arrivera le i.cr avril que dans les années i8o4?

, 1866 , 1877, 1888, etc.

CORRESPONDANCE^
lettre de M. BRET , professeur à la faculté des sciences

de Vacadémie de Grenoble ,

Au Rédacteur des Annales ;

En réponse aux lettres de MM. Du BOURGUET et BERARD 9

insérées aux pages 56 et 58 de ce volume.

MONSIEUR ET TRÈS-CHER CONFRÈRE 9

croîs devoir répondre encore aux lettres de MM. Du Bourguet
et Bérard ; je le ferai brièvement , et de manière à n'être plus
obligé d'y revenir*

Je ne disconviens nullement que le théorème que M. Du Bour-
guet a voulu démontrer ne soit évident , pour qui est habitué à
la marche de l'analise algébrique ; mais je n'en persiste pas moins
à regarder comme très-difficile d'en donner une démonstration en
forme4 qui ne pêche par aucun côté ; et voilà sans doute pourquoi
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M. Du Bourguet ne peut défendre la sienne qu'à l'aide d'un cercle
vicieux. Supposer, en effet, que , si l'équation

Ja;m+Bam'l+Cxm'2^ =b (1)

ne donne pas # = # ? elle donnera tout au moins .r=#-|-£? c'est bien
supposer, ce me semble, que toute équation est résoluble, ce qui
est précisément la thèse à établir. (*)

(*) On démontre que toute équation

Axm+Bxm-i+Cxm' 2 + +G*—H=o , (1)
dont le dernier terme est négatif , admet toujours au moins une racine que l'on
peut représenter comme il suit :

x=<p(A> B, C>....G, — H ) ; (2)

or , pour qui est familier avec la marche de l'algèbre, il est clair que , si la
valeur (2) rend l'équation (1) identique , la valeur

x=$(A,B,C , G , H) (3)
produira le même effet sur l'équation

Axm+Bx™-l +Cx™- 2 + +Gx+H=o. (4)
Cette assertion pourrait , au surplus , se prouver comme il suit ; soit mis le

résultat de la substitution de (2) dans (1) sous la forme

a—bH+cH*—dffl+eHï—....... = 0 ; (6)

« , b> ô, étant des fonctions de A, B , C , . . . . . G ; cette équation (6)
devant se vérifier d'elle-même , sans aucune détermination de H , on doit avoir

« = o 9 #:=o , c=o , d=o , ; (7)

mais , si (6) est le résultat de la substitution de (2) dans (1) , celui de îar
substitution de (3) dans (4) sera incontestablement

a+bH+cH*+âW+eH*+..,.,. = 0 ; (8)

or , en vertu des équation (7), l'équation (8) est identique; donc, en effet, (3)
résout (4)-

La difficulté de celte théorie se trouve donc encore , comme celle de tant
d'autres , ramonée à ceci : Toute fonction peut-elle légitimement être supposée
développée suivant les puissances entières et positives de l'un des symboles qui
la composent ?

Au surplus , si Pon ne trouvait rien à objecter contre la théorie développée
par M. de Maizière , à la page 368 du premier volume de ce recueil , on en
pourrait peut-être déduire une démonstration du théorème de M. Du Bourguet.
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Quant à M. Bérard , j'ai dit que la méthode de construction de

la parabole qu'il croyait que je lui avais empruntée était différente
de la sienne , et c'est une chose dont il convient aujourd'hui. J'ai
ajouté que , tandis que la mienne était générale ? la sienne souffrait
une exception , et cela est si vrai que ? pour le cas des axes rec-
tangulaires , il est obligé de recourir à un nouveau procédé , dont
il n'est fait aucune mention dans son ouvrage.

Je tiens très-peu , au surplus ? à la propriété de ma construction,
que tout bon écolier aurait pu trouver comme moi, et dont je n'aurais
certes pas fait bruit , si un travail plus étendu ne m'avait conduit
à la mettre en œuvre ; mais je dois tenir beaucoup à ne point être
injustement accusé de plagiat.

Agréez , etc.
Grenoble5 le 10 d'août I 8 I 3 .

QUESTIONS PROPOSÉES.
Théorème de Géométrie.

XJES rectangles qui ont respectivement pour diagonales Jeux dia-
mètres conjugués d'une ellipse ou d'une hyperbole , et dont les côtés
sont parallèles aux axes de la courbe sont équivalent

Problème d'architecture.

La base et la montée d'une anse de panier , dont le nombre des
centres est 272+1 étant données ; construire la demi-anse, dont par
conséquent le nombre des centres sera /2+1 , avec la condition que
tous les arcs de cette demi-anse soient semblables et que leurs rayons
forment une progression géométrique ?

Faire une application de la solution générale au cas particulier où
n =2 . , et où par conséquent chacun des arcs de la demi-anse serait
de 3o.° ?



Tom AVtPlan.H,pag. *L-gol

CalcnJricr ce r relue

Lun.\

I:în7)e7j

Mar.

s\er^

- m7eT

o5. 5tf.

/ / .

M -̂r.

Jarc .Oe/y

/6r—"61.

<?£». Si.

(Mer,

\ScpDcëJ

Jeu. \

O3. %
OJ% Sz.

\AvrJudJ \Sep.Dec,
V ' i V: y

( Jt'll \ | / VerlA

\ Juin. ;\ \Fev.MatJ

zz. 07.

J77- 33!___7é?.

a m.
r.DccJ

r 87}.

ss.
9^

là.
11. \

23. >!C

JZ.

/ Lu ri A

yàp.Dcc.)

i)5.

\ 19-

9- X

i6.
23.
361

/9>-->!c

^ . 1 ^

5|< 15^.|J^.'<^" 6c>.

Mat. /iVarc.OcÉ.

^.^TJ3.

/ Lun. \

NJPcv.Mar/

(IAar.\
\ Juin, j

0. 90.

5i .

^9>X74

35.

AO>^A5.

VOV. y
4 ^ '9/.

96.

3o.^r7.5,

<?0

4^. ^ .

08. S5.\OÇ). *S-i

/ ' 5 a m . ^ , / D l A V .

Aoust. / i l ; H a i . ,'
f4>—sçiis: z^'%

* ^ - ^ 4 .

\Fcv.Mar.;

2Ô. ?/•

3/.

36. il. 37,__<?Z.

42_r^7.

47-
97-

a. I
26.

g&
gz.

F\ r 6

iç,.
XO.

y\
1 \

Juin. 1

43.

u 93
99.

«4-

M.

Sft.Çjecit.





SURFACES DU SECOND ORDRE. 93

GÉOMÉTRIE ANALITIQUE.

Mémoire sur les su/Jbces du second ordre ;

Par M. BRET , professeur à la faculté des sciences de
l'académie de Grenoble.

J 'Ai donné ? dans les Annales de Mathématiques , ( tome II ;
p$ge 144 ) ? Péquation qui détermine la grandeur des diamètres
principaux y dans les surfaces du second ordre , rapportées à des
axes rectangulaires. Je me propose ici de revenir de nouveau sur
ce sujet, pour le traiter d'une manière plus générale et plus complète;
mais auparavant je donnerai, sur la ligne droite et le plan , quelques
notions dont j?ai besoin pour parvenir à mon but.

Dans tout ce qui va suivre ? je supposerai constamment aux axes
des coordonnées des directions quelconques ; et j'adopterai les notations
que voici.

Anê-(r , z) = * , Ang.(z , * )=* , Ang.(> 9y) = y

§• I. Équations du plan et de la ligne droite.

Concevons que, de l'origine , on ait abaissé une perpendiculaire
p sur le plan dont on veut obtenir l'équation ; et soient ^ , j , ^
les coordonnées courantes de ce plan; il est visible que la somme des
projections des coordonnées oc , y , z d'un point quelconque du plan
dont il s'agit sur la perpendiculaire p ? en détermine exactement la
longueur. Si donc on dénote respectivement par uf , $r , y/ les angles

lom. IV > n.° IV 9 i.er octobre I 8 I 3 . i 3
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que forme cette perpendiculaire avec les trois axes , l'équation du

plan sera

(A) xGos.cù/-+-yCos.p/-\-zGos.<y/—p.

On exprime communément une droite, dans l'espace, en écrivant
les équations de ses projections sur deux quelconques des plans
coordonnés ; maïs il est souvent plus commode et plus élégant de
s'y prendre ainsi qu'il suit : soient x/ , y1 , z/ les coordonnées fixes
d'un point déterminé de la droite , et soit r la distance variable
de ce point à un autre point quelconque de cette même droite ,
dont les coordonnées courantes sont supposées # , y , z\ on écrira

(B) x=x'+ar , y~y'+br , z=z'+cr ;

a , h , c étant des fonctions angulaires , non susceptibles de devenir
infinies , et qui demeurent constantes pour toute l'étendue de la
droite ; l'élimination de r , entre ces trois équations } conduirait aux
équations ordinaires de la ligne droite.

§. II. Du centre , du plan diamétral et du plan tangent, dans les
surfaces du second ordre.

Soit posée, pour l'équation générale des surfaces du second ordre,

(C) u4x2+Bj2+Cz^2.Ayz+2tB^x+2,Oxf+2Afrx+2By+2Ofz+D~09

Si , dans cette équation , on substitue , pour x, y , z 5 les valeurs

données par les équations (B) , en posant, pour abréger,

M=Ja*+BÔ*-\- Cc*+2A'bc+z B'ca+2 C'ab ,

( (Ax'+B'z'+ C'y'+A")a

(

la transformée sera

(D) Mr*+2M'r+M»zz o.
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Dans cette équation , r est la distance entre le point fixe x* , y/

 5 z
f

et celui où la droite (B) rencontre la surface (C) ; elle est du second
degré , parce qu'en général la droite (B) rencontre la surface (C)
en deux points.

Il peut être intéressant de discuter ce qui arrive > lorsque quel-
ques-uns des coefïiciens M, M', Mu deviennent nuls , ou lorsque
l'équation (D) a ses deux racines égales. Je bornerai cette discussion
aux seuls cas qu'il m'est nécessaire de considérer.

1,° Si le coefficient M/ est seul nul 5 les deux valeurs de r seront
égales et de signes contraires , quels que soient d'ailleurs xf > y/ ,
z;, a, b» c\ et alors on pourra distinguer deux cas:

Si d'abord on suppose que x/ , y/
 9 z/ sont les coordonnées d'un

point fixe , mais inconnu , tandis que a , b , c sont indéterminés 7

ce point fixe sera le centre de la surface (C) ; et on le déterminera
en exprimant que l'équation M/ = o a lieu indépendamment de toute
détermination des quantités a , b ? c ; ce qui conduira aux. trois
équations

(E)

Si 9 au contraire, a , b , c sont constans , et xf
 7 y

f, zf Indéterminés,
l'équation M/=o exprimera que le plan dont les coordonnées cou-
rantes sont x/

 y y/ , z/ contient les milieux de toutes les cordes
parallèles à une certaine droite fixe s et est conséquemment un plan
diamétral ; l'équation générale du plan diamétral est donc

(F) {Aa+B/c+ab)x+{Bb+aa^A/c)y^{Cc^rA^+B/a)z
*+-A//Û-\-B"1,-\~C"C = o.

2.° Si , outre l'équation M / = o , on a encore Mn~o ? cette der-
nière équation exprimera d'abord que le point xf

 1 y; , zf est sur
la surface (C) ; et 9 puisqu'alors les valeurs de r seront toutes deux
nulles, la droite (B) sera une tangente à cette surface. Or , comme



96 S U R F A C E S
le système des équations M;=o , M;/=o laisse encore les quan-
tités a , b , c indéterminées 9 il s'ensuit que , par un même point
&' 9 y

/ y z1 pris sur (C) , on peut lui mener une infinité de tan-
gentes. L'équation du lieu de toutes ces tangentes s'obtiendra en
éliminant a , b , c de l'équation Mf—o 5 au moyen des équations
(B). Ce lieu , qui est le plan tangent par le point x* , y;

 9 z' , a
donc pour équation

= o.

^{Cz'-^A1 f-\-B'x'-\-C"){z—z!)

En simplifiant cette équation , au moyen de l'équation de relation
M/f—o, elle prend la forme

{Ax'-\-B'z'-\-C'y/-\-A")x

(G)

II est aisé de voir que l'équation M=o seule exprimerait que
la droite (B) ne rencontre la surface (C) qu'en un point , lequel
serait le point xf, y/, z/, si l'on avait en outre M/;~o. On volt
aussi que , si l'on avait , à la fois , M = o , Mf~o , l'équation (D)
et conséquemment l'équation (C) seraient absurdes, à moins qu'on n'eût
en môme temps ifcf//=o ? auquel cas r demeurerait indéterminée ;
on pourrait donc , par chacun des points de la surface (C) , mener
au moins une droite qui y fût entièrement contenue ; cette surface
serait donc une surface gauche ou une surface développable. Enfin,
si l'équation (D) avait ses deux racines égales ou , ce qui revient
au même , si l'on avait l'équation M/%—MMf/=:o > les équations (B)
deviendraient celles d'une tangente par un point extérieur xf, y/, z/,
laquelle tangente demeurerait indéterminée ; on parviendrait donc à
l'équation du lieu de toutes les tangentes menées par ce point,
c'est-à-dire , à l'équation de la surface conique circonscrite , ayant
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ce même point pour centre ou sommet, en chassant a , b, c de
l'équation M/2—M31/y=:o , au moyen des équations (B).

§. III. Transformation générale des coordonnées.

Pour établir les formules qui servent à passer d'un système rec-
tangulaire ou oblique de coordonnées x , y , z à une autre système
quelconque de coordonnées xf

} y1
5 zf

 y il sufHt de remarquer que
chacune des grandeurs ^ , y , z doit être une fonction entière du
premier degré en x/ , yf

 9 zf ; on est dès-lors fondé à écrire 3 l'origine
étant la même pour les deux systèmes ,

(H)

En faisant successivement , dans ces formules p les trois hypo
thèses suivantes

z'=o ; l x'=o

on trouvera, pour les équations respectives des axes des xf
9y

f
 t

rapportés au système primitif

(Je ) x—a r ; y~b r , z^zc r ,

§. IV. De la sphère et de son plan tangent.

Si Ton suppose que .#, y, z désignent les coordonnées rectan-
gulaires des points d'une sphère qui a son centre à. l'origine et $on>
rayon égal à r , on aura évidemment

D'après les formules (H) l'équation de la même sphère 9 rapportée
k des coordonnées obliques xf, y/

 } z* ? sera
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)z/2+2(a a'+b b'+c cl)xfy

si , dans cette dernière équation , on fait successivement les trois
hypothèses x/=o , yfz=.o > z/=^o y on obtiendra pour les équations
des traces de la sphère sur les trois plans coordonnés

(a 2+& 2^ c 2)x/2+Ca'24-ô/3+c'2)ya+2(a af-\-b b'+c cf)xy=

mais on sait d'ailleurs que , & 9 p 9 y désignant les angles des coor-
données xl

9 y1 , z ;
 7 les équations de ces traces doivent être

comparant donc respectivement ces équations aux précédentes , il
viendra

a 2

a* *+ \ ,
fl//*+*//a+^//a = i ; ^ a'+b b'-\-c £/ =

et conséquemment l'équation de la sphère rapportée à des coordonnées
obliques sera

(L) ^2Hhy2+^a+^J^Cos.^+2z^Cos./s+2^yCos.y==r2.

Cette équation donne aussi la distance r de l'origine à un point
dont les coordonnées sont oc, y, z.

Si le centre, au lieu d'être situé à l'origine , se trouvait en un
point ayant pour ses coordonnées xf

 9 y
f
 ? z

f
 7 Tequation de la sphère

deviendrait
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(M) = r a .

Si , dans l'équation (G) , on fait

A'^Cos.* , A/f=*O ,

C'=Cos.y ; C"—o ,

elle deviendra celle du plan tangent à la 3phère qui a son centra
à l'origine. Ainsi x' , yf , zx étant les coordonnées du point de
contact 5 l'équation de ce plan tangent est
(N) (x4-j'Cos.y+z'Cos./3)x4.(y+z'^

§. V. Zte la perpendiculaire à un plan.

Soit

(O) Ax+By+Cz^D ;
Véquation d'un plan , et soient

(P) x=ar , y=:ir ± z~cr ,

les équations de la perpendiculaire abaissée de l'origine sur ce planT
Si Ton conçoit une sphère ayant l'origine pour centre et cette
perpendiculaire pour rayon ? le plan (O) devra lui être tangent ;
et * en désignant par x* s y

1, zf les coordonnées du point de contact,
les équations (N) et (O) devront coïncider , à un facteur près 9

pouvant affecter tous les termes de Tune d'elles. Exprimant donc
que leur coïncidence a lieu , il viendra

)-Cr* ;

maïs , comme le point de contact doit se trouver , à la fois , sur
la droite (P) et sur la sphère, on doit avoir
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En éliminant x;, y/, s' entre ces équations 5 il viendra

En éliminant r entre les trois premières équations , on obtiendra
les deux suivantes

(Q)

lesquelles expriment que le plan (O) et la droite (P) sont perpen-
diculaires Tun à l'autre.

Si , entre toutes quatre , on élimine a, b , c, la longueur r
de la perpendiculaire abaissée de l'origine sur le plan (O) se trouvera
donnée par l'équation

-Cos.2/*—C
-f-CaSin.2y—2 AB (Cos.y—Cos.&Cos./s

Si le point duquel on veut abaisser une perpendiculaire sur le
plan (O) a pour ses coordonnées x/ , y/ , z/ , il suffira de transporter
l'origine en ce point ; ce qui reviendra à changer x ? y , z en x-\-xl ,
y~\~y* 7 z-Jt-z/ , respectivement ? ce qui donnera 9 pour la nouvelle
équation du plan.

et partant , pour la longueur de la perpendiculaire , celle qu'on
déduirait de l'équation (R) , en y changeant simplement D eia

1 / équation

^ • : i -



DU SECOND ORDRE. 101
L'équation

(S) a*+h*-)-c*+2lûCost«+2caCos.fs-\~2abCos.y=i ,

à laquelle nous sommes parvenus tout à 1 heure , exprime la relation
qui doit exister , dans les équations (B) , entre les trois coefEciens
a , b , c , et les angles « , /3 , y des coordonnées.

Si Ton prend sur les axes des x 7 des y et des z, respective-
ment, trois longueurs d, e , f, il sera facile d'assigner le volume
du parallélipipède qui aura ces trois longueurs pour arêtes. En effet,
d'après la formule (R) , la longueur de la perpendiculaire abaissée
de l'extrémité de / , sur le plan des xy, sera

—— V I - — Cos.2*—Cos,2/3—LosJy+zCos.uCQS.fiCos.'y ?
om.y

mais , en considérant cette perpendiculaire comme la hauteur du
parallélipipède, Taire de sa base sera deSin.y j d'où il résulte que
son volume sera

def\/1 —Cos.2*—Cos.2/3—

Les conditions analytiques qui expriment le parallélisme, soit de
deux droites , soit de deux plans , soit d'une droite et d'un plan ,
étant indépendantes des angles que fuimeiit entre eux les axes des
coordonnes, noua IJG nous arrêterons pas à leur recherche.

§. V I . De la perpendicularitè de deux plans.

Soient deux plans passant par l'origine ; et ayant respectivement
pour équations

(T )

(TV)

On exprimera qu'ils sont perpendiculaires l'un à l'autre si l'on ex~
prime qu'une droite

x~ar s y~hr $ z=cr ,

perpendiculaire au premier , se trouve sur le second* Ainsi, par le
précédent § , on aura les équations

Tom. IF. i4
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Si Ton élimine a et h entre elles , c disparaîtra de lui-même, et
Ton obtiendra > pour condition de; perpendiculaire des deux plans
(T) , (T7) , l'équation suivante : , \ .

(U) +BB/§m.2p~(CA/+JiC/XCos.p---Cos.yCos.iO J = o .

§. VI I . De la perpendicularitè de deux droites , et de l'angle qu'elles
forment entre elles.

Soient deux droites passant par l'origine et ayant respectivement

pour équations

(V) x=ar ; y=iïr t z=cr ,

(V) $~afr , y—Vr 5 z=e'r .

On exprimera qu'elles sont perpendiculaires Tune à l'autre , si l'on
exprime cju'un plan

perpendiculaire à la première f contient la seconde ; ainsi P par le
§. V , on aura les équations

SI Von élimine A et B entre elles, C disparaîtra de lui-même ;
et l'on obtiendra, pour condition de perpendicularitè des deux droites
ÇST) 7 (Vx) ; l'équation suivante

(X)
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Généralement , on peut trouver le cosinus de l'angle formé par

les deux droites

x =ar 7 y ~b r 9 z ~cr ;

car, en joignant les extrémités des distances r , rf par une droite,
et appelant 6 l'angle cherché, la longueur de cette droite aura d'un
côté pour expression

r2+r /2— 2rr/Cos.ê ,

et de l'autre , par le §. IV,

(x-xf) 2+(y-y) 2+z(z-z') 2+2 (y y) (z-zf) Cos. a+2 (js-z1) (x-xf) Cos*/3-f 2 (x-x*) (fyO Coa. y

ou , en substituant P

]rrf
rrf :

égalant donc cette expression à la première , et exprimant que leur
égalité laisse r, rf indéterminés et indépendans, on obtiendra d'abord
les deux relations déjà connues

a 2-\-b 2+c *-\-2b c Cos.a-{-2ca Cos.p-\-2a b Cos.y= 1 ,

a
/2+i/2^c/2+2

et ensuite la formule

^os.

(Y)

Au moyen de cette formule il sera farile de déterminer 9 soit le
sinus de l'angle de deux droites , soit les sinus et cosinus de l'angle
de deux plans , ou de l'angle d'une droite et d'un plan.
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§* V I I I . Recherche des diamètres principaux dans les surfaces
du seconde ordre , rapportées à des axes quelconques.

Reprenons l'équation générale des surfaces du second ordre

(i) Ax*+By*+Cz*+2Ayz+2B'zx+2Qxy+2Af'x+2By+2.C»z+D=o.

Nous avons déjà dit que s pour passer du système des coordonnées
& 5 y , z au système des coordonnées xf, yf > z/, de même origine
que celui-là, il fallait poser

( 2 )

et qu'alors les équations des axes des x/, y/, z/ , rapportés au
système primitif, étaient respectivement

(3) x—a r f yrzh r , z—c r ,

(4) x—afr , y~b'r , z=c' r >

(5) x—a^r , y=b"r y z—c"r .

Si Ton substitue les valeurs (2) dans l'équation (1) , on obtiendra
•une transformée, du même degré en x/, yf , z' , que l'on pourra
ensuite simplifier , en disposant des quantités arbitraires qui déter^
minent les directions des nouveaux axes.

Faisant donc disparaître, tou§ le$ rectangles ds$ coordonnées, nou$
aurons les équations

(6) (Aa'!+&c»+Cfb»)a>+(Jbb"+Qa»+A>c'W
(7) (Aa"+ Bfc"+Qb")a +(Bb"+Qa"+Afc")b+(Cc"-\-Afb"+B'a")c =0 ,

(8) (Aa' +JB'c' 4-C^' )a +(B6' +Qa'+A'c> )^+(Cc' +A'bf +B /Û / )C —O .

Cela posé, en éliminant a , h , c entre les équations (3) et l'équa-
tion (7) , on tombera sur l'équation d'un plan

(9) iAa»+B'c»+Qb»)x+(Bb"+Ga»+A'c'Oy+(Ccf'+AW ,

tel que , l'axe des x/ y étant situé , d'une manière quelconque ,
l'équation de la surface du second ordre se trouvera délivrée du terme
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en xizf. Pareillement si, entre les équations (4) e t (6) ? on élimine
af , bf, c;, on obtiendra l'équation d'un plan tel que, Taxe des y
y étant situé, d'une manière quelconque, l'équation de cette surface
se trouvera délivrée du terme en yfz;. Mais , par la forme des
équations (3) , (4) > (6) , (7) > ces deux plans doivent se confondre ;
donc , en écrivant seulement les équations (6) , (7) , on aura , pour
un axe quelconque des z*, un plan unique des x/y/ tel que l'équation
transformée , en x1 , yf , z1 , se trouvera privée , à la fois , des
rectangles xfzf, y/z/ ; et , comme il est toujours facile 7 l'axe des
z/ étant constant , ainsi que le plan des xfyl > de donner aux axes
des x/ et des y/ des directions telles que le troisième rectangle xfyf

disparaisse aussi ; il s'ensuit qu'il y a une infinité de systèmes d'axes
transformés pour lesquels l'équation générale des surfaces du second
ordre prend la forme plus simple

(10) Px'*+py*+p»z'*+zQx'+2Qy+2.Q''z>+n=zo.

Parmi tous les systèmes d'axes pour lesquels l'équation prend
cette forme , il n'en est généralement qu'un seul qui soit rectan-
gulaire. En effet, assujétissons la droite (5) à être perpendiculaire
au plan (9) ; en employant les équations (Q) du §. V , nous
trouverons

s. y ) «

Si l'on procède à l'élimination de — entre ces deux équations ,

on parviendra , en définitif, à deux équations de la forme
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dans lesquelles M, M/ renfermeront — , maïs où N, N; , N",

Is7/// ne seront fonctions que de * , ,3 , y et des coefficiens de
l'équation ( i ) .

Or , comme toute équation du troisième degré a toujours au moins
une racine réelle , il s'ensuit qu'il existe , pour toutes les surfaces
du second ordre , un axe des zf , perpendiculaire à un plan des
xfyf , de manière que l'équation générale de ces surfaces ne renferme
plus les rectangles x'z' 9 y

/z/ ; e t , comme on peut toujours chasser
le rectangle x/y/ qui reste encore dans l'équation , on en conclut
que , non seulement on trouve un axe des z1

 9 perpendiculaire au
plan des x/y/

 9 qui prive la nouvelle équation des rectangles xlzf ?
y/z/ , mais encore qu'il existe un axe des x/ , perpendiculaire au
plan des y/z/

} et un axe des y/, perpendiculaire au plan des x/z/
f

jouissant des mêmes propriétés. Or , si Ton écrit que Taxe (4) des
y/ est perpendiculaire au plan

(Ja'+B/c/+C/y)x+(Bi'+C'a'+J/cOy+(Cc/+^
qui contient les axes des xf et zf, on parviendra aux mêmes équa-

tions ( n ) , en y changeant aN, hn
 7 cu en a1 , b*, cf ; d'où il

suit que les équations ( n ) déterminent —. pt — ? en même temps

que '— , —< ; on prouvera de même que le troisième système de

i , • / \ ^ a

racines, tire des équations (12) > est — et —.
c c

II résulte de ce qui précède que 9 dans le cas où les axes qui doivent
priver l'équation de la surface des trois rectangles xfyf, y/z/, zfxf

doivent être rectangulaires ? leur direction est absolument déterminée
et unique, et qu'alors les coefficiens de l'équation (10) sont réels
et déterminés.

11 reste présentement à faire connaître , pour les surfaces du
second ordre qui ont un centre, l'équation qui détermine les gran-
deurs des diamètres principaux. La chose se réduit à calculer les
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coelïiciens P, P/, Pf/ de l'équation (10). A cet effet, écrivons les
résultats des substitutions des valeurs (2) dans l'équation (1) , en
ayant égard aux équations (6) , (7) y (8) ; nous trouverons

(Aa 2+Bb *+Cc i+zA'b c -hzB'c a +zC'a b > / a

'+-(Aa/ 2-\-Bb' z-{-Cc/ 2+2A/b/ cf -4-2.B/c/ a1 ̂ -zC/a/ bf )y/z

et partant

si donc on élimine an , hif , cN des équations ( n ) , ( i3) et de
Téquatîon de relation formée d'après l'équation (S) du §• V 5 on
trouvera Péquation qui doit déterminer Pn ; mais , comme ces équations ,
ont lieu ? de la même manière ? en changeant aN, bu, c/f, Pn en
af, hf

 ? c1
 9 P/ ou en a , b , c , P , il s'ensuit que P , P/, PN sont

donnés par une même équation du troisième degré.

Il s'agit donc actuellement d'effectuer le calcul qui vient d'être
indiqué ; mais auparavant débarrassons a, b , c des accens qui les
affectent dans les équations ( n ) et ( i 3 ) , et joignons-y l'équation
(S) , ce qui donnera

(14.) (Aa+B^c+O^ic+aCos^+bCos.^^^Cc+A^+B^ia^Cos.y+cCos.^ ,

(15) (Bb+Qa+A'c)(c+aCos.p+bCos.u)=z(Cc+Afb+Bfa)0+cCos.^+aC 05.7) 9

(16)

(17)

Posons ensuite

Ja+B'c+C'b-L
(18)

les trois premières deviendront alors
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(19)

Si l'on chasse successivement de ces équations deux des trois quan-

tités L, Lf , L", en ayant égard à l'équation ( 1 7 ) , il tiendra

L =

(20) L> =

L"=P(c-\-aCos.ti-{-bCos.*) ,

et , en comparant aux équations (18) .

(P—A)a-\-(PCos.v—C>)b+(PCos.fi—B>)c= o ;

(21) (P—i?)£-|-(PCos.«—A>)c-*r(PCQS.Y— C')a=o t

(P—C)c+(PCos.fi—B')a-\-{PCos.«—A>)b=o .

Éliminant a et b, entre ces équations, c disparaîtra de lui-même >

et il viendra

(P—A){P—BXP— £)4-2(PCos.«

OU ? en développant p.t ordonnant

(1—Cos.2^—Cos.B/3—Cos.2y-+"2Co5.

; + ( +5Sin.2/3 — 2,B'(Cos.p—Cos.yCos.*)

( -|-CSin.2v—2Cv(Cos.y—Cos.^Cos.iS)

/B/C)=0 p

«t les quantités — , - seront déterminées par les équations
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(23)

{(P—d)[PCos.—d/)— (PCos.£— B<)(PCo$.y~-.&)} = o.

Si Ton joint à ces deux équations l'équation (17), on aura tout ce
qu'il faut pour déterminer a , £ 9 £ ; et partant, on pourra calculer,
dans l'équation (10), les coeificiens Q, Q/ » Çx/-

II est maintenant facile de conclure des équations précédentes 9

quelles modifications il faut y apporter , pour qu'elles fassent con-
naître les grandeurs des diamètres principaux , dans les surfaces du
second ordre qui ont un centre. On sait en effet que 9 pour ces
surfaces , si Ton transporte l'origine des coordonnées au centre , les
termes affectés des premières puissances de x , f 9 z disparaissent
de son équation. Ainsi , l'équation (i)> après y avoir fait disparaître
les premières puissances de x, y, z , deviendra

d'où il suit que l'équation (10) prendra la forme

Représentant donc par T2 le quarré d'un demi-diamètre principal -

on aura T2=z —- , d'où /*= — ; substituant cette valeur de P dan#

les équations (22) ef (23) , on trouvera les équations qui déterminent

la situation et la grandeur des diamètres principaux. On doit observer y

au surplus , que l'équation qui a pour racines les trois valeurs de
J P a nécessairement ses racines réelles , comme nous l'avons déjà
démontré , en faisant voir que P , Pf , Pf/ sont des quantités réelles.
Nous discuterons ici quatre cas difFérens des surfaces du second ordrev

Premier cas. 81 l'équation (22) n'a aucune racine nulle , o»
Tom. IV. i 5
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pourra toujours faire disparaître les premières puissances de x, y > z9

dans l'équation (i) , et par conséquent réduire l'équation (10) à la

form*

donc i.° on aura Vellipsoïde , un point ou une surface imaginaire ;
lorsque les racines de l'équation (22) seront toutes de même signe.

2.0 On obtiendra les hyperboloïdcs à une ou à deux nappes y

ou une surface conique, lorsque les racines de l'équation (21) ne
seront pas toutes de mêmes signes.

Deuxième cas. Supposons que l'équation (22) ait une seule racine
nulle; l'équation (10) prend alors la forme

P# / a+Py a+a Ça?M-3 Q'y'+2 Qf'z'+D=o ;
donc i.° on aura le paraboloïde elliptique, ou une surface imagi-
naire, lorsque les deux racines de l'équation (^22) seront de même
signe , sans que Qf soit zéro.

2.0 On aura le paraboloïde hyperbolique ou le système de deux:
plans , lorsque les deux seules racines effectives de l'équation (22)
seront de signes contraires.

3.° Dans le cas particulier ou Q ^ r r o , quels que soient d'ailleurs
les signes des deux racines effectives de l'équation (22) , la surface
est un cylindre ; or > comme l'équation Q/;=o est satisfaite , lors-
qu'en particulier on a All'=.o , JB / ; = O , Cf/~o ; il s'ensuit que
l'équation

suffit pour exprimer que la surface représentée par l'équation

=: o

est cylindrique. II est remarquable que cette équation de condition
est indépendante de «, p, y.

Troisième cas. Si deux des racines de l'équation (22) sont nulles $

l'équation (10) prendra la forme
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elle représente une surface cylindrique , deux plans parallèles ou ure
surface imaginaire.

Quatrième cas. Supposons i.° que la surface (i) soit spliériquc.
îl y a alors une infinité de systèmes de diamètres principaux; e t ,
comme les équations d'un diamètre principal sont

x~ar 9 y=br ? z = cr ;

il s'ensuit que a 9 b , c seront quelconques. Exprimant donc que

les équations (21) laissent a , b 9 c indéterminés , on aura

, B/=PCos.^ , C'^
2.0 Supposons que la surface soit simplement de révolution autour

de l'un des axes, alors les équations (21) devront être les mêmes
à un facteur près; d'où Ton déduira les équations

P—A PCos.y—C' PCos./3—B'

PCos.p—B' PCos,#—Af ~~ P~-C

PCos.y—>O P—B PCos.^—

^ W ~ PCos.d—A' P—C '

on trouvera la racine P commune à ces équations par la théorie
du plus grand commun diviseur. Egalant ensuite les valeurs de P ,
on aura deux, équations de condition, qui exprimeront 9 si elles ont
lieu , que la surface proposée du second ordre est de révolution
autour d'un axe.

On obtient aussi l'équation du plan qui coupe la surface de ré-
solution suivant un cercle , en éliminant ÛV b , c entre les équations
(3) et l'une des équations (21); on a pour résultat

(25) (P—A)x+(PCo$.y-*&)y-\-(PCos.(i—B^z-o,

Pour donner un exemple de cette théorie , supposons

« ^ j s n y r un angle droit j

les équations (24) et (25) deviendront
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B>

égalant les valeurs de P , deux à deux , on obtiendra les équation»

A'B'iA—B)+C'(A'*—B'*) = o ,

(26) B'C'(B—C)+A'(B'*—C») = à ,

C'A'(C—A)+-BWa—A»)=o ,

dont deux comportent la troisième. Elles expriment que l'équation (1)
appartient à une surface de révolution. L'équation (22) devient, en
yertu des équations (26)

II nous resterait à examiner ce qui arrive dans ces résultats, lorsque
«n , deux ou trois rectangles des coordonnées manquent dans l'équa-
tion (i) ; mais nous renvoyons, pour cet objet, à notre mémoire qui
traite de ces mêmes équations (page i44 ̂ u 2*e volume des Annales
de Mathématiques. )

On peut déduire des théories précédentes d'autres conséquences
très-importantes ; ainsi, par exemple , on démontre très-facilement,
au moyen de l'équation (22) , trois théorèmes principaux sur les
surfaces du second ordre ( voyez , pour cet objet 5 un mémoire de
M. Bérard , page io5 du 3.e volume des Annales de Mathématiques ).
Nous discuterons seulement le cas particulier où les surfaces du second
ordre dégénèrent en deux plans parallèles , et également distans df
l'origine des coordonnées. L'équation

|>rend alors la forme

(mx+ny+pz)2—1 =r

£t l'équation en T2 devient
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s.*—Cos./sCos.-/)

S.£—Cos.yCoS.*)

Cette équation donne la longueur d'une perpendiculaire abaissée àè
l'origine des coordonnées sur le plan

m x+ny-\~pz = i ;

et elle coïncide parfaitement avec l'équation (R) du §. V.
Nous terminerons, sur cette théorie , en observant que la méthode

que nous avons employée, pour les surfaces du second ordre , est
exactement applicable aux lignes du même ordre , rapportées à ua
système primitif quelconque de coordonnées. Mais on peut, pour
ces lignes , obtenir de suite l'équation qui détermine les quarrés des
demi-diamètres principaux. En effet , soit posée l'équation

et soit Y^mx celle d'un diamètre de la courbe. Sî Ton cherche
l'intersection du diamètre avec la courbe , puis la distance r de
l'origine à ce point d'intersection , en se rappelant la formule

r2=#2+yM-2#/Cos.y , où y==Ang.(#, y) K

0n aura l'équation

Ç 2—D)=o ;
qui sera telle qu'en donnant une valeur à r. 9 il en résultera deux
valeurs correspondantes pour m ; c'est-à-dire , que, généralement ,
il existe toujours deux diamètres de même longueur qui ont des direc-
tions différentes. Si maintenant on suppose que r désigne la lon-
gueur d'un demi-diamètre principal , alors les deux diamètres égaux
qui répondront à cette hypothèse se confondront en un seul ; les
pâleurs correspondantes de m devront donc être égales. Écrivant donc
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la condition d'égalité des racines de l'équation en m > on trouvera
que les quarrés des longueurs des demi-diamètres principaux sont
déterminés par l'équation

(JB— C*)r*-hD(J-{-B-> 2£Cosy)r2+/)2Sin.V=ch
De semblables considérations pourraient être appliquées à la recherche
des longueurs des diamètres principaux , dans les surfaces du second
ordre qui ont un centre.

Généralement, on peut parvenir aux équations qui déterminent les
diamètres principaux , soit dans les lignes soit dans les surfaces du
second ordre , en partant d'une propriété quelconque qui ne puisse
convenir qu'à eux seuls ; ainsi la propriété des maximis et minimis
dont ils jouissent exclusivement se prête très-aisément à cet usage»
et c'est d'elle , en effet , que M. Bérard est parti , pour parvenir
aux formules dont la recherche a fait le sujet du présent mémoire
et de l'autre que nous avons déjà rappelé. Mais , nous ferons à ce
sujet la remarque que voici : c'est que , comme on ne démontre
les propriétés des lignes et surfaces du second ordre 9 relatives à
leurs diamètres principaux 9 qu'après avoir ramené leurs équations
aux formes respectives

il s'ensuit qu'on ne peut employer ces propriétés, dans la recherche
de P , P/

 5 P
u , qu'après avoir démontré , a priori , que ces

équations donnent toutes les lignes et surfaces de cet ordre qui ont
un centre. Les démonstrations des mêmes formules, par MM. Monge
et Hachette , qui * se trouvent dans la Correspondance sur Vécole
-polytechnique ( £.* vol. , iu° 5 , janvier 1812 ) , sont aussi sujettes
aux mêmes inconvéniens. Il me paraît donc plus convenable et plus
direct d'établir d^abord, par la transformation des coordonnées y les
équations qui font connaître la situation et la grandeur des demi-
diamètres principaux ; et c'est ce que j'ai cherché à faire , dans
ce mémoire, de la manière la plus simple, et en même temps la
|>lus générale.
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ANALISE.

Détermination du nombre des termes d'une équation
complète d'un degré quelconque 9 entre un nombre
quelconque d'inconnues.

Recherche des principales formules de la théorie des
nombî^es Jigurés.

Démonstration du principe qui sert de fondement à
la méthode publiée par Àf. BUDAN 9 pour la résolu-
tion des équations numériques ;

Par M. G E R G O N N E.

E réunis ici , dans un même article , diverses théories qui , à
raison de la liaison étroite qui existe entre elles , ne peuvent que
se simplifier beaucoup par leur rapprochement.

5.1.

Détermination du nombre des termes d'une équation complète d'un
degré quelconque ? entre un nombre quelconque d'inconnues.

Soit 772 le degré d'une équation complète entre n inconnues ; le
nombre des termes de cette équation sera une fonction de 772 et
de n qu'il s'agit de déterminer , et que nous représenterons pajc

Pour plus de simplicité , concevons que les coefïiciens de tous
jes termes de cette équation soient positifs et égaux à l'unité : ce
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qui ne changera rien à la nature du problème. L'équation proposée
devant renfermer tous les termes de l'équation complète du (m—i)mî
degré , entre n inconnues 9 plus la totalité des termes du m.me ordre,
entre les mêmes inconnues ; en désignant par ? le nombre de ces
derniers, on devra avoir l'équation

Ci)

II s'agît présentement de déterminer p.
Pour cela , concevons que Ton multiplie chacun des termes d'ordres

inférieurs à m par une somme de puissances semblables des n in-
connues , dont les exposans soient tels que ces multiplications donnent
toutes des produits de Tordre m : ce qui exigera que Ton multiplie
le terme tout connu i par xm~{-ym-{-zm+ , l'ensemble des
termes du premier ordre par xm~°l-\-ym~l-+-zm~*l'+ , et ainsi
de suite ; il est clair que le nombre total des termes de ces pro-
duits, abstraction faite de toute réduction, sera nAmLXin-

Or, je dis que ces mêmes termes ne seront autre chose que les
termes du m.me ordre de la proposée, écrits chacun m fois. En
effet , en représentant généralement l'un de ces derniers par a,*y zv.,..,
avec la condition #4"is~H'+*« • • •=#2 > on voit qu'il aura été formé
autant de fois qu'il y a de manières de diminuer successivement
chacun de ses exposans de toutes les unités qu'il renferme j c'est*
à-dire , de m manières différentes.

On a donc , d'après cela

nAm_lt1l—mi> , d'où ? = — Jm_ltn \ (2)

et par conséquent (1)

T/i tu*

ou enfin

mAm%n—(/?2+n)Am_ t >n. (3)

En changeant successivement % dans cette équation % m en m—i,
772—2>f
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m—2, m-—3 ,'.. ...2 , 1 , et remarquant que Ax n=72+i , il viendra

ce qui donnera , en multipliant , supprimant les facteurs communs
aux deux membres de l'équation produit , et tirant la valeur de

***- - - ^T' W
formule qui résout le problème.

Cette solution , la plus simple que je connaisse 9 m'a été commu-
niquée par M. G. Fornîer , élève très-distingué du lycée de Nismes^

Si Ton multiplie, haut et bas, la valeur de Amjn par i*2»Z....nT

elle devient
. i . a . 3 . . . . . . . ( 771+»)
mn~~ 3 3 '

ou, en adoptant les notations de M» Kramp (**)

On voit alors que Jm^ est une fonction symétrique de m et n p t%
qu'ainsi on doit avoir

dm^n — An^ ; (o)

ce qui revient à dire quV/ y a autant de termes dans une èquatfon
complète du n.me degré entre m inconnues quHl y en a dans une;
équation complète du m.me degré entre n inconnues*

(*) Voyez la note de la page zoo du second volume de ce recueiiv
Ç*) Voyez la note de la page i.re du 3.e volume de ce recueil*

Tom. IF. i6
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S- ".
Recherche des 'principales formules de la théorie des nombres

'figurés.

Parce que Âm fl est une fonction symétrique des nombres m et n >
nous emploîrons, à l'avenir , pour représenter cette fonction, la no«
tation plus simple

En conséquence , nous aurons

(m , » )=(« , 772) , (6)

et? quels que soient p et g

(o , /0=(o J 9)=*(P 3 o) = (f, o)= i. (7)
Cette notation admise , l'équation (3) , dans laquelle on peut

permuter entre eux les nombres m et n , donnera

77/(772 , 72 ==(772+/2)(/72 1 5 72) ,

72(772, 72) = (772+72) (772 ,72—1) ;

la somme de ces deux équations , divisée par 772+72, sera

(772 , 72)=(/72—I , 72) + (772 , 72 — i ) ; (8)

or , en se rappelant les équations (7) , on voit que cette dernière
exprime la construction du triangle arithmétique ; et qu'ainsi (m, 72)
est la formule générale des nombres figurés*

L'équation (6) exprime donc que le (n+i)1*1* nombre figuré du
m,mc ordre est égal au (772+i)me nombre figuré du n.me ordre ;
et l'équation (8) exprime que le (m-hi)me nombre figuré du n.me

ordre , ou le (n-f-i)me nombre figuré du m.me ordre, est la somme
du m.me nombre figuré du n.me ordre et du n.me nombre figuré
du m.me ordre.

De cette dernière on tire

(772,72)—^772^—1 , n) — (m , 72—1) ;

substituant successivement pour 772 , dans celle-ci ? les nombres 1
2 9 3 , m , il viendra
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( i , * ) - . i = ( i , n—i) ;

(3,72) — ( 2 , 72; = ( 3 , 72— i ) s

( w , 71)—{m — I , 72) = (772, 72 —i)

ajoutant ces dernières et réduisant, on aura

(772,72) = (72,772) = (O,72~I)-+•(!^2—1)+(2,72— l)Hh.".+(w7,72—l) ; (9)

et l'on aurait pareillement

(772,7?) = (T2?772) = (0,772 l )+( l ,772 l )+(2 ,772 l )Hh». .+(72,772~I ) ;

c'est-à-dire , que le (/2-f-i)me nombre figuré du m.me ordre, ouïe
(m-f~i)me nombre figuré du n.me ordre , est égal à la somme des
n.me nombres figurés de tous les ordres jusqu'au m.me ordre inclu-
sivement ; ou encore à la somme des m + i premiers nombres
figurés du (n—i)me ordre.

Je terminerai par donner , d'après M. Lhuilier (+) , la sommation
des inverses des nombres figurés. Il est aisé de se convaincre , par
le développement et les réductions 7 que l'équation suivante est
identique

1 _ (n—Qf( m\ ^ (m+QÎ )

n—1) ""* n—2. ( (m-f-n—*2)1 (m-\-n—i)î ) ^

Si l'on y substitue successivement pour 772 les nombres o, 1 , 2 , .;.T?2 7

il viendra
1 _ ( n — i ) t f 1 ï! )

( 0 , 7 2 — 1 ) ~ n—a ((n—a)! (n—i)t) '

1 _ Ç/2—1)! j 1! 2!

(1 ,72— I) ~~ 72—2 | (W—l)î WÎ

1 _ ( n — i ) ! ^ 2! 3!

(2,72—1) 72—2 \ 7l\

Voyez ses Elémens raisonnes d'algèbre*
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( m , 72— i ) 72—2 ( (T?2+72—2)1 (772+72— i ) i \ '

d'où , en ajoutant et réduisant ,

(O,72—I) ( I , r2—-I) (2 ,72—1) ' (772, n— ï )

72—2 ((72—2)î (772+72. 1)! ) ?

ou encore
I . I 2.

(0,72 1) (1,72—1) (2,72—1) (772,71 1)

l ; (n)
(772+1 , 72—2) )

Si , dans cette dernière formule, ou suppose m^=z oo , elle deviendra
simplement ,

(0 ,72—1) ( I , 72—1) (2 , 72—1) ' (3 , 72—ï) ' " ' " " "T2— Z* ^ ^

c'est-à~dire ,
^ , 1 . 1 2. 1 2 3 I 2 3 4 W 1

W Tl ' 72+1 7Î * 7*+I * 7 2 2 7Z * ^
Tl ' 72+1 7Î * 7*+I * 72 2 7Z * 72+1 * 72+2 * 72+0 " 72 2*

§. " I .
Démonstration du principe qui sert de fondement à la méthode

donnée par M* JBUDAN f pour la résolution des équations nu-
mériques.

Soient P o o , P o > 1 , Pot , P O | J , Po > B . f 3 P e , « , i . . . . les
termes de la première ligne horizontale d'une table à double entrée,
dont la loi soit telle qu'un terme quelconque de cette table soit égal
à celui qui le précède immédiatement à gauche, augmenté de celui
qui est immédiatement au - dessus de lui. En désignant par P^ n ce
terme quelconque , on aura

Pk,n = Pk>n- ï +^fc - ï ttt • ( l 3)
Pour connaître ce terme P^n , il est clair qu'il sera nécessaire et

suffisant de connaître les termes de la première ligne horizontale,
jusqu'au terme Po n inclusiyement \ d'où on peut conclure que si
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Ton trouve une expression de Pkn qui , renfermant la totalité de
ces termes , satisfasse à l'équation (i3) , elle en sera la valeur
complète.

Or , l'expression
04)

satisfait d'abord à la première de ces deux conditions ; elle satisfait
en outre à la seconde. On en tire en effet

d'où on conclut , en ajoutant , et ayant égard à l'équation (8) ,

ce qui est précisément l'équation (i3).
Si , dans l'équation (i4) , on change k en m—n-\-i , elle deviendra

Pm-n+un—{m—n>n)P.3t+[m—n,n—\)POil+...+(m

équation qui va nous servir tout à l'heure.
Dans la table à double entrée dont il s'agit ici ? les termes de

la seconde ligne sont dits les sommes premières de ceux de la
première ; ceux de la troisième en sont dits les sommes secondes,
et ainsi de suite.

Soit présentement l'équation quelconque
m H - P o , i * m - I + i \ i * m - 2 + . . ^ ^ (16)
Soit posé x—i=y 9 d'où j ? = y + i . En substituant, et conservant
toujours les mêmes notations , il viendra

-H>2 — I,O)PO>,

- i» , n)POlO'ym-"+....-hPejC

-h

— n,n—2)PO>1

—» , o)Po>n

= 0 ; (17)
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équation qui, en vertu des formules (7, 14 et i5) , devient simplement

»=O. (18)

Ainsi, / ^ coefficiens successifs , dfe gauche à droite , ûfo? termes
de F équation dont les racines sont celles dune équation proposée
diminuée d'une unité ? sont , à partir du premier terme , la p re-
mière somme (m-f-i)1116

 % la seconde somme m.me , la troisième
somme (m—- i ) m e , et ainsi de suite , des coefficiens de la proposée,.

C'est sur ce principe que repose la méthode publiée par M.
Budan 9 pour la résolution des équations numériques ; méthode qui
n'exige uniquement que l'usage de l'addition et de la soustraction.

Rien n'est plus facile , d'après cela , que de diminuer les racines
d'une équation d'une unité. Que l'équation proposée soit

*—Qœ*—n#a+i 5^+24=0 ,

par le procédé indiqué cî-dessus , on formera la table suivante t

5—8—II + I S + 2 4 9

5—3—14+29+53 ,

5+2—12+17 >

5+7—5 ,

5+12 ,

5 ,

tt l'équation transformée sera

identique avec la proposée. Nous renvoyons t pour les applications,
à Pouvrage de M. Budan.
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QUESTIONS RÉSOLUES.

Solution du problème d'Arithmétique propose à la
page 584 du 3.me çolume de ce recueil ;

Par un ABONNÉ.

Jt^NONCE. Étant donné le produit de la multiplication d'un
nombre de plusieurs chiffres par un autre nombre , dont les chiffres
ne sont que ceux du premier, écrits dans un ordre rétrograde \
trouver les deux facteurs ?

Le premier moyen qui s'offre à l'esprit 7 pour résoudre le pro-
blème proposé , est d'écrire , sur une même ligne, tous les diviseurs
du nombre donné ; de former une seconde ligne des quotiens ob-
tenus en divisant le nombre donné par les nombres de la première
ligne , et de comparer enfin les nombres correspondans dans les
deux lignes. Il est clair , en effet y que tous ceux de la seconde
ligne qui ne différeront de leurs correspondans dans la première
qu'en ce que les mêmes chiffres y seront écrits dans un ordre ré-
trograde , pourront, avec ces correspondans, être pris pour les deux
facteurs cherchés.

Il est même aisé de voir qu'on peut n'écrire dans la première
ligne que ceux des diviseurs du nombre proposé qui n'excèdent
pas sa racine quarrée et borner de même ceux de la seconde ligne
aux quoliens que ceux-ci fourniront , puisqu'on les prolongeant plus
loin l'un et l'autre , on ne ferait que répéter , dans la ligne inférieure ,
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des nombres déjà écrits dans la ligne supérieure ? et vice persa.

Exemple. Soit le produit donné 2Ô2.
La racine quarrée de 252 tombant entre i5 et 16 , on bornera

la première ligne aux nombres inférieurs à ce dernier ? ce qui
donnera

Diviseurs.... i , 2 , 3 , 4 > 6 , 7 , g , 12 , i4*

Quotiens 202 , 126 , 84 , 63 , 42 > 36 , 28 ? 21 , 18.

d'où on conclura que les facteurs cherchés sont 12 et 21 , dont le
produit est en effet 252 ; et qu'ainsi le problème n'a qu'une solution»

Mais cette méthode, bonne tout au plus pour de très-petits nombres,
deviendrait, pour ainsi dire , impraticable par sa longueur ? si Ton
voulait l'appliquer à des nombres tant soit peu considérables. Il
faut donc en chercher une autre qui n'ait point cet inconvénient»
Pour y parvenir plus facilement, proposons-nous d'abord le problème
que voici :

PROBLÈME. Étant donné le produit d'un polynôme ordonné
par rapport à une lettre quelconque , par un autre polynôme du
même degré , ordonné par rapport à la même lettre ? et ayant pour
ses coefficiens les coefficiens du premier , écrits dans un ordre
rétrograde ; trouver les deux facteurs ?

Limites du problème. Pour que le problème soit possible y le
polynôme donné doit être d'un degré pair • et ee polynôme doit
être réciproque ; c'est-à-dire 7 que ses termes , à égale distance des
extrêmes ? doivent avoir les mêmes coeiEciens,

Mode général de solution. Soit le polynôme donné

+a % (1)

on supposera que les deux facteurs cherchés sont

dont le produit est
AH
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'+AF\
~\-BG H-...+52 .. +BH

x+AHï (3)

exprimant donc que ce produit est identique avec le polynôme (») ,
on obtiendra les/z-f-i équations

AG+BH-b ,
AF-\-BG-\-CH-c ,

lesquelles seront en nombre suffisant pour déterminer les «-{-i eoef-
ficiens A, B,.... G, H, qui sont ici les inconnues du problème.

Remarques. Comme le produit (i) ne change pas en changeant les si-
gnes de ses facteurs, il s'ensuit qu'à chaque valeur de chacun des coef-
ficiens A , B, ....G , H , il doit nécessairement en répondre un
autre qui n'en diffère que par le signe. Cette circonstance doit
donc doubler le degré des équations du problème.

De plus, l'échange des facteurs entre eux ne devant pas changer
le produit , et un même coefficient se trouvant dans l'un occuper
le même rang, en allant de gauche à droite, qu'il occupe dans
l'autre, en allant de droite à gauche; il s'ensuit que les coefficiens
également distans des extrêmes, dans l'un quelconque des facteurs,
doivent être donnés, tous deux, par la même équation : circonstance

Torn. IV. 17
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qui doit cncore; comme la première , doubler le degré des équations
du problème.

Il faut pourtant remarquer que , lorsque n est un nombre pair,
il y a un coefficient du milieu ? qui ^occupe le même rang dans
les deux facteurs ; et auquel conséquemrnent la considération à laquelle
nous venons de nous arrêter n'est point applicable ; ce coefficient
doit donc alors être déterminé par une équation moins élevée de
moitié que celles qui déterminent les autres.

Ainsi j en résumé , la recherche de l'un quelconque des coefficiens
A , 5 , . . . . G , H 5 devra généralement conduire à une équation ne
renfermant que des puissances paires de ce coefficient, et dont le
degré .sera quadruple du nombre des solutions proprement dites que
le problème pourra admettre ; maïs le coefficient du milieu 3 lorsque
le nombre des coefficiens sera impair, sera donné par une équation
d'un degré moitié moindre,

II est aisé, au surplus , d'éviter l'embarras des équations de degrés
trop élevés , et d'en avoir dont le degré soit précisément égal au
nombre des solutions du problème. 11 ne s'agit , pour cela , que
de substituer aux inconnues primitives A9 J5 , . . . . G , H, les in-
connues AH, A*~\-H* , BG, B*-\-G2 , II est évident, en effet,
que ces nouvelles inconnues sont à la fois indifférentes et aux signes
des facteurs et au renversement de leurs coefficiens.

Eclaircissons présentement ces généralités par la considération de
quelques cas particuliers, de plus en plus compliqués.

Premier cas. 72=1.
Soit le produit proposé

En posant ce produit égal à

aura f pour déterminer A et B 7 les deux équations
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ajoutant et retranchant successivement à la seconde le double de
la première et extrayant ensuite la racine quarrée des deux mem-
bres , il viendra

d'où

Ainsi le produit donné , décomposé en facteurs , sera

b—2a > ' + 7
X {{ [\/b-{-2.a—\/b—2.a]x-\-\

Application. Si le produit donné est

on aura # = i 8 5 ^ = 4

\/b—2a = 3, 7 [\/b+

et ce produit décomposé sera

Deuxième cas. n=2.
Soit le produit proposé

= 81 , b—2a~g ,

En posant ce produit égal à

+BC +B +BC

x+AC,

on aura , pour déterminer À 9 B, C les trois équations

AC=a, B(A+C) = b , A2-t-C2=c—B\

Si , a la troisième équation , on ajoute le double de la première
il viendra
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mais la seconde donne

on aura donc , par l'égalité de ces doux valeurs ,4

•B4—(c-\-ia)Bz-{-b* = o

d'où , eh négligeant le double signe de B ,

*/(

d'un autre côté , en retranchant le double de l'équation AC = a de
l'équation A2+C2=c—B2

 5 et extrayant ensuite la racine quarrée,
il vient

A—C= \/{c—za)—E2 ;

et puisqu^on a d'ailleurs

trouvera

b __ b

au moyen de quoi tout sera connu , dans les deux facteurs du
produit donné.

Application. Si le produit donné est

op aura 0 = 1 2 , ^ = 8 , c=-/+\ , d'où
(ér+2âE)2=4225 , (^+2^) 2 —4^ = 3969, v
ou 8 , ^ = 6 ou ^(1 -f-y/ —47) > C ^ ^ ou 7(1—y/—47) • le produit
décomposé sera donc

ou bien
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Troisième cas. n~Z.

Soit le produit propose

En posant ce produit égal à

on aura , pour déterminer A, 5 , C, D , les quatre e'quations

AD=a, AC+BD=b , AB+BC-\-CD=c , ^+fla-}-CM-Z)a=</,
en y joignant les quatre suivantes

^ # = M , (1) Al+&=P , (3)

BC=N , (2) ^ + C ' = Ç , (4)

elles deviendront

M=a , (5) JC+BD=h 9 (6) JB+CD=c-N, (7) P+Ç=J , (8)
en prenant successivement le produit et la somme des quarrés des

équations (6) , (7), et ayant égard aux équations (1) , (2) , (3) ?

(4) , il vient
NP-\-MQ=hc—bN , (9) PQ+4MN:==($2+c2)— 2cN+N* , (10)

éliminant M et N entre les équations (5) , (9), (10) , il viendra

0 ;

chassant enfin Q de cette équation > au moyen de l'équation (8) 7

elle deviendra



i3o Q U E S T I O N S

(2^3—nbd— 3a2—

Telle est l'équation qu'il faudra résoudre pour avoir la valeur de
P ; on aura ensuite

P+b y

= j{ V/P+2M+ \ZP^IM] , B— \{

Application. Si le produit donné est

on aura #=12 , ^ = 56 , c~33 , d=i22; en conséquence, l'équa-
tion en P sera

3—2o56oF+iog456oo=o.
Cette équation a deux racines réelles positives, dont Tune entière qui est
4o et l'autre incommensurable , comprise entre 84 et 85 ; les deux
autres racines sont imaginaires. En ne conservant que la seule racine
P—^o 7 nous aurons

Q-$2 , M-12 , N=d f

J-6 , B=i , C~9 , Z>=2 ^

le produit décomposé sera donc

On voit aisément ce qu'il y aurait à faire pour des produits de
degrés plus élevés*

Tout nombre pouvant être considéré comme un polynôme or-
donné par rapport aux puissances de la base du système de numé-
ration , le problème d'arithmétique qui a été proposé ne diffère
uniquement de celui qui vient de nous occuper qu'en ce que , dans
les multiplications numériques , les dixaines de chaque ordre vont
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continuellement se joindre > comme unités ? avec les unités de l'ordre

immédiatement supérieur -, et en ce qu'on ne peut admettre , pour

les inconnues, que des valeurs entières et positives moindres que 10.

Ce problème se résoudrait donc de la même manière que l'autre ,

si Ton parvenait à faire rentrer dans chaque ordre les dixaines qu'on

en a fait sortir ; or, c'est là une chose très-aisée , ainsi que nous

Talions voir.

Exemple I. Soit le produit donné ^=2268.

Ce produit devant être un polynôme d'un nombre impair de termes,

le nombre de ses termes doit être trois et le terme le plus élevé,

qui doit avoir deux chiffres , doit être compris dans 22; maïs comme

l'autre terme extrême ? auquel celui-là doit être égal, est termina

par 89 il s'ensuit que l'un et l'autre doivent être égaux à 18, d'où

11 est aisé de conclure que celui du milieu est 45 7 ce qui, en effet*

complète le produit total, ainsi qu'on le voit ici

1800+4^0+18 -,

le problème revient donc au cas où il serait question du polynôme

Î 8 # 2 + 4 5 # + I 8 ; on trouvera donc, parla première application ci-dessus

2268=36X63.

Exemple*IL Soit le produit donné ^=132192.

On voit d'abord que les deux produits extrêmes sont égaux 1

12 , ce qui donne

120000+12180+12 ;

décomposant de même le nombre 1218 on trourera 8 pour chacun

des produits extrêmes, ce qui donnera

120000+8000+4100+80+12 ;

îl s'agira don<2 de décomposer le polynôme i2

es qui donnera , par la seconde application ,

1 3 M 92=216 X 612»
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ExempU I1L Soit le produit =18055872.
Ce produit se décomposant comme il suit

J2OOOOOO+56OQOOO+33OOOO-4-I 22000+33oo+56o+12 ;

on trouvera , par le troisième cas ,

72 = 2916x6192.,

QUESTIONS PROPOSEES.
j

Problèmes de Géométrie.

I. JJETERMINER Pellipse de plus grande surface Inscriptible ou cir-
conscriptible à un triangle donné ?

II. Déterminer l'ellipsoïde de plus grand volume inscriptible ou
circonscriptible à un tétraèdre donné ?

Problème dAnalise.

Assigner le terme général du dévelappement de la série

I—X l—X* I X

ordonnée suivant les puissances ascendantes de % ? (*)

(*) Le géomètre qui propose ce problème observe que sa résolution offrirait
un caractère certain pour discerner les nombres qui sont premiers de ceux qui
ne le sont pas. Il est aisé de voir en eftet que , dans le terme général Anx

n
 y

le coefficient An n'est autre ciiose que le nombre abstrait qui indique combien
l'exposant n a de diviseurs , y compris lui-même et l'unité ; de manière que rt
sera ou ne sera pas premier , suivant que sa substitution dans- An rendra ce coeffi-
cient égal à a on à un nombre plus grand que 2»
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PHILOSOPHIE MATHÉMATIQUE.
Essai sur une manière de représenter les quantités

imaginaires , dans les constructions géométriques;
Par M. ARGAND.

Au RÉDACTEUR DES ANNALES ,

MONSIEUR ,

J_jE mémoire de M. J. F. Français qui a paru à la page 61 dû 4V
volume des Annales , a pour objet d'exposer quelques nouveaux
principes de géométrie de position , dont les conséquences tendent
particulièrement à modifier les notions admises jusqu'ici sur la nature
des quantités imaginaires.

En terminant son mémoire , M. Français annonce qu'il a trouvé
le fond de ces nouvelles idées dans une lettre de M. Legendre qui
en parlait comme d'une chose qui lui avait été communiquée , et
il témoigne le désir que le premier auteur de ces idées mette au
jour son travail sur ce sujet. Il y a tout lieu de croire que le
vœu de M. Français est depuis long-temps rempli. J'ai publié en 1806,
un opuscule sous le titre d'Essai sur une manière de représenter
les quantités imaginaires 9 dans les constructions géométriques 9

dont les principes sont entièrement analogues à ceux de M. Français,
ainsi que vous pourrez en juger par l'exemplaire que j'ai l'honneur
de vous adresser (*). M. Legendre a eu , dans le temps 9 la bonté
d'examiner mon manuscrit et de me donner ses avis , et ce doit
être là , si je ne m'abuse , la source de la communication dont
parle M. Français.

(*) L'ouvrage se trouve à Paris ? cliez l'auteur 1 faubourg St-JYÏarceau , rue da
de Gentilly, n.° 12»

J. D. G.

Tom. IV, n.Q V, i . e r novembre i8i3>, iQ
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L'écrit dont il s'agit n'ayant été répandu qu'a très-petit nombre ,

il est extrêmement probable qu'aucun de vos lecteurs n'en a con-
naissance ; et je crois pouvoir prendre cette occasion de leur en pré-
senter un extrait, présumant que cette matière pourra les intéresser , au
moins par sa nouveauté ; et faire naître chez quelques-uns d'entre
eux des réilexions propres à perfectionner et à étendre une théorie
dont mon ouvrage ne présente encore que les premières bases.

i. Si nous considérons la suite des grandeurs

a , aa v oa , 4a i ?
nous pouvons concevoir chacun de ses termes comme naissant d©
celui qui le précède , en vertu d'une opération la même pour tous,
et qui peut être répétée indéfiniment.

Dans la suite inverse
* 4# $ 3# , 2a , a y o y

on peut également concevoir chaque terme comme provenant du
précédent ; mais la suite ne peut être prolongée au-delà de zéro ,
qu'autant qu'il sera possible d'opérer sur ce dernier terme comme
sur les précédens.

Or f si a désigne , par exemple , un objet matériel ? comme un
franc , un gramme , les termes qui y dans la seconde suive , devraient
suivre zéro , ne peuvent rien représenter de réel. On doit donc les
qualifier à!imaginaires*

Si a s au contraire , désigne un certain degré de pesanteur ,
agissant sur le bassin A d'une balance contenant des poids dans ses
deux bassins ; comme il est possible de diminuer a ? soit en enlevant
des poids au bassin A , soit en en ajoutant au bassin B ? la suite
en question pourra être prolongée au-delà de zéro ; et -—a , — 2a ?

—Za 9 . . . . seront des quantités aussi réelles que -\~a 9 -\-2a , -f-3# , . . . -
Cette distinction des grandeurs en réelles et imaginaires est plutôt

physique qu'analitlque ; elle n'est pas d'ailleurs tout à fait insolite
dans le langage de la science. Le nom de foyer imaginaire est
usité en optique ? pour désigner le point de concours des rayons qui*
anûlitiquement parlant , sont négatifs.



DES GRANDEURS IMAGINAIRES. i35
2. Lorsque nous comparons entre elles, sous le point de vue appelé

rapport géométrique, deux quantités d'un genre susceptible de four-
nir des valeurs négatives > l'idée de ce rapport est évidemment com-
plexe. Elle se compose i.° de l'idée du rapport numérique , dépendant
de leurs grandeurs respectives , considérées absolument ; 2.0 de l'idée
du rapport des directions ou sens auxquels elles appartiennent :
rapport qui 5 dans ce cas-ci 9 ne peut être que Yidentité ou l'oppo-
sition. Ainsi 9 quand nous disons que + # : —b : : —ma : ~\-mb ,
nous énonçons ? non seulement que a : b : : ma : mb ? mais nous affir-
mons de plus que la direction de la quantité *\-a est ? relativement
à la direction de la quantité —b , ce que la direction de —ma est
relativement à la direction de -\-mb ; et nous pouvons même ex-
primer cette dernière conception d'une manière absolue , en écrivant

(A) + I : ~ I : : — I : + I .
3. Soît proposé maîntenant de déterminer la moyenne proportionnelle

entre + 1 et —1 , c'est-à-dire , d'assigner la quantité x qui satisfait
à la proportion

H-i : x : 1 x : —i .

On ne pourra égaler x à aucun nombre positif ou négatif ? d'où
il semble qu'on doit conclure que la quantité cherchée est imaginaire»

Mais , puisque nous avons trouvé plus haut que les quantités néga-
tives, quî paraissaient d'abord ne pouvoir exister que dans l'imagination ,
acquièrent une existence réelle , lorsque nous combinons l'idée de
la grandeur absolue avec celle de la direction ; l'analogie doit nous
porter à chercher sî l'on ne pourrait pas obtenir un résultat ana-
logue , relativement à la quantité proposée.

Or, s'il existe une direction d 9 telle que la direction positive
soit h d ce que celle-cî est à la direction négative 5 en désignant
par id l'unité prise dans la direction d, la proportion

(B) + 1 : 1 , : : ! , , : — 1 ,
présentera i.° une proportion purement numérique 1 : 1 : : 1 : r , J2.̂
une proportion ou similitude de rapports de direction , analogue à
selle de la proportion (A) ; et, puisqu'on admet la vérité de cette
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dernière , on ne saurait se refuser à reconnaître également la légi-
timité de la proportion (B).

4. Nous allons encore établir Ici une distinction physique entre
les quantités réelles et imaginaires. Que l'unité dont il s'agit soit ,
comme plus haut , un certain degré de pesanteur 5 agissant sur un
des bras d'une balance. Nous avons trouvé que ce genre de gran-
deur peut réellement être positif ou négatif; mais on ne saurait aller
plus loin; et on ne peut , en aucune manière y concevoir un genre
de poids tel que 1 ̂  représente quelque chose de réel. Donc 7 dans
ce cas 9 1 j est une quantité imaginaire.

Prenons maintenant pour unité positive une ligne KA ( fig. 1 ) ,
considérée comme ayant sa direction de K à À. Suivant les notions
universellement reçues, l'unité négative sera Kl , égale à KÂ, mais
prise dans un sens opposé.

Tirons KE, perpendiculaire à IKÀ ; nous aurons la relation suivante :
La direction de KA est, à la direction de KE , comme celle-ci est à

la direction de Kl.
La condition nécessaire pour réaliser Ja proportion (B) se trouvera

donc complètement satisfaite 9 en prenant pour d la direction de K E ;
et on aura i j = K E : quantité tout aussi réelle que KA et KL On
voit aussi que la même condition est également remplie par KN 7

opposée à KE : ces deux dernières quantités étant entre elles ; : + i : — 1 ?

ainsi que cela doit être.
De même qu'on a assigné une moyenne proportionnelle réelle

KE entre -J-i et —1 9 ou entre KA et Kl , on pourra construire
les moyennes KC , K G , . , entre KA et K E , KE et K l ,

De là 5 et par une suite de raisonnemens que nous supprimons ,
on arrivera à cette conséquence générale que 5 si (fig. 2)

on a i abstraction faite des grandeurs absolues 9

KA:KB::K'A/:K'B'.
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C'est là le principe fondamental de la théorie dont nous avons
essayé de poser les premières bases, dans l'écrit dont nous donnons
ici un extrait. Ce principe n'a rien au fond de plus étrange que
celui sur lequel est fondée la conception du rapport géométrique
entre deux lignes de signes différens , et il n'en est proprement
qu'une généralisation.

5. Comme ? dans ce qui suivra ? nous aurions h répéter fréquem-
ment la phrase : lignes considérées comme tirées dans une certaine
direction , nous emploîrons l'expression abrégée : lignes en direction

* ou lignes dirigées ; et nous dénoterons par AB la ligne AB , dirigée
de A en B } et par AB 5 simplement, cette même ligne } considérée
dans sa grandeur absolue. Nous préférons le mot de direction à
celui de position , parce que le premier indique 5 entre les deux
extrémités de la ligne , une différence 5 essentielle dans notre théorie >
que ne marque pas le dernier. Nous pourrons réserver celui-ci pour
désigner collectivement deux directions opposées ? et nous dirons
que ÂB et BA ont la même position.

6. Nous allons maintenant examiner comment les lignes dirige'es
se combinent entre elles par addition et multiplication ^ et en cons-
truire les sommes et les produits.

La multiplication ne présente aucune difficulté. Un produit AxB
n'étant autre chose que le quatrième terme de la proportion i :A::B;x,
il ne s'agit que d'appliquer aux lignes données le principe du n.° 4-

Quant à l'addition ? la règle que nous allons donner peut se dé-
montrer facilement par les théorèmes qui donnent les sinus et cosinus
de la somme de deux arcs ; mais il semble qu'il serait plus élégant
de la tirer, a priori, des principes de la chose. En raisonnant par
analogie , on peut remarquer que , lorsqu'il s'agit d'ajouter deux
lignes, positives ou négatives a , b , on a pour règle générale quels
que soient les signes , de tirer d'abord AB= Tune des lignes , a
par exemple ; de prendre le point d'arrivée B de cette ligne pour
point de départ de la ligne b , de tirer ensuite BC = b , et la ligne
AG, dont les poirjts de départ et d'arrivée A , C sont respective-
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ment le point de départ de la première ligne a et le point d'arrivée
de la seconde ligne b, sera = a+b.

Généralisons ce principe et nous conclurons que À ? B ; C ,•• • .F y

G, H ? étant des points quelconques , on a

7. On peut décomposer une ligne en direction donnée KP ( fig. 3}
en deux parties appartenant à des positions données KÀ et KB-
II suffit, pour cela , de tirer , sur KB , KÀ , les lignes PM , PN *
parallèles à KA, KB ; et on aura

mais , comme on a

KM=NP et

et comn\e d'ailleurs il n'y a que ces deux manières d'opérer la décom-
position proposée , il faut en conclure > en général, que si , ayanl

À > A ; ont la même direction a 9 et B 5 B ; la même direction b ;
a et à n'appartenant pas à la même position , on doit ayoir aussï

JU=A7 et B^=B/.

Cette partition a fréquemment lieu , lorsque l'une des positions*
esl celle de + 1 et l'autre la position perpendiculaire; ce qui revient
à la séparation du réel et de rimaginaire.

8. Passons aux applications, et établissons d'abord quelques con-
séquences dont l'emploi est le plus fréquent.

Soient (fig. 4 ) AB, B C , . . . . E N , AB/, B ^ , . . . ! ^ , des
arcs égaux, au nombre de n 7 de chaque côté du point A ; KA étant
prise pour unité; et soit KB = u ; on aura

KA=i , ,

-
u
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KÏ" KB KO" KD KN*

E t , si l'on prend , sur les rayons correspondans , Ké'^K/î , K«/~I^y ,
K i / = K ^ , les longueurs K̂ e , Ky , K ^ , . , . . étant à volonté, on
aura encore

KJ" K 7 EX

Si sur des rayons KA , KM , KN p . .* . , pris pour bases, on

construit des figures semblables, et que a , m , /2 , soient des
lignes homologues de ces ligures , on aura

(C) ^TrrJxKÎVT 9 ;7=JxKN ,

g. Soient ( fig. 5 ) Arc.AB=-GD~a 9 Jrc.AC — fr ; on aura

donc , en séparant,
Cos*(a-\-&) =Cos.aCos.B—Sîn^Sin.^ ,

j = Sin

Soient (fig. 6) AC=£ , AB-b , B D - f B C ^ ^ ; prenons

= BD et tirons KD et BC se coupant en d; nous aurons

(Cos.a—Cos.b)+\/~i(Sin.a—Sin.^) = (Cos.^+v/^:TSin.^)

— (Cos.b+ /ITTSin^) = Ç&+ÏC) — (K^+JE)=KC—KB

l I = B C = : 2 5 c = ( n.° 8. C) 2 I E X K E T

= 2v/—iSin.-—f Cos.-—+v/-—iSin.-—- J

a—h a-\-b m^, a—b a-\-b
= —-aSin. Sin. ha^/ — i^in. Cos.— ;2. 2.



o C O N S T R U C T I O N G É O M É T R I Q U E
Donc y en séparant 5

Cos.#—Cos.£ =—sSin,—— Sin.
2. 2.

Sm.a—Sîn.£:=-f-2Sin.-—Cos.—- .
2

Soient (%• 7 ) AB , BC ? . . . .EN , des arcs égaux , au nombre
de n ; et faisons AB~#. Nous aurons

On aura encore

7 ^ ^

JbJ i.a V W i.a.3

Cos.w
1.2

Faisant na — x et ensuite # = oo , on obtient, par les termes affecte's

de t/~Jt ;

Soit l'arc AN ( fîg. 7 ) divisé en n parties égales. Les rayons KA p

KB> KG , . . . . forment une progression géométrique, et les arcs cor-
respondans 9 ou certains multiples de ces arcs , peuvent être pris
pour les logarithmes de ces rayons.

Posons Z ^ . K N = /72XALN=/72/2AB , m étant le module indéterminée
Si Ton fait n~ 00 , Parc AB pourra être considéré comme une
droite perpendiculaire sur KÂT \ on aura donc Â B = y / ^ 7 A B ; 00

i/-"* AB a i n s i

Log.KN ̂ mn AB=—rnn \/—iAB=i— mn\/—

—mn\/—1(—

Faisant KN=i-4-^ ? il vient



DES GRANDEURS IMAGINAIRES.

ou encore , parce que m est indéterminé

.2 Û /f.

Divisons les deux arcs égaux AN , ÀN ; ( fig. 8 ) en n parties
égales; tirons la double tangente nnf et les sécantes K.i 9 K ^ , . . . j
nous aurons (8)

„ KA K [ KG K^

donc les arcs correspondans , ou certains multiples de ces arcs peuvent
encore être pris pour les logarithmes de ces mêmes quantités , savoir :

Soit AN = or ; on a

Soit encore ( fig. 9 ) l'arc AN=25 divisé en un nombre infini
AN

de parties égales , dont AB soit la première, prenons AP = =:# ? et

tirons AN , KP et Pc ; nous aurons

' — 1 = 2 / 2 ,

I I 2

AN
71

1.2

mais (8), Â N = 2 ^ N < = 2
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En substituant ces valeurs dans la série (D) et séparant, il vient
(2Sin.a)3

1 2 6

(2Sin.a)2 ^ (sSin.c)3

o = —-Sm.^-j —•

g. Nous bornerons ici ces applications. On peut, ainsi que nous
l'avons fait dans notre Essai, obtenir, d'une manière analogue, les
principaux théorèmes de la trigonométrie , comme les développemens
de Sinj?0 , Cos.na , (Sin.tf)" , (Cos.a)u , les sommes de séries Sin.#

et la décomposition de x7-11-—2#Cos«72#+I en facteurs du second
degré.

Comme application à l'algèbre ? nous démontrerons que tout
polynôme

est décpmposable en facteurs du premier degré ou , ce qui revient
au mêrhe , qu'on peut toujours trouver une quantité qui , prise
pour x , rende égal à zéro le polynôme proposé que nous dési-
gnerons! par y. Les lettres a , b ,... ./*, g n'étant point d'ailleurs
restreintes ici à n'exprimer que des nombres réels.

Soient yP , yp+pi les valeurs de y résultant des suppositions #=/? ,
x—plfçi^ p et / étant des nombres pris à volonté et f désignant
un rayon en direction ; on aura

Q, R , 5 , . . . . étant des quantités connues, dépendantes de/?, n ,
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# , iï 1 €>..../, g, qui s'obtiennent en développant les puissances
de p-\-ai. Si Ton suppose i infiniment petit , les termes affectés de
i2 , P ? . .••/" disparaissent , et l'on a simplement

Construisons le second membre de cette équation , suivant les
règles précédentes. Soit « l'angle que fait yp avec la ligne prisa
pour origine des angles ; on peut prendre p de manière que ipQ fasse
avec cette même ligne un angle —ce , c'est-à-dire. , que la direction
de 7/JQ soit opposée à celle de "y~• La grandeur de yp+i sera ainsi
plus petite que celle de fp. On obtiendra , de la même manière,
une nouvelle valeur de y, plus petite que jj?_j_ z-, et ainsi de suite,
jusqu'à ce que y soit nul ; donc , etc*

Cette démonstration est cependant sujette à une difficulté dont
nous devons la remarque à M. Legendre. La quantité Q peut être
nulle , et alors la construction prescrite n'est plus praticable ; mais
nous observerons que cette objection n'anéantit pas notre démons-
tration ; jcar le terme i%fR , ou le terme ï*fS si R est nulle , et
ainsi de suite, peut remplacer le terme ipQ , puisque p2, /> 3 , . . . . .
sont des quantités de la même nature que p ; or , quand même on
voudrait supposer tous ces termes nuls , le dernier au moins /"/' ne
le serait pas.

10. La théorie dont nous venons de donner un aperçu , peut être
considérée sous un point de vue propre à écarter ce qu'elle peut
présenter d'obscur , et qui semble en être le but principal , savoir :
d'établir des notions nouvelles sur les quantités imaginaires. En effet,
mettant de côté la question si ces notions sont vraies ou fausses ,
on peut se borner à regarder cette théorie comme un moyen de
recherches 9 n'adopter les lignes en direction que comme signes de$
quantités réelles ou imaginaires, et ne voir , dans l'usage que nous
en avons fait , que le simple emploi d'une notation particulière. II
suffit , pour cela, de commencer par démontrer , au moyen des
premiers théorèmes de la trigonométrie ? les règles de multiplieatîoa
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et d'addition données plus haut ; les applications iront de suite ,
et il ne restera plus à examiner que la question de didactique
» si l'emploi de cette notation peut être avantageux ? s'il peut-tmvrir
» des chemins plus courts et plus faciles , pour démontrer certaines
» vérités ? » c'est ce que le fait seul peut décider.

i l . Nous ne croyons pas devoir omettre quelques aperçus sur
une extension dont nos principes paraissent susceptibles. Soient,
comme plus haut ( fig. 10 ) , KA—+ i y KG^ — l -> KB = + v / - - * >
R D = — \ / ^ i ; tout autre rayon KN, mené dans le plan de ceux-
l à , sera de la forme / ? + ^ y / ^ 7 -, et réciproquement, toute expres-
sion de cette forme sera celle d'une ligne dirigée dans ce plan.
Tirons maintenant , du centre K. , une perpendiculaire KP = KA à
ce plan. Que sera la ligne dirigée KP , relativement aux précédentes?
Leur est-elle tout à fait hétérogène , ou bien peut-on la rapporter
analitiquement à l'unité primitive KA , et assigner son expression
algébrique, comme celle de KB > KG, . . . . ?

Si nous nous laissons guider par l'analogie , voici ce qu'elle nous
suggère sur ces questions-

En prenant pour unité des angles la circonférence entière , il suit
des principes ci-dessus qu'un rayon en direction , faisant un angle
M avec KA peut être exprimé par i^. Mais , d'après la nature des
exposans 7 cette expression a des valeurs multiples, lorsque u est
fractionnaire , ce qui peut amener quelques difficultés. On évitera
cet inconvénient , en employant la notation de M. Français ( mémoire
cité) , et en écrivant i^ ; on aura ainsi K A = i 0 , KB = i*. ;

KD= n .
t

Nous avons pris , de part et d'autre du point A , sur la circon-
férence ABCD, deux directions opposées, affectées l'une aux angles
positifs , l'autre aux angles négatifs ; or , si nous appliquons aux
angles les mêmes considérations qu'aux lignes ? nous serons conduits
à prendre les angles imaginaires dans une direction perpendiculaire
à celle qui appartient aux angles réels»
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Supposons que le demi-cercle ABC tourne autour de AC , le

point B décrivant le cercle BPDQ -, puisqu'on a déjà

on pourra dire que

d'où on conclura

Telle paraît devoir être l'expression analitique demandée.
Si l'on prend un point M sur le cercle BPD tel qu'on ait

=p, on aura pareillement

e t , en faisant pour abréger Cos.

KM= i ^ r r i ^

t»est l'expression générale de tous les rayons perpendiculaires a*
rayon primitif de KA.

Cherchons maintenant l'expression de l'angle BKP*
De part et d'autre du point B s sur la circonférence ABC 3 les

angles sont positifs et négatifs réels y et le plan BKP est perpen-
diculaire à leur direction ; il semblerait donc que l'angle BKP est
ainsi que l'angle AKP= \ \/^î , et qu'il en doit être de même de
tout angle MRP , N étant pris sur la circonférence ABCD ; mais
on s'aperçoit bientôt de la fausseté de cette,conclusion , en faisant
coïncider N avec le point C , ce qui donnerait CKP= ~ \/^\ > tandis
que cet angle est évidemment —ÂRP =—Z\/-~îm
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Pour écîaîrcîr cette difficulté 7 observons qu'une direction étant

adoptée pour celle de -J-i , 11 y a une infinité de directions qui lui
sont perpendiculaires , parmi lesquelles on en prend arbitrairement
une, pour l'affecter à l'unité imaginaire \/^l. L'expression générale
de toute unité prise dans Tune de ces directions est > comme nous
venons de le voir ,

Imaginons au point A une Infinité de direction perpendiculaires
à la circonférence en ce point ; une de ces directions sera parallèle
à RÏÏ. C'est celle que nous avons prise pour construire les angles
imaginaires positifs -|~* y'IUT ; c'est-à-dire , que nous avons choisi,
pour ce cas , ^ = Ï = K A . Pareillement , au point C , la direction
parallèle à KP nous adonné les angles imaginaires négatifs —a\/'—i ;
c'est-à-dire, que nous avons fait p~— i =KC.

Donc l'analogie nous conduit à faire ^r=^/ZI7=KB, lorsqull s'agît
de la direction parallèle à K? , à partir du point B.

L'angle BRJ? aura donc pour expression

12* Nous ne pousserons pas plus loin ces aperçus ; et nous obser-
verons, en terminant, que les expressions, a, ah^ ay , qui désignent
des lignes considérées par rapport à une , à deux , à trois dimen-
sions , ne sont que les premiers termes d'une suite qui peut être
prolongée indéfiniment.

Si les notions exposées dans l'article précédent étaient admises f

la question , souvent agitée , de savoir si toute fonction peut être
ramenée à la forme p-^-qs^ZZl se trouverait résolue négativement;

et KP^y'Zrr^"""1 offrirait l'exemple le plus simple d'une quan-
tité non réductible à cette forme, et aussi hétérogène par rapport
à t / ^ 7 que l'est celle-ci par lapport à -J-i.



DES CRANDEURS IMAGINAIRES. ^
II existe , à la vérité , des démonstrations tendant à établir que

la fonction ( t f - H ^ I T ^ " ^ 7 2 v " 1 p e u t toujours être réduite à la
forme / ? + ? \ / ~ ; mais qu'il nous soit permis de remarquer sur
ces démonstrations , que celles qui emploient le développement en
séries , ne sauraient être concluantes qu'autant qu'on prouverait que
p et ej ont des valeurs finies. Il arrive souvent , en effet, dans
Tanalise , qu'une série qu i , par sa nature , ne peut exprimer que
des quantités réelles , prend une valeur , ou plutôt une forme in-
finie j lorsqu'elle doit représenter une quantité imaginaire ; et on
peut présumer pareillement qu'une série composée de termes de la
forme p-\-q\/ — i ou a^ 7 peut devenir infinie , si elle doit exprimer
une quantité de l'ordre ûbc.

Quant aux démonstrations qui emploient les logarithmes , elles
laissent aussi ? ce nous semble , quelques nuages dans l'esprit , en
ce qu'on n'a pas encore des notions bien précises sur les logarithmes
imaginaires. Il faudrait d'ailleurs s'assurer si un même logarithme
ne pourrait pas appartenir à la fois à plusieurs quantités d'ordres
différents a, ah, ûbc. En outre 5 la multiplicité des valeurs dues aux
radicaux de l'expression proposée, est une autre source d'incertitude ;
de telle sorte qu'on pourrait parvenir , de la manière la plus rigou-
reuse ? à réduire (tf+^v/^)772"*"72^"""1 à la forme p-\-q\/~\ <, sans
qu'il s'ensuivit nécessairement que cette fonction n'a pas encore
d'autres valeurs de l'ordre ctbc, non réductibles à cette forme (*)

(*) On ne peut , sans doute , que savoir beaucoup de gré à M. Français
d'avoir, en quelque sorte , provoqué M. Argand à donner plus de publicité à
ses vues sur l'un des points les plus délicats et les plus épineux de l'analise algé-
brique. Espérons qu'il s'établira désormais une heureuse rivalité entre ces deux
estimables géomètres , et qu'ils s'empresseront , à Penvi l'un de l'autre , à per-
ectionner et à éclaircir l'intéressante théorie dont ils viennent de poser les
fondemens.

J. D. G.
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ANALISE ÉLÉMENTAIRE.

Développement de la théorie donnée par M. LAPLACE

pour Vélimination au premier degré ;

Par M. GERGONKE,

V^RAMER est , je croîs , le premier qui ait remarqué la loi que
suivent les valeurs des inconnues dans les équations du premier
degré, et qui ait indiqué des méthodes pour construire ces valeurs,
sans passer par le calcul de l'élimination. Postérieurement , Bezout 5

dans sa Théorie générale des équations algébriques , a apporté quel-
ques modifications à ces méthodes ; mais , quoiqu'il fût sur la voie
d'en donner une démonstration proprement dite , elles sont demeurées
entre ses mains , comme entre celles de Cramer , le résultat d'une
simple induction.

Ce n'est seulement qu'en 1772 que M. Laplace , dans les Mémoires
de Y académie des sciences , a démontré , pour îa première fois, d'une
manière générale et rigoureuse 7 l'exactitude de ces formules. Mais ,
soit que la précieuse collection ou la théorie de cet illustre géo-
mètre est exposée 5 ne se trouve pas sous la main de tout le
monde, soit plutôt que M. Laplace , ne présentant pour ainsi dire
cette théorie qu'en passant , ne lui ait point donné le développement
suffisant pour la faire bien apprécier, on a toujours continué depuis
lors , dans tous les traités d'algèbre s à n'appuyer les méthodes de
construction des valeurs générales des inconnues que sur une simple
induction.

Une
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Une expérience de plus de dix années m'a convaincu que la

théorie de M, Laplace , suffisamment développée n'excède pas la portée
des esprits les plus ordinaires. Voici sous quelle forme j'ai coutume
de la présenter. J'ose croire qu'on la trouvera plus courte et plus
simple que les calculs qu'il faudrait faire pour donner quelque vrai-
semblance aux conclusions qu'on voudrait tirer de l'induction.

i . Dans tout ce qui va suivre , j'appellerai Nombres de même
espèce deux nombres qui seront l'un et l'autre pairs ou l'un et
l'autre impairs. J'appellerai, au contraire , Nombres d'espèces diffé-
rentes deux nombres dont l'un sera pair tandis que l'autre sera
impair.

2.. Ainsi, il sera vrai qu'on change l'espèce d'un nombre en lui
ajuutant ou en lui retranchant une unité ou , plus généralement %

un nombre impair quelconque , et qu'on ne la change pas en lui
ajoutant ou en lui retranchant un nombre pair.

3. 11 sera encore vrai de dire que ? si l'on change plusieurs fois
consécutivement l'espèce d'un nombre , son espèce se trouvera défi-
nitivement être ou n'être plus la même qu'elle était en premier
lieu , .suivant que le nombre des changemens d'espèces qu'il aura
subi sera pair ou impair.

4* Soient des lettres a , b , c,....f toutes différentes les unes
des autres , au nombre de m. Concevons que ces lettres soient écrites9

les unes à la suite des autres , dans un ordre arbitraire. Si alors
deux d'entre elles se trouvent tellement disposées , Tune par rapport
à l'autre, dans l'arrangement total , que celle qui se trouve le plus
à droite soit ? au contraire , à la gauche de l'autre dans l'alphabet ;
nous exprimerons cette circonstance en disant que ces deux lettres
forment entre elles une inversion. Nous dirons, en conséquence ,
que l'arrangement total présente autant d'inversions qu'il s'y trouvera
de systèmes de deux lettres pour lesquelles la même circonstance
aura lieu.

5. On voit par là que ^ si les m lettres se trouvent écrites suivant
Tom. IF. 20
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Tordre alphabétique , le nombre des inversions sera nul ; et qu'au
contraire il n'y aura que des inversions , lesquelles par conséquent
seront au nombre de \m{in—i) , si elles sont écrites dans un ordre
absolument inverse de celui de l'alphabet.

6. Soit M un arrangement quelconque de nos m lettres ; per-
mutons-y entre elles deux lettres consécutives quelconques , sans
toucher aucunement aux autres ; et soit M' le nouvel arrangement
qui en résulte. Je dis que , dans M et M/ , les nombres d'inversions
sont d'espèces différentes. En effet 7 les deux lettres permutées devant
nécessairement former une inversion dans l'un des arrangemens M ,
M' , et n'en point former dans l'autre ^ et toutes les autres lettres
demeurant , dans les deux arrangemens 5 disposées de la même
manière , soit entre elles, soit par rapport à celle-là ; il s'ensuit que ,
soit en plus soit en inoins , le nombre des inversions de M / diffère
seulement d'une unité du nombre des inversions de M ; ces deux
nombres sont donc d'espèces différentes.

7. 11 suit de là que , si l'on déplace une seule lettre d'une manière
quelconque , l'espèce du nombre des inversions demeurera la même
ou se trouvera changée , suivant que le nombre des places parcourues
par cette lettre sera pair ou impair. En effet , on peut concevoir
que le déplacement ne s'opère que successivement , par la permu-
tation continuelle de cette lettre avec sa voisine , soit de droite soit
de gauche ; or ? à chaque permutation partielle (6) , l'espèce du
nombre des inversions variera ; donc , à la fin (3) , l'espèce du
nombre des inversions se retrouvera la même qu'au commencement
ou sera changée 7 selon que le nombre de permutations partielles,
c'est-à-dire, le nombre des places parcourues sera pair ou impair.

8. Concluons de là que , si l'on déplace deux lettres, pour leur
faire parcourir , en tout , un nombre impair de rangs , l'espèce du
nombre des inversions se trouvera nécessairement changée. Il est
clair , en effet, qu'il faut , pour cela , que Tune des deux lettres
déplacées parcoure un nombre pair de rangs , ce qui ne change
pas (7) l'espèce du nombre des inversions, et que l'autre en par-
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coure ensuite un nombre impair , ce qui doit nécessairement la

changer (7),
g. Donc , si l'on permute entre elles deux lettres non consécutives,

on changera nécessairement l'espèce du nombre des inversions. Soit
en effet n le nombre des lettres intermédiaires à ces deux-là ; on
pourra d'abord porter la lettre la plus à gauche immédiatement à
gauche de l'autre , ce qui lui fera parcourir n places ; puis remettre
cette dernière à la place de la première; et, comme elle sera obligée
de passer par-dessus celle-ci, elle se trouvera avoii* parcouru 72-J-1
places. Le nombre total des places parcourues par les deux lettres
sera donc 2/2+1 , et conséquemment (8) l'espèce du nombre des
inversions se trouvera changée.

10. Soit écrite successivement la lettre b à la gauche et à la
droite de la lettre a , en changeant le signe au changement de place;
on formera ainsi le binôme

ab—ba*

Soit introduite successivement , et en allant de gauche à droite , la
lettre c, dans chacun des termes de ce polynôme , en lui faisant
parcourir , dans chacun , toutes les places de droite à gauche, et
changeant encore de signe à chaque changement de place, on formera
ainsi le polynôme

abc—>acb-\-cab~—bac-\-bca—cba*

Concevons que Ton en fasse de même successivement pour les lettres
suivantes * / , £ , / * , . • • * , jusqu'à la dernière inclusivement, en suivant
toujours exactement Tordre alphabétique : on parviendra ainsi à
un polynôme homogène P, de m dimensions, dont les termes, au
nombre de 1.2.3. . . . 772 , ne seront évidemment autre chose que la
totalité des permutations dont nos 772 lettres sont susceptibles. Je
vais prouver que , d'après ce mode de génération , les termes de ce
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polynôme auront le signe •+• ou le signe — % suivant que
le nombre des inversions qu'ils présenteront sera pair ou impair.

Il est d'abord aisé de voir que les deux résultats que nous venons
de former satisfont à cette loi. Supposons donc qu'elle se soutienne
encore pour l'avant-dernier polynôme ? de manière que chacun de
ses termes porte déjà le signe qui convient au nombre de ses inversions.
L'introduction de la dernière lettre à la droite de l'un de ces termes
ne changera rien à cet état de choses puisqu'elle n'en changera ni
le signe ni le nombre des inversions. A mesure que cette lettre
avancera ensuite vers la droite , l'espèce du nombre des inversions
se trouvera alternativement (7) changée et rétablie ; mais le signe
se trouvant aussi, par hypothèse , alternativement changé et rétabli,
la loi dont il est question continuera à subsister , si , comme nous
le supposons , elle a lieu dans l'avant-dernier polynôme ; puis donc
qu'elle subsiste dans les deux premiers , il s'ensuit qu'elle est
générale.

11. Concevons actuellement que , dans chacun des termes du
polynôme F , on affecte chaque lettre d'un indice égal au rang de
cette lettre , en cette manière

on formera ainsi un nouveau polynôme D, qui n'aura plus de termes
semblables. Je vais prouver que si, dans ce polynôme D ? on change
une lettre quelconque en une autre , en laissant d'ailleurs celle-ci
où elle se trouve déjà, et sans toucher aux indices , tout le poly-
nôme s'anéantira.

Supposons, en effet., que l'on change h en g , sans toucher à
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g ni aux indices. Soient , pour un terme pris au hazard dans le
polynôme 9 p et q les indices respectifs de g et h ; ce polynôme ,
renfermant toutes les permutations , doit avoir un autre terme ne
différant uniquement de celui-là qu'en ce que c'est // qui y porte
Findîce p et g l'indice q : et de plus (g) ces deux termes doivent
être affectés de signes contraires ; ils se détruiront donc , lorsqu'on
changera h en g -, et il en sera de même de tous les autres termes
pris deux à deux.

12. La lettre a devant se trouver dans tous les termes du poly-
nôme D, et ne pouvant se trouver qu'une seule fois dans chacun;
ce polynôme peut être ordonné suivant les indiees de cette lettre,
ainsi qu'il suit :

( i )

A% i Â% , A^, Am étant des fonctions de lx , cx , dx , . . . ' . . ,

^ i ? c% Î ^i Î > bm> Cm* dm* Alors, d'après ce qui vient d'être
dit ( u ) > o n devra avoir

Amc O

Le polynôme D , ordonné par rapport à quelqu'aufre lettre, don-*
nerait lieu à des conséquences analogues.

i 3 . Ces4 choses entendues , soient, entre les m inconnues x ,y, z , , , . ;
les m équations

(*) Ce sont cçs fonctions dont il a été question à la page i53 du 3.e rolume
de ce recueil.
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(3)

En prenant la somme de leurs produits respectifs par Al 9 A% ,
A} ,*.*.Am y et ayant égard aux équations ( i et 2 ) , il viendra

+AJrm ; (4)

d'où

Aînsî le dénominateur commun des valeurs des Inconnues n'est autre
chose que le polynôme D ; et on en conclut le numérateur de la
valeur de chacune d'elles , en y mettant la lettre qui représente
le terme tout comme à la place de celle qui représente le coefficient
de cette inconnue , toujours sans toucher aux indices.

i4» S i , dans les équations (3), on change kt , kt , h% , . « . .# m

en —kxv , — kzv , —£} t>, . . . .—kmv , v étant une (/72+i)me in-
connue , ces équations, toujours au nombre de m , deviendront

axx-\-bxy\'Czz-\- (5)

et donneront ; par un semblable changement opéré dans l'équation (4) »
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> > (6)

^ , dans cette équation , demeure arbitraire , on peut
fort bien poser v~—D* : on aura ainsi

x={Axkt+Jxh2+J3k,+ +Jmkm)« ;

formule dans laquelle * demeure indéterminée. On aurait des valeurs
analogues pour y , z 5 . . , . ^ .

15. Ainsi , la même méthode qui nous a conduit aux valeurs
générales des inconnues , dans les problèmes déterminés du premier
degré , nous donne également les valeurs entières les plus générales
des inconnues dans les problèmes indéterminés de ce degré ; du
moins lorsque les équations n'ont point de terme tout connu ,
et que le nombre des inconnues n'y surpasse que d'une seule
unité le nombre de ces équations,

16. Mais , de ce cas particulier on peut facilement passer aux
autres. Si , en effet f le nombre des inconnues surpasse de n unités
celui des équations , il ne s'agira que de joindre aux équations
données n—1 autres équations de même forme affectées de coefE-
ciens arbitraires ; la qnestion se trouvera ramenée au cas que nous
venons de considérer ? avec cette différence qu'au lieu d'une seule
arbitraire 9 les valeurs des inconnues en contiendront plusieurs. C'est
a peu près par cette voie que, depuis long-temps, M. Servois était
parvenu, de son côté, aux résultats que j'ai donnés à la page i56
du 3.e volume de ce recueil.

17. Enfin la même méthode peut conduire encore aux équations
de condition qui doivent avoir lieu entre les coefficiens , lorsque les
équations sont en plus grand nombre que les inconnues. Si , en
effet , entre m inconnues on a m-\~n équations , en tirant des m
premières équations les valeurs de ces inconnues pour les substituer
dans les n suivantes f on obtiendra ainsi les équations de condition
demandées.
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QUESTIONS RÉSOLUES.

Solution du premier des deuoc problèmes proposés à
la page 28 de ce çolume j

Par M. SERVOIS , professeur aux écoles d'artillerie.

jtliNONCE. Une droite mobile parcourt le plan d'un triangle de
manière que le produit des segmens qu'elle détermine sur deux de
ses côtés , vers leur point de concours, est constamment égal au
produit des deux autres segmens des mêmes côtés. On propose
d'assigner la courbe à laquelle , dans son mouvement, cette droite
sera perpétuellement tangente ?

Solution* Soient M, M7 ( fig. n ) deux points quelconques d'une
parabole > dont F soît le foyer ; et soit O le point de concours
des tangentes en M , M7". Robert Sîmson a démontré que, d'après
cette construction , les triangles FMO , FOM7 sont semblables , de
telle manière qu'on doit avoir

FM __ FO MO
FÔ" ~~ FM' ~ OM" *

ou

Ang.FOM—JngFWQ ,

'AnB.
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Ang.OMF=Jng.WOY ; (*)

i 5 7

(*) La similitude de ces triangles peut être facilement déduite du théorème
suivant :

THEOREME, Si ayant mené , dans une parabole , un nombre quelconque
des rayons vecteurs , de direction arbitraire , ou fait tourner tous ces rayons
çecteurs , un seul excepté, autour du foyer de manière que les angles qu'ils

forment respectivement avec le rayon vecteur fixe soient diminués de moitié ; et si ,
en même temps , on allonge ou on racourcit les rayons vecteurs mobiles de manière que
leur nouvelle longueur soit moyenne proportionnelle entre la longueur du rayon
vecteur fixe et leur longueur primitive ; leurs extrémités se trouveront toutes alors
sur la tangente à Vextrémité du rayon vecteur fixe.

Ce théorème n'est lui-même qu'un cas particulier de cet antre théorème i
THËORÈME. La ligne dont les rayons vecteurs sont moyens proportionnels

entre ceux d'une parabole et une longueur arbitraire donnée, et oii ces rayons
vecteurs forment , deux à deux , des angles moitié de ceux que forment leurs
correspondans dans cette parabole , est une ligne droite.

Ce dernier théorème se démontre assez simplement comme il suit :
Soient r , rf, r" trois rayons vecteurs d'une parabole dont la distance du sommet

au foyer soit p ; et soient et , où , oûr les angles que forment respectivement ces
rayons vecteurs avec p , on sait qu'on aura

r Cos.2

rf Cos.2

r"Cos.2
d'où \frf. Cos. ~ au =\/p y

yjr"', Cos. j a"=\/p .

Prenant la somme des produits respectifs de ces trois dernières équations par

'. Sin.jC^-— »0 , —\/rP^. Sin. •[• (^—a)+\/rr / .Sin.^ (̂ —ce) , et réduisant f

il viendra

\/rP. Sin. i («'—*)—yjrr". Sin. \ («"—*0+\/rV". 5m. \ (a"— 0 = 0 . (i)
Or , soient présentement M , M ; , M/' trois points de la ligne dont on cherche

la nature , F le pôle auquel on la rapporte et a la longueur arbitraire donnée ^
on aura , par hypothèse ,

=ï (V—«) ,

d'où
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on a donc, par la proportionnalité des côtés f

FM OM FM' OM'
FO "~ CW f FO CM

d'où on tire , par l'élimination de FO ,

et ainsi se trouve démontré, en passant,le théorème de la page 60.
Soient présentemeut ( fig. 12 ) LP , PQ , QN trois tangentes à

une parabole dont le foyer est F ; soient L , M , N les points de
contact respectifs des tangentes 5 et II le point de concours des tangentes
extrêmes. Suivant le théorème de Simson

d'où il suit que le quadrilatère FPRQ est inscriptible aa cercla.
On a d'après cela

îes triangles RPF , RQF sont donc respectivement semblables
triangles NQF , LPF , et on a par conséquent

QN : NF : : PR 1 RF ,

PL : LF : : QR : RF ;
d'où on tire , en multipliant

Sin.M' F M = f a

donc (1)

Propriété qui appartient exclusivement à la ligne droite.
J. Z>, G.
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tiiaîs, par le théorème de Sîmson ,

donc
PRxQR=PLxQN ;

relation indépendante du point M , et qui prouve par conséquent
que, si la droite PQ se meut sur le plan du triangle LRN, de
manière à y satisfaire constamment, elle sera constamment tangente
à une parabole, touchant respectivement RL et RN en L et N. (*)

(*) Ce problème fournît une application des plus simples de la théorie développée
à la page 361 du 3.e volume de ce recueil.

Soient a f b ceux des côtés du triangle donné que la droite mobile doit couper
suivant les conditions données ; et soient A % B > respectivement, les segmens qu'elle
détermine sur eux, du côté de leur point de concours ; en prenant a eL b pour
les axes des coordonnées, l'équation de la droite mobile sera

~4-~=i ou Bx+Jy~JB >, (i)
A XJ

et l'on aura la condition

^&=(a—-4)0—B) ou Ba+Ah^zab j (2)

faisant varier A et JB, dans les équations (1) et (2), il viendra

d'où

bix—A)— aty—B) ; (S)

tirant enfin des équations (2) et (3) les valeurs de A et B f pour les substituer
l'équation (1) ? il viendra

= o 5
équation d'une parabole touchant les deux côtés a t b à leurs poînts de concours
avec le troisième,

!NQUS observerons que ceci peut fournir un mode de construction plus simple
de la parabole de raccordement des routes , dont il est question à la page 2S0
du i.er volume de ce recueil.

On résoudrait, par un procédé analogue , le &.e problème de la page 28 du
présent volume \ mais le calcul en est fort compliqué.

J. D. G.
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On peut déterminer plus particulièrement cette parabole par nne

construction qui me paraît assez élégante» Soient LRN (fig> i 3 ) l e
triangle proposé ? et P , Q , respectivement, les milieux des côtés RL ,
RN ; PQ sera évidemment une des situations de la droite mobile.
Soit p le centre du cercle passant par les trois points PRQ ; le foyer
devra être sur la circonférence de ce cercle. Soit menée R/?, prolongée
jusqu'à la rencontre de la circonférence en q ; le point q sera le
centre du cercle circonscrit à LRN ; de sorte qu'en menant qlu et
yN l'angle LyN sera le double du supplément de LRN ; mais
dans la figure 12 , l'angle LFN doit aussi être double du supplé-
ment de LRN; donc ( fig, i 3 ) le foyer cherché doit être sur la
circonférence passant par les points LyN , laquelle coupe la pre-
mière en un nouveau point F qui sera conséquemment le foyer ; et
comme d'ailleurs on connaît deux tangentes et leurs points de contact *
rien ne sera plus aisé que de déterminer le sommet. (*)

QUESTIONS PROPOSEES.

Théorème de Géométrie.

CÀ , CB sont deux demi - diamètres conjugués d'une ellipse on
d'une hyperbole , dont le centre est C. On a mené la droite AB ;
et , par un point quelconque M de la courbe ? on a mené à cette
droite une parallèle 9 coupant respectivement CA et CB en A / et B'»

On propose de démontrer que MA7 + M B / est une quantité cons-
tante»

(*) On peut aussi employer à la recherche du foyer et du sommet les mé-
thodes, soit de M. Bérard % soit de M. Bret, dont ii est fait mention à la page 5S
de ce volume.

J. D. G.
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ASTRONOMIE.

Essai d'une nouvelle'solution des principaux problèmes
d'astronomie ;

Par M, K R A M P , professeur , doyen de la faculté des
sciences de l'académie de Strasbourg.

i . ^OIENT, p le temps périodique d'une planète ; a , le demi-
grand axe ; aGos.x, le demi-petit axe ; #Sin.A , Y excentricité ; <p ,
l'anomalie vraie ; <pf , Y anomalie de V excentrique ; t , le temps,

compté depuis l'aphélie ; ce qui donne — pour Y anomalie moyenne*

On parviendra de <p à ç', et de là à / 9 moyennant les équations
connues

=<?)/+Sin.xSin.^/ , Sin.^rr , Cos.^= r -

2.. PROBLÈME / . Connaissant le temps t , ^/ /^^/ wnsêquent

T anomalie moyenne — , on demande t1 anomalie vraie ç , exprimée

par une série disposée selon les puissances ascendantes de Vexcen-
tricité x, telle que P=À-HBÀ-}-CÀ 2 + ; les coejffîciens A , B ;
C 9.... étant des fonctions de t qui ne renferment point A et quil
s agit de déterminer ?

A cet énoncé , on reconnaît le Problème de Kepler. Pour le
résoudre , on a employé jusqu'ici la série <p=t-\-AS\n.t-{-B&\n,2t
+CSin .3 /+ Ici les coeiïiciens A , B, C , . . . . étalent des séries,
ordonnées selon les puissances ascendantes de l'excentricité ; con-
vergentes * à la vérité 9 mais pourtant infinies, et qui ne sont sonimables

Tom. IV , n.° VI, i .e r décembre I 8 I 3 . zz
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dans aucun cas. Les coefficiens de la nôtre seront des expressions
finies • et elle se trouvera ainsi exempte du défaut de l'autre.

3. Solution. Le premier terme est ce que devient <p , dans le

cas de A — O , ce qui d o n n e — = p ' = p . Ainsi A~ — .Les autres
P P

coefficiens seront ce que deviennent, dans ce môme cas de A = O,

les coefficiens différentiels partiels -— , — , —- pris en re-

gardant h comme la seule variable, et le temps / comme exempt
de différentiation. Cherchons d'abord l'équation différentielle com-
plète entre àl , dx et d<p.

/ - n e - / Cos.xSin<p
4- De S i n . ^ s ; ou de

i S i n A C o s ^ >

on tire en différentiant

o = dx(Cos.xCos.fSin.<p/—Sin.

i—Sin.ACos.<p).

En mettant à la place de Sin.^ et de Cos.^ leurs expressions en
A et en <p, cette équation deviendra divisible par Cos.?'"—Sin.A ? et
fournira ? après les réductions

d f ^ : ,
i—Sin.A,Cos.<p

L'autre équation

^— =^ /+SIn.xSin.? / ,

donne, après avoir été differentiée et réduite

i—Sin.ACos.<£>

p Cos.2A

Egalant entre elles les deux expressions de àç;
 9 on aura une

équation entre les trois différentielles àt ? dA . d<p } d'après laquelle
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Sin.^U—Sin.ACcs.<2>) .

Qt—> CM ;
C ApCos.3A Cos.A

d'où il résulte
i—-Sin.ACo

s.>A

/ d<p \ 2.-5T (i—-Sin.AC

\ dt ) p Cos.>;

Cos.A

5. Considérant ici le temps t et l'anomalie Traie ç comme les
seules variables , on aura l'équation très-connue

dt—î

d'où Ton pourrait tirer , sur-le-champ , l'anomalie vraie <p , moyennant
une séné, ordonnée d'après les sinus des angles multiples de l'ano-
malie moyenne. Mais, si l'on regarde A comme la seule variable,
et le temps / comme exempt de différenciation , on aura d'abord

d<p Sîn.<p(2—Sîn.ACos.<p)

àt Cos.A '

pour le premier de nos rapports différentiels partiels. Faisons ici

A=o P on aura <p~A , et —• = — 2 S i n . ^ . II en résulte B=—2Sin.^ ;
7 et 7

et tel est le coefficient du second terme de la série.
6. Pour faciliter les différentiations ultérieures , et les développe-

mens qui y dès le troisième terme deviennent assez compliqués 7

faisons Sin.A = ̂  et Cos,<p=y ; ce qui donne
d$ S'm.ç dx dy -̂r^ 2^
— = — (2—xy) , — = COS.A , — = Cos.A K

Remarquons , de plus ? que le rapport différentiel — est constam-

z Si n 0

ment de la forme -——, la lettre z désignant une fonction entiè-

rement algébrique , ordonnée selon les puissances ascendantes de x

et de y. Si Ton désigne par Pdx-\-Qdy la différentielle de celle

fonction z ? on aura ? après les réductions
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Ainsi , pour trouver ces coefficiens , il faudra effectuer les multi-
plications ; c'est la seule difficulté qu'il restera à surmonter.

T .. . â<p S'\n,<p
7. Jj après cela, pour passer du premier — = ;—(2-xy) au

second—, on aura / 2 = i , z =—Z~\-ocy } P=y 7 Q=# , d'où il

résulte

dA* Cos,2A

On en tire
72 = 2 ; £ = 5j—oc*y—f

donc
I Q- r

dA3 "" Cos.3A j^22X*y

Faisant ensuite 72̂ =3 et

—4^—-2i

3'ou il résulte

r _i6^—i45j+74^2 j+4i2^ry24-2o6y5

Cos.

Et ainsi des autres.
8. Il ne reste donc qu'à faire , dans tous ces rapports différentiels,

A=o , et par conséquent x=o , $=A ? y^Cos.A. On aura
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62)=:+

^s—2.o6Cos.*A) ,

et ainsi des autres. On aura < P = ^ + / ? ; \ + C À 3 + J 9 À 3 - J - . . . . . . La
série ? ordonnée selon les puissances ascendantes de la petite fraction
angulaire A> est convergente par elle-même; et les coefficiens nu-
tnériques qui accompagnent les puissances de Qos.A ne mettent aucun
obstacle à cette convergence,

g. La série donnée par l'illustre auteur de la Mécanique céleste
( tome I , page 181 ) ? est

e»- %\- H H

Pour la transformer dans la nôtre 5 il suffira de mettre à la place
de Sin.2^, Sin.3^ , les formules connues, ordonnées selon les
puissances ascendantes de Cos.-^ ; il faudra faire de plus <?=Sin.A
et changer enfin les signes de A et de toutes ses puissances impaires,
attendu que , dans notre formule , les anomalies sont comptées ? non
du périhélie , mais de l'aphélie. On reconnaîtra bientôt aînoi l'idenlilé
absolue entre Tune et l'autre.

10. Faisant 9 dans cette formule , /=/? ou t=.\p , on aura
P = ^ . Etsî Pon fait/=£/?, il résultera ^ = 90°—2h+^x*— 11A5-}-..,

On aura donc go°—(r' = 2A—{A3-f-^As—....; et telle est aussi , à
très-peu près , la plus grande équation du centre.

11. PROBLÈME IL On demande d'exprimer le rayon vecteur
T , par une série analogue à la précédente , savoir r = I+BA-}--CA*

+ . . . . . ; le demi-grand axe étant supposé égal à Vunité ?
12. Solution. On a, par la théorie connue de l'ellipse,

1—Sin.AGos.<p
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Le premier terme de la série étant ce que devient r ? dans le cas

dr
de * = o ? c'est-à-dire, égal à l'unité; pour trouver — , faisons encore

; = dxCos.A ,
d'où '

yr=Cos.9 ;

donc

Sin.<p
C O 8 . X ; = ( 2 * r ) , =

de plus

I—#y

d'où, on conclura , après les réductions, la formule très-simple
d r r
— = r c o s . ^

i3. Pour effectuer , avec facilité, les différentïations ultérieures;
d'V

remarquons que le rapport différentiel -— aura généralement la forme

——~—; la lettre z désignant un polynôme ordonné selon les puis-

sances ascendantes de oc et de y , et dont la différentielle com-

plète pourra être supposée dz=Pdjc~+-Qdy* II en résultera 7 après
les réductions , le rapport «suivant

Cos."— 2A *

rÂidé de cette formule générale , on passera facilement d'un rapport
différentiel à l'autre -, les multiplications à faire seront la seule difR~
culte qu'il faudra surmonter»

Ainsi a ayant eu — =yCos.A , on aura d'abord , par la diiTé-

rentiation >
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et dès lors on pourra se servir de la formule générale. Pour trouver

•7-7 , on aura

d'où on conclura

Cos.A

Par un semblable procédé ? on fera ensuite 72 =

d'où on conclura

et ainsi du reste.
14. Ainsi donc , pour trouver les coefficlens de la série r = i

+Z?ÀHh£A2+Z)^3+ , îl faudra voir ce que deviendront ces

rapports dulerentiels— , — ? — * • • . . , dans le cas de A=to ,

qui donne ^r=o , <P=J=~, et J ^ G O S ^ J et Ton aura

et ainsi des autres.



Ï6S P R O B L E M E S
i5. Dans le cas de / = o , on aura À—O ^ Cos.^=i , et

r=i-l-A 1 - . . . . , ou bien, r=i+Sin.A. Dans le cas de
1 6 12.0

À " A^ A5

/ — -•/?, on aura A=^ 9 Cos.A^ — i , et r = i — x-4- -r* -+-...•
x r 6 120 5

ou bien, r=i—Sin.x, II est presque superflu de remarquer que
ces deux expressions i+Sin.x , i—Sin.x , sont effectivement celles
des distances du foyer de l'ellipse à ses deux apsides. Faisant enfinon aura^^x-sr, Cos.^=o , et r=i+*a—Â4+X6—

ou bien , r = - . Ainsi, le rayon vecteur qui répond au quairt

de la révolution est une fonction algébrique de la quantité angu-
laire A.

16. Nous nous proposerons, en troisième lieu, de déterminer , pour
tin temps quelconque proposé , la longitude géocentrique d'une pla-
nète , moyennant une série double , ordonnée selon les puissances
ascendantes des excentricités de la planète et de la terre. L'extrême
complication des calculs auxquels nous conduit le développement des
coefficiens nous oblige à feire une supposition qui heureusement
est admissible , et qui ne restreint en aucune manière la généralité
du problème. Nous supposerons que , la terre étant dans l'aphélie
de son orbite , la planète soit en même temps à une très-petite
distance de l'une de ses deux apsides. De pareilles époques sont toujours
assignables, et leurs retours doivent former des périodes que Ton
peut déterminer avec toute la précision qu'on désire. Soient, en
effet, p et q 9 les durées des révolutions anomalistiques des deux
planètes et a , /3 leurs anomalies vraies , pour une époque quelconque.
Il est clair que la première des deux planètes passera par Tune

de ses apsides au bout d'un temps égal à p , tandis que

l'autre passera par Pun des siens au bout d'un temps q:\es

deux nombres 772, n étant des nombres entiers quelconques, po-
sitifs ou négatifs* Donc , pour déterminer une des époques où les

deux
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deux planètes auront été ou seront, à la fois , dans Tune de leurs
apsides, il faudra déterminer les deux nombres entiers m et n de
manière qu'ils remplissent le plus exactement que possible la condition

O U 772,??'—nq- ;

et Ton sent que la solution de cette question ne peut présenter de
difficulté.

17. PROBLÈME 111. On demande, pour un temps quelconque
proposé* la longitude gêocentrique d'une planète généralement ex-
primée par une série double ? ordonnée selon les puissances ascen-
dantes des excentricités de l'orbite de la planète et de celle de
la terre?

18. Solution* Supposons que la terre et la planète ayant quitté
au même înstant leurs aphélies A , B ( fig. 1 ) , soient arrivées ,
au bout du t e m p s / , aux points P , Q de leurs orbites respectives*
en désignant par F le foyer commun ou le centre du soleil , et
supposant que la ligne des équinoxes soit EE 7 , l'angle EHQ sera
la longitude gêocentrique de la planète. Désignons de plus ;

par p et q les durées des révolutions anomalistîques ,
par a et b les demi-grands axes des deux orbites7

par aCos.x et bCos.p leurs derni-petits axes,
par tfSin.A et bS'm.p leurs excentricités ,
par » et /3 les longitudes E F A , EFB des deux" aphélies ,
par ^ et + les deux anomalies vraies AFP , B F Q ; à l'époque t ?

par & et A// les deux anomalies de l'excentrique ,
par r et s les deux rayons vecteurs FP , FQ ,
et enfin par w la longitude géocentrique demandée EHQ.
19. Les deux longitudes héliocentriques seront ainsi les angles

EFP , EFQ ; et Ton aura

ce qui donne
sSin.(/3—•vJO—rSîn.C*

Tom. IV. 2 3
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On aura de plus , pour les deux rayons vecteurs FP et FQ ou

r et s
aCos.2X bCo$.2f&

r=i—£r~77—: * s=—?—^—r •

On aura enfin les équations 7 déjà employées dans le premier pro-
blème , par lesquelles on passe de l'anomalie vraie à l'anomalie
moyenne, et réciproquement : savoir ,

Cos.xSin.p
• , 8 0 1 . 4 / =

i—.Sm.xCos.p î
Cos.<p-— Sîn.A Cos.<p—Si
—r- Cos4 / /

i—oin,ACos.(p

—
PP l

20. Comme on demande pour w une série double 9 ordonnée selon
les puissances ascendantes des deux excentricités 7 telle que

+
on voit que son premier terme A sera ce que devient l'angle

dans le cas de * = o 9 ^ = 0 ; ce qui donne r~a^ ^ = 3 , <P= -

/̂ = — ; d'où il résulte

ÛCOS. U J—ôCos. (/3 J

21. Les deux coefficiens qui suivent, B et 5 ; , seront ce que

deviennent les deux rapports différentiels — ? — , dans la même sup-

position de * = o , |t6 — 0 ; et Ton voit que la differentiation doit
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porter unîquement sur les deux excentricités A et ^ , et que le
temps t doit être regardé comme exempt de différeniiation. On
aura ainsi

) àr

ÛK Cos.A dA

d-v̂  Sin.^O2—Sin.wCos.*^) ds
- — = ; —- =
àf* Cos.^t d,u

22. Enfin , de Texpression de Tang.w , donnée ci - dessus 9 on
tire l'expression générale de àw , ainsi qu'il suit

dç*>= —

ee qui donnera ? pour les deux coefficlens partiels — , —
L à\x dp

dw Cos.A ( o2Cos.2ASin.<p(2—Sin.

( I— Sin.ACos.4OC1— Sin.

(i—Sm.

da> C o s . ^

! •

r2—2rsCos.(ct—/3—4>+^)+52 ( ( i—

— Cos.(«—É—•
(i—Sin.ACos.$)(i—Sin^

-Sin.(«—/3—
(i-Sin.>

24. Pour en tirer les deux coefficiens B , fiy , il faudra faire ,

dans les deux expressions ? A = O , ^ = 0 ? r = /z , ^=^ 9 ^:=:"T" ?

^ z= — ; on aura ainsi
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+
Pi

^-2tf^Sin. — Cos.j ^-/3 J - ^ C o s . —Sin.f «-/3— H,
P \ P H J P \ P ^ q )S

I

a2—zabCos, { #—£— i—

v. p
—2##oin.—Los.l *-£ H l-J-^uos.-^—bin.l <»-/3 h — \\ m

25. La forme , très-compliquée , des deux différentielles partielles

— j — ne permet guère de procéder , avec quelque espérance de

succès, au développement des coefîiciens ultérieurs; et nous avouons

que la formule que nous venons de trouver ne pourra guère être

regardée que comme le résultat d'une première approximation , à

laquelle il nous paraît convenable de nous arrêter. Pour trouver la

longitude géocentrique , avec une plus grande précision 5 il faudra

encore recourir, dans chaque cas particulier, à l'emploi des tables,

et renoncer au# avantages qui pourraient résulter d'une formule

générale.

26. Connaissant la position des deux aphélies, ou les angles EFA*

EFB ; et les deux longitudes héliocentriques E F P , EFQ , et par

conséquent aussi les deux rayons vecteurs FP , F Q , on trouvera la

longitude géocentrique , ou l'angle E H Q par la formule

__ FQS//2.EFQ—FP&Vz.
anS- y—

Ici la ligne FP 5 rayon vecteur de la terre 9 peut toujours être regardée

comme donnée ; mais ? pour trouver F Q , rayon vecteur de la planète ,

il faut connaître l'anomalie vraie de cette dernière , ou l'angle AFQ ,

qui est lui-même égal à la longitude EFB de l'aphélie , moins la

longitude héliocentrique EFQ ; ce qui fait naître une difficulté 9

lorsque 7 de la longitude géocentrique , qui est la seule donnée ^ tant
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par les tables que par l'observation , on veut repasser à la longitude
héliocentrique. La difficulté sera levée , par la résolution du problème
que voici.

27. Connaissant , outre les longitudes des deux aphélies , aussi
lien que les grands axes et les excentricités des deux orbites ,
la longitude gèocentricjue d'une planète , pour un instant donne .,
trouver sa longitude lièliocentrique ?

Désignons par
B l'angle EFB , longitude de l'aphélie de la planète ;
b le côté BF , demi-grand axe ,
w l'angle EHQ , longitude géocentrique de la planète ,

f le rayon vecteur FP ?

*i l'angle E F P , longitude hélioeentrique de la terre,
ê l'angle E F Q , longitude hélioeentrique de la planète;

donc y Ang.FPH=<v—* ,
Ang.PQF-^*?—ê .

L'angle B F Q , anomalie vraie de la planète, sera B—*; et l'angle t
formera ainsi l'inconnue du problème.
Le triangle FPQ donnera FP : FQ = Sin.(tf>-~ i) ; Sin.(V—»n) ; donc

^ Sin.(w— 0

Mais ? parce que FQ est un rayon vecteur de l'ellipse ^ on a aussi

F Q = ^ î ^ ;

donc , si l'on pose ; pour abréger ,

on aura l'équation

1 =/2Sin.(^—*)+Sin#/«cCos.(2?— ê).

Pour la résoudre, il suffira de faire
s.tv—Sin.^Sin.B _

R2 = 3 +Tang.K=—
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et l'on aura finalement

Cos.(H-K)= L .

Le problème sera résolu.
28. PROBLÈME VI. On demande de comprendre les époques

des conjonctions et des oppositions d'une planèie dans une seule
série double , ordonnée selon les puissances ascendantes des deux
excentricités ?

2g. Solution. Par les mêmes raisons exposées au sujet du précédent
problème , le temps t sera compté d'une époque où , la terre étant
dans son aphélie en A , la planète était très-près de Tune de ses
deux apsides B ou B /. Les quantités données du problème seront
donc: savoir, les demi-grands axes a, h des deux orbites; les deux
demi-petits axes aCos.x , bCos.p ; les deux révolutions anomalistiques,
p , q ; enfin l'angle AFB que les deux grands axes font entre eux ,
et que nous désignerons par % ; et les lettres p et ^ continueront
à désigner les anomalies vraies A F P , BFQ des deux planètes au
bout du temps /. On aura ainsi AFP = <p, A F Q = s + ^ ; ce qui
donne , pour le cas du problème ç—4>—gm^-sr• la lettre n désignant
un nombre entier pris à volonté , pair dans les conjonctions, im-
pair dans les oppositions* II en résulte l'équation différentielle
d^rrd-^ ; c'est la première des équations différentielles qui nous
conduiront à la connaissance des coefficiens.

3o. La série étant supposée de la forme

+
Le premier term<3 A sera ce que devient t dans le cas de A = O ,

j Z'srt z-zt . .

^ = 0 ; or5 on a , dans ce cas, —- = p , —~ — v ce qui fournit
p q
p

. 2,-art Mît
1 équation — —- — =/2w-j-g ; donc

RI
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Telle est la valeur du premier coefficient de la série.
3 i . Les eoefficiens B , B; seront ce que deviennent , dans le

cas de A = O, ^ = 0 , les deux rapports différentiels partiels — , <— ;
r r dA dp

On a trouvé (4) , dans le premier problème ? pour la différentielle
complète de <p ,

Sîn.^(a—Sin.ACos.p)
d/ — dA ;

CosA
d ^ = d /

/?Cos.3A Cos.A
on aura de même, pour la seconde orbite,

)2

ût

Egalant entre elles ces deux différentielles, ce qui est effectivement
l'équation de condition (29) des syzygies , on en tirera la différen-
tielle complète de / qui doit répondre à la nature du problème ;

. , . , ,.,«, . , àt dt
ce qui donnera ensuite , pour les rapports diiterentiels —- ? »— P

uA 0^4

ât 1 /?^Cos#
2ACos.3iwSîn.^(2*—Sîn.ACos.p)

dA 2&

dA 2& ^Gos.3^(x—Sin.ACos.<p)2—

p^Cos.2^Cos.3ASin.-^(2

i— Sin ACos.<p)2—pGos.3A(i—S

32. Il ne restera qu'à faire, dans ces expressions, A = O , jw^oj

ce qui donne 9 = ? "Y= , pour avoir les deux coefficient
^ P <1

B , £ ; . On trouvera ainsi

33. Les eoefficiens C, CJ, C11 des termes du second ordre seront
ce que deviennent 7 dans le même cas de A = O ; ^ = 0 , les trois
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rapports différentiels partiels - — , . • _ — , Faisant , pou*

abréger
P~ i

ce qui donne

on parviendra ainsi à donner une forme un peu plus abrégée aux

J â t â t ' i , . i

deux rapports — , -— ? lesques deviendront
dA dp. x

f ât \ i pqCo&*\Co&JpS

\ dA / ! çP*Cos.ip--p

/ d̂  \ ^Cos.vCos.3xSin.^(i

Mais il est convenable d'abréger encore. Désignons par F 9 M , N
le dénominateur commun et les numérateurs de ces deux valeurs f

de manière qu'on ait

ât \ M / at \ N

les diiTérentiatîons partielles nous apprendront que

+ f — 1 (2

— j = + 2 / ? Ç C O S

+ ( — J (2

-H
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— J

3— J

( ~— J==—

\ dA

f — J =

en

( d^ \

i;)
/ d<p \ / <!"$/

Reste donc à trouver les expressions littérales de f — J , ( —

dA et d^, et à effectuer ensuite les développemens. Or, ayant déjà
exprimé àç en àt et dA ? de même que d*̂  en àt et dtu , on n'aura
qu'à substituer , dans Tune de ses expressions , la valeur de d/ en
dA et àp : on aura ainsi la différentielle complète de àf ou d^ 9

d'où on conclura

( à(p \ wSin.<pCos.2A(l 4-P)O3 f d^ \ çSin -^Cos.2

— )={--; j ~—7 ? ( — j——— :—:

34- Après avoir effectué ces développemens, on pourra procéder;

sans difficulté, à la détermination des rapports différentiels — y

r 5 T— • Ayant 2^ — ) = — , 2wf •— 1 rt: , il en ré -
3^ d^a -̂  \ dA / F ^ d^ / JP'

sultera
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35* Ainsi donc ? pour trouver les coefficiens C , Cf
 5 C / /f, de nos

termes du second ordre , il faudra voir ce que deviennent ces
rapports différentiels partiels , dans le cas de x = o ? ^ = 0. On tire

de cette supposition P = i , Q—i 5 <P= • , r — < ; et en con-

tinuant , par abréviation , d'employer les lettres ç» et ^ à la place

de leurs valeurs , on aura , dans la même supposition de ; \=o ,

et ensuite
dF

\ d* /

/ d£

— J =
—5p)Sin.ipCos.ip

36. De là on pourra passer immédiatement aux rapports différentiels
1 1 * da* d2i an

du second ordre —- , 7—-1 7— . Un aura , toujours dans le cas

de A=0 ? ^ = 0 ,
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d'où l'on tire enfin

C =

_

3 ; . Pour trouver pareillement les coefficiens D , D ^ D/;,
termes du troisième ordre , il faudra différencier de même , par
rapport à * et ^ , les rapports différentiels dont nous avons donné
la liste (33). Nous n'exécuterons pas ces développemens -, mais la
route est tracée , e t , en attendant, la série

fera connaître , à peu près 9 les époques auxquelles 11 arrivera quel-
que conjonction ou opposition de la planète à laquelle se rapporte
l'ellipse BQB/ de la figure.

Nous poursuirrons ces recherches dans un prochain article»
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OPTIQUE.

Note sur la construction des miroirs concaves de grandes
dimensions ;

Par M. A.***, abonné.

N sait que la construction des miroirs concaves 5 de grandes
dimensions , présente des difficultés considérables , soit pour obtenir
l'uniformité de courbure P soit pour donner au poli la perfection
nécessaire. On surmonte, en partie, ces difficultés, avec du temps,
du travail et du soin ; mais les opérations sont toujours très-longues
et très-coûteus3S. Si donc il était possible de ramener la fabrication
des instrumens de cette espèce aux procédés qu'on emploie , ou
du moins qii'on peut employer , pour celle des miroirs plans , il
n'est pas douteux qu'il n'en résultât beaucoup d'économie et de
facilité ? et par suite un perfectionnement sensible , dans cette partie
intéressante de l'art de l'opticien.

Le moyen dont on va parler paraît tendre à ce but ; mais on
ne devrait penser à le mettre en pratique qu'après s'être préala-
blement assuré, par la théorie-, du résultat qu'on pourrait en espérer;
abstraction faite des différences inévitables entre le calcul et l'exé-
cution. Les questions dont il provoque l'examen sont d'ailleurs de
nature à mériter l'attention des géomètres. Par ce double motif,
on croit pouvoir entrer dans quelques détails sur le procédé dont
il s'agit.

On rappellera d'abord celui qui a été mis en usage par Bufïbn >
il y a environ soixante ans, pour se procurer des miroirs ardens.
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II consiste à couper une glace circulairement , a l'astreindre par
son bord , et à la rendre concave , par une pression appliquée au
centre P d'une manière permanente ( Mémoires de Vacadémie des
sciences y pour 1754) . Prenons ? au lieu d'une glace , une plaque
métallique , convenablement préparée ; et imaginons que sa convexité
se forme du côté qu'on destine à la face antérieure du miroir.
Supposons j de plus , qu'il soit possible de soumettre cette face
convexe aux opérations par lesquelles on applanit et polit une grande
pièce de métal; on enlèvera ainsi la calotte très-mince qu'intercepterait
•un plan passant par l'arête de cette même face. Si l'on supprime
ensuite la force comprimante , la plaque reprendra son état primitif;
et la face sur laquelle on aura opéré deviendra concave , avec une
courbure sensiblement pareille à celle qu'elle avait dans son état
de convexité.

Deux questions se présentent d'abord , relativement a ce procédé.
Ija première de pratique : comment obtenir la condition absolument
nécessaire pour que l'opération proposée soit praticable, savoir ? que toutes
les parties de la machine soient situées du même côté, par rapport
au plan indéfini qui passe par la surface à polir ? La seconde de
théorie : quelle est la courbe que forme un diamètre de la plaque ,
dans son état de compression ; et ? plus particulièrement , quelle
est la portion de cette courbe qui peut , sans erreur sensible 5 rela-
tivement à sa destination ? être prise pour une parabole ?

On ne croit pas devoir entrer ici, sur la première question , dans un
discussion qui ne pourrait qu'être prématurée ; et il conviendra seu-
ment d'observer que les difficultés , peut-être insurmontables en
opérant sur le verre 5 disparaissent 5 lorsqu'il s'agit d'une matière
aussi facile à travailler qu'une substance métallique. Là seconde
question , Indépendamment même de toute application ? paraît digne
d'exercer la sagacité des géomètres. Il conviendrait peut-être de Fétendre
au cas où la pression aurait lieu ; non sur le centre ? mais sur tous les
points d'un cercle concentrique à la circonférence de la plaque , et
même sur plusieurs cercles de cette espèce ? à la fois ; et ? pour
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ce dernier cas , on pourrait rechercher quels seraient les rayons des

cercles et les forces à appliquer qui produiraient la courbure la plus

approchante de la parabole. (*)

Comme , à l'exécution , il se trouve nécessairement des défauts

d'exactitude dont on fait abstraction en théorie , il ne serait point

inutile de rechercher les anomalies que produiraient , dans l'effet

cherché , des irrégularités dont l'ordre pourrait être supposé très-

petit par rapport aux dimensions du miroir; comme , par exemple,

si les deux faces n'étaient pas exactement parallèles ; si , au lieu

d'être planes 9 elles étaient des portions de cylindres , de cônes ou

d'ellipsoïdes très-grands ; si la plaque et le support nécessaires à

l'opération ne se touchaient pas complètement par tous les points , etc.

(*) Un problème beaucoup plus général serait le suivant : Une surface courbe
rigide et élastique , d'une forme connue et d'une épaisseur constante 9 ou cariant
suivant une loi donnée , est invariablement fixée dans Vespace , par plusieurs de
ses points , ou même par une ou plusieurs courbes continues tracées sur elle.
On a appliqué des pressions constantes , données d'intensité et de direction , en
divers autres points de cette surface, ou même suivant d'autres courbes continues
tracées sur elle* On propose d'assigner la nouvelle courbure qu'affectera cette surface ?

On pourrait aussi renverser le problème , et demander quels devraient être les
points d'application, directions et intensités des pressions , ainsi que la situation des
points fixes , pour produire une courbure donnée.

Pour préparer , par un problème plus simple , à un antre plus compliqué 5 on
pourrait d'abord se proposer celui-ci : Une verge courbe , rigide et élastique , dune
courbure connue, et d'une épaisseur constante , ou variant suivant une loi donnée 9
est invariablement fixée dans l'espace, par plusieurs de ses points. On a appliqué
des pressions constantes , données d'intensité et de direction , en divers autres
points de cette verge. On propose d'assigner la nouvelle courbure qu'elle affectera 9

par l'effet de ces diverses pressions ?
Ce problème est susceptible du même renversement que le précédent ; c'est-

à-dire, qu'on peut demander quels sont les points fixes et les pressions qui pro-
duiront une courbure donnée ?

Ces problèmes paraissent avoir beaucoup d'analogie avec celui de la courbe
élastique ; le premier suppose nécessairement dans la surface une certaine extensibilité
et contractibilité $ sans laquelle on ne pourrait obtenir que des surfaces développables,

J. D. G,
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Ce contact exact est vraisemblablement une condition 1res - impor-
tante ; mais on aurait des moyens assez faciles de l'obtenir, avec
toute la précision désirable.

Paris, le 23 octobre i8i3.

QUESTIONS RÉSOLUES.

Démonstrations du lhèorè?ne de géométrie énoncé à la
page 60 de ce volume ;

Par - MM. MASSABIEAU et GUILLAUME , professeurs de
mathématiques au lycée de Rodez , GOBERT , élève du
lycée d'Angers, et M. BÊRARD , principal et professeur
de mathématiques au collège de Briançon. (*)

iSéNONCÉ. M7, M"étant deux points quelconques <Fune paralole %

O le point de concours des tangentes en ces points 5 et F le foyer \
on propose de démontrer que

d%oh il suit que, si F tombe sur WW, le sommet de l'angle O ,
qui devient droit, est placé sur la directrice , et la ligne OF est
perpendiculaire sur la corde M/M//.

Les solutions fournies par MM. Massabieau, Guillaume et Gobert
sont purement analitiques , et reviennent à peu près à ce
qui suit.

(*) Le théorème a été proposé par M. Bérard.
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Soit

y~4cs, (i)

Fequation de la parabole , et soient les coordonnées des points M7.
M7/

 ; O et F ainsi qu'il suit
( <rt ( W/

pour M' | pour M/y \ pour O
y' , i y11 ;

pour F

on aura conséquemment

y/*=4c#/ -> yf^ — ̂ cx". (2)

Les e'quations des tangentes ; par les points M7, M." seront

et, comme le point O appartient à la fois à ces deux tangentes ;
on aura

d'où on tire , en ayant égard aux équations (2)
yfyft

Cela posé on a

4e

OU

et on a pareillement

priais , d'un autre côté , on a aussi

*WF*
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d'o*

et Ton a pareillement

donc

M/F ~~M"F

ce qui démontre la première partie de la proposition,
On a de plus

( 4 e )( 4e ) ( 4c )

ou

Éliminant successivement MyF et M^F entre cette dernière q
et l'équation (6) , et extrayant chaque fols la racine quarrée , il
viendra

M Ô _ M F̂ _ OF

d'où II résulte que les deux triangles FM ;O et FOM ; / sont sem-
blables. (*)

Cela posé , si la somme des angles égaux OFM7
 9 OFM7/ va»uft

(*) Cest le théorème de Robert Simson 9 rappelé par M. Servols, à la
de ce volume.

Tom.
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deux angles droits ; c 'est-à-dire, si le point F est sur la corde
ÎU'îvL'7, chacun de ces deux angles sera droit ou , en d'autres termes,
OF sera perpendiculaire sur M/M/' ; la somme des deux angles
F0M7 et FM/O vaudra donc deux angles droits ; et , puisque le
dernier est égal à FOM" , il en résulte que l'angle M/OM" est
alors droit.

Lorsque les trois points W , F , M" sont en ligne droite, on a

y' = r
x!—c x"—c 9

OU

ou

ou simplement

ce qui donne y'y"

ainsi alors le point O est perpétuellement sur la directrice.

présentement la démonstration de M. Bérard , qui est pure-
ment géométrique.

Par les trois points M' , M" , O ( fig. 2 ) soient menées des
parallèles à Taxe ; et soit H le point où la dernière rencontre la
courbe. Par ce point H soient menées des parallèles à OMy et à OM",
rencontrant respectivement en P' ' , P^ les diamètres menés par M/$

M". Le quarré d'une ordonnée au diamètre étant le produit de
l'abscisse par le quadruple de la distance du sommet de ce diamètre
au foyer ; on a
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maïs 5 à cause des parallélogrammes OP7 , OP / ; , on a

M / P / =M / / P / / =OH , HP '=OM' , HP"=OM" ;

donc

OM^ = 4FM/ x OH , OM"* = 4FM" x OH ;

ce qui donne , par l'élimination de OH ?

OM' OM"

FM/ = FM" *

SI le point F est en ligne droite avec les points M', M" ( fig. 3 ) ,
cette équation n'exprimera autre chose que la proportionnalité des
quarrés des côtés de l'angle droit d'un triangle rectangle avec leurs
projections sur Thypothénuse ; le triangle M'OM" sera donc rectangle
en O , et OF sera perpendiculaire sur M'M''.

Soit, dans ce cas, prolongée OH jusqu'à la rencontre de M/M//

en I ? et soit menée HF. On sait que , par la propriété de la pa-
rabole le point H est le milieu de 01 ; puis donc que l'angle OFI
est droit , ce point H est le centre du cercle circonscrit au triangle
OFI 5 et par conséquent H 0 = H F ; et puisque OH est parallèle à
l'axe , le point O est un point de la directrice.

Tentatives et réflexions relatives au problème proposé
à la page 352 du troisième volume de ce recueil;

Par M. K R A M P , professeur , doyen de la faculté des
scienpes de l'académie de Strasbourg.

JLJE problème proposé à la page 352 du troisième volume des
Annales revient évidemment à celui où il s'agirait de déterminer
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l'angle au sommet d'une pyramide ou d'un cône donne, a base
quelconque. C'est aussi sous ce point de vue que je me propose
de l'envisager, dans ce qui va suivre.

i . L'angle au sommet de tout corps pyramidal a pour mesure
naturelle de sa capacité le polygone sphérique décrit de son sommet
comme centre ? avec un rayon arbitraire , dans toutes les faces qui
le comprennent ; et le rapport de la surface de ce polygone à celle
de la sphère entière, ou bien à la huitième partie de cette sphère,
connue sous le nom de triangle sphérique tri-rectangle, et que ,
dans mes Élémens de géométrie , j'ai désigné par le nom à'orthoèdre*

JL+ Désignant par s la somme des angles externes d'un polygone
sphérique quelconque , la surface de ce polygone sera égale à 36o°—s ;
l'angle droit étant l'unité des angles linéaires , de même que l'or-
thoèdre est celui des angles solides. Ainsi l'angle droit sera à 36o°—s,
comme Torthoèdre est à la surface du polygone sphérique.

3. La figure 4 désigne la surface antérieure d'une pyramide, ayant
pour base le polygone rectiligne ABCD Si du point S comme
centre , et avec un rayon arbitraire , on décrit , dans les faces de
cette pyramide, le polygone sphérique abed.... ; la surface de ce
dernier polygone exprimera la capacité de l'angle solide pyramidal
dont le sommet est S, tandis que ses angles exprimeront les incli-
naisons mutuelles de ses faces entre elles ; c'est ainsi que ? par
exemple , l'angle sphérique b exprime l'angle plan (*) compris entre
les deux faces triangulaires ABS , CBS. On le trouvera , lorsque l'on
connaîtra tous les angles linéaires aux sommets de la base ; c'est ainsi
qu'en désignant par B l'angle ABC , par 772 l'angle ABS , et par
n l'angle CBS 9 on aura le cosinus de l'angle plan ABSC, ou

(*) IL est presque superflu d'observer que l'auteur emploie ici les anciennes
démonstrations $ angles linéaires , plans el solides , correspondant aux dénominations
nouvelles d'angles plans, dièdres et poljèdres.

J. JD. G.
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_ Cos.B—Cos.mCos.72

4- Mais , pour appliquer ces principes généraux aux conoïdes ̂
ayant pour base une courbe quelconque, rentrant en elle-même ,
il faut nécessairement réduire à des coordonnées rectangulaires la
position des sommets de cette base , considérée comme polygone
rectiligne d'un nombre de côtés fini. Soient donc ( fig. 5 ) L , M ,
N , trois sommets consécutifs de cette base, que nous rapporterons
à Taxe indéfini A Z , mené dans le plan de cette même base, par
le pied A de la perpendiculaire SA. Nous désignerons par h cette
même hauteur SA ; et , prenant le point A pour origine des coor-
données ? nous exprimerons par se , y les coordonnées du premier
sommet L ; par / , uP celles du second sommet M ; et par/?, q f

celles du troisième sommet N ; de manière que

II en résultera

d5où l'on tire
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—qu

CoslMss =
LMxMN

II faudra aussi se procurer les expressions des sinus des deux pre-
miers SML et SMN de ces angles. On aura , après les réductions
nécessaires >

S*«.«SML=
SM

Le produit SMxLM.SÏ/z.SML exprime le double de la surface du
triangle LSM ; d'où il suit que cette surface ^ura pour expression

5, Le cosinus de l'angle plan LSMN, qui exprime l'inclinaison
mutuelle des deux faces triangulaires LSM et MSN , ayant pour
son sommet linéaire l'arête pyramidal SM ? est exprimé comme il suit :

C05.LMN—C05.LMSC0J.NM S

Swi.LMS.Swi.NMS

Après les substitutions, et les réductions, en assez grand nombre ;

qui se présentent, cette expression devient
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—tx—uy—pt—qu

J/
On trouve ensuite, pour le sinus du même angle,

h .SM(pM— qt+ty"—ux —py -̂qx)

If {h%.\Jsl-\-{ty—h

d'où il résulte enfin

h.SM (/?M—qt+ty—UX"-py-\-qx)

hzÇt2-\*u2—*-txm-muymm-pt-~qu-\-px-\-qy)—(ty—ux)Çpu—-

et telle est la tangente de l'angle plan , compris entre les deux
faces triangulaires contiguës LSM , NSM.

6. Pour passer du polygone rectiligne au cas d'une courbe con-
tinue , prenons sur son périmètre les trois points L , M, N , à des
distances infiniment petites Tune de l'autre ; et , en continuant de
désigner par les lettres / , u, les deux coordonnées AP , PM 7 du
point intermédiaire M, nous aurons/+d/ , #-j-d#, respectivement}

pour les coordonnées AQ , QN , du point suivant N ; tandis que
t—d/+d2/—d3H- ,u—d*z+d2tf—d3tf+ seront, respecti-
vement , les expressions complètes des coordonnées AO , OL, du
point précédent L. Comme ? dans le problème que nous nous pro-
posons , il suffira de nous arrêter aux secondes différentielles,
mous aurons

:=z , AQ=:/?=/+d/ ,

Ea faisant ces substitutions > dans l'expression ci-de$$us , nous auron$
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pour la différentielle de la somme des angles extérieurs, différentielle
que nous représenterons conséquemment par as, et de laquelle dépend
la solution de notre problème , l'expression suivante

7. SI nous désignons 9 en outre , par À la portion de la surface
convexe de ce corps conique ; comprise entre les deux arêtes AL ?

AN , nous aurons

- s/h\àP-\-àu*)-+{iàu~uàt)

'où

I/expression de as est donc beaucoup plus compliquée que celle dé
AA ; et , comme cette dernière n'est integrable que dans un nombre
de cas très-borné , desquels celui du cône oblique, à base circu-
laire , est formellement exclu ; on voit que Ton doit encore moin;
se flatter d'une solution complète du problème qui concerne h
capacité des angles au sommet.

8. À la place des coordonnées rectangulaires t et u , essayons de
substituer le rayon vecteur AM = r et l'angle MAI?l = f qu'il fail
avec l'axe des t7 ce qui donne /=rCos.f , z/=rSin.<p» On trouver*
ainsi

et si Ton fait d<p constant, d'où d2<? = o , on aura

{[çl—rà-rd<p 7 ^
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g. Prenons pour premier exemple le cône droit ayant À pour

centre de sa base, et r pour rayon de cette base. Ici on aura d/*;=o;
la différentielle de la surface conoïdiqae deviendra donc

àA— \

ayant pour intégrale

ce qui donne, pour la surface entière du cône «r^/Aa-j-r*. Faisant%

pour abréger s le côté du cône ou \/k*j^r2~J; en aura d^= "~~7"" >

et s— — • Ainsi , la somme des angles extérieurs , pour le cône
•J

çntier , étant d'après cela -— , la capacité de l'angle au sommet

deviendra . On aura donc la proportion: l'angle droit, ou

— , esta , comme Torthoèdre est à la capacité de l'angle
xf

qu'on cherche , lequel, par conséquent ? sera égal à Torthoèdre mul-

tiplié par — . Effectivement, l'angle en question occupe 7 sut
la surface d'une sphère du rayon f \ une calotte sphérique de la
hauteur f—h, dont la surface sera, par conséquent, 2«/"(j£—//) ;
d'un autre côté, l'orthoèdre, égal au huitième de cette sphère, sera
— 5 divisant donc la première expression par la seconde , on aura

la fraction —-— , que le précédent calcul nous a fait obtenir.

io. On sait que la surface du cône oblique se refuse à tous les
moyens connus d'intégration. On peut en conclure , à plus forte
raison , que là capacité de son angle au sommet se trouvera hors
du domaine de Tanalise actuelle. Soit SA ( fi g. 6 ) la hauteur d'un

Tom. IF. 26
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tel cône 9 ayant pour base le cercle décrit du centre C , arec le
rayon CB=CD=r ; soient, de plus, AS=^ , AC = a , A P = / ,
PM=z/, ce qui nous fournit l'équation (a—l)2-^ui=ri. On aura,
d'après cela

r

différentielle qui n'est intégrable dans aucun cas. On trouvera ensuite

hr*dt

Tessai que j'en ai fait, cette différentielle m'a paru aussi
peu intégrable que la précédente.

En faisant

et posant de plus, pour abréger

eette différentielle deviendra

formule qui n'est pas susceptible d5ôtre intégrée.
i l . L'une des courbes qui semblerait promettre des résultats plus

favorables , c'est la développée de l'ellipse ; comprise sous l'équation
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îl en résulte, en posant a2~-I>2=c2 >

Ctlai*
an*

La racine quarrée de cette formule est entièrement întégrable ; îl
en résulte que Tare de la développée elliptique ? pris depuis t~a est

ac*

ce qui donns ; pour la longueur du quart de cette développée ,

a+b '

cette courbe est donc rectifiable \ comme le sont les deVeloppëes
de toutes les courbes algébriques. Mais cet avantage est perdu , tant
pour la surface que pour la capacité angulaire du cône dont elle
est la base. Les différentielles dont dépendent ces deux problèmes
sont aussi peu intégrables que dans le cas du cône oblique à base
êirculaire.

C) Dans cette équation a et b ne sont point les demi-axes , mais des troisième*
proportionnelles à ces demi-axes et à l'excentricité,

J. D. G.
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QUESTIONS PROPOSÉES.

Théorèmes appartenant à la géométrie de la règle.

h JL/EUX hexagones étant tracés d'une manière quelconque sur le plan
d'une section conique , en sorte cependant que les sommets du second
soient les pôles des côtés du premier ; si les points aïe concours
des directions des côtés opposés de celui-ci sont tous trois sur une
même ligne droite , les droites joignant les sommets opposés de
l'autre se couperont toutes trois au même point, et réciproquement. (*)

II. Quelqu'un soupçonne i.° que 5 dans tout dodécaèdre-icosagone,
régulier ou non , inscrit à une surface du second ordre , les six inter-
sections des directions des faces opposées sont situées dans un même
plan ; 2.° que , dans tout icosaèdre-dodécagone , régulier ou non i
les six diagonales qui joignent les sommets opposés se coupent toutes
en un même point; on propose de vérifier, par le raisonnement,
si ce soupçon est fondé ? (**).

(*) On remarquera sans peine que les théorèmes démontrés h la page 78 de
ce volume , ne sont que des cas très-particuliers de celui-ci. On peut, au surplus
pour la définition des pôles , consulter la page 337 du premier volume de ce
recueil*

(**) Neuf points ou neuf pians tangens suffisant pour déterminer une surface
du second ordre ; si ces théorèmes sont vrais, les six droites auxquelles ils sont
relatifs doivent être, en outre , assujetties à d'autres conditions , comme , pae
exemple , de former un hexagone inscrîptible à une ligne du second ordre > ou
im angle hexaèdre circonscriptibie à un cône du xncme ordre. 11 serait intéressant
de trouver aussi ces relations.
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ASTRONOMIE.

Recherche des èlémens dune ellipse , dont le foyer et
trois points sont connus ;

Par M. K R A M P , professeur , doyen de la faculté des
sciences de l'académie de Strasbourg.

F le foyer et P , Q , R trois points donnés sur le péri-
mètre d'une ellipse'1, et soit EF une 'droite fixe , dirigée d'une
manière quelconque , dans le plan de ces quatre points. Il s'agit
de déterminer les élémens de la courbe.

Les données du problème sont au nombre de six ; savoir : les
trois angles EFP , EFQ, EFR, et les trois rayons vecteurs FP ?

FQ , FR. Soient donc

P=Jng.EFP 9 p = r*y. vec. FP ,

y=ray. vec. FQ ,

r= ray . vec. FR .

Les inconnues du problème sont au nombre de trois ; savoir j
l'angle EFA que fait la direction FA du grand axe de l'ellipse
avec la droite fixe EF ? le demi-grand axe de l'orbite et son excen-
tricité. Soient donc

a= le demi-grand axe,

Sin.x= Texcentricité , divisée par le demi-grand axe»
En supposant que le point A est l'aphélie , on aura#

Tom. IV , n,° Fil, x.Cr janvier 1814.
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Et f par les propriétés connues de l'ellipse, on trouvera

r ï— Sin.ACos.(P—f) 7

a€os.2\

9~~ ï— Sia.ACos.(Q—<p) ?

oCos.2A

~~ ï— Sm.ACos.(H—f)

Divisant successivement la première de ces deux équations par les

deux autres, il vient

q ï—Sin.AGos.(P—f)

p ï—Sin.ACos.(H—•mf)

T *~~ ï— Sin.AGos.(P— fi

II en résulte les deux équations qui suivent

p—qz=. \pGos.(P—(p)—qCos.(Q—<p) jSin.A ,

p—r= {pCos.(P>—ç) — rCos.(ii—<p)} Sin.A .

En égalant entre elles les valeurs de Sin.A tirées de ces deux équa-
tions 9 il vient

s î n
/?Gos.(P—f)—^Gos.(Q—f) pCos.(P—f)—

et par conséquent

en développant Cos/P—(p) , Cos,(Ç—<p) , Cos.(j?—-<p) ^ et divisant
ensuite par Cos.<p , on tire âe cette équation

p ( r ^
Tan 0 " 45̂ 1——
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On déduit de là , après les réductions

199

—p)Sin.(ii—P)

Tan ^
Q)

9—/;)5in.(Zi—Q)
— r)Cos (Q—

p—r)Sin.(Q—JR)

La nature du problème exige que des tangentes on passe aux
cosinus. On y parvient moyennant une certaine fonction , qu'eu
attendant nous représenterons par F2 , et dont la valeur , que nous
nous réservons de simplifier plus loin , peut être exprimée ainsi
qu'il suit:

—p)(r~ y)Cos. (P—R)

On trouve alors

Si

et ensuite

ç—p)Sin.(R—P)

—ç]S\n.ÇP— Q)

*où encore
g—p)Sîn.(R—P)

—^)Sin.xP— Q)

n.(fi—Q)+r/?Sin.(P—

De là résulte l'égalité suivante
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j Sin.xCos.(P—0) i—Sin.ACos.(Q—$) i—Sin.ACos.(R—<p)

qr rp pq

attendu que ces trois expressions se réduisent également à

Sîn.(Q—P)+Sin.(R—Q)-fSin.(P—R)

Sin.(il—Q)+r/?Sin.(P—il)

II ne reste plus à déterminer que le demi-grand axe de l'orbite.

On a

_ pqr Sîn.çQ—P)+Sin,(R—Q)4-Sin.(P—R)
a~~ Cos.2A S i c Q P ) + S i ( H Q ) + r S i ( P R )

En remarquant que

Cos.(/2— Ç)= i— 2Sin.ai(iZ— (?) ;

Cos.(P—J?)=i— 2Sin.ai(P—R) ,

Cos.(Ç—P)=i—2Sm.2i((2~P) ;

Fexpressîon de F* donnée ci-dessus peut être réduite à cette forme

plus simple

F* = 47r(p-9)(p-r)Sm.> \ (R-Q)
Jr4rp(9-r)(ç-p)S\n.* f (P-iî)

r (*) II convient de remarquer que le numérateur Sin.(Q—P)+Sin.(R—Q)+
Sin.(P—R) peut être réduit à la forme suivante , plus commode pour le calcul
par logarithmes,

—4Sin. {• (Q—P)Sin. f(R— Q)Sin.f (P—R).
On peut remarquer aussi que le dénominateur /^Sin.(Q-P)+?rSin,(R-Q)-}-^Sîn,(P--R)
n'est autre chose (jue Le double de l'aire du triangle qui a ses sommets aux trois
points donnés.

J. D. G.
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on pourra aussi écrire

ang.p —

ANALISE ELEMENTAIRE.

Mémoire sur les principes jhndamenlauoc de la théorie
générale des équations ;

Par M. D. ENCONTRE , professeur doyen de la faculté des
sciences de l'académie de Montpellier.

1. 1-JA théorie générale des équations repose ? toute entière , sur
deux théorèmes dont la démonstration me paraît n'avoir pas encore
été donnée d'une manière qui puisse être mise à la portée des
commençans. Le premier de ces théorèmes est que , dans une équa-
tion à une seule inconnue x , si deux nombres a , 3 , successivement
substitués à x , donnent des résultats de signes contraires, il y a
nécessairement une racine réelle , comprise entre a et b. Le second
est qu'une équation quelconque à une seule inconnue x , étant

(*) Si , dans l'application à un cas particulier , on trouve Sin.A=l ou, ce
qui revient au même

.F=/??Sin. (Q—P)+^rSin.(H— Q)+r/?Sin.(P—-R) ,

on en conclura que la courbe est une parabole. Il serait aisé de faire voir que
celte ëquation de relation revient à celle qui a été donnée à la page i5y de ce
•volume. On pourrait en faire usage , pour simplifier , dans ce cas , la valeur de
Tang.p.

J. D. G.
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ordonnée suivant les puissances de cette inconnue, qu'on suppose
toujours entières et positives ? son premier membre est nécessairement
décomposable en facteurs simples de la forme réelle x~$ja + ou de
la forme imaginaire x^a^bs/ i.

2. L'illustre Lagrange, dans son beau Traité de la résolution des
équations numériques > démontre le premier de ces deux théorèmes en
supposant le second.

« Soient, d i t - i l , u, p , y , . . .« les racines de l'équation ; elle
» se réduira , comme on sait, à cette forme (x—u){x—&)(x—y).... = o.
» Or , soient p , q les nombres qui , substitués à x , donnent des
» résultats de signes contraires, il faudra que ces deux quantités

» soient de signes contraires ; par conséquent, il faudra qu'il y ait i
» au moins, deux facteurs correspondans, comme p—** et q—«f

» qui soient de signes contraires ; donc il y aura , au moins y une
» des racines de l'équation , comme «» , qui sera entre les deux
» nombres p et q , c'est-à-dire , moindre que le plus grand de ces
» deux nombres 9 et plus grande que le plus petit ; donc cette
» racine sera nécessairement réelle. »

3. Lagrange convient lui-même, dans ses notes , que cette dé-
monstration peut laisser du doute , relativement aux facteurs ima-
ginaires , ce qui l'oblige à en donner une autre qui n'est pas sujette
à la même difficulté.

« Représentons, dit-il 5 en général l'équation proposée par P—Ç=o,
» P étant la somme de tous les termes qui ont le signe •+• , et
» —Q la somme de tous les termes qui ont le signe — . Sup-
» posons que les deux nombres p , q soient positifs , et que q soit
» plus grand que p. Si , en faisant x^p , on a P—-Ç<o , et
» et qu'en faisant x = q > on ait P n Ç > o , il est clair
» que , dans le premier cas , P sera plus petit que Q , et
» que , dans le second 5 P sera plus grand que Q. Or , par la
» forme des quantités P et Q, qui ne contiennent que des termes
» positifs , et des puissances entières et positives, il est évident
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» ces quantité'* augmentent à mesure que x augmente , et qu'en
» faisant augmenter x , par tous les degrés insensibles , depuis p
» jusqu'à q 9 elles augmenteront aussi , par des degrés insensibles,
* mais de manière que P augmentera plus que Q> puisque de plus
» petite qu'elle était, elle devient la plus grande. Il y aura donc
» nécessairement un terme entre les deux valeurs p , q où P éga-
» lera Q : comme deux mobiles qu'on suppose parcourir une même
» ligne , dans le même sens , et qui , partant à la fois de deux
» points dîfferens 5 arrivent en même temps à deux autres points ,
i> mais de manière que celui qui était d'abord en arrière se trouve
» ensuite plus avancé que l'autre , doivent nécessairement se ren-
» contrer dans leur chemin. »

Lagrange étend ensuite le même raisonnement au cas où p et q
seraient négatifs , et à celui où ils seraient de signes diflerens , ce
qui est facile.

4* Cette démonstration me parait très-rigoureuse, et celle qu'on
trouvera ci-après n'en est qu'une sorte de commentaire ; mais l'ex-
périence m'a prouvé que les jeunes-gens ont beaucoup de peine à
la saisir telle qu'elle vient d'être présentée ; qu'ils se font mille
difficultés sur la comparaison de deux fonctions à deux mobiles (*) ,
et qu'ils.se plaignent sur-tout, avec quelque apparence de raison,
de ce que la considération des quantités infiniment petites , quî
leur est interdite, dans une partie des mathématiques, quoiqu'elle
pû.t leur épargner bien des calculs, est permise et devient même,
en quelque sorte , nécessaire dans celle-ci.

(*) Si l'on voulait faire servir la géométrie à rendre plus palpables les vérités
purement algébriques , on pourrait , dans le cas dont il s'agit ici, raisonner de la
manière suivante. Soient posés j = P , y ' = Q . Chacune de ces équations, qu'on
peut rapporter à la même origine et aux mêmes axes , exprime une courbe
continue : ce qu'il est aisé de démontrer , sans supposer connue la théorie gé-
nérale des équations. Or , y étant actuellement moindre que y1 ne peut ensuite
la surpasser , sans que le* deux courbes se coupent , et qu'il y ait conséquerament
une valeiv de JC qui donne y=.y(.
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5. Le second théorème fondamental exige des connaissances plus

profondes , ce qui oblige les analistes à ne le donner que vers la
fin de la théorie des équations , tandis qu'il devrait être placé au
commencement , puisqu'on en suppose la vérité dans toute cette
même théorie. Je crois donc rendre un service de quelque impor-
tance aux élèves qui suivent les classes de mathématiques spéciales,
en démontrant ici, d'une manière facile , les deux théorèmes dont
il s'agit, sans rien supposer au-delà des connaissances qu'on a du,
ou du moins qu'on a pu acquérir avant de s'occuper de cette matière.

6. Hypothèses et définitions. Les équations que nous considérons
ici sont de la forme

Les exposans 772 , m—1 , m—2 , . • . . . sont supposés entiers et po-
sitifs. Les coeiïiciens A 7 B , C , , , . . , au nombre desquels nous
comprenons le terme connu T , sont réels , mais peuvent être in-
différemment entiers ou fractionnaires > positifs , négatifs ou nuls.

Tout nombre qu i , mis à la place de x, satisfait à l'équation9

test dit 9 racine de cette équation.
Les racines des équations peuvent être déterminées d'une manière

«xacte ou d'une manière approchée.
Une racine est déterminée d'une manière exacte , lorsqu'un nombre

substitué à x réduit absolument le premier membre à zéro. Une
racine est déterminée d'une manière approchée , lorsqu'on a une suite
de nombres qui , substitués successivement à x, rendent le premier
membre de plus en plus petit .» et peuvent le rendre moindre que
toute grandeur donnée , quelque petite qu'on la suppose.

7. THÉORÈME. Si un nombre a , mis à la place de x , dans
une équation de la forme ci-dessus, satisfait à cette équation, o u ,
ce qui revient au même , en réduit le premier membre à zéro y

ce premier membre est exactement divisible par x—a.
Démonstration. Soit exécutée 9 autant que possible 3 la division

par
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par x—*a ; il suit des premiers principes de cette opération que le
reste R , s'il y en a un , ne renfermera pas x 9 et que , le quo-*
tient partiel obtenu indépendamment du reste étant designé par P >

le quotient total sera P-\ ; de manière qu'on aura
x x—a *

R
=P-4- .

Ces quantités égales, multipliées Tune et l'autre par x—a7 donneront
des produits égaux ; donc

Or , par hypothèse, l'un et l'autre membres de cette équation doivent
se réduire à zéro , lorsqu'on y met a pour x , ce qui d'ailleurs
n'apporte aucun changement à R 9 puisque R ne renferme pas x.
Nous aurons donc

ou o =
c'est-à-dire , que le reste de la division est nul , ou que la divi-
sion est nécessairement exacte. Cette démonstration est de d'Àlem-
bert. (*)

8. Remarque. En exécutant réellement la division par oc—a, on
trouvera au quotient

quantité qu'on peut mettre sous la forme

(*) Cette démonstration prouve qu'en général , quel que soit a > le reste cle-
la division du premier membre de l'équation proposée par x—a y n'est autre
chose que ce que devient ce premier membre , lorsqu'on y met a au lieu de
x ) d'où il résulte que ce reste sera ou ne sera pas nui , suivant que a
ou ne sera pas racine de l'équation»

J. D. G.
Tom. IF. 2%
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o. PROBLÈME. Former une équation, de tel degré qu'on vaudra f

qui ait au moins une racine réelle ?
Solution. Prenez un polynôme quelconque de la forme

ain+A^n'l+Bam'%+ +T ;

m étant un nombre entier positif , moindre d'une unité que le
nombre qui exprime le degré de l'équation demandée. Multipliez ce
polynôme par % moins ou plus une quantité réelle et connue a ;
et égalez le produit à zéro. Le problème sera résolu ; car , en pre-
mier lieu, l'équation ainsi formée est nécessairement du degré 772+1
qui ? par hypothèse, est le degré prescrit; et, en second lieu , Tune
des deux quantités -\-a ou —a est évidemment racine de cette
équation.

10. Corollaire. Il y a, dans tous les degrés, une infinité d'équations
<jui ont au moins une racine réelle.

11. THÉORÈME. Il est possible qu'une équation du degré 772
ait 772 racines réelles.

Démonstration. Soit une équation du degré 772, laquelle ait une
racine réelle , ce qui est possible (10). Le premier membre de cette
équation , savoir: #m+^#m~ I+ifom~ 1+.. . . . . -+-ï \ sera divisible par
cc-a, et le quotient sera de la forme xm~ l-\-A/xm-1~\-B/xm~i+...+T/',
ainsi l'équation primitive sera changée en celle-ci

(x—a)(xm-l +A/xm'% ArBfxm' * + +T0 = o.

On y pourra donc satisfaire de deux manières différentes ; première-
ment en faisant ce—a=o , secondement en faisant

Or \ si cette dernière équation a une racine réelle b , ce qui est
possible , on pourra la mettre sous la forme

et l'équation primitive deviendra
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S*îl arrive encore , ce qui est toujours possible , que l'équation

ait Une racine réelle c , l'équation primitive deviendra

(pc~a)(x—b)(x—c) (xm' * -{-A'"*"1' <B/tfxm~ * +.. . .+T t f) =0.

E t , si Ton continue à supposer que 5 le dernier facteur étant égalé
à zéro , il soit toujours possible de satisfaire à l'équation résultante ,
supposition qui , comme nous l'avons vu , n'a rien d'absurde ; il
devient évident que le premier membre de l'équation primitive sera
décomposable en autant de facteurs simples qu'il y a d'unités dans
l'exposant m. Il devient donc aussi évident que cette équation aura
772 racines réelles ; car elle sera nécessairement satisfaite , quel que
soit celui de ces m facteurs qu'on rend égal à zéro.

12. Corollaire. Nous sommes donc en droit de conclure, non
que toute équation du degré m ait m racines réelles, et que son
premier membre soit décomposable en 772 facteurs simples ; mais
qu'il existe une infinité d'équations du degré quelconque m qui
ont 772 racines réelles , et dont le premier membre est décomposable
en m facteurs simples. Chacun peut même composer à volonté,
autant qu'il lui plaira , de ces sortes d'équations.

13. LEMME. Le produit de deux ou de plusieurs facteurs sim-
ples , tels que x—a , x—b ? x—c , , ne peut être exactement
divisé par un facteur simple , qu'autant que ce facteur est un de ceux
qui ont concouru à former ce produit.

C'est ce qu'on démontre dans la théorie des nombres* (*)

C) Soient M , N deux facteurs algébriques, dont le produif MN est divisible
par le facteur simple #—a ; je dis que l'un , au moins, des deux facteurs M y

JY est divisible par x—a.
En effet , soit exécutée , autant que possible 9 la dhision de M par «—s;
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- Corollaire. Si le premier membre de l'équation xm-\*Âxmm%

- — o e s t u n e fois décomposé en m facteurs simples , on

ne saurait le décomposer en d'autres facteurs simples différens des
premiers. Il est donc possible qu'une équation du degré m ait m
racines ; mais elle ne saurait en avoir un plus grand nombre.

i5 . Remarques. I. On démontre ordinairement cette vérité de la
manière suivante :

Soit l'équation xm-\-ÀxmMl-\-Bxm~l-\- + 2 ' = o , décomposée en
172 facteurs simples , de manière qu'on ait

{x—a)(x—b){x—c)........ (x—r) = o ,

et soit x—« un diviseur exact de xm+Axm^l+Bxm"t+ +ï\
lequel diviseur ne soit égal à aucun des m diviseurs #—a 3 x—fr9

ce —c . . . . . . x—r.
Ce diviseur donnera un quotient de la forme xm" l-\-A;xm"%

e* nous aurons, par conséquent,

le reste H » s'il y en a un, ne contiendra plus x , et l'on aura «- = P + ;
x—a x—a

ce qui donne
M=zP(x—a)-\-R.

Soit pareillement exécutée la division de IV par x—a , le reste iS , s'il j en a
tm , ne contiendra plus x \ et l'on aura

Donc
MN=PQ(x— ay-+(QR+PS)(x—a)+RS.

Et , puisque MN est divisible par x—a , il faut que RS soit nul ou divisible
par x—a ; o r , il ne peut être divisible par a:—a , puisqu'il ne renferme pas x \

on doit -donc avoir nécessairement 115=0 ; et par conséquent i i = o ou £ = o ;
c'esl-à-dire , que la division , soit de M soit de N , par x—a ne doit absolument
laisser aucun reste.

Il suit de là que , si une formule algébrique est le produit de plusieurs fac-
teurs simples x-—*a , #-—b 9 x—c,...., et qu'un facteur simple a— h divise exac-
tement ce produit , ce facteur #•—mh est identique avec quelqu'un des facteurs
#—- a , x~- b , x—c
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Or , #-—0 est un diviseur exact du premier membre de cette équa-
tion ; il doit donc être aussi un diviseur exact du second membre ;
et , ne divisant pas le facteur x—* , il divise nécessairement l'autre
facteur xm~ l+A/xWPt z-\-B/xmm * + -4-T7.

Soit exécutée cette division ; il en résultera

Le même raisonnement fera trouver ensuite

(x-cX*-d)Q*-e)...(x-r)= (x-*)(xmm'+A'"xm-4+B'"xm~ * +...+T'") »

e t , en poursuivant toujours ainsi, on arrivera enfin à la conclusion
x—r~x—*; ce qui est contre l'hypothèse ; cette hypothèse ne peut
donc subsister ; et il n'existe conséquemment d'autres diviseurs simples
de xm-{-A%m~l'+'Bxm~ 2-4~.....+jTque les m diviseurs simples x—a>
x—b ? x—c , x—-r.

II. Il est aisé de voir que ce raisonnement est inutile ou faux.
Il est inutile, si les facteurs x-~a, x—b, x—c^ x—r sont

considérés comme ils doivent l'être, c'est-à-dire , comme des fac-
teurs premiers.

Il est faux , s'ils ne sont pas considérés comme tels ; car s'ils ne
sont pas premiers , on n'est pas en droit de conclure , de ce que
x—a divise le produit (x— *)(xm~l~\-A/xmmZ+B/xm* *+...,+7?) ,
et ne divise pas l'un de ces deux facteurs, savoir or—«} qu'il divise
nécessairement l'autre facteur. Le nombre 10 5 par exemple , qui
ne divise ni 5 ni 8 , divise pourtant le produit 4° de ces deux
nombres. Pareillement la formule x*—a2 , qui ne divise aucun des
trinômes xz—zax^a* et x*-\-zax-\-a* divise pourtant leur produit

(*) Le Corollaire an n*° i4- peut èlre établi directement , d'une manière très-
, mdépengamniont du JLemrne du «,° j3,
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16. PROBLÈME. On a un polynôme Axm-\-Bxm~ l~\-Cxmm l-f ..-

dont tous les termes sont positifs ; et Ton sait qu'un nombre a ,
substitué à x 7 dans ce polynôme a donné un résultat k. On demande
un nombre £ tel que ? si Ton substitue # + £ pour x ? dans ce
même polynôme, le nouveau résultat soit plus grand que k et moindre
que k-\~h , h étant une quantité positive donnée, et qui peut être
prise aussi petite qu'on voudra ?

Solution. Mettons ? en effet , a+p pour x , ce qui nous donnera

Axm = Aa™ + - A f - ' +
I

I 2

Or nous avons , par hypothèse ;

en désignant donc respectivement par P, Q, R 9 les coeiïîciens
de /s, /32 , /33

 #...... , tout se réduira à prendre /3 de manière que

Tout se réduit, en effet , à prouver l'absurdité de la prétendue identité

Vxm~i + +T02

Or, cette absurdité s'aperçoit sur-le-champ , en j faisant x=a ; elle devient
alors * en effet

en sorte qu'elle exprime que le produit d'une suite de nombres tous di
de zéro est égal à zéro.

Cette remarque est de M. Fauquier , ancien élève du lycée de Nismes , main-
tenant élève à l'école du génie.

J. D. G.
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soit moindre que h.
Soit S le plus grand des coefficiens P , Q, i?, ......... A ; il est

clair que , si nous trouvons pour £ une valeur qui rende

Sp-{-Sp*+Sp*+ t# + 5 ^ moindre que h ,

nous aurons ? à plus forte raison ,

Fp+Qp2-\-B^-\- + ^ m moindre que h.

Mais

I—/3 i—/i

puis donc que cette quantité doit être moindre que h , nous n'avons

qu'à faire =h ; ce qui donne /3=-—-; et le problème est ré-

solu.

Car i.° p est évidemment moindre que l'unité ; d'où il suit que

est u n e quantité positive ? et qu'ainsi le résultat de la

substitution de #-4-/3 sera plus grand que h.
2.* Ce nouveau résultat est moindre que k-\-fis puisque = h }

et que ce qu'il faut retrancher de pour avoir l'excès du nou-

veau résultat sur le premier , ou plutôt une quantité plus grande

que cet excès , est — , quantité positive et moindre que h.

Exemple, Soit proposé le polynôme ^3+5^a+4-;r"f"iri C3U^ lors-
qu'on y fait ar=4 ? donne le résultat 172. Et soit demandée pour
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x une autre valeur 4+£ > te^e que Ie nouveau résultat soit plus
grand que 172 et moindre que 173.

La substitution de 4+Z3 à oc donne

4* =44+ 4/3

12 = 12.

Le plus grand des coefïïciens des différentes puissances de £ est
évidemment 3«42+5.2.4+4=92 = 5 ;

Ce qui donne *= £ et *+A = 4 + £ = i l l .
Le résultat de la substitution est T 7 ? + 8 O * * * ° .

B^nitat FIus grand que 172 et moindre que 170.

17. Remarques. I. Si au lieu de prendre 0 = - , on le prend en-

core plus petit, l'accroissement du polynôme sera moindre, mais de-

meurera positif.

IL S désignant toujours le plus grand des coeiïiciens P, Q9 R^A,
S$ iS/s

Taccroissement du polynôme sera moindre que
r J ^ I—i3 1—/

III. 1S7 désignant, au contraire? le plus petit de ces mêmes coeffi-

ciens, 1 accroissement du polynôme sera plus grand que *

Cet accroissement sera donc compris entre les deux limites finies

et

18. PROBLÈME. Étant donnés deux polynômes

dont tous les termes sont positifs ; et étant donnés , de plus , deux
«ombres a , b , tels que le premier étant substitué à x , dans l'un
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et dans l'autre polynômes , donne pour P un résultat plus grand
que pour Q , et que le second étant substitué à x , dans l'un et
dans l'autre polynômes , donne pour Q un résultat plus grand que
pour P ; trouver, entre a et b ? un nombre qui 7 mis à la place de x,
dans l'un et dans l'autre polynômes , donne , pour P et pour Q ,
deux résultats dont la différence soit moindre qu'une certaine quan-
tité h y quelque petite qu'on la puisse prendre ?

Solution. Substituons <z-4-/3 à x ; ordonnons par rapport a p, et soit
S le plus grand des coefficiens des différentes puissances de p ,
dans l'un et dans l'autre polynômes , considérés comme n'en formant

qu'un seul -, puis prenons p = —

En substituant a-\-p , au lieu de a , chacun des deux polynômes
recevra une augmentation moindre que h.

Soit fait a-^-ft — a' y et substituons tf'-j-/^ à x , dans P et dans Q;
nous trouverons pour pf une valeur telle que le nouvel accroisse-
ment , tant de P que de Q , sera encore moindre que //.

En continuant à opérer de la même manière, nous ferons croître
P ;'t Q , à chaque opération ? d'une quantité moindre que h ; et *'
CL̂  hs oîssemens n'étant pas infiniment petits , puisqu'ils sont tou-
juurs cor».pris (17) entre deux limites finies, II ne pourra y en avoir
qu'un nombre fini entre a et b ; un nombre fini d'opérations suf-
fira donc pour donner deux résultats consécutifs tels que P , étant
encore moindre que Q dans le premier, devienne plus grand que Q
dans le second ; or , en passant du premier état au second ? P et
Q recevront une augmentation moindre que h ; donc leur différence,
tant dans le premier que dans le second état , sera moindre que h ;
donc le problème sera résolu.

19. THÉORÈME. Si deux quantités positives a , b , successivement
substituées à l'inconnue , dans une équation quelconque , donnent
des résultats de signes contraires 7 cette équation a une rqeine posi-
tive, comprise entre a et b.

Démonstration, Trouver une racine positive d'une équation ; c'est
Torn, IF. 29
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(6) trouver un nombre positif qui , mis à la place de l'inconnue ,

rende la somme des termes positifs égale à la somme des termes

négatifs, ou rende la différence , entre ces deux sommes, moindre

que toute quantité assignée quelconque.

Or , soient P , Q ces deux sommes ; puisque a et b donnent des

résultats de signes contraires , il faut que a rende P plus grand

que Q , et que b , au contraire , rende Q plus grand que P , ou

réciproquement. Mais nous venons de prouver que , dans cette hy-

pothèse , on peut toujours trouver , entre a [et b , un nombre qui

rende la différence , entre P et Q , moindre que toute quantité don-

née ; on peut donc toujours trouver une racine réelle et positive de

l'équation proposée , et cette racine est entre a et b.

20. THÉORÈME. Si deux quantités négatives —a et —b % successi-

vement substituées à l'inconnue , dans une équation quelconque ,

donnent des résultats de signes contraires , cette équation a au moins

une racine réelle négative , comprise entre —a et —b.

Démonstration. Soit fait x^=—y. Nous aurons une équation en y

dont les racines positives seront égales aux racines négatives de l'é-

quation en x. Les résultats seront d'ailleurs les mêmes , si l'on fait

a? ——a ou y=.a 5 x^=-—b ou y=.b ; puis donc que —a et —by

substitués à x , donnent des résultats de signes contraires , a et b

substitués à y donneront aussi des résultats de signes contraires.

Donc l'équation en y aura au moins une racine réelle et positive ,

entre a et b ; donc l'équation en x aura au moins une racine réelle

et négative , entre •—a et —b*

21. Corollaire. On prouvera, avec la même facilité , que , si

deux quantités de signes contraires , -\-a et —b , donnent des ré-

sultats qui soient aussi de signes contraires 5 l'équation proposée aura

nécessairement une racine réelle comprise entre entre o et -\-a ou

entre o et — b , et par conséquent entre a et —b. (*)

(*) M» Encontre a négligé de remarquer que son problème du n.° 18 four-
nirait , au besoin , une méthode d'approximation , pour une racine dont on aurait
éè]k deux limites» J» T). G*



DES ÉQUATION S.
22. PROBLÈME. Etant proposé un polynôme de la forme

xm+Axm'mml-+-£xm-t+ + ï \ trouver un nombre M qui, subs-
titué à x, rende le premier terme plus grand que la somme de
tous les autres ?

Solution. Soit S le plus grand des coefficicns A , B , T. Si
nous parvenons à rendre xm plus grand que Sxm~^-\-$xm~'L'\-Sxmm%-\r

-f-5 , a plus forte raison aurons-nous rendu &*1 plus grand que
Axm-l

O r ,

— i Sx™ S

t—i X'—i a;-—I

Sxm S
II faut donc que xm soit plus grand que ——. Pour cela 7

nous n avons qua faire # m = , ou bien i z ce qui donne
#—i o;-^-i

,a;=i-f-5. C'est-à-dire, que le nombre M qui ^ mis à la place de
# , rendra le premier terme plus grand que la somme de tous les
autres est i + 5 , ou le plus grand des coefficiens du polynôme
augmenté d'une unité,

2.3. THEOREME. Toute équation de degré impair a au moins
une racine réelle de signe contraire à son dernier terme.

Démonstration. Soit ce dernier terme négatif , et soit mis zéro
pour x ; le résultat sera négatif. Soit mis ensuite M pour x ; le
résultat sera positif. Donc l'équation aura au moins une racine réelle
positive , comprise entre o et -4-ifef-

Soit , au contraire , ce dernier terme positif , et soit mis zéro
pour x \ le résultat sera positif. Soit mis ensuite — M pour x ; le
résultat sera négatif. Donc l'équation aura au moins une racine réelle
négative , comprise entre o et —M.

24, THÉORÈME. Toute équation de degré pair , dont le dernier
terme est négatif ; a au moins deux racines réelles ? Tune positive
et l'autre négative.
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Démonstration. Soient substitués successivement o et -}-$f à la

place de l'inconnue; les résultats seront de signes contraires : 11 y
aura donc une racine réelle entre o et -f-jISf.

Soient ensuite substitués successivement o et —M à la place de
Pinconniie; les résultats seront encore de signes contraires; il y aui a

donc encore une racine réelle entre o et *—M.
25. Corollaire. Toute équation qui n'a pas de racines réelles est

de degré pair ? et son dernier terme est positif.
Ceci ne veut pas dire que toute équation de degré pair, dont

le dernier terme est positif, n'a pas de racines réelles,
26. LEMME. Toute fonction dans laquelle entrent les quantités

imaginaires \/~ , V"'—^ 5 V^-"* » • • • * %V~~î > P e a t ê t r e ramenée à
la forme A-\-B \/ ^ 7 .

Démonstration.

IL (a+t /=!)—(*'

«

/ 3 1 m 2 772—3

y. { a ( m a m ~ l h * +

yi. ^
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~fvM • — •——• ~ + •• ) v—*
\ m a m zm om a3 J

vu. L'on a ({/—ly
n-I=±s/—I, d'où infy±s/^ri = t/r:

r ; et ( / Z ^ ) 4 1 1 * ^ - , , d'où 4 * ^ T

^r ; donc , en général, \/\f^l ou

VIII. Soit a-=.i^rp ? on aura
m . m m — I . m 772—1 m—2

+
 2±

Soit fait ensuite 772= ̂ / HT 9 il viendra

IX. De là on conclura aisément

27. LEMME. Dans toute équation ^
r r o , la valeur de l'inconnue est une fonction des coefficiens

^ ? B, C , 27.
Démonstration. Une quantité est dite fonction d'une ou de plu-

sieurs autres , lorsque sa valeur dépend de celles qu'on attribue à
ces autres quantités ; or, il est évident que la valeur de x dépend,
et dépend même uniquement, lorsque m est donnée, de celles des
coefficiens A> B, C,....l\

28. Remarque. Quoiqu'on sache ? d'une manière certaine , que x

(*) Yoj. les pages 20 et 14.7 de ce volume.
J. D. G.
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est fonction de A, B , C , 3H, on ne connaît la forme de cette
fonction que pour les quatre premiers degrés. 11 est seulement démontré
que la fonction qui donne la valeur de l'inconnue P par les coef-
ficiens A > B , C 5... T , dans une équation du degré m , renferme toutes
les fonctions qui donnent les valeurs de Finconnue 9 dans les équa-
tions de tous les degrés inférieurs. Car x étant une fonction de A,
B ? C 5 . . . . r laquelle change de valeur , et non de forme ? lorsqu'on

y fait varier A, B , C , T, nous pouvons y supposer T = o ;
et , dans ce cas , les valeurs de oc seront , outre la valeur zéro,
toutes les valeurs que peut donner l'équation du degré immédiatement
inférieur. Ainsi, la fonction qui donne les valeurs de x9 dans l 'é-
quation générale du degré m , renferme la fonction qui donne les
valeurs de ^ , dans l'équation du degré m—i ; celle-ci renferme la
fonction qui donne les valeurs de x9 dans l'équation d*i degré m—2 $
et ainsi de suite.

29. THÉORÈME. Toute équation qui n'a p@int de racines réelles,
en a au moins deux imaginaires de la forme a~irb\/~IIIi.

Démonstration. Une équation qui n'a point de racines réelles est
nécessairement (26) de la forme

Je désigne le dernier terme par 3P ? pour mieux faire entendre qu'il
est essentiellement positif.

Soit fait xxm=z.—ylm ou x=y*yZ^.

Nous aurons en substituant >

B
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Soient faits

nous aurons

Or , il a été démontré ci-dessus (2^) que , si Af, B/
 ? ...... étaient

des quantités réelles 7 il existerait une fonction de Af
 % B/^,....,...,,

laquelle donnerait au moins deux racines réelles pour y. A/, B;,...
n'étant pas réelles , les deux valeurs données par la fonction pour-
ront n'être pas réelles ; mais , de quelque nature qu'elles soient 5 il
suffira de les multiplier par •y*'—7* et nous aurons pour a? deux va-
leurs correspondantes, compliquées 5 à la vérité, de différentes sor-
tes d'imaginaires; mais qu'on pourra toujours ramener (26) à la forme

(*) II serait peut-être aussi exact , et il paraîtrait du Bioins un peu pl«#
simple de raisonner comme il suit.

Soit toujours l'équation proposée

Soit fait

T>—-*U* ou V=Tyf^l
et alors Féqualion proposée deviendra

Or, si U était réel, il est démontré qu'alors il existerait au moins deux fonction*
réelles de A , B, ,.,.. U qui pourraient être prises pour valeurs de a\ Soit

* = F ( A y B , ....£7)

Tune de ses valeurs. Si U n'est pas réelle , elle deviendra

x=F(A,B, Tyf^T),
et pourra cesser elle-même d'être réelle ; mais elle ne devra pas moins en ré-
soudre l'équation proposée , et sera de plus (26) de la forme a^byj—i. Ceci
rentre , à peu près , dans le raisonnement qu'on trouve k la note de la page
91 de ce volume.

J . D. G.
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3o. THÉORÈME. Si une équation, dont les coefEciens sont réels ,

a une racine égale à a-\-b\/~^î ? elle en a nécessairement une au-
tre égale à a—by/^î.

Démonstration. Puisque a+b\/^T est racine de l'équation pro-
posée . le premier membre de cette équatioji doit être divisible par
#—b—\/—i ; et ?

e en exécutant la division par ce diviseur, on ob-
tiendra (26) un quotient de la forme P~J-Ç\/~*'

Or, le produrt de x—a—by/^i par P + Ç l / - ~ î e s t

quantité qui , par hypothèse , doit être nulle. Egalant donc séparé-
ment à zéro la partie réelle et la partie imaginaire, nous aurons les
deux équations

entre lesquelles éliminant P , il viendra

donc #— û—^rbi/^i et #rz=

Donc, si la proposée a une racine x~a-\-b\/m^\ ? elle en a né-
cessairement une autre oc=^a—b\/ZIl% (̂ )

(¥) On peut encore démontrer de celte autre manière que , généralement >
toute quantité réelle R divisible exactement par a<-\-b\J—i l'est aussi nécessaire-
ment par a—£^-— 1 , et par conséquent par le produit de ces deux diviseurs , si
du moins a et b sont premiers entre eux.

Concevons que Ton fasse la division de R par a-\-b\f-~ t } les termes du quo-
lient ne pourront être que des quatre formes suivantes

lesquels seront tous conséquemment réductibles à l'une des deux formes g et

^\/—1 ; par où4 Ton voit que ce quotient pourra être représenté par
On aura donc

et, puisque R est çéçlle ? çn devra avok
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3i. THÉORÈME. Toute équation qui n'a pas de racines réelles

a autant de racines imaginaires de la l'orme o~2jby''— i qu'il y a
d'unités dans le plus haut exposant de l'inconnue.

Démonstration. i . e Toute équation qui n'a pas de racines réelles
est de degré pair (25).

2.0 Toute équation qui n*a pas de racines réelles en a au moins
deux imaginaires , telles que , Tune d'elles étant représentée par
a-\-b\/—i , l'autre peut être représentée par a—b\/—i (3o).

3.° Le premier membre de l'équation proposée étant divisible par
ce—a—b\f/m^l et par a:—a-\-b\/'^i , est nécessairement divisible
par le produit de ces deux diviseurs, c'est-à-dire ? par x*—2.ax-\-a*-\-b'2' ;
or , ce produit y étant réel , donnera un quotient réel de la forme

4-° Ce quotient peut être égalé à zéro , ce qui donne une nou-
velle équation, laquelle étant exactement dans le cas de la précédente a

=zo et ap—bg =

Présentement on a

ou?en vertu des deux équations ci-dessus

donc cf—l^—i est diviseur de H.

Présentement , pour que R ne fut pas divisible par le produit (a-^hyj—i)

(a—*Z^— i) , il faudrait que les deux facteurs de ce produit eussent un diviseur

commun j et, comme tout diviseur commun à deux quantités divise aussi leur

somme et leur différence , il faudrait que ce diviseur divisât aussi sa et 2£\A— i
ce qui ne peut avoir lieu si , comme nous le supposons , a et b sont premier*
filtre eux. «7. D. G.

Tom. IF. 3o
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comme ell« ; deux racines Imaginaires ^ + ^ V ~ > 0'—-^V—ï"»
et a conséquemment son premier membre exactement divisible par

a + ^ / a . Le quotient sera de la forme xxmm*-\-Al!x1'mm%

et, ce quotient étant encore égalé à zéro, la nouvelle
équation qui en résultera sera encore dans le cas des deux précédentes.

5.° En continuant à raisonner de la même manière , il devient
évident que , lorsque l'exposant 2/72 sera épuisé , on aura obtenu m
couples de facteurs imaginaires , et que ? par conséquent, le nombre
de ces facteurs sera 2m , c'est-à-dire , qu'il y en aura autant qu'il
y a d'unités dans le nombre qui indique le degré de l'équation.

32. Corollaire. Le premier membre de toute équation est décomposable
en autant de facteurs simples, de l'une des formes oc^rji, x^a^rh\/"^\
qu'il y a d'unités dans l'exposant du degré de cette même équation.

PHILOSOPHIE MATHÉMATIQUE.

Extraits de deux lettres, Tune de M. J. F. FRANÇAIS , professeur
à l'école impériale de l'artillerie et du génie , et l'autre
de M. SERYOIS , professeur aux écoles d'artillerie ,

Au Rédacteur des Annales ;

Sur la théorie des quantités imaginaires.

Lettre de M. FRANÇAIS.

attendant que le mémoire de M. Argand , que vous me faites
l'honneur de m'annoncer me soit parvenu 5 je prends , Monsieur ,
ia liberté de vous indiquer brièvement les résultais auxquels j'^î
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e'té conduit par mes réflexions sur la manière d'étendre la nouvelle
théorie des imaginaires à la géométrie à trois dimensions.

D'après ma définition 4-* ( Pag» 64 ) ? les angles , tant positifs
que négatifs , sont censés situes dans un même plan que 3 pour
abréger, j'appellerai plan des xy. Il serait donc naturel de supposer
que les angles Imaginaires sont situés dans des plans perpendiculaires
à celui des ocy ; et l'analogie seule justifierait cette supposition ; mais
on peut en démontrer la légitimité comme il suit : l'angle ^rbs/^l
est moyen proportionnel de grandeur et de position entre -{-,3 et
—-Ê ; donc il est situé par rapport à l'angle + £ comme l'angle
—/3 est situé par rapport à lui ; ce qui ne peut avoir lieu qu'au-
tant que le plan qui contient l'angle ~^"$\/—i partage en deux
parties égales l'angle formé par les plans des angles -4-/2 et —p ;
or , ces deux plans se confondent en un seul ; donc le plan qui
contient l'angle ^rp^/Z^i est perpendiculaire au plan des ocy. Ré-
ciproquement, tout plan perpendiculaire à celui des ocy, partageant
en deux parties égales l'angle formé par les plans des angles po-
sitifs et des angles négatifs ; tout angle /3 , situé dans un plan
perpendiculaire à celui des ocy peut être considéré comme moyen
proportionnel de grandeur et de position entre les deux angles -4-/3
et —• £ ; donc sa valeur de grandeur et de position est ~f~/3j/^7,

11 suit de là > et de mes théorèmes 2 S et 3.c ( pag. 66 et 68 )
qu'on a

Voilà donc aussi les sinus et cosinus hyperboliques de LAMBFBT

rattache's à la même théorie que les arcs de cercles f les logarithmes
naturels et les racines de l'unité*

II suit encore de là qu'on a
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Donc

Les projections de # sur les trois axes des coordonnées , ou plutôt
ses trois composantes seront donc

Voilà ? Monsieur, le résultat auquel je suis parvenu ; mais je
vous avoue que je n'en suis pas encore satisfait. Je voudrais
élaguer entièrement la notation imaginaire , comme je l'ai fait
pour la géométrie à deux dimensions. Je m'explique : pour
la géométrie à deux dimensions , j'ai réduit les droites obliques de
la forme A-\-B\J'^î à celle a^, où a représente la grandeur ab-
solue de la droite , et u l'angle qu'elle fait avec l'axe des abscisses.
Dans la géométrie à trois dimensions, je voudrais exprimer la po-
sition d'une droite quelconque par a# , où a exprimerait la gran-

A

deur absolue de la droite , * l'angle qu'elle fait avec Taxe des
abscisses , et A celui que le plan de l'angle a fait avec le plan
des xy ; mais toutes mes tentatives à cet égard ont été jusqu'ici
infructueuses. Je désire que quelqu'un plus habile que moi vienne
h bout de completter cette lacune. Quoi qu'il en soit , je suis
persuadé que le vrai moyen d'étendre notre théorie des imaginaires
a la géométrie à trois dimensions réside dans la considération des
angles imaginaires.

Metz ? le 8 de novembre i § i 3 .
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P. S. Je viens de recevoir, à l'instant, le mémoire de M. Argand ,

que j'ai lu avec autant d'intérêt que d'empressement. Il ne m'a pas
été difficile d'y reconnaître le développement des idées contenues
dans la lettre de M. Legendre à feu mon frère ; et il n'y a pas
le moindre doute qu'on ne doive à M, Àrgand la première idée de
représenter géométriquement les quantités imaginaires. C'est avec bien
du plaisir que je lui en fais hommage ; et je me félicite de l'avoir
engagé à publier ses idées , dans l'ignorance où j'étais de leur pu-
blication antérieure. J'ai vu aussi que Sous nous étions rencontrés
dans le principe qui doit servir à étendre cette nouvelle théorie des
imaginaires à la géométrie à trois dimensions ; mais , en partant
d'un même principe , nous parvenons à des résultats différens.

J'ai dit plus haut que je n'avais pu parvenir à ramener l ^x -
pression de la position d'une droite quelconque dans l'espace à la
forme a* . Voici quels sont les motifs de cette impuissance. J'avais

essayé de faire , par analogie , ^ -
d'où Ton tire

ce qui > dans le cas de * = \&\ Â=.\*?, donne 1179 z=z

comme le trouve M. Argand. Mais, en faisant le développement du cas
général , on a

^



226 THÉORIE

expression q u i , vu la double transcendance de ses termes > me paraît
inadmissible. Sa comparaison avçc

me Ta fait rejeter entièrement ; parce que les angles * et A sont
aisés à déterminer en K et ^ , par la trigonométrie sphérique* On
trouve, en effet,

.xCo$.{p\/—7)= Cos.* ;

Ton déduit

S?n.^Cos.(v/~)
S i n =

-)*

On a donG

11 me paraît prouvé, d'après cela, que *A ne doit pas être déter-
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miné de la même manière que #*, et que l'analogie supposée entre
les angles et les lignes ne subsiste pas.

Vous avez du remarquer, au surplus , Monsieur , que M. Argand
ne démontre pas ma proposition ^^^(Cos.a-J-y—iSin.*) ; et que
cette proposition fondamentale n'est chez lui qu'une simple suppo-
sition , justifiée seulement par quelques exemples. (*)

Je n'ai pas trop vu non plus, Monsieur, pourquoi M. Argand,
n.° 11 ( pag. i44) ? introduit une nouvelle unité 5 en posant 2^=1 -,
cela m'a paru répandre de l'obscurité sur le reste de son mémoire.

Enfin j'aurais peine à passer à cet estimable géomètre son asser-

tion sur la non réductibilité de (c\/^j) * l à la forme Â+B\/^T.

On a , en effet ,

donc

qui est bien de la forme ^-f-J?^/—i. Je crois donc être fondé à

ne regarder la forme ( £ ^ / ~ ^ X qu'il assigne à la troisième coor-
donnée que comme une simple conjecture sujette à une sérieure
contestation.

(*) La démonstration de cette proposition n'était point nécessaire dans le sys-
tème de M. Argand qur a admis , comme définition de nom , que la somme
dirigée de plusieurs droites dirigées se compose de l'ensemble des expression*
de ces droites piises eu égard à leurs signes de direction ; et M. Argand n'a
fait en ceci que donner une extension fort naturelle à une dtfinition généralement
admise en algèbre.

J. D. G.
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Lettre de M. SERF ois.

J'accueille ordinairement avec faveur , mon vieux camarade , les
idées nouvelles en fait de doctrine , sur-tout lorsqu'elles se présentent
sous la garantie de noms connus honorablement, par d'autres travaux
scientifiques. Loin donc que je songe à donner aux Idées de MM.
Argand et Français sur les Imaginaires les qualifications odieuses
èiihutiles 7 d'erronées , etc. , qui ne prouveraient autre chose que
peu de courtoisie et beaucoup de prévention de ma part ; je désire
vivement, au contraire, qu'elles puissent acquérir , avec le temps 5

ce qui leur manque encore , sous le rapport de l'évidence et de
la fécondité. C'est donc dans cet esprit ; c'est autant dans l'intérêt
de la science que pour satisfaire au vœu que vous manifestez de
connaître mon opinion personnelle sur ce sujet 3 que je hasarde ici
les réflexions suivantes.

i.° La démonstration du i.er théorème de M. Français (pag. 65)
est y à mon avis , tout à fait insuffisante et incomplète. En effet,
cette proposition ? qui en fait la base : « la quantité H~#y/ZIÏ est
» une moyenne proportionnelle de grandeur et de position entre
» -\~a et —a » , équivaut à ces deux-ci , dont une ( + ^ y / H j '
moyenne de grandeur entre +a et —q) est évidente ? et dont l'autre
(w^Za\/-—i moyenne de position entre ~\-a et —a) n'est pas
prouvée , et renferme précisément le théorème dont il sragit. (*)

(*) La moyenne proportionnelle de grandeur entre -\-a et •—a n'est et ne
saurait être que a ; car , lorsqu'on parle uniquement de grandeur, on doit faire

abstraction des signes ; et \ja.a-=za. Mais lorsqu'on prend pour la mojenne dtia\Jmmmi 9
on annonce par là même qu'on a eu égard aux positions inverses de -f-a et
*—a ; la moyenne doit donc alors conserver l'empreinte de cette considération;
elle est donc , par le fait même , une moyenne de position aussi Lien que de

Cela
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Cela est d'autant plus fâcheux que tout le reste du mémoire porte

sur ce premier théorème. Quant à M. Argand ? il s'est contenté

d'appuyer cette proposition sur une sorte d'analogie et de convenance.

Or P il me paraît que , lorsqu'il s'agit de fonder une doctrine ex-

traordinaire , opposée en quelque sorte aux principes reçus 9 dans

une science telle que Tanalise mathématique 5 la simple analogie

n'est point un moyen suffisant (*). Au surplus , on doit croire que

M. Argand a porté de la démonstration de M. Français le même

jugement que moi ; car , dans le cas contraire , il n'aurait sans doute

pas manqué d'en étayer son analogie, ne fût-ce que par une simple

citation.

2.0Mais la nouvelle théorie est-elle au moins justifiée, à posteriori,

grandeur: l'interprétation du symbole rt«\/—'i est donc réduite à chercher une
droite de laquelle on puisse dire qu'elle est posée par rapport à -\-a comme
•—a est posée par rapport à elle.

M. Servois trouve évident que, dans l'ancienne doctrine :fcû^—i soit mo-
yenne de grandeur entre *^-a et —a. Il me parait pourtant difficile de concevoir
qu'une négation de grandeur , un être de raison puisse être dit moyen entre
deux grandeurs effectives.

(*) II serait sans doute fort à désirer que l'esprit humain procédât constam-
ment comme on le fait dans les traités ex proj'esso et sur les bancs des écoles ;
mais malheureusement cela n'arrive presque jamais. M. Servois, qui fient iei un
langage à peu près pareil à celui de Yiviani, dans des circonstances asse^ sem-
blables à celles-ci , a-t-il donc oublié que ce n'est qu'après plus d'un siècle de
méditations et d'essais infructueux qu'on est enfin parvenu à asseoir le calcul dit
infinitésimal sur des bases solides? et encore trouve-t-on aujourd'hui des ^ens qui
prétendent qu'on n'y a pas complètement réussi. Où en serions-nous pourtant
si l'on avait exigé des premiers inventeurs de ce ca'cui , qu'ils démontrassent rigou-
reusement leurs méthodes avant d'en faire des applications ? Il en a été exactement
de même à l'égard des quantités négatnes isok'es ; et il en sera toujours Ln.si
de toutes les théories ; l'homme les aperçoit par une sorte d'instinct , bien long-
temps avant d'être en état de les démontrer en rigueur.

J. D. G.

Tom. IF. 3*
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par de nombreuses applications ? C'est du moins de ce côte que
M. Argand semble avoir voulu spécialement diriger ses moyens.
Cependant , il convient l u i - m ê m e , avec franchise , ( page i43 )
qu'on pourrait ne voir là que le simple emploi d'une notation
particulière. Pour moi > j'avoue que je ne vois encore , dans cette
notation , qu'un masque géométrique appliqué sur des formes ana-
litiques dont l'usage immédiat me semble plus simple et plus ex~
péditif. (*) Je n'en donnerai qu'un exemple sur la première appli-
cation de M. Argand , dans laquelle il se propose de trouver les
développemens de Sin.^-j-^) et Cos,(tf-f-£). De la formule générale

je tire

et ensuite

ou

(*) Voilà encore le langage de Viviani. M, Servois compterait-il donc pour
peu de voir enfin l'analise algëbrique débarrassée de ces formes inintelligibles et
mystérieuses , de ces non-sens qui la déparent et en font , pour ainsi dire s une
sorte de science cabalistique ? 3'ai toutes sortes de raisons pour ne point lui prêter
cette pensée. Or , c'est là principalement ce que M. Argand a eu en vue, comme
il nous l'apprend lui-même , au commencement de son opuscule.

J, D. G.
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égalant donc ces deux valeurs de ^ a + ^ V " - x
 ? e t séparant le réel

de l'imaginaire 3 on aura

Cos,(,a+b)=z.Co$.aCos.b—Sin.ûSin b ,

Toutes les autres applications géométriques dérivent de la ïiiême
source , avec la même facilité. On les trouve développées dans
diiTérens ouvrages , et notamment dans !a Théorie purement algê-
hri(/ue des quantités imaginaires , par M. Suremain-de-JMisséry
( Paris 1801 ) . L'application unique à l'algèbre ( pag. 142 ) , laisse ,
suivant moi , beaucoup à désirer* Ce n'est point assez, ce me semble,
de trouver des valeurs de x qui donnent au polynôme des valeurs
sans cesse décroissantes -, il faut de plus que la loi des décroissemens
amène nécessairement le polynôme à zéro, ou qu'elle soit telle que
zéro ne soit pas , si Ton peut s'exprimer ainsi , Yasymptote du
polynôme. Je ne dirai rien de l'extension du principe dont s'occupe
M. Argand à la fin de son mémoire : d'autant qu'elle est aussi
uniquement fondée sur l'analogie ; mais je ne puis pourtant passer
sous silence une assertion que je crois inexacte. Selon M. Argand

( pag 146 ) , la forme ( \Z^î) ^ ~""I offre l'exemple le plus simple d'une

quantité non réductible à la forme générale p + q y / ~ . Ce géomètre au-

rait-il donc oublié qu'Euler a démontré que l'expression (y/H7)V—1 n>eS |

point imaginaire, mais égale à è"** ? (*)

(*) On a , en effet,

f*V—^Cos .^+v /^1 Sin.a? dou

qui y en faisant # = \ sr 9 devient
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3.° Les géomètres , exprimant assez souvent la position d'un

point sur un plan , par un rayon vecteur et une anomalie , n'ont
certainement point igncré les conséquences que fournit la définition 4-e

de M. Français , et sont conséquemment à l'abri du reproche que
leur adresse ce géomètre ( pag. 66 ). Mais , se contentant de con-
sidérer séparément la grandeur et la position d'une droite sur un
plan , ils n'avaient point encore formé Vidée composée de ces deux
idées simples ou P si l'on veut , ils n'avaient pas créé un nouvel
être géométrique , réunissant, à la fois , la grandeur et la position*

Mais , sans rien préjuger sur le fond de l'assertion de M. Argand ; assertion
qu'il n'énonce , au surplus , qu'avec le ton du doute ; j'observerai avec lui ( pag. i47 )
que , tant qu'on n'aura pas une théorie bien claire des formes algébriques , non
rigoureusement et immédiatement évaluable , il sera tout au moins permis de
regarder comme précaires les démonstrations fondées sur l'usage de ces mêmes
formes.

C'est probablement aussi l'opinion de M. Servois lui-même ; car, lui observants

il n'y a pas long-temps , que l'équation évidente

m,— . ï . (*—WO . (I—m)(l—2772)

yS+J7>=iH 1 + — r, r—
I I,£ I.2.O

devenant ? dans le cas ou m=o ,

£T=i + —+—H—^ + —L^+ .
I 1.2 1.2.0 I.2.D.4

il paraissait s'ensuivre que \/j qui, en général? se présente sous la forme dou-

blement indéterminée (-)* , est cependant égal à e ; il parut ne pas goûter ce rai-
sonnement , précisément pour les raisons que je viens d'expliquer.

J. D. G.
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La grandeur d'une droite , et sa position , c'est - à - dire , l'angle
qu'elle fait avec un axe fixe , sont deux quantités qu'on peut même
regarder comme homogènes ; or , comment les liera-t-on pour en
faire le nouvel être appelé ligne droite de grandeur et de position
ou, plus brièvement , droite dirigée ? voilà une question qui ne me
parait pas encore assez approfondie, a étant la longeur d'une droite ,
« Tare du rayon = i compris dans l'angle qu'elle forme avec un
axe fixe, on pourra, sans doute , représenter , en général, la droite
dirigée par ç(a , a) ? et il faudra tacher de déterminer la fonction
ç d'après les conditions auxquelles elle doit psspntiellomon* cntîc_
faire. Ainsi, i.° il faudra qu'à u^=o 9 «.-ZZIT? , . . . . ^=2/2*r réponde
ç(a , « ) = + # , et qu'à « = «• , *~ow , « = (2/2+i)w réponde
<p(a , *) = — a : c'est évident ; 2.0 il faudra que 5 de <p(a , *) = <p[b , /3) ,
on puisse conclure a=b + * — $ : c'est encore évident. Mais faudra-
t-il , 3.°, eomme M. Français le demande ( pag. 62 ) 9 que de la pro-

Ç(a, et) (p{c , y) . a c

portion = — on puisse conclure --- = —- et «,—/3=y—^ t
r Kb , » <Kd, *) r b d

Je ne vois pas que cela découle nécessairement de l'idée de la

fonction 0. La signification même du rapport est fort obs-
cure. Comment, en effet5 peut-on dire d'une droite dirigée qu'elle
est double, triple, d'une autre? C'est ce qu'onn'aperçoit point
à priori. M. Français lui-même paraît l'avoir bien senti , puisqu'il
ne parle de la somme des droites dirigées que comme conséquence
de ses deux premiers thcorèmes ( pag. 67 ). Cependant ? je ne m'oppose
point à ce qu'on admette cette condition comme un des caractères
essentiels de la fonction <p ; mais alors la définition complète de la
droite dirigée sera une définition nominis , non rei, ou 9 en d'autres
termes, droite dirigée sera le nom d'une certaine fonction analitique
de la grandeur et de la position d'une droite. Il suivra de là mal-
heureusement qu'on ne construit plus les imaginaires , mais sim-
plement qu'on les ramène à une même forme analitique. Quoi qu'il
en soit , voyons quollo sera cette fonction. II est d'abord clair que
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l'expression ç[a , *)~a.e*y*~'1 satisfait aux trois conditions annoncées.
En effet, on a i.° 9 [a , o) = a.
=^Cos.sr+j/-- î • Sin.w) = —ÛT ; 2.0 l'équation <p(# , *)=£>(£;is) devient

a.e*S^~~I=&*e *; ou bien , en prenant les logarithmes , séparant

et repassant ensuite aux nombres, a~b , * = £; 3.° enfin la pro-

portion ci-dessus donne , par de semblables transformations , — m —

et *—p~<y—j: Mais la forme a*e*v~~l est elle la seule qui satis-
facco à uca troîa conditions ? Je ne le crois pas ; et il me paraît
même évident qu'on y satisferait également en substituant un coeffi-
cient arbitraire à Pimaginaire \Z"^i. Ainsi la forme a>e*'^~1 ne sera,
à mon avis , qu'un cas particulier de celle que doit affecter l'ex-
pression analitique de la droite dirigée , dans sa signification de
convention. Y a-t-il encore d'autres conditions qui dérivent de cette
signification? C'est ce qu'on ne dît pas; et c'est ce que je ne vois
pas non plus.

4.° La table à double argument que vous proposez dans votre
note ( pag. 71 ) étant appliquée sur un plan conçu divisé par points
ou carreaux infinitèsimes 9 de manière qu'à chaque carreau corres-
pondit un nombre qui en serait Vindice ou la cote , serait très-
propre à indiquer la grandeur et la position des rayons vecteurs
qu'on ferait tourner autour du point ou carreau central portant + 0 ;
et il est bien remarquable qu'en désignant alors par a la longueur
d'un rayon vecteur , par » l'angle qu'il ferait avec la ligne réelle....
~~ 1 . H ô y + 1 , . . . . , par x , y les coordonnées rectangles du
point extrême opposé à Vorigine, rapporté à cette ligne réelle, comme
axe des x , la cote de ce point serait exprimée par x-\-y\/~\ , et

par conséquent 5 à cause de x=aCos.cc , y = ^Sin.«*, par a.e*^~~* .
Ainsi, voilà une nouvelle interprétation géométrique de la fonction

a&*~1 qui vaut bien , à mon avis , celle de MM, Argand et Français;
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maïs certes, on n'en conclura pas que ce soit un nouveau moyen
de construire géométriquement les quantités imaginaires , car les
cotes ou indices dont il s'agit impliquent déjà-l'imaginaire. Quoi qu'il
en soit , il est clair que votre ingénieuse disposition tabulaire des
grandeurs numériques peut être regardée comme une tranche cen-
trale d'une table à triple argument qui remplirait l'espace suivant
ses trois dimensions , et pourrait servir à fixer , de grandeur et de
position , les droites dans l'espace. Vous donneriez sans doute à
chaque terme la forme trinomiale ; mais quel coefficient aurait le 3.*
terme ? Je ne le vois pas trop (*). L'analogie semblerait exiger que le
trinôme fût de la forme /?Cos.*+yCos./3-hrCosy : * 9 £ , y étant
les angles d'une droite avec trois axes rectangulaires ; et qu'on eût

(/jCos.a+^Cos./l+rCos.&X^Cos.̂

Les valeurs de p, q , r > p/, ç/, rf qui satisferaient à cette con-
dition seraient absurdes ; mais seraient-elles imaginaires, réductibles^
à la forme générale A^Bs/^i ? Voilà une question d'analise fort,
singulière que je soumets à vos lumières. La simple proposition
que je vous en fais suffit pour vous faire voir que je ne crois, point
que toute fonction analitique non réelle soit vraiment réductible ai
la forme A-JrB\/'Z?i*

Lafère, le ^3 novembre I 8 I 3 .

(*) Mon estimable ami fait ici beaucoup trop d'honneur à ma pénétration. La
vérité est que , lorsque j'imaginai cette petite table , je n'avais aucunement la
pensée que Ton pût songer h l'étendre aux trois dimensions de l'espace , et'
que j'étais môme fort disposé à croire que les grandeurs numériques ne s'étendaient
que suivant deux de ces dimensions seulement. La lecture des mémoires de MM.
Français el Armand m'a bien fait soupçonner qu'il n'en était pas ainsi ; mais sans
m'apprendre encore de quelle manière je devais. cansUwe la table à triple ar-
gument.

J . D. G.
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QUESTIONS PROPOSÉES.

Problèmes de Géométrie.

L JL/E tous les trapèzes qui ont les deux mêmes côtés parallèles
et la même section perpendiculaire à ces côtés 5 quel est celui de
moindre contour?

IL De tous les troncs de prismes triangulaires qui ont les trois
mêmes arêtes parallèles et la même section perpendiculaire à ces
arêtes, quel est celui de moindre surface ?

I I I . De tous les troncs de parallélépipèdes dans lesquels les arêtes
latérales sont égales , chacune à chacune, et oh la section qui leur
est perpendiculaire est donnée de grandeur et d'espèce , quel est
celui de moindre surface ?

IV. De tous les troncs de parallélépipèdes dans lesquels deux
faces latérales opposées sont données de grandeur et d'espèce , et
où la section perpendiculaire aux arêtes latérales est aussi donnée
de grandeur et d'espèce , quel est celui de moindre surface ?
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ASTRONOMIE.

Essai dune nouvelle solution des principaux problèmes
cTastronomie ;

Par M. K R A M P , professeur , doyen de la faculté des
sciences de l'académie de Strasbourg.

( Deuxième mémoire. ) (*)

38. XJES élémens de l'orbite d'un corps céleste , assujetti aux lois
de la gravitation , sont au nombre de six ; savoir : la longitude
du nœud , l'inclinaison de l'orbite , la position de la ligne des apsides 9

le grand axe , l'excentricité , et l'instant du passage par l'une des deux
apsides. Trois observations complètes , en nous faisant connaître les lon-
gitudes et les latitudes géocentriques de ce corps dans trois instans don-
nés, nous fournissent six équations lesquelles suffisent pour déterminer
un nombre pareil d'inconnues. En continuant de désigner par Sin.A
l'excentricité connue de l'orbe terrestre ? nous tâcherons de repré-
senter chacune de ces six inconnues par une série ordonnée selon
les puissances ascendantes de \ ? telle que

Le premier terme A est ce que devient cette série , dans le cas
de A = O, qui est celui d'un mouvement de la terre supposé unî-

(*) Voyez la pag, 161 de ce volume.

?om. IV, n.° VHI, i .« février, 1814. * 3â
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forme et circulaire ; et on voit que ce premier terme suffira , dans
le cas où l'observateur se trouverait près de l'une des deux apsides
de l'orbite terrestre. Comme cette excentricité est une fraction assez
petite , égale à un soixantième , à peu près ; la série sera très-
convergente , même dans les cas les moins favorables. En réservant,
pour le mémoire qui suivra celui-ci, la recherche du second et
du troisième termes de la série , nous nous bornerons , dans le
mémoire actuel , à la recherche du seul premier terme que nous
avons désigné par la lettre A*

89. PROBLÈME V. Les èlèmens de Vorlite étant supposés connus ,
on demande ? pour un instant quelconque, T expression littérale de
la longitude et de la latitude gêoeentrique de F astre ?

Solution. Soient (Hg. 1)

S, le centre du soleil ;
EZAT , l'orbite de la terre ;
MBN', l'orbite de l'astre ;
SN7 , la ligne des nœuds ;
SE , la ligne des équinoxe ;
T , un lieu de la terre ;
M 5 le lieu correspondant de l'astre ;
MN une perpendiculaire sur la ligne des nœuds ;
ML, une perpendiculaire sur le plan de récliptique ; et soient

menées ST , SL , SM , LN et TL prolongée jusqu'à la renconlre de
SN' en Q , et enfin SZ parallèle à TQ , projection sur l'écliptique
du rayon visuel TM. Alors ,

Les triangles MLT? MLS,MLN seront tous trois rectangles en L;
ST et SM seront respectivement les rayons vecteurs de la terre

et de l'astre ;
L'angle MNL mesurera l'inclinaison de l'orbite ;
Et les angles ESZ et MTL seront respectivement les longitude

«t latitude géocentricjues de la planète ou de la comète.
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40. Faisant ST=a, SM=r , le triangle JJNS , rscJanglc en N,

donnera

MN = r.5/n.MSN , S N = r . CVw.MSN.

Le triangle MLN , rectangle en L , donnera ensuite

ML=MN. 5/fl.MNL=r. S/«.MSN .

NL = MN . £<w.MNL=r . 5//?.MSN . ;

et si, du point T , on abaisse sur la ligne des nœuds SN la per-
pendiculaire TO , et qu'on mène la parallèle LP à cette même ligne
SN , on aura

SO=<i.C<w.NST , TO = fl.5iB.NST ;

d'où on conclura

NO=LP=SN-SO=r. CosMSN—a . CosiïST ,

PT = TO—LN = a. 5/«.NST—r . 5/IÏ .MSN . COJ.MNL ;

on aura donc
r.5/».MSN. Cw.MNL

cet angle pourra donc être regardé comme donné , dès que l'on
connaîtra l'inclinaison MNL de l'orbite , les deux rayons vecteurs
ST—a et SM = r , et les angles TSN , MSN qu'ils font avec la
ligne des nœuds. On n'aura qu'à retrancher ensuite cet angle NSZ
de la longitude ESN du nœud , pour avoir la longitude géocen-
trique ESZ.

4i« Après la recherche de la longitude , celle de la latitude est
très-facile. Des deux triangles LTP , rectangle en P , et M L T ,
rectangle en L , on tire les deux égalités qui suivent

=LT.TangMTL ;
d'où
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LM „. ^ r.5«/i.MSN.5/n.MNL.Cof.TLP

Et telle est la tangente de la latitude géocentrique.
42. Il reste donc à exprimer les angles NST , MSN , MLN ,

ainsi que les rayons vecteurs a et r , en d'autres quantités qui ,
d'après l'énoncé de notre problème , doivent être regardées comme
données : et co sont les clémens de l'orbite de Pastre. Soient donc

j 7 l'angle ESIVI , longitude du nœud ;
£ ? l'angle MNL , inclinaison de l'orbite ;
i , l'angle BSN que fait la ligne des nœuds avec celle des apsides ;
h , le demi-grand axe de la planète ou comète ;
Sin.u , le rapport de l'excentricité au demi - grand axe ; ce qui

donne
, pour le demi-petit axe ;

in.^ , pour la distance du foyer au centre ;
a y le demi-grand axe de la terre ;
p, le temps périodique de la terre ;
ç , le temps périodique de l'astre ;

p est connu et ? quant à q 5 nous savons qu'on a

p* a3

ainsi , les deux quantités désignées par h et q pourront toujours
être remplacées l'une par l'autre.

43. A ces cinq élérnens , savoir ^ , fi , «, ^ , h , il faut en ajouter
un sixième : c*est celui qui doit fixer le moment du passage de
l'astre par son aphélie. Nous supposerons donc qu'à cet instant la
terre était au point A de son orbite. Notre sixième élément sera
donc l'angle ASN = ^ que faisait alors la ligne des nœuds SN avec
le rayon vecteur SA de la terre.

44- En continuant de désigner par <p l'anomalie vraie de Pastre,
nous emploîrons la lettre * pour exprimer l'anomalie excentrique
qui lui appartient. La longitude de la terre , supposée au point T
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de son orbite , ou l'angle EST , sera désignée par ê, ce qui rend
l'angle NST = * — j , et l'angle AST = *—)—n. Le temps employé

par la terre à parcourir Tare AT sera donc — ; et , comme -
2.7S

l'astre emploîra le même temps pour parcourir Tare B3SI de la sienne
( B étant le lieu de son aphélie ) , et pour décrire ainsi l'anomalie
Traie BSM=<p , à laquelle repond l'anomalie excentrique *, et le
rayon vecteur SM = r , on aura les équations qui suivent :

Cos.<p—Sln.^
, Sin,* = , Cos.

i—Sin.^Cos.p i— Sm.^Cûs.p i—

45. Il parait convenable de réduire toutes les formules aux ano-
malies excentriques et d'éliminer entièrement les anomalies vraies.
Cette réduction est facile ; nous aurons

46. En conséquence , si Ton désigne finalement
par A la longitude géoeentrique ,
par B la latitude géocentrique de l'astre au marnent où la terre

est parvenue au point T de son orbite *, l'angle T L P = N S Z sera
$—A ; Tangle NST 9 que fait le rayon vecteur ST avec la ligne
des noeuds SN 9 sera *~f ; l'angle MSN que fait arec cette même
ligne SN le rayon vecteur SM de l'astre sera i-}-<P ; l'angle MTL
sera B t et l'angle MNL , qui exprimera l'inclinaison de l'orbite
sera /?. Les formules des n,08 4° e* 41 ? qui nous faisaient con-
naîtee les tangentes des deux angles j"-~A et ,2? deviendront ainsi
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46. Multipliant ces deux équations par le dénominateur commun
des fractions qui forment leurs seconds membres, elles deviendront
en réduisant

.(^—À)Cos./3.

47. Arrêtons-nous à ces deux produits rCos/s+p) et
qui font fonction de facteurs dans ces deux formules , et qui ne
«ont autre chose que les deux coordonnées rectangulaires SN, MN
du point M de l'ellipse rapportées au foyer S comme origine , et
à la ligne des nœuds SN comme axe. En les désignant respectivement
par bP et bQ, et en employant les développemens donnés au n,° 4^>
nous aurons

ou bien

En employant cette notation , on aura

r v ntm , . j „ , , , 1 , L M rSin.(«4.«Sîn.it
La ligne M T , distance de 1 astre à la terre, égale a - — - = - 7 —

, . , A . èQSln.p
deviendra , par cette même notation , •—; ,

Sin.B
46- Si on multiplie la première de ces équations par Sin./3, l'autre

par Cos.£ , et qu'oit les ajoute ensemble , on aura une nouvelle
équation débarrassée de Q et ne renfermant que P seul. Multipliant
de même la première par TangJ? ? la seconde par Sin.(^—A) et
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les étant Tune de l'autre, en remarquant que (*—A)— (*—^
ce qui rend Sin.(#—^)—Cos.(«—^Sin.(^-^) = Sin.(l—*)
on aura une nouvelle équation débarrassée de P , et ne renfermant
plus que Qm Ces deux équations seront

bP C

T" ~ Cos./3-fSin.(3Sin.(<£—A)Cot.B '
bQ __ Sin.(é— i)
a ~~ Cos./3+Sin./3$in.(£—A^Cot.B

Leur forme nous met dans le cas de procéder par degrés à la
solution du problème, en le partageant dans les trois qui suivent:

,49. PROBLÈME VI. La position du plan de Forbite étant sup-
posée connue , et connaissant de plus le grand axe de Vellipse,
et Vinstant du passage par Tune des deux apsides ; on demande
de déterminer , moyennant une seule observation 9 Vexcentricité et
la position de Vaxe ?

5o. Solution. Les quantités connues du problème seront ainsi :
l'angle $ , longitude du nœud ; l'angle £ inclinaison de l'orbite ;
les angles A et B , ou la longitude et la latitude géocentrujues-,
données par l'observation; l'angle 4, longitude de la terre dans ce
même instant ; l'angle 9 que faisait la ligne des nœuds avec le rayon
vecteur de la terre5 au moment du passage de l'astre par son aphélie;
enfin le demi-grand axe b de l'orbite , et par conséquent la fraction

—. Les deux inconnues sont l'excentricité ^ et l'angle » que fait
a

la- ligne des nœuds avec celle des apsides.
5i. Les deux équations données (48) nous mettent dans le cas

de déterminer immédiatement les deux facteurs P et Q, De plus,
l'angle * étant supposé connu » on aurait , pour déterminer l'ano-
malie excentrique % , l'équation (44)

in-qui , outre cette anomalie , renferme encore l'excentricité t

connue comme elle. Heureusement elle y est réductible; car ayant (47)
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on en tire

quantité entièrement connue. En la désignant donc par R , on obtient

,
Cos.*

ce qui change notre dernière équation en
/>('—*—') = ?[>+(#—i)Tang.«].

On en tirera l'anomalie * par une simple application de la règle
de fausse position; et , après l'avoir trouvée, il ne restera plus que.
le seul angle a à déterminer. Or , des deux équations (47)

s.*—Sin eSîn,«Cos.̂  ,

on tîre

ec qui donne

Le problème sera ainsi résolu. II pourra servir à déterminer , dans
les orbes planétaires , le lieu de l'aphélie et l'excentricité , les autres
ëlémens étant supposés connus.

52. PROBLÈME FIL Connaissant la position du plan de Vor~
iite , on demande de déterminer , moyennant deux observations,
tes quatre èlèmens qui restent ; savoir : Vinstant du passage par
t aphélie > ou V angle n ; la position de la Vgne des apsides , ou
langle e ; Vexcentricité de l'orbite ? ou l'angle p ; enfin le demi-

grand
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grand axe b , duquel o.yind le rapport des deux temps périodiques
p et q au moyen de ï équation p2b3 = q2a3 ?

53. Solution. Ea conservant , pour la première observation , les
notations du problème précèdent, on marquera par un accent celles
qui se rapportent à la seconde. On désignera donc

par A, A/ les deux longitudes géocentriques \
par B y Bf les deux latitudes géocentriques ;
par x , x! les deux anomalies excentriques *p

par r ? rf les deux rayons vecteurs.
On aura ainsi

54. Les lettres P > P/, Q , Q; désigneront encore les fonctions tri-
gonométriques qui suivent

P :=Cos.gSin.^-J-Cos.«Cos.*—Sin.sSin.*

Q s=SIn -Sin.^+Sin.êCos.^+Gos.gSin.* Cos^ ,

55. On aura donc , en vertu de (48) ,

IV Cos./3Cos.(é—^)+Sin./3Sin(^—A)CoX.B

hQ

*~a ~ Cos./H-Sin./3Sin.(<$— A')QouB'

56. Ainsi , la position du plan de l'orbite ëtant supposée con-
nuo on pourra regarder comme connues ks quatre fraction*
bP bP> bQ bQf b m

J _ y —1- 9 • ; mais le rapport — est une des inconnuesy 9 ; p p

Tom. IF.
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du problème ; ce qui porte à cinq le nombre de celles que ren-
ferment les quatre équations précédentes.

57. La sixième inconnue, c'est l'angle tf5 qui fixe l'Instant du
passage par l'aphélie. La théorie de l'ellipse fournit les deux équa-
tions (44)

p(f—$—»>?(*+Sin.pSin.«) , p'/—£—^^V+Sin^Sin.*') ;
desquelles on tire 7 par une simple soustraction ,

^ - ^ z r y ^ - ^ + S i n X S i n . ^ — S i n . » ) ] .

L'angle y étant ainsi déterminé, le nombre des équations, de même
que celui des inconnues , se trouvera de nouveau réduit à cinq.

58. Les quatre équations de (54) pourront être réduites à trois,
par l'élimination de l'angle s. On a d'abord (5i)

d'où Ton tire

22—jR'nSin.^Cos.*—Cos.*') ,

59. Il conviendra de remarquer les deux expressions littérales de
PQ'—P'Q et de PPz+ÇÇ/ , que l'on obtiendra encore , entière-
ment débarrassées de l'angle ^ à l'aide des formules données (47);
savoir

P=(i+Sin.,.Cos.*)Cos.(i+f), Q = (

il en résulte

d'où Ton obtient la formule simple et remarquable
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Ainsi donc , ayant trouvé , à l'aide des formules (55) , les quan-

tités P , P/, Q, Q' , multipliées par le facteur— qui , quoiqu'in-

connu , est commun à toutes, et disparait dans la division , on en tirera
immédiatement l'angle <p'—p ; c'est l'angle décrit par le rayon vecteur
de la comète , dans l'intervalle de temps qui sépare les deux ob-
servations.

60. Si Ton développe les sinus et cosinus de $/—<p , en réduisant
tout aux anomalies excentriques , moyennant les formules (45) f

on en déduira les deux qui suivent :

PQ'—P'Q = [Sin.(y—^+(SinV— Sin.a?)Sin^]Cos^ ,

RR'—PP'—QQ' = [ 1 _Cos.(y—*)] Cos. V.

61 . Pour donner à nos formules encore plus de simplicité, faisons

il en résultera

Cos.*—.

et par conséquent

R—^=^

la dernière des équations (57) prendra alors la forme

et comme

72-4-72/—

elle deviendra finalement
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C2. Maïs n'oublions pas que la fraction —, qui multiplie P , P ' ,

Q 9 Q
/ , dans les formules (55) , est elle-même une de nos inconnues.

Faisons , pour abréger , — -=zn ; faisons de plus

P =nM , Q=nN , R =nO t

Les quantités M , N, 0 7 M/ , A 7 , O/ seront alors celles qu'on
aura pu immédiatement déduire des formules (55) , et que , par
conséquent > on pourra regarder commt connues , tandis qu'il faudra

considérer comme inconnue la fraction — = # , demêmeque — = i / w 3 .
b q

Les équations du numéro précédent deviendront donc
Sin> , (1)

) > (a)

(3)
(4)

63. Ce sont là les équations desquelles dépend la solution du
problème. Il faut employer la règle de fausse position ; et , pour
éviter les équations au-dessus du second degré, il faut commencer
par supposer une valeur numérique à l'angle x. A l'aide de cet
angle , on déterminera l'excentricité ^. Pour cela ? on divisera le
quarré de l'équation (i) par l'équation (3) , ce qui donnera

Tang.y="

64» De là 7 on passera à l'angle 4,. Posant, pour abréger*
OO'—IIM'—NN' __

mt divisant la troisième équation par la seconde > il viendra
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équation où Von traitera l'angle -̂  comme l'inconnue , et que Ton
résoudra par les méthodes connues (*). De plus , cet angle ^ étant
la demi-difFérence des deux anomalies excentriques , pour peu que
ces deux anomalies ne soient pas très-éloignées Tune de l'autre,
il sera assez petit pour que son cosinus puisse être confondu avec
l'unité , sans erreur sensible , sur-tout s'il faut vérifier le premier
essai d'une règle de fausse position. On aura ainsi

65. A l'aide des trois angles % , ^ , <$, 9 on aura , par l'équa-
tion (1)

Substituant ensuite les valeurs numériques des quatre quantités dans
l'équation (4) , on s'assurera de la différence entre deux quantités
qui , dans le cas d'une supposition exacte pour % , devraient être rigou-
reusement égales. Une seconde supposition donnera un nouveau
résultat qui , comparé au premier , servira à diriger les suppositions
ultérieures , et à conduire , par quelques essais , et par l'application
des méthodes usitées en pareille rencontre , à une valeur suffisamment
approchée de x ; e t , par suite , à celles de ^ ? ^ et n.

66. Les deux anomalies excentriques » , x; se trouveront ensuite
par les formules ÇGo) ; savoir :

I/angle 1 se déduira de Tune des deux équations (07)

Il restera donc u connaître le seul angle $ ; et on aura pour le
déterminer , Tune des quatre équations (54)»

67. Telle e t̂ donc la solution du probK-me ? dans Je cas ou la

C) ^ '0)Ç f- ^ V'^SP ^4 ^;» k*c VU1UÏÛC de to ieoucilt J . D» G,
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position (îu plan de l'orbite peut être supposée connue. Il est très-
possible de déterminer cette position à part, Indépendamment des
autres élémens de cette orbite* les méthodes qui y conduisent sont
assez connues ; et elles sont encore susceptibles d'être perfectionnées.
Toutefois nous donnerons, dans un prochain mémoire } la solution
générale et complète du problème.

GEOMETRIE PRATIQUE.

PROBLÈME.

Prolonger une droite accessible au - delà d'un obstacle
qui borne la vue, en n employant que /'équerre d'ar-
penteur , et sans Jaire aucun chaînage £

Solution ;

Par Mt SERVOIS , professeur aux écoles d'artillerie.

CROIENT À , B (fig. 2) deux des points de la direction d*une droite
qu'il faut prolonger au-delà d'un obstacle O qu'elle vient rencontrer
et qui borne la vue.

j . ° Aux points A , B , pris pour sommets, soient formés , à
volonté , les angles droits LAD,LBD, en déterminant les points L
et D de manière que de L on puisse voir au-delà de l'obstacle O.

2.0 Au point L , pris pour sommet, soit fait l'angle droit DLF ;
F étant l'intersection de LF avec BD ou son prolongement,

3.° En cheminant dans la direction de AD , soit déterminé , sur
sette droite, le sommet E de l'angle droit AEF.
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4.° Enfin , en cheminant dans la direction EF , soit déterminé,

sur cette droite, le sommet C de l'angle droit LCE , et ce point
C sera un de ceux du prolongement de AB , au - delà de l'obs-
tacle O.

On pourrait achever le prolongement, en déterminant , par une
semblable opération , un autre point de la direction AB ; mais on
trouvera peut-être plus commode de procéder comme il suit.

i.° Au point A , pris pour sommet , on formera l'angle droit
BAH.

2.0 En un point quelconque H de la direction AH , pris pour
sommet , on formera l'angle droit AHG.

3.° Cheminant dans la direction de HG , on cherchera , sur
cette droite , le sommet G de l'angle droit HGC.

4-° Enfin formant au point C l'angle droit GCK , la droite CK
sera le prolongement cherché.

La méthode qui vient d'être indiquée plus haut pour déterminer
le point C , repose sur le théorème suivant , qui est , je crois , de
Si m son.

THÉORÈME. Les pieds des perpendiculaires abaissées sur les
directions des cotes d'un triangle , d'un même point quelconque
de la circonférence du cercle qui lui est circonscrit, sont tous trois
sur une même ligne droite. (*)

(*) Ce théorème revient a celui-ci : si, sur trois cordes , partant d'un même
point d'une circonférence , prises pour diamètres , on décrit trois cercles , les in-
tersections de ces cercles deux à deux seront toutes trois sur une même ligne
droiteé Ce théorème se démontre assez simplement comme il suit.

Soit pris le diamètre qui passe par le point commun aux trois cordes pour
axe des x , et la tangente au mémo point pour axe des y \ et soient respec-
tivement

le* ^nations des trois cordes. Si r est le rajon du cercle , son équation sera
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On voit , en effet , qu'à cause des deux angles droits opposes

D E F , DLF, le quadrilatère DEFL est inscrit à un cercle ; que
par conséquent L est un point de la circonférence du cercle cir-
conscrit au triangle DEF ; d'où il suit qne les pieds À , B , C des
perpendiculaires LA , LB , LC , abaissées respectivement du point
L sur les directions ED , DF , FE des côtés de ce triangle doivent
être sur une même ligne droite.

Remarque. UÈquerre d'arpenteur est ? en général, un instrument
beaucoup moins estimé qu'il ne mérite de Tètre. J'ai taché de le
relever de son discrédit, dans mes Solutions peu connues de dijfé-

D'après cela on trouvera , pour les équations des extrémités non communes de
ces trois cordes ,

• % ' i

2.mr 2.mrr

D'où on conclura % pour les équations des cercles dont elles sont les diamètres

Les intersections cîe ces cercles , deux à deux, auront pour équations

2(i—mrmf/)r 2(1—mnrn)r

y= <\f —

Si l'on chercîie quelle est la dro'te qui passe pr.r deux quelconques de ces
trois points , on trouvera, toutes réductions fa'tes, que l'équation de celte droite est

et j. comme cette équation est sj métrique en m , m! , m'1 , on en conclura que
la droite qu'elle exprime contient à la fois les trois points,

J. D. G.

ten%
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rens problèmes de géométrie pratique (*). Mais , en particulier 9

Yequerre à miroir , exécute d'abord je crois par Adam , rappelé
ensuite 7 avec distinction , par Fallon , dans la Correspondance de
Zach , est, sans contredit , celui qui réunit le plus de proj r.eles.
Il a* sur-tout l'avantage précieux de donner, sans tâtonnement, le
pied de la perpendiculaire abaissée sur une droite accessible , d'un
point seulement visible et non accessible.

QUESTIONS RÉSOLUES.

Démonstration du théorème de géométrie énoncé à la
page 92 de ce volume ;

Par MM. BÉRARD , principal et professeur de mathématiques
au collège de Briançon > et GOBERT , élève du lycée
d'Angers.

-/ HÈORÈME. Les rectangles qui ont respectivement pour dia-
gonales deux diamètres conjugués d'une ellipse ou d'une hyperbole,
et dont les côtés sont parallèles aux deux axes de la courbe > sont
èquivalens* (**)

Démonstrations\ Les démonstrations données par MM. Bérard et
Gobert reviennent , en substance , à ce qui suit.

Soient 2a et ib les deux axes de la courbe. SI x* et yf sont

(*) In-8.° d'environ ioo pages ( an XII ) ; chez Madame veuve Courcier , h Paris»
(**) L'énoncé de ce théorème a été indiqué par M. Bérard.

J. D. G.
Uom, IF. 34
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les deux coordonnées , par rapport à ces axes , de l'une des ex-
trémités d'un diamètre , ce diamètre fera avec l'axe za un angle

y
dont la tangente tabulaire sera — \ désignant donc par xn, yN les

coordonnées de Tune des extrémités du conjugué de ce diamètre t

ce qui donnera — pour la tangente tabulaire de l'angle que formera

sa direction avec le même axe , on aura les trois équations
a2b2 , ( i )
tfb1 , 0)
= o ; (*) (3)

les signes supérieurs répondant à l'ellipse , et les inférieurs à l'hy-

perbole.
S i , entre ces trois équations, on élimine a% et l2 , comme deux

inconnues au premier degré , l'équation résultante pourra être mis©
sous cette forme

Or, il est aisé de voir que, ni pour l'ellipse ni pour l'hyperbole f

le premier des deux facteurs du premier membre de cette équation
ne saurait être nul ; d'où il résulte qu'on doit avoir , pour Tune
et pour l'autre courbes,

(*) La tangente à l'extrémité du premier des deux diamètres ayartf pour équation

et l'équation du second diamètre étant j = ^ # , pour que ces diamètres soient

conjugués Pun à l'autre , il faut que les deux droites soient parallèles ; ce qui
donoe , en effet ,

b*xf y»
. + . — . =• —- P ou ù*x/a;//m+mû*y/y//=o.

J. D. G.
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f y + j y = o , (4) ou 2x//.2y//=— zx'-zy' ;

ce qui fait voir que les deux rectangles dont il s'agit ne diffèrent
que par le signe et sont conséquemment équivalens.

M. Berard a remarqué qu'en transposant, dans les équations (3)
et (4) , et en les multipliant et les divisant ensuite Tune par l'autre ,
on en conclut les deux suivantes

±a2y/2=b2x//2 , (5) ±a2y"2 = h2xf% ; (6)
équations en vertu desquelles les équations ( i ) et (2) deviennent

x'*+x">=a* , (7) y*%+y"* = ±b* . (8)
Or, en ajoutant ensemble les équations (7) et (8), il vient

équation qui exprime la relation connue entre les longueurs des
axes d'une ellipse ou d'une hyperbole et celles de deux diamètres
conjugués.

Si , ensuite, du produit des deux mêmes équations (7) et (8) , on
retranche le quarré de l'équation (4) on aura

(xyf—x'yy — ̂ a2!?* ;
autre équation qui exprime la propriété connue des parallélogrammes
construits sur les diamètres conjugués. (*)

Remarquant aussi que les équations (1) , (2) f (3) , desquelles
résulte l'équation (4), ont lieu également lorsque 2a et 2.1, au lieu
d'être les deux axes de la courbe , sont deux diamètres conjugués
auxquels on la rapporte; M. Bérard en conclut cet autre théorème ,
plus général que le premier :

THÉORÈME* Les parallélogrammes qui ont respectivement pour
diagonales deux diamètres conjugués d'une ellipse ou d'une hy-

(*) C'est là, bien certainement, le moyen le plus simple d'arriver à ces deux
relations auxquelles la plupart des auteurs d é m e n s ae parviennent qu'à travers
des calculs assez compliqués»

J. D. G.
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pcrbole , et dont les côtés sont parallèles à deux autres diamètres
conjugués , sont équipai en s.

Nous observerons , à notre tour } que la vérité de ce théorème
s'aperçoit sur-le-champ , pour l'ellipse , en considérant sa projection
circulaire , dans laquelle les projections des deux parallélogrammes,
dont les aires sont proportionnelles à celles de ces deux figures
elîes-mémes . sont des rectangles , non seulement équivalens , mais
nu me superposables. E t , comme on passe de l'ellipse à l'hyperbole
en changeant respectivement y1 et yn en yf\/—i et yn\/—i y ce
qui ne change rien au théorème , il s'ensuit qu'il a également lieu
pour cette dernière courbe.

Solutions du problème d'architecture proposé à la
page 92 de ce volume.

JJJNONCÉ. La base et la montée d'une anse de panier , dont
le nombre des centres est 2 n + i , étant données ; construire la
demi-anse , dont par conséquent le nombre des centres sera n + i ,
avec la condition que tous les arcs de cette demi-anse soient semblables 7

et que leurs rayons forment une progression géométrique ?
Faire une application de la solution générale au cas particulier

où n = 2 , et où, par conséquent y chacun des arcs de la demi-anse
serait de 3o.° ?

Première solution ;

Par M. ÀRGAND, ~

Soient M la montée XĴ  de Y anse de panier (fig. 3) 5 B la demi-
base <?P 9 n le nombre des centres ? x le premier rayon AP , z le



RÉSOLUES.
-BQ

AP

= -^—. On aura d'abord les équations

quotient^ = ï ± = ....= ^ , « l'angle PAQ=QBR= .... =TEU

^ B R r ^ z , BC=xz(z—i) , rf)=cC-±CD ,

Tous les angles des triangles AB£ , BCc 9....dEe sont connus;
ainsi, en partant du côté AB , on déterminera successivement les
côtés A£ , bc ,...., de 5 et ?̂E , au moyen des équations précédentes
et de la proportionnalité entre les sinus et les côtés.

On aura ensuite

En faisant ? pour abréger ,

Sin./z^t

Sin,(/2—i)a—Sin.(/2—2)*—Pnmt t 7

on trouvera , réductions faites ,

+ •+ptZ+pl) ,
(0

1 z'"*+ +Pn.ïZ+Pn) .
En éliminant oc, entre ces deux équations, on a , pour la dé-

termination de z , l'équation du (n—i)

(BPn-MP, )z"~ ' +(BP,lr, —

+(BP%—MP»-l)z+(BPt— MPH)=o.

Les équations ( i ) peuvent se mettre sous la forme définie
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2.x[zn(z-4~i)S\n.jct—' (z— i)Cos. f #]Sin.i*

Jlf= ., _^_ , , —

__ [ ( r — i ) C o s . f

z2—-LSCOS. j

Lorsque n est un grand nombre , ces dernières formules sont plus
commodes que les précédentes, pour appliquer la règle de fausse
position à la détermination des inconnues.

Pour le cas de /z=3 , en posant , pour abréger

B+M-S , B—M=D ,
on trouve d'abord

et ensuite

Soient , par exemple, £ = 3 , M=2 ; d'où 5 = 5 , 13= i ; il
viendra

L'adoption des signes supérieur et inférieur donne respectivement

d'oà on conclut

en trouve ensuite, pour les autres rayons

SZ = + 2,26 7 3CZ = 9,08

le tout, en se bornant aux centièmes. Le signe négatif qui affecte
ie deuxième rayon dans le second cas , indique que ce rayon doit
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être pris en sens inverse des deux autres. Les figures 4 e* 5
indiquent de quelle manière les arcs s'assemblent dans les deux cas*

Soient encore

11 vient

En prenant les signes supérieurs 7 z devient infini. Alors x et ccz

sont nuls ; mais xz2=: 7= ;—77= = = = y/3+1. La

demi-anse se réduit donc ainsi au troisième arc ; le premier et le
second se confondant 3l"»rs avec l'origine du troisième.

Le signe inférieur donne à z une valeur indéterminée ~ ; mais
on trouve par les règles connues que cette valeur est z"=- — \^1>\ d'où
resuite une construction analogue à celle de la figure 5.

Si l'on supposait , au contraire ;

on trouverait pareillement que la demi-anse doit se réduire à
un seul arc , lequel devrait alors être le premier, avec l'extrémité
duquel se confondraient le second et le troisième, ainsi que cela
doit être d'ailleurs ; car il est évident que les suppositions B=g ,
M~h et B—h , M~g conduisent à deux constructions qui ne
diffèrent que par la situation de la courbe.

Deuxième solution ;

Par M. BÉRARD , principal et professeur de mathématiques
au collège de Briançon.

Ce problème n'est qu'un cas particulier d'un problème plus gé-
nérai qui fait partie d'un petit traité sur les anses de paniers que
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j'ai placé à la suite de ma statique des coûtes (page 149) (*)•

Je pourrais donc me contenter de renvoyer à cet ouvrage ; mais,

en faveur de ceux qui ne l'ont pas , je vais entrer dans quelques

détails sur ce sujet.

Une anse de panier est l'assemblage de plusieurs arcs de cercles

de rayons différens , qui se touchent consécutivement : autrement,

c'est une des développantes d'un polygone ou d'une portion de

polygone convexe.

Soient

A, la demi-base de l'anse de panier ;

B , sa montée ;

n y le nombre des arcs ou centres de la demi-anse ;
Ti ? r z > r % ? • • • • rn > ' e s rayons successifs , de la naissance à la claie ;

*i * *i > *3 > ••• • *« i Ie nombre des degrés des arcs , en allant

toujours de la naissance à la claie ;

ct y c% , r3 , cn j les côtés consécutifs du polygone formé par

la rencontre successive des rayons rt , rz , r ? , , . . . r " ;

a j , at , a 5 ? . • . • anJ les projections de ces côtés sur la demi-base À ;

^ } ^ n ^ > " " ^ i ^ e s projections des mêmes côtés sur la montée B ;

D'après quoi on aura al = cl=^rl y b^o.

Il est aisé de voir qu'alors on aura cette suite d'équations

bl = o ?

bt^=^c2S\n»ecl ~

C*> In-4.0" <ie ï6o pages ; chez Firmin Didot ? Paris I8IO.

/ . D. G.
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r,=cl

lesquelles seraient insuffisantes pour déterminer les inconnues du
problème.

Mais , si l'on veut que les arcs soient égaux, et qu'on désigne

l'un d'eux par « = , et si l'on veut de plus que les rayon»

forment une progression géométrique dont le premier terme soit r
et la raison x, on aura en outre

" '=~ ' r ' = r

nus 7 J - I

au moyen de quoi on aura d'abord

et par suite

/72 =(\—-i)rCos. — ; iz'=z(x—i)rSîn.—- 3"

//3=ZX(A—i)rCos.— 7 ^J = A(X—i)rbin.— 7

2bw. /F. 35
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-r = r^.— i)\cos. -4-?.Cos.

fit telles sont les équaiions qui doivent déterminer les deux inconnues
A et r du problème.

Si l'on prend la somme de leurs produits respectifs par A et B9

cette somme deviendra divisible par r > et en obserrant qu'en gé-

néral Sin. =Cos. —- on aura
272 272

2JI 2X1 272 |

73 2.TV (72-—I)^"""]

272 272 272 _ J

équation qui ne renferme plus que la seule inconnue A.
Dans le cas de l'anse de panier à cinq centres , en posant p pour abréger

il viendra (A—M)x2+(M—N\— (5—2V)«o ,

d'où *= - ( ^ - N ) rfc V(?i/-N)-+4(^-M)(B—2V) .
^—M f

la première des deux équations en h et r donnera ensuite
A

Si , par exemple on suppose ^ = 200 , B^ioo , on trouvera

. L'auteur du problème proposé a eu raison de demander
que les rayons forment une progression géométrique , parce qu'alors
les changemens de courbure 9 d'un arc à l'autre , suivent le même
rapport ; mais il n'a pas été aussi bien fondé à exiger que les arcs
soient semblables ; en effet , dans ce cas , les longueurs des arcs
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sont en progression géométrique , et ce système n'est pas celui qui
présenta le plus d'avantages ; il paraît plus convenable que tous
les arcs soient de même longueur et que l'anse ait beaucoup de
centres , à moins qu'on n'ait intérêt à augmenter l'espace renfermé
par l'anse 9 ou le volurnG d'eau qu'elle doit laisser passer. On peut
voir toutes ces questions dans l'ouvrage cité ; on y trouve ( pag. i53 ,
prob. 6 ) , l'équation d'une courbe dans laquelle les changement
de courbure se font par des degrés égaux.

Par analogie , on peut demander l'équation d'une courbe telle
que les rayons de courbure , infiniment proches et également inclinés
entre eux , forment une progression géométrique.

Soient x et y les coordonnées d'un point quelconque de la courbe,
r le rayon vecteur de ce point et s la longueur de l'arc comptée
depuis un certain point fixe ; on voit que l'angle formé par Taxe
des x avec la normale est le logarithme du rayon de courbure ;
c'est-à-dire ? qu'on a

Arc. fTang.= — j =dLog,r ,

ç étant une constante. En difFérentiant, il vient

Substituant pour r sa valeur , a Y jdx \ \\ yi

ds=cdr 9 d'où s+c'—cr J (i)
c1 étant une nouvelle constante,

Pour Intégrer de nouveau l'équation ( i ) 9 j ' y mets pour r sa

valeur qui , en supposant d^ constant , est —- — ">- 9 et j'ai

d'où , en faisant dy=pds , il vient
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âp cas

dont l'intégrale est
Arc.(Cos.=/?)=

ou /?=Cos {

Remettant dans (2) pour p sa valeur —9 et intégrant de nouveau^

il vient

r=^//4-/d^.Cos.{Log.r//(^+^/| . (3)
Mettant enfin pour p cette même valeur dans àx~às\/ 1—p* et

intégrant , on aura
x^c////+fdstSw.{lin^r/^s+c/)c\ . (4)

On déterminera les cinq constantes par les conditions suivantes ;
l.° qu'à l'origine o n a / ? ~ i et ^ = 0 ; 2.0 qu'au sommet de la courbe
on a /? = o , x = b , y— a ; 3.° que , quand x = A , on doit avoir
y=.B ; 4*° q a e ? quand ^r=o , on doit avoir x = o; 5.° enfin que ,
quand J = O 5 on doit avoir y = o.

La courbe donnée par les équations (3) et (4) est celle dans laquelle
( suivant le langage de M. Français ) les rayons de courbure sont
en progression de grandeur et de position. (*)

(*) La recherche de celle courbe se rattache bien simplement à la théorie dé-
veloppée à la page 42 ^e c e volume. On a ici a = H , a étant une constante;
d'où \\R=ARdê, A étant une nouvelle constante. D'un autre côté on a ( pag. 49 >
àR=zlïfàê \ donc Rf=AR , et par suite (pag. 01}

En traitant cette équation comme son analogue de la page 53, il viens
dy Ax-\-y
àx Ax—y

«e qui donne, en intégrant, et posant , jour abréger,

A+i+C A+i—C

J. D. G.
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ARITHMÉTIQUE.
Essai sur la transformation des fractions ;

Par M. P E N J O N , professeur de mathématiques au lycée
d'Angers.

XL est co:\nu , depuis long-temps , que , par un procède analogue
à celui qu'on emploie pour le développement d'une fraction en
parties décimales , toute fraction peut être développée en une suite 9

finie ou infinie , d'autres fractions dont les dénominateurs sont les
puissances successives d'un môme nombre donné quelconque (*)•
Je vais essayer de compléter ici la théorie de ces sortes de déve-
loppemens.

i . Soit — une fraction proprement dite que nous supposerons

essentiellement réduite à ses moindres termes ; et soit b un nombre
entier quelconque. Soient, de plus, qx , q% , q^ ,.... r , , r2 , rJ5...*
les quotiens et les restes que Ton obtient successivement, en divisant
bA , brl7 brï9 par B ; on aura

(*) Vojrez , eiiLo a-«Tes , le Campement il'algèbre de M. Lacroix.

Tom. / F , / \ . ' J 1X9 i . e ï mars iSi^* 3 0
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Dans ces équations , les restes rt , r 2 , r$ , . . . . étant tous néces-
sairement moindres que B ; et ne pouvant être conséquemment que
quelques-uns des nombres i , 2 , 3 , (#—2) 3 (5—1) ; il s'en-
suit qu'à moins que quelqu'un des B premiers ne soit nu l , auquel
cas tous les suivans le seraient aussi ; après un nombre de divisions
tout au plus égal à B—1 , on devra retomber sur quelqu'un des restes
déjà obtenus. Or ? l'inspection des équations («) suffit pour faire voir que
le procédé par lequel on déduit chacun des restes r g , r% , r , , f

ainsi que chacun des quotiens qx , çt , y3 9 de celui qui le
précède immédiatement est uniforme ; d'où il suit que si , par
exemple , le reste rh est égal au reste rg } les reste et quotient
rfc4-x e t {/k+i seront respectivement égaux aux reste et quotient

et qg±{ ; qu'il en sera de même des reste et quotient rh+t

comparés aux reste et quotient e t <fg+t f
et ainsi de

suite; c'est-à-dire , que , si les deux suites rt , r2 , r 1 > . , , , y l ,
q % y q % , ne se terminent pas d'elles-mêmes , elles seront n é -

cessairement périodiques , soit immédiatement, soit à partir d'un
terme dont le rang ne surpassera pas B—i ; de manière que , dans
tous les cas , le nombre des termes qui précéderont les périodes
augmentées du nombre de ceux de Tune des périodes > sera toujours
moindre que B. On peut même observer que le cas où les deux
suites se termineraient d'elles-mêmes ne fait point exception à la
règle , attendu que la suite o , o * o 9 . . . . est elle-même périodique.

2. Si , après avoir mis les équations (*) sous cette forme
A _ qx r,
JB ~~ T " bB %

bB b*

b~B y> L^ y
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on prend successivement la première ? puis la somme des deux pre-
mières , puis la somme des trois premières , et ainsi de suite, en
supprimant les termes communs aux deux membres des équations ré-
sultantes ; il viendra

B
A

1B
A

b ""• bB '

b b*

b ~*~ b* b* * b W 9

94

En observant que les derniers termes

II 11 II 1

IB ? b2B ?

(y)

de ces suites sont continuellement décroissans , on en conclura qu'on
peut écrire 5 par approximation ,

uni O i (J j G •* Ç A

B b b2 b* b$ • • • • ? W

développement qui donnera une valeur d'autant plus approchée de

la fraction — qu'on en prendra un plus grand nombre de termes 7

et qu'en même temps b sera plus grand. À l'avenir nous appellerons

ce nombre arbitraire b la base du développement de -— .̂

3. Il s'agit présentement, i.° d'assigner les caractères auxquels
on pourra reconnaître à l'avance si le développement se terminera
ou si , au contraire , il se prolongera indéfiniment ; 2.° de recon-
naître quand ce développement devra être immédiatement périodique
ou avoir ses périodes précédées de termes n'en faisant pas partie \
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3 ° enfin de déterminer généralement tant le nombre des termes des
périodes que celui des termes de la partie non périodique dont elles
se trouvent précédées,

4- P< 11 y parvenir , soient désignés généralement par m le nombre
des termes qui précèdent la première période , et par n le nombre
des tenues dont chaque période est composée ; auquel cas on devra
avoir rn-^n < B -, il est ciair qu'alors on pourra écrire

jrl. H , rt si / 7 _

<]m-\-n

(0

ou encore

A _

,

I "

posant donc, pour abréger

U viendra enfin
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M N N JN

M N i __ 31

c'est-a-dirc ,

5. Cela posé , soit mise l'équation (*) sous celte forme

II faut que le premier membre de cette équation soit un nombre
entier ; et , comme B et A sont supposés premiers entre eux , il
«'ensuit que hm{bn—i) doit être divisible par B. Soit donc fait
B*=LCD : C étant le produit des facteurs premiers de B qui se
trouvent dans b , et D le produit de ceux qui ne s'y trouvent pas.
Attendu que bm et bn—i sont nécessairement premiers entre eux,
il faudra que

soient séparément des nombres entiers. Ainsi, i.° le âènominateuf
de la fraction génératrice ne saurait renfermer aucun des facteurs
premiers de la base de son développement à une puissance su-
périeure à celle dont l'exposant est le nombre défais que ce facteur
premier se trouve dans la base , multiplié par le nombre des termes
qui précèdent la première période ; 2* le produit des tfacteurs pre-
miers du dénominateur de la fraction génératrice qui sont étrangers
à la base de son développement, est toujours diviseur d'un nombre
moindre d'une unité que la puissance de cette base dont le degré
est marqué par le nombre des termes des périodes.
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6. Dans le cas où le développement se termine , et où consë-

quemment iV=o, on a simplement

Abm

d'où Ton voit qu'alors bm doit être exactement divisible par B ; et
dans le cas où ce développement est immédiatement périodique, et
où conséquemment it? = o, on a simplement

d'où l'on voit qu'alors hn—i doit être exactement divisible par j?»
Ainsi, i.° lorsque le développement de la fraction génératrice se
termine, son dénominateur est diviseur exact de quelque puissance
de la hase de ce développement , dest-à-dire , au il ne contient
aucun facteur premier étranger à cette base ; 2.0 lorsque ce dé-
veloppement est immédiatement périodique , le dénominateur de la
fraction génératrice , premier à la hase 9 est nécessairement di-
viseur exact de quelque nombre moindre d'une unité qu'une
puissance de cette base* (*)

7. Soit toujours B"=-CD , C et D étant les mêmes que cî-dessus
(5). Soit m la moindre des puissances h qui soit divisible par C 9

et soit n la moindre des puissances de ce même nombre b qui ,
diminuée d'une unité, devienne divisible par D; il suit de ce qui

a été dit ci-dessus 9 que le développement de — suivant la base

b ne pourra avoir moins de 772 termes avant la première période,
ni moins de n termes à chaque période. Nous allons prouver de

(*) De là résulte ce théorème : a et h étant deux nombres entiers premiers
entre eux » Véquation

est toujours résoluble en nombres entiers.
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plus que ce développement aura précisément m termes avant sa
première période , et que ses périodes seront précisément de n termes;
et nous donnerons en même temps un procédé différent du premier
pour exécuter ce même développement.

8. Soient faits

CO=hm , DD'=bn~i , d'où CDC'D'=:BC'D'=l>\6n—i) ,
on aura alors

A -dOD' AOB*
B BODf bm(bn—i)

Soit divisé AC/D/ par b11—i , et soient M le quotient et N le
reste de cette division ; nous aurons alors

A __ M@n—i)+N _ M N

ou encore

Soit divisé m — i fois consécutivement M par b 9 le quotient par
b, le nouveau quotient par b , et ainsi de suite ? en ne prenant
que les quotiens entiers; soient qm , ^ m . t , Çm-z ?• • •• 91 ^es restes
de ces divisions et Qm.t , Qm-% % Qm~i >••.. . qx leurs quotiens,
nous aurons

M =Qm

en prenant la somme des produits respectifs de ces équations par
i , bj b% , P . . . . . . lm~l y et réduisant, il viendra
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En opérant de la même manière sur N 7 faisant n—i divisions

seulement, désignant par qm+n , çm^n^l , çm+n-i, 9m+z l e s

restes successifs et par qm~hi le dernier quotient, on aura pareillement

+n i (0

Substituant enfin ces valeurs de M et iV dans l'équation (^), elle
prendra d'abord la forme (|) et ensuite la forme (^ ; c'est-à-dire , que le

développement de la fraction — suivant la base b se trouvera être

exactement conditionné comme nous l'avons annoncé.
g. Il convient au surplus d'observer que la recherche des nombres

C y D , m, n n'exige nullement la décomposition de B en facteurs
premiers. En cherchant successivement le plus grand commun di-
viseur entre B et b7 b* , bl , jusqu'à ce qu'on rencontre deux
puissances consécutives pour lesquelles ce diviseur soit le même .
l'exposant de la moins élevée sera m , et le diviseur sera C. En
divisant B par C 7 le quotient sera D ; enfin , en divisant succeSvsivement
par D les binômes b—i , b"—i , b5—i , . . . . . , jusqu'à ce qu'on
en rencontre un pour lequel la division réussisse , l'exposant de b
dans ce binôme sera la valeur de n.

10. Pour donner un exemple de ce procédé , proposons-nous de
développer la fraction ~ suivant la base 3. Nous aurons ici rn~2,
C = g , « = 2 , Z)=8 ; d'où C>=i >D/=i , JC/D/='j ; donc <?k=.o,
^ 1 = 0 , ^ , = 2 , q4=i P Çs—2 y ^ c = i , . , e t partant

n . L'application de tout ce qui précède au développement des
fractions en parties décimales est trop facile pour que nous croyons
nécessaire de nous y arrêter.

CHRONOLOGIE*
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CHRONOLOGIE.

Solution directe des principaux problèmes du calendrier :

Par M. J. F. FRANÇAIS , professeur à l'école impériale
de l'artillerie et du génie»

JL/EXAMEN de l'ingénieuse table à triple entrée donnée dans ce
volume ( pag. 84 ) par M. Serrois , m'a engagé à revoir 9 dans la
Correspondance astronomique et géographique de M. le baron de
Zach ( août 1800 ) , l'article de M. Gauss qui lui en a fourni l'idée ,
et où cet illustre géomètre enseigne à trouver, sans épacte , nombre
d'or ni lettre dominicale , le jour de la fête de pàque , pour une
année quelconque, et présente ainsi , en deux pages , toute la théorie
du calendrier, tant Julien que Grégorien. Cette belle solution d'un
problème d'analise indéterminée assez compliqué mériterait d'être
mieux connue en France (*). J'ai cru cependant nécessaire ? pour
la rendre vraiment perpétuelle , de lui faire subir une petite cor-
rection , au défaut de laquelle elle cesserait d'être exacte dès
Tannée 42O°- La nécessité de cette correction tient à ce que l'é-
quation lunaire , qui a lieu sept fois consécutivement au bout de
trois siècles , n'a lieu, la huitième fois, qu'au bout de quatre siècles
seulement; de sorte que la période, qui a commencé en 1800,
est réellement de vingt-cinq siècles, Je vais d'abord donner la mc-

(*) C'esl sans doute dans celte vue que M, Delambre vient d'en donner un
extrait à la fin de son Abrogé d'astronomie,

Tom. IV. 07
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thocle pour la détermination de la fête de pâque aînsî corrigée ; je
chercherai ensuite à déterminer le jour de la semaine qui répond
à une date donnée dans une année quelconque. •

PROBLÈME L Assigner la date de la fête de pâque , pour
vne année quelconque , soit dans le calendrier Julien , soit dans
h calendrier Grégorien ?

Solution. Pour le calendrier Julien faites 772= i 5 , 72 = 6.
Pour le calendrier Grégorien, soient

s , le quantième séculaire ;

abstraction

faite des restes.

r , le quotient entier de s—17 par 20 ;
v 5 le quotient entier de s—r par 3 ;
q , le quotient entier de s par 4 \
m 7 le reste de la division de i5-f-j—-p*—q par 3o ;
n , le reste de la division de 4~i~s—q P a r 7»
Soient alors ( pour les deux calendriers )
A , le quantième d'année ;
a, h , c , les restes respectifs de la division de A par 19,4*7 î
d y le reste de la division de iga-\-m par 3o ;
€, le reste de la division de zb-{-^c~\~Qd-\~n par 7 ;
la date de pâque sera
le ( 22-\~d-\-e ) de mars , ou le ( d-\-e—^ ) d'avril.
Exception L Si Ton a d=2Q , e=^6 , on substituera le IQ

d'avril au 26.
Exception IL Si Ton a ^ = 2 8 , ezzG 9 et si I I T ^ - 4 - I I , divisé

par 3o 7 donne un reste plus petit que 19 ? on substituera le 18^
d'avril au 25.

Exemple. On demande le jour de pâque pour l'année 7^53 ?
Dans le calendrier Grégorien 5 on a successivement ^ = ^ 4 , r ^ 2 ,

p — 24. , 7 = 1 8 , 772 = 17 ? H = 4 , ^ = 7 4 5 3 , ^?=:5 , £ = i , r=r=5,
d=22 , ^ = 4 5 d'où, il suit que , cette année-là, paque tombera
le 17 d'avril.
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Dans le calendrier Julien , on a /?2= 15 , /? = 6 , ^=-74>3 ,

fl~5 , £ = i , c — 5 y d=2o , ^ = 1 ; ce qui donne pàque ie 1.2
d'avril.

PROBLÈME IL Déterminer le jour de la semaine qui répend
à une date donnée d'une année quelconque ? tant dans le calendrier
Julien que dans le calendrier Grégorien ?

Solution. Soient s7 le quantième séculaire;
a, Tannée dans le siècle, en sorte qu'on ait A~\Qos-\-a\
d) la date du jour donné, compté du i . e r jcnvur;
* 1 P • y > 0 5 i> ' e s restes respectifs de la division de s 9 a , a ,

d, G5-+-5 , par 4 , 4 , 7 , 7 , 7 ;
g j le reste de la division de 5#-f-53-f-3y~}-^ par 7 ;
h y le reste de la division de 5j8 + 3 v + J + £ par 7 ;
Alors g et k seront respectivement 9 dans les calendriers Gré-

gorien et Julien, le rang du jour dans la semaine, le dimanche
étant compté pour le premier.

Remarques. I. En calculant d s dans les années bissextiles , il
ne faudra tenir aucun compte du jour intercalaire , et ne compter
consequemment février que pour 28 jours seulement.

II. Si alors la date d ne passe pas le mois de février , il faudra
diminuer d'une unité chacun des nombres g et h.

III* On peut obtenir immédiatement $ , m ajoutant à la date
du mois , le nombre correspondant de la table suivante

janv.

0

f«5v.

0

mars .

3

avril.

— 1

mai.

1

juin.

4

juil.

-—I

août. Sfjpt.

S

ocL

0

nov.

3

ck'c.

Exemple I. On demande le jour de la semaine qui répond au 17
d'avril 7453 , dans le calendrier Grégorien ?

On 3L \c\ s=y4 ? tf—^3 ? a—2 , p— 1 , y r : ^ , «* = i 7 — 1 ~ iG f

6=ri 5 gz=zl • ainsi le 17 d'avril 7^53 sera un dimanche.
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Exemple IL On demande le jour de la semaine qui répond au 12

d'avril 7453, dans le calendrier Julien?
On a ici ^=74 . # = 53 , «=2 , /3=i , ^ = 4 \ * = I 2 —1=11 ,

fr=i ? g = J 5 ainsi le 12 d'avril 7453 sera un dimanche.

RÉCRÉATIONS MATHEMATIQUES

Recherches sur un tour de caries;

Par M. G E R G O N N E.

'N trouve , dans les Récréations physiques et mathématiques de
Gl/YOT ( dernière édition , tome III > page 267 ) , un tour de cartes
assez curieux, fondé uniquement sur la théorie des combinaisons.
Ce tour a pour objet de faire trouver une carte pensée , parmi
vingt-sept, à un rang désigné. Pour cela on prend vingt-sept cartes,

fctoutes différentes les unes des autres , que Ton étale aux yeux
d'une personne a qui Ton dit d'en penser une et d'en conserver le
souvenir dans sa mémoire ; on mêle ensuite les cartes , et on les
fait mêler à une ou plusieurs personnes de la compagnie.

On forme alors trois paquets de neuf cartes chacun ; en posant
d'abord , de gauche à droite , la première carte de chaque paquet,
la couleur en dessous , puis la seconde par dessus la première , tou-
jours de gauche à droite ? puis la troisième , et ainsi de suite , jusqu'à
ce qu'on ait épuisé les vingt-sept cartes , dont la dernière devra con-
séquemment se trouver au-dessus du troisième paquet , à droite,
II faut , durant cette opération 5 que celui qui fait le tour soit
placé vis-à-vis de la personne qui a tiré la carte qu'il 5'agît de
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deviner. II a soin 9 avant de poser chaque carte sur le paquet dont
elle doit faire partie , de la lui montrer , de manière qu'il ne puisse
la voir lui-même. 11 fera bien de ne point regarder cette personne ,
afin q*i'on ne croie pas que , lorsque la carte qu'il lui montre est
celle même qu'elle a tirée, il s'en aperçoit au jeu de sa physionomie,
II convient aussi qu'il ne se place pas en face d'une fenêtre ou
d'une lumière , afin de ne pas donner à penser que la transparence
des cartes peut lui être de quelque secours.

Cela fait , il prie cette personne de lui indiquer quel est le paquet
qui renferme la carte pensée ; il pose ensuite les paquets Us uns
sur les autres , sans les mêler , ayant soin de remarquer le rang
qu'il assigne à celui qu'on lui a désigné : ce rang étant compté
du dessus au-dessous, la couleur étant toujours en dessous , comme
nous le supposons. Ces cartes étant ainsi rassemblées , celui qui les
tient recommence à faire des paquets ? exactement comme la pre-
mière fois , et avec les mêmes attentions, en faisant encore la même
question, lorsque les paquets sont terminés. Il rassemble de nouveau
ces paquets , ayant encore l'attention de remarquer et de retenir
le rang qu'il assigne à celui qui contient la carte pensée.

11 recommence enfin une troisième fois les mêmes opérations et
la même question , et relève de nouveau les paquets avec la même
précaution , et dès-lors le rang de la carte pensée dans le jeu se
trouve absolument déterminé.

Si donc on a sous les yeux un tableau qui présente la corres-
pondance entre les vingt-sept manières dont on a pu relever les
paquets trois fois consécutivement, et le rang que chaque système
de relèvement assigne à la carte pensée , rien ne sera plus facile
que de trouver cette carte,

L'ouvrage cité prescrit de faire construire une lunette mystérieuse,
telle qu'en y regardant on n'y aperçoive que ce tableau 9 qui s'y
trouvera caché intérieurement. A chaque opération , on feindra de
regarder les paquets avec cette lunette , comme pour tâcher de
discerner la carte pensée; et on en prendra occasion de contempler
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le tableau 5 et d'y lire ce qu'on a à faire, pour que cette carte se
trouve à la fin dans le jeu à la place qu'on lui aura assignée à
l'avance*

Mais ? outre qu'il n'est pas très-commode de cacher, dans l'in-
térieur d'une lunette, un tableau assez étendu; outre la gène d'avoir
toujours cette lunette avec soi, on conçoit que, soit qu'on la livre
aux spectateurs , soit qu'on la leur dérobe , ce ne pourra être sans ôter
beaucoup au jeu de ce qu'il peut avoir de merveilleux à leurs
yeux.

Je me propose ? à la fois , ici de généraliser cette petite récréation,

et d'indiquer un moyen simple de se passer de l'usage de la lu-

nette, de manière qu'on puisse l'exécuter partout où l'on rencontrera

des cartes*

Soit 9 en général , un jeu composé de mm cartes , toutes diffé-
rentes les unes des autres , et parmi lesquelles une personne en
ait choisi une secrètement.

Soient faits m fois consécutivement , avec ce jeu 9 m paquets >
de'm"1"1 cartes chacun , avec toutes les attentions indiquées ci-dessus.

Soient nl , n% , n^ , . .* . . nm les rangs assignés successivement
au paquet indiqué comme contenant la carte choisie.

On va voir que les nombres n l , nz 7 ni 9 , . . .«m sont su/Esans
pour déterminer , après les m opérations > le rang x qu'occupe dans
le jeu la carte pensée.

En effet , i . a à la première opération la carte pensée ne peut
occuper dans son paquet que le rang i au moins et au plus le rang

Mais , puisqu'on n'assigne à ce paquet que le rang nx , on met donc
au-dessus de lui (nx—i) autres paquets de rnm"1 cartes chacun; il
s'ensuit qu'après les cartes relevées , la carte pensée se trouvera occuper
dans le jeu au moins le rang (nl-—] V//"1""1-!-! —nlm

mmml {mm~%\

et au plus le rang (/z, — i)mm-î<+'mTn~ï =z?zlr/Lm^1^
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2.n En reformant de nouveau les paquets ? on posera d'abord au

moins (/?, — i)mm~l
 y distribuées en m paquets de (/?, — i)mm~z cartes

chacun , dont aucune ne sera la carte pensée ? laquelle conséquemment
en aura au moins (nl—i)mm~"z sous elle dans son paquet ; tandis
qu'on n'en pourra pas poser nlm

m"t , et conséquemment /?,/?*m'2 dans
chaque paquet, sans faire passer la carte pensée qui, en conséquence ,
en aura au plus nlm

m~lt — 1 au-dessous d'elle dans son paquet;
puis donc que chaque paquet est en tout de mm'1 cartes; il s'en-
suit que cette carte occupera au moins, dans son paquet, le rang
n?m~l— (nxm

mmX — 1)=—/2I7?2mM2-{-/72m~I+i et au plus le rang
mm~l— (nt— i)mmm%=—nlm

m-t-\-mmmt+mm~z.
Maïs , puisqu'on assigne à ce paquet le rang n 2 , on met donc

au-dessus de lui (n2—1) autres paquets de mm'1 cartes chacun;
d?où il suit qu'après la seconde opération , la carte pensée occupera
dans le jeu au moins le rang (n^ — \)mm~s—nlm

Tn-~1-{-mm'~'l-\-i
^zntm

m~~l<—nlm
m~~ z-4~i ? et au plus le rang {nx~—\)mmm l—n1m

m" *
+mm~l+mm~1~nzm

m-~l—nlm
m--'l-{-mm-3.

3.° Il suit de là qu'en réformant les paquets , on posera au moins
dans chacun n%mm~z—nlrnm'^i cartes , sans avoir employé la carte
pensée , mais qu'on ne pourra en poser dans chacun n2m

m~~2>

—/2,//2m * —f-/72m * sans avoir employé cette carte; elle aura donc,
dans son paquet 9 au moins n Jm

m~~ *—nxm
m~~% , et au plus nxm

m~'t

—nïm
m~''*A{-tnm~~'* — 1 cartes au-dessous d'elle; elle y occupera donc

au moins le rang mm~l—n1m
m~~1'-\-nlm

m~~'*—mm"~î + i _, et au plus
le rang mm~~l—n îm

m~"L-\-nlm
m—'i.

plais , puisqu'on assigne à ce paquet le rang /?5 , on place donc
an-dessus de 111 î (n 5 — 1) autres paquets de mm~~l cartes chacun;
d'où, i! suit qu'après la troisième opération , la carte pensée occu-
pera da*is le jeu au moins le rang (n $ — i V/m-~I+/72m^" '—n%mm~~%

-\-nlrur'*-*—mrn-*'+-i=znim
m-1—n xm

m" z-^-n xm
m^ 5— [mm^ J — i) ,

et au plus !e rang (/? %—1 )mm~~ l-\-mm~~l — nxm
m-~*-\-nxm

m~~J

IL n poursuivant le même raisonnement , et appliquant, si Ton 21e
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ne veut point se contenter de l'induction , un tout de démonstration
très-familier aux analistes , on trouvera qu'en général après un nom-
bre d'opérations désigné par 2k > le rang de la carte pensée dans
le jeu sera au moinsjeu

nzkm
m^l—

et au plus

et qu'après un nombre d'opérations désigné par 2/^+1 P le rang
de la carte pensée , dans le jeu , sera au moins 9

nzkm ~Tnik-im

et au plus

Or 5 i.° si 7?2 est pair et = 2 ^ , les deux premières limites se
confondront en un seul nombre , et Ton aura

et 2.0 si m est impair et =2A~(-i , les deux dernières limites se
confondront aussi en un seul nombre 5 et l'on aura

x=nmmm"1—
ainsi, dans l'un et dans l'autre cas, les nombres /2x,722,7z i,....tfj0

étant donnés , on pourra en conclure x.
Ainsi, par exemple 5 si 772 = 4? c'est-à-dire, si le nombre total

des cartes est 256 , et qu'on ait successivement assigné au paquet
qui contient la carte pensée , les rangs 3 5 4 » l ? 2 , on aura

x = 2 .64—1 • 16+4* 4—3+i = 126.

Si au contraire 772=3 , c'est-à-dire , si le nombre total des cartes
est 27 , et si , en outre , les rang assignés au paquet contenant
la carte pensée ; sont i , 3 , 2 , on aura

# = 2 .9—3 .3-f-i = io.
Le
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Le problème inverse 5 c'est-à-dire, celui où Ton demanderait quels

rangs nt , nt , /?, , nm il faut assigner, à chaque opération,
au paquet qui contient la carte pensée , pour qu'à la fin cette carte
se trouve à un rang x , assigné dans le jeu , n'est guère plus difficile
à résoudre ; en voici la solution.

Divisez x—1 ou x par m , suivant que m sera pair ou im-
pair , en faisant la division en dehors , dans le premier cas , et
en dedans y dans le second , et prenant le quotient de manière que
le reste ne soit ni nul ni > m > abstraction faite de son signe. Ce
reste sera la valeur de nx.

Divisez le quotient par 772 en faisant la division en dedans dans
le premier cas , et en dehors dans le second , et prenant encore le
quotient de manière que le reste ne soit ni nul ni >772 > abstraction
faite de son signe.

Continuez à diviser ainsi successivement les quotiens par m > en
faisant alternativement les divisions en dedans et en dehors, et prenant
les quotiens tels que les restes alternativement positifs et négatifs
ne soient jamais nuls ni >772 ; opérez ainsi jusqu'à ce que vous
ayez obtenu un dernier quotient qui n'excède pas m ; alors la suite
des restes pris positivement et le dernier quotient seront les va-
leurs de nx , nx , 77, , nm .

S i , par exemple, m~4. et j r = i 2 6 ; en divisant en dehors 12D
par 4- 1 o n a u r a pour quotient il et pour reste négatif 3 = /z, ;
divisant en dedans 3.2 par 4 > o n a i 3 r a pour quotient 7 et pour
reste positif 4=ZJ7i \ divisant en dehors 7 par 4 * o n a u r a pour
quotient 2 et pour reste négatif i=n^ ; divisant enfin 2 en dedans
par 4 5 o n a u r a pour quotient o et pour reste positif 2~nA ; en
sorte qu'on aura , comme ci-dessus,

Si , au contraire, on a 772 = 3 et ^ = 1 0 ; en divisant en dedans 10
par 3 , on aura pour quotient 3 et pour reste positif 1=72,; di~
visant en dehors 3 par 3 ; on aura pour quotient 2 et pour reste

Tom. IF. 38
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négatif 3 — &% ; divisant enfin en dedans 2 par 3 , on aura pour
auotient o et pour reste positif 2 = # 5 j en sorte qu'on aura, comme
ci-dessus ,

La plus petite valeur que Ton puisse donner à m est 3 , et
alors le jeu se joue avec quatre cartes seulement. Si l'on foit /72 = 4*
le jeu devra avoir 2 56 cartes -, on ne pourra donc, le jouer avec
un jeu de cartes ordinaire , et il faudra avoir des cartes où soient
peintes des figures d'hommes ou d'animaux , des fleurs ou.des fruits.
On ne rencontre pas cette difficulté en prenant 772=3; ce qui porte
le nombre des cartes à 27 seulement , et on a de plus cet avan-
tage qu'alors les calculs peuvent être exécutés de tête avec facilité
et promptitude ; car on trouve

%~nx—3/2 2+9/2 ,•

II convient pourtant de remarquer qu'à mesure que m devient
plus grand , le tour doit paraître^ de plus en plus merveilleux ;
attendu que le nombre des cartes parmi lesquelles il en faut deviner
une, croît dans un rapport incomparablement plus grand que le nombre
des opérations et interrogations nécessaires pour la découvrir. Si ,
par exemple , on employait dix billons de cartes , lesquelles tien-
draient à peine dans un espace cubique de s3 mètres en tout
sens , il suffirait de dix questions seulement pour découvrir la carte
pensée. C'est à peu près de la même manière que, dix questions
suffisent pour discerner un nombre parmi tous ceux qui sont moindres
que dix billions.

Lorsqu'on veut exécuter ce tour plusieurs fois de suite , il con-
vient d'en masquer l'artifice en variant son dénouement de plusieurs
manières. Ainsi , par exemple , on peut , une première fois , chercher
la carte pensée dans le jeu, les mains derrière ? et la poser ensuite
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sur la table. On peut , une seconde fois, annoncer à l'avance , et
avant même que la carte soit pensée , le rang qu'elle occupera dans
le jeu ; ou bien on peut demander à l'un des spectateurs de dé-
signer lui-même le rang qu'il veut qu'elle y occupe ? et ainsi du
reste.

Rien n'empêche, au surplus, que , pour mieux fasciner les yeux
des spectateurs, on ne fasse le semblant de s'aider d'une lunette;
mais elle doit être construite de manière <ju5on ne puisse rien voir
à travers , ou qu'on n'y voie que des caractères ou figures ma-
giques , ou , mieux encore , des objets ou devises propres à punir
l'indiscrétion des curieux , à qui , au surplus , il conviendra de se
défendre d'abord beaucoup de la livrer.

Ce petit tour peut très-bien être exécuté par un homme privé
de la vue , ou qui s'est fait bander les yeux , et il n'en devient
ainsi que plus merveilleux.

On peut aussi ne point toucher les cartes ; faire former succes-
sivement les paquets par un ou plusieurs des spectateurs , en ayant
seulement chaque fois l'attention de remarquer le rang qu'on as-
signe au paquet que Ton dit contenir la carte pensée.

On pourrait enfin faire penser à la fois des cartes à plusieurs
personnes , en tenant note et des paquets qui les contiendraient et
du rang qu'on aurait assigné chaque fois à chacun d'eux. (*)

(*) Dans le tome VII des Mémoires présentés à Vacadémie des sciences , on

trouve un mémoire de M. Monge sur un tour de cartes qui a quelque analogie

avec celui-ci.
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QUESTIONS RÉSOLUES.

'Solution de deux problèmes de géométrie, proposés à
la page i32 de ce volume.

Par M. BÉRARD , principal et professeur de mathématiques
au collège de Briançon, membre de plusieurs sociétés
savantes.

JTROBLÈME L Déterminer Vellipse de plus grande surface ins*
criptible à un triangle donné ?

Solution. Soient a , b deux des côtés du triangle donné et y
l'angle compris. Soient pris le sommet de cet attgle pour origine,
le côté a pour axe des x et le côté b pour axe des y ; si alors
on désigne par x/

 9 y
f les coordonnées inconnues du centre de l'el-

lipse cherchée , son équation sera de la forme

yJ^Cipc—x^Y—y^i =o ;
A , B , C étant des coefficiens qu'il s'agit de déterminer et qui f*
avec x1 et y ' , forment les inconnues du problème.

11 faut d'abord exprimer que cette ellipse touche chacun des
côtés du triangle. Pour cela , soit d'abord fait dans son équation
y=zo \ en exprimant que les valeurs qui en résultent pour x sont
égales, on trouvera, pour l'abscisse du point de contact avec' le
côté à ,

C

x = *'+--y' ,
avec la condition
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(AB—C*) = c. (0

Si , dans la môme équation , on fait x=o -, en exprimant que
les valeurs qui en résultent pour y sont égales, on trouvera, pour
l'ordonnée du point de contact avec le côté b ,

C

avec la condition

B+x'\AB—C*) = o. (2)

Combinant enfin la môme équation avec l'équation bx-\-ay—ab=o
du troisième côté , mise , pour plus de commodité , sous cette forme
b[x—#/)+#(j--y/)+(3#/+tfj/—ab)=:o , et exprimant que les deux
systèmes de valeurs qui en résultent pour x et y s e réduisent à
un seul ; on trouvera , pour les coordonnées du point de contact
avec ce troisième côté f

(Û C—bB) (bx'+ay'—ab)
X~~X a2A+b*B—2abC '

(&C—aA)(bx>+ayf—ab)
J J a2A-\-b*B—2abC

avec la condition

a*A+b*B—2abC+(fa'+ay'—abJ(AB—C*)=o ,

laquelle , si on en retranche les produits respectifs des équations
(1) , (2) par a* , b1, se réduit simplement à

zC+^bx'+zay'—ixfyf—ab){AB— C*)=o. (3)

Si donc x/ et y/ étaient connus , c'est-à-dire, si le centre de
l'ellipse était donné , les seules inconnues A > B y C du problème
seraient données par les équations (1) 9 (2) , (3), desquelles on tire,
en négligeant les valeurs zéro , qui ne peuvent être admises ,
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B-

Nous avons donc résolu le problème où l'on proposerait de dé-
crire une ellipse d'un centre donné ? qui touchât les trois côtés d'un
triangle donné.

Pvendons actuellement à x; et y/ leur indétermination , et assujet-
tissons l'ellipse à être la plus grande possible. On sait que l'aire
d'une ellipse n'est autre chose que le nombre «r multiplié par le
produit de ses deux demi-diamètres principaux; d'où il suit que,
pour remplir la condition exigée , il faut que ce produit, ou son
quarré , soit un maximum ; or , d'après les résultats obtenus
dans le troisième volume des Annales [ pag. 106 , équat. (4) ] >
ce quarré est

Sîn.2y *

AB—C* *

ce qui donne pour la condition du maximum

d(JB~~~C2)^o , (M)

ou en développant
BdJ+JdB-~2CdC=o. (p)

Différenciant pareillement les équations (i) , (2) 5 (3) , en ayant
égard à l'équation (M) et faisant varier xf et y 7 , il viendra

-C*)dx'=o , (V)
dC—{AB—C'^\{xf—a)dy/"h(y/—b)dx*\ =o . (s)

SI, entre les quatre équations (p , q 9 r , s ) , on élimine dA, d 5 ,
àC y on trouvera., toutes réductions faites,

{^r/^~f-(y/—^)C) dx'-lr {//-B+(^/—#}C| d j / = o ;

et, comme les variables x'^ y* sont indépendantes, on en conclura



RÉSOLUES. 287

—b)C=o , (4) fB+y~a)C = o ; (5)
équations qui , jointes aux équations (1) , (2) , (3) résolvent le
problème.

En mettant dans ces derniers pour A et B leurs valeurs données
par les équations (4) et (5) , et divisant par C , on obtiendra pour
C trois valeurs au premier degré , et en égalant chacune des deux
premières à la troisième , les deux équations en x/ , y; qui en
résulteront, pourront être mises sous cette forme

ç oy/—l>}Çfly/~i~ 2.bx/— ab^j — o .

Comme il suJTit , pour satisfaire à ces équations d'égaler à zéro
un quelconque des deux facteurs du premier membre de chacune
d'elles, il s'ensuit qu'elles doivent donner, pour les inconnues x/,
y1, quatre systèmes de valeurs. De ces quatre systèmes trois doivent
être rejetés , parce qu'ils appartiennent aux milieux des côtés du
triangle donné , lesquels ne sauraient être des centres d'ellipses
inscrites ; quant au quatrième système qui résulte de l'égalité des
derniers facteurs à zéro , il donne

x'=\a , y'=\b ;
on en conclut ensuite

'où

et les points de contact seront les milieux des cotés.
Ainsi , la plus grande ellipse inscriptible à un triangle a son

centre au centre de gravité de Faire de ce triangle, et touche ses
trois côtés à leurs milieux ; d'où il suit que le triangle dont Jes
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sommets sont aux points de contact à ses côtés respectivement paral-
lèles à ceux du triangle donné. L'aire de cette ellipse est à celle
du triangle donné : : ^ : 3 y / J . Son équation est

PROBLÈME IL Déterminer l'ellipse de moindre surface cir-
conscriptible à un triangle donné ?

Solution. En conservant les mêmes conventions et notations que
dans le problème précédent ? l'équation de l'ellipse sera encore

A{x—xJ-\-B{y—yJ+zC^x—x'Xy—r0+1=o-
Cette ellipse devant passer par l'origine , on aura d'abord

et l'équation de sa tangente en ce point sera

(Jx'+Cy^x+tBf+Cx^y^o. (p)
Cette ellipse devant ensuite passer par le point dont les coordonnées
sont a et o , on aura

équation qui, en en retranchant l'équation (c) , se réduit à

2J/C+(2OT/—û)J = O ; (l)

et l'équation de la tangente en ce point est

Cette ellipse devant enfin passer par le point dont les coordonnées
sont o et b 9 on aura encore

équation qui , en en retranchant l'équation (c), se réduit à

zx'C+tzy'—b)B = o ; (2)

et Péquation de la tangente en ce point est

| Ax'+ C(y'-b) ] x+ {Cx'+Bif—t)} (y—I>) = o- (r)

Si ensuite on retranche le double de l'équation (c) de la somme
des
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des produits respectifs des équations (1) et (2) par xf et par yf

 f

il viendra

ax'A+ly'B+z = o. (3)

E t , au moyen des équations (1) , (2) 9 (3) celles des tangentes aux

trois sommets deviendront respectivement

(P)

Les mêmes équations (1) , ( 2 ) , (3) donnent

2/yr'—b 2Xf—a

t—ab)

et telles seraient les valeurs des inconnues, si les coordonnées xf,

y1 étaient données , c'est-à-dire , si l'on proposait de décrire une

ellipse d'un centre donne , qui passât par les trois sommets d'un

triangle donné.

Bendons présentement à a* et yf leur indétermination , et as5U«

jettissoFis l'ellipse à être la plus petite possible. Peur cela il faudra

enmre que la différentielle de AB—C1 soit nulle; cr , d'apiès les

valeurs qui viennent d'être assignées à J , £ } f, on a

lom. IF. 3 9
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prenant donc la difFérentielle de cette fraction , par rapport à xf

et y/ ? e t égalant séparément à zéro les multiplicateurs de dx/ et de
ày/ , il viendra ? toutes réductions faites,

/—ab){ 2(V—^{bx^ay^+a^h} =o

—al) { ^y'—fyiaf+bx^+fra\ —o

La combinaison de ces facteurs semblerait devoir fournir seize so-
lutions du problème ; mais P en discutant ces solutions , on voit que
la seule qui puisse tire admise est celle qui est donnée par les
deux équations

y , y\/—ab—o

desquelles on tire

i ^ l a

et ensuite

—
s.ab

'où
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d'après ces valeurs de 4 / , yf les équations (P) ? (QS (R) des tan-
gentes menées à l'ellipse par les sommets du triangle deviendront
simplement

ay-^lx—o 5 x—a=o , y—l?=o.

Ainsi, la plus petite ellipse circonscriptible à un triangle donné
a son centre au centre de granité de l'aire de ce triangle 9 et ses
tangentes par les irois sommets sont respectivement parallèles aux
cotés oppo.sés ; d'où il suit que 1<3 triangle donné a ses sommets
aux milieux des cutés de celui que forment les trois tangentes.
L'aire de cette ellipse est à celle du triangle : : /\?r : 'dyjï. Son
équation est

On voit donc que , si deux triangles sont inscrits et circonscrits
Vun à Vautre > de manière aue leurs côtés soient parallèles chacun
à chacun , une même ellipse sera, en même temps, la plus grande
ellipse inscrite au plus grand et la plus petite ellipse circonscrite
au plus petit.

PROBLÈME FIL Déterminer Vellipsoïde de plus grand volume
inscriptille à un tétraèdre donné ?

En désignant par a, bv c les trois arêtes d'un même angle du
tétraèdre dont il s'agit, prenant ces arèies pour axes des coordonnées
et dénotant par xr > y/

 y z1 les coordonnées du centre de l'ellipsoïde
cherché 3 l'équation de cet ellipsoïde sera de la forme

A{x
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et les inconnues du problème, au nombre de neuf, seront A 7B , C,
A<, B', V , *', y', z'.

II faudra d'abord exprimer qu'en faisant successivement chacune
des coordonnées nulle 9 l'équation résultante entre les deux autres
exprime un point unique. La condition d'où dépend cette circonstance
est facile à déduire de l'équation (4) de la page 106 du 3.* vo^
lume des Annales. On aura donc ainsi trois équations de condition
au moyen desquelles l'ellipsoïde se trouvera tangent aux trois plans
coordonnes ; en dès points qu'il sera facile d'assigner.

Il faudra exprimer, en outre, que cet ellipsoïde est tangent à
la quatrième face du tétraèdre dont l'équation est

et pour cela il suffira d'exprimer que l'une quelconque des trois
projections de leur intersection se réduit à un point.

On n'aura ainsi que quatre équations de relation entre les six
coefficiens A 7 Z? , C , A1

 9 B
f, Cf ; d'où l'on voit qu'une infinité

d'ellipsoïdes de même centre peuvent être inscrits à la fois à un même
tétraèdre.

Supposant donc, en premier lieu , pour plus de simplicité, que
le centre est donné , on cherchera, entre tous les ellipsoïdes à qui
ce centre appartient , quel est celui de plus grand volume. Pour
y parvenir 5 il suffira d'exprimer que le produit des trois demi-
diamètres principaux , produit dont j'ai donné l'expression y page 110
du mémoire déjà cité , est un maximum. Différenciant ensuite les
quatre équations de condition , en y traitant x/

 5 y
/, zf comme des

constantes , on aura en tout cinq équations différentielles entre les-
quelles on éliminera quatre des six différentielles AA y AB . AC,
dÀ/

 P àB/, d67 ; égalant donc séparément à zéro les multiplicateurs
des deux différentielles restantes, on obtiendra deux nouvelles équations
finies qui , jointes aux quatre premières 3 détermineront les valeurs
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des sîx coaffîcîens qui répondent aux maximum > du moins lorsque
Je centre est donre.

On substituera ensuite ces valeurs dans l'expression du produit
des trois demi-diamètres principaux , et exprimant de nouveau que
ce produit est un maximum 9 maïs en faisant . pour cette fois,
varier x', y' 9 zf. Egalant ensuite séparément à zéro les multipli-
cateurs de àx/

 y ày/, àz/ , il en résultera trois équations qui donneront
les coordonnées du centre.

On parviendra ainsi à cette conclusion remarquable : Le plus grand
ellipsoïde inscriptible à un tétraèdre donné a son centre au centre
de gravité du volume de ce tétraèdre et touche ses faces aux centres
de gravité de leurs aires respectives ; d'où il suit que le tétraèdre
qui a ses sommets aux points de contact ? a ses faces respectivement
parallèles à celles du tétraèdre donné.

PROBLÈME IV. Déterminer l'ellipsoïde du plus petit volume
circonscripiille à un tétraèdre donné ?

Ce problème se traite exactement comme le précédent, avec cette
seule différence que les quatre équations qui expriment que l'el-
lipsoïde touche les faces du tétraèdre, y sont remplacées par celles
qui expriment qu'il passe par ses sommets.

On parvient ainsi à ce résultat non moins remarquable que celui
qui vient d'être énoncé : le plus petit ellipsoïde circonscriptihle à
un tétraèdre donné 9 a son centre au centre de gravité du volume
du tétraèdre , et ses plans tangens par les quatre sommets sont
respectivement parallèles à ceux des faces opposées ; d'où il suit
que le tétraèdre donné a ses sommets aux centres de gravité des
aires des faces de celui que forment les quatre plans tangens.

On voit donc que , si deux tétraèdres sont inscrits et circonscrits
Tun à Vautre ? de manière que leurs faces soient parallèles cha-
cune à chacune , un même ellipsoïde sera y en même temps > le
plus grand ellipsoïde inscrit au plus grand et le plus petit ellipsoïde
circonscrit au plus petit.



4 QUESTIONS
Ceux qui désireront plus de détail sur ces quatre problèmes

pourront consulter un ouvrage que je viens de faire paraître sous le titre
à!Application du calcul différentiel à la discussion et à la cons-
truction des lignes et surfaces du second ordre rapportées à des
coordonnées quelconques avec plusieurs problèmes et théorèmes
nouveaux (*) ; ouvrage dans lequel ces problèmes , ainsi que beau-
coup d'autres du même genre , se trouvent traites avec tous les
développemens convenables.

Démonstration du théorème énoncé à la page 160 de
ce volume ;

Par; M. ENCONTRE , fils.

ÉNONCÉ. CA et CB sont deux demi-diamètres conjugués d'une
ellipse ou d'une hyperbole. On a mené la droite i\.B ; et , par un
point quelconque M de la courbe 9 on a mené à cette droite une
parallèle coupant respectivement CA et CB en À/ et B/'. On propose
de démontrer que , quelle que soit la situation du point M sur

Ja courbe ? la quantité MA' J^MB' est constante.
Démonstration (**). Soit menée MP 9 ordonnée au diamètre CA,

(*) A Paris, cliez F» Didol ; et à Turin , chez Pic.

((**) On sous-entend la ligure qu'il est trcs-i'açile de suppléer.
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et conséquemment parallèle à CB ; et soient C P = # , P M = y ,
CA— a, CB = l> , AB=f.

Les triangles semblables BGA , MPA' donnent

l:a::y: PA'= ^f , b : c : : y : MA'=£ . j ,
donc

*+ .
b b

D'un autre côté 9 les triangles semblables GAB ? CA'TÏ7 donnent
^ : ^ : : : A B ^

b ab
d'où il suit que

M B - A'B'
ab

donc

mais , dans l'ellipse et dans l'hyperbole , on a respectivement

donc, dans les denx courbes, on doit avoir respectivement

MA' ±MW =<:3=AB . (*)

(*) Si l'on tlôsî^-ne par N l'aulre point d'intersection de A'B'' avec la courbe 3

on aura pareiliemi nt

KB^±:NÂ/ =ÂÏÏ ; d'où MA/2 ±MB^=3
d'où, en développant, on conclura ,

Celte dernière proposition , et conséquemment la première qui peut en être
ai'émoiit di'\ki!te , se démontre facilement pour l'eilipse , en recourant à sa pro-
jcclion circulaire , dans laquelle les projections des deux diamètres conjugués sont
d i!K diamètres pc» pc-ndi'-ulaires l 'u n à l'autre. Ceci peut donc former un petit
5, • ^l'irjoiît au mémoiro de M. Feriiot , inséré à la page 240 du ^«c volume de
ce itxi.iL*:!. J* D. C
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QUESTIONS PROPOSÉES.

Problèmes de Géométrie.

I. INSCRIRE OU circonscrire à une ellipse le plus grand ou le,plus
petit triangle sembiab'e à un triangle donné ?

II. Inscrire ou circonscrire à un ellipsoïde le plus grand ou le
plus petit tétraèdre semblable à un tétraèdre donné ?

I I I . Assigner l'ellipsoïde du plus grand volume entre tous ceux
qui ont pour tangentes les six arêtes d'un tétraèdre donné ?

Théorèmes de Géométrie.

I. Dans toute surface du second ordre qui a un centre , les
parallelipipèdes qui ont respectivement pour diagonales trois dia-
mètres conjugués quelconques, et dont les arêtes sont respectivement
parallèles à trois autres diamètres conjugués , aussi quelconques ,
sont tous trois équivalens.

II . S i , à une même ellipse, on mène deux tangentes parallèles
sous un angle déterminé quelconque , le produit des parties de ces
tangentes comprises depuis leurs points de contact jusqu'à leur ren-
coiitre avec une troisième tangente ? aussi quelconque , mais variable f

sera une quantité constante.
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ALGEBRE ELEMENTAIRE.

Démonstration générale et rigoureuse des procédés
connus , pour la division et Vextraction des racines
des polynômes ;

Par M. G E R G o JN" JST E .

JL/ANS tous les traites d'digèbre , on se contente , pour établir les
règles de la division et de l'extraction des racines des polynômes ,
d'exécuter ces opérations sur un petit nombre d'exemples , et de
conclure ensuite , par induction , du particulier au général. Cette
manière de procéder convient peut-être pour des commençans qu'on
pourrait craindre de rebuter par des raisonnemens trop généraux
et trop abstraits ; mais elle ne saurait dispenser , ce me semble ,
de revenir ensuite , de nouveau , sur le môme sujet , pour le traiter
d'une manière plus large et plus rigoureuse , dès que ceux qu'on
enseigne ont acquis un peu d'habitude des méthodes algébriques.
Voici de quelle manière je conçois que la division et l'extraction
des racines des polynômes doivent alors leur être présentées.

Dans tout ce qui va suivre } je supposerai constamment que tous
les polynômes que je considérerai sont ordonnés par rapport à une
même lettre , et je désignerai leurs termes par le rang qu'ils occu-
peront en allant du plus élevé à celui qui l'est le moins ; je sup~

ai d'ailleurs les polynômes complets > ce qui est toujours

permis.
Torn.IF, n.° X, i.er avril 1814.
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§. I.

Division des polynômes»

LEM2IE L Le produit du premier terme d'un polynôme par
le premier terme d'un autre polynôme est , sans réductions ni
modifications quelconques ? le premier terme du produit de ces deux
polynômes*

Démonstration. Il est évident en effet que tout autre produit
de deux termes , pris , comme on le voudra , dans les deux poly-
nômes , étant moins élevé que celui-là , ne pourra ni passer avant
lui ni se réduire avec lui,

Remarque. On prouverait 5 de la même manière , que le produit
des derniers termes des deux polynômes est , sans réductions ni
modifications quelconques , le dernier terme du produit de ces poly-
nômes. Quant aux termes intermédiaires de ce même produit ? Ils
sont , généralement 9 des résultats de réductions opérées entre des
monômes semblables.

LE M ME IL Si du produit de deux polynômes on retranche le
produit du premier par les r premiers termes du second, le pre-
mier terme du reste sera, sans réductions ou modifications quel-
conques , le produit du premier terme du premier polynôme par
le (H-i)1*10 terme du second.

Démonstration. Soient les deux polynômes

Ax*+ +r ,

A'.iq+.... +C/a,?-r+ » + F ^ - r + . . . . - f F ;

il s'agit de prouver que le premier, terme de
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est

Or , cela est évident , puisque cette différence est la môme
chose que

HU*-r+ 4- P) ;

dont le premier terme est, en e/Fet P ( Lcmme / ) ,

Remarque. On prouverait, de la môme manière, que, sï du produit
de deux polynômes on retranche le produit du premier par les r
derniers termes du second , le dernier terme du reste sera , sans
réductions ou modifications quelconques 5 le produit du dernier terme
du premier polynôme par le terme qui , dans le second 7 occupe
le ( r - h i ) m e rang , à partir du dernier.

PROBLÈME. Déterminer le quotient de la division de deux
polynômes ?

Solution* En divisant le premier terme du dividende par le premier
terme du diviseur , on obtient ( Lcmme I) le premier terme du
quotient. D'un autre côte ? les r premiers termes du quotient étant
trouvés y si ? après avoir multiplié le diviseur par l'enseaible de ces
termes , et retranché le produit du dividende 5 on divise le premier
terme du reste par le premier terme du diviseur, on obtiendra pour r é -
sultat ( Lemme II ) le (r-f-i ) m c terme du quotient. Ainsi on a , à la fols ,
par ce qui précède, i.° le moyen d'obtenir le premier terme du quotient;
2.0 le moyen d'obtenir un terme quelconque de ce quotient, lorsque tous
ceux qui doivent le prectder sont déjà obtenus ; ce qui renferme impli-
citement la solution complète du problème , et conduit immédiatement
aux méthodes connues»
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Remarque 1. D'après les deux remarques précédentes, on voit qu'on

a aussi i.° le moyen d'obtenir le dernier terme du quotient; 2.0

le moyen d'obtenir un terme quelconque de ce quotient, lorsque
tous ceux qui doivent le suivre sont déjà obtenus ; ce qui peut
fournir une seconde solution du problème (*).

(*) C'est à peu près sur les mêmes principes qu'est fondé le procédé que l'on
prescrit dans les traités d'arithmétique pour la division numéiique ; mais ces
principes se trouvent alors modifiés par des circonstances qui en rendent l'ap-
plication incomparablement plus difficile.

Comme c'est principalement la nécessité d'exécuter la division numérique , en
procédant de gauche à droite , que les commençons ont peine à bien sentir
je crois devoir , en leur faveur, placer ici les considérations suivantes.

I. Lorsqu'on multiplie un nombre de plusieurs chiffres par un nombre d'un
seul chiffre ,• chaque produit partiel, avant d'être écrit, subit, en général, deux
sortes de modifications, savoir, i.° une augmentation de quelques unités, pro-
venant des dixaines enlevées au produit précédent ; 2.0 une diminution de toutes
ses dixaines, qui doivent être ajoutées comme unités au produit suivant. Les deux
produits extrêmes seuls ne subissent , avant d'être écrits , que l'une de ces mo-
difications , savoir , le plus à droite une simple soustraction de dixaines , et le
plus à gauche une simple addition d'unités; d'où l'on voit, en dernière analise
que c'est ce dernier qui, de tous , est le moins altéré. Donc , la comparaison
de ce produit avec le chiffre le plus à gauche du multiplicande sera le moyen
le plus propre à faire retrouver ce multiplicateur s'il est perdu ; et si , au con-
traire , c'est le multiplicande que l'on cherche , il conviendra de chercher d'abord
«on chiffre le plus à gauche, en comparant le multiplicateur à la partie gauche
du produit.

I I . Pareillement, dans la multiplication de deux facteurs de plusieurs chiffres ,
chaque produit partiel n'entre dans le produit total qu'après avoir été augmenté
à droite par les produits d'ordres inférieurs , et à gauche par les produits d'ordres
supérieurs. Les deux produits partiels extrêmes font pourtant exception à cette loi,
puisque le plus à droite ne subit aucune altération vers sa droite , et que le plus
à gauche nen subit aucune vers sa gauche ; d'où l'on voit qu'encore , ici , c'est
ce dernier produit qui subit la moindre altération , avant de venir se placer dans
le produit total. Si donc il s'agit de déterminer le multiplicateur, à l'aide du
multiplicande et du produit, ce qu'il y aura de mieux à faire sera de chercher,
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Remarque IL Lorsque le quotient ne doit avoir que deux termes ?

on les obtient immédiatement , en divisant les termes extrêmes du
dividende parles termes extrêmes du diviseur ; respectivement ; sauf
ensuite à s'assurer , par la multiplication , si le quotient obtenu
est exact.

Extraction des racines des polynômes*

LEMME L Le premier terme de la m.me puissance d'un poly-
nôme est, sans réductions ni modifications quelconques , la m»In0

puissance du premier terme de ce polynôme.
Démonstration. Il est aisé de voir ( §• I. Lemme I) que le premier

terme du produit de 772 polynôme est , sans réductions ni modi-
fications quelconques , le produit des premiers termes de ces poly-
nômes. Or , si les polynômes sont tous égaux , leur produit devient
la m.me puissance de l'un d'eux, et le premier terme de ce produit
devient 9 en même temps , la m.mt puissance du premier terme du
polynôme , ce qui démontre la proposition annoncée.

Remarque. On prouverait, de la môme manière , que le dernier
terme de la m.m* puissance du polynôme est, sans réductions nï
modifications quelconques , la m™* puissance du dernier terme de
ce polynôme.

LEMME IL Si de la m.me puissance d'un polynôme on re-*
tranche la m.me puissance de Vensemble de ses rpremiers termes;
le premier terme du reste sera, sans réductions ou modifications
quelconques , m fois la (m—i)me puissance du premier terme du
polynôme , multiplié par son ( r + i ) m c terme.

Démonstration* Soit

d'abord le chiffre le plus à gauche de ce multiplicateur , par la comparaison
du multiplicande avec la partie gauche du produit.

Au surplus , ceux qui s'ekonnent que la division numérique commence par la
gauche devraient bien plutôt s'étonner de voir commencer la soustraction paj i§
droite ; car c'est vraiment là où est l'exception.
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le polynôme dont il s'agit ; il faut prouver que le premier terme
du développement de

est

Or , en traitant la première partie comme un binôme , développant
par la formule de NeAvton , et réduisant, il vient

m-1 (Hzp~r-\- -4-F)

==:<Ar+...

+ «<* (A)
sur quoi on doit remarquer qu'à cause du premier terme qui manque
la plus petite valeur de n doit être l'unité.

Considérons présentement à part le terme général

et cherchons quel est le terme le plus élevé de son développement*
D'abord ( §• IL Ler/ime I ) le terme le plus élevé du dévelop-
pement de

est
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le terme le plus élevé du développement de

est

donc (§ . I. Lemmc I) le terme le plus élevé du développement du
terme général sera

m 772 — 1 772—72-f-X

I ' 2. *"" U

OU

m m—i m—y

On aura donc le premier terme de la fonction (A) , en donnant
ici à n une valeur qui rende l'exposant de x le plus grand possible ,
c'est-à-dire , en donnant à n la plus petite valeur qu'elle puisse
avoir , c'est-à-dire ? en posant /z=i , ce qui donne

comme nous l'avions annoncé.
Remarque. On prouverait de la même manière que , sî de la m.m*

puissance d'un polynôme on retranche la ̂ 2.me puissance de l'ensemble
de ses r dernier terme , le dernier terme du reste sera , sans réductions
ou modifications quelconques , 772 fois la (jn—i)me puissance du
dernier terme du polynôme, multipliée par le terme qui , dans ce
polynôme, occupe le ( r + i ) m e rang, à partir du dernier.

PPiOBLÈME* Déterminer la racine m.me d'un polynôme ?
Solution. En extrayant la racine m.me du premier terme du poly-

nôme proposé , on obtiendra ( §. II. Lemme / ) le premier terme



3o4 DIVISION ET EXTRACTION DES RACINES.
de la racine cherchée. D'un autre côté , les r premiers termes de
cette racine étant trouvés, si , après avoir retranché la /72.me puis-
sance de l'ensemble de ces termes du polynôme proposé , on divise
le premier terme du reste par 772 fois la (m—i)me puissance du
premier terme de cette racine , on obtiendra pour résultat ( §. IL
Lemme H) le (r~f-i)me terme de cette même racine. Ainsi on a,'
à la fois , par ce qui précède , i,° le moyen d'obtenir le premier
terme de la racine ; 2.0 le moyen d'obtenir un terme quelconque
de cette racine ; lorsque tous ceux qui doivent le précéder sont
déjà obtenus : ce qui renferme implicitement la solution complète
du problème , et conduit immédiatement aux méthodes connues.

Remarque I. D'après les deux remarques précédentes , on voit
qu'on a aussi i.° le moyen d'obtenir le dernier terme de la racine;
2.° le moyen d'obtenir un terme quelconque de cette racine ? lorsque
tous ceux qui doivent le suivre sont déjà obtenus ; ce qui peut
fournir une seconde solution du problème.

Remarque II. Lorsque la racine ne doit pas avoir plus de quatre
termes , on peut l'obtenir assez simplement par le procédé que voici 9

et qui n'exige que des opérations sur des monômes : en extrayant
les racines 772.mes des deux termes extrêmes du polynôme proposé,
on obtient les deux termes extrêmes de la racine ; divisant ensuite
le second et l'avant-dernier terme de ce polynôme , respectivement,
par m fois la (m—i)me puissance du premier et du dernier terme
de la racine , on obtiendra pour quotiens le second et Favant-dernier
terme de cette racine ; il ne sera donc plus question alors que de
vérifier si la racine obtenue est exacte.

Observation générale. On voit , par tout ce qui précède 7 que ̂
dans la division et l'extraction des racines des polynômes , ce n'est
que pour plus de commodité qu'on ordonne ces polynômes ; mais
on voit en môme temps qu'il est essentiel d'opérer , dans tous les
cas , de la même manière qu'on le ferait, si les polynômes étaient
ordonnés»

DYNAMIQUE
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DYNAMIQUE.

'Véritable solution du problème de la trac toi re ;

Par feu FRANÇAIS , professeur aux écoles d'artillerie. (*)

JL ROBLÈME. Sur un plan Jiorisontal > on a pratique une rainure
xectiligne , dans laquelle un corps P est assujetti à se mouvoir
uniformément. Ce corps est lié, par une verge inflexible et inex-
tensible ? avec le corps M, qui pose sur le plan , et qui est supposé
avoir reçu une impulsion primitive quelconque 9 dans le sens de
ce plan. On demande la nature de la courbe décrite par le corps
M 3 et les autres circonstances du mouvement, en faisant dfailleurs
abstraction du frottement ?

Solution. Soit prise pour axe des x la droite que le corps P
est assujetti à parcourir ? et pour axe des y une perpendiculaire
quelconque à cette droite.

Soient à l'époque / , x et y les coordonnées du point M9 et x;

l'abscisse du point P ; le mouvement rectiligne de ce dernier point
ne pourra être que l'effet d'une force accélératrice , dirigée suivant
Taxe des oc et troublée par la réaction de M sur P. Soit p cette
force accélératrice.

L'équation générale du mouvement sera donc , en supposant / la
"variable indépendante 7

(*) Cette solution a été commi niquée au Béclnclrur des Annales par M. J.
F. Français, professeur à l'école impériale de l'artillerie et du gâiie ? frère de
l'auteur»

Tom. IF. 4i
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, àx'eu simplement, a cause de —- constant ,

M ^ *x+M ^ sy—PPïx>=o. (i)

En désignant par a la longueur de la verge , la liaison des parties
du système sera exprimée par l'équation unique

(x—x<y+y>=a> , (2)

laquelle donnera

'où

(3)

substituant donc cette valeur dans l'équation (1) , elle deviendra

£* et ^y devant alors être indépendans , on aura séparément

d'où , l'élimination de p , on conclura

yd2^=(^—#<0d2/. (6)

Puisque àx1 est constant 5 cherchons a obtenir une équation en
xf et y. Pour cela , difTérentions deux fois consécutivement l'é-
quation (2) ; il viendra ainsi

(*) Voyez la Mécanique céleste, tome i»e r
3 page Si,
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l'équation (6) donne

égalant donc ces deux valeurs, il viendra, toutes réductions faites,

«fquation qui a pour intégrale

•jà=:+Cdx'-O. (8)
y/a2—y* v J

Cette dernière équation , intégrée de nouveau , donne

Arc. f Cos. = 7 ) = C*M-C ;

ou bien , en remettant pour xf sa valeur donnée par l'équation (2)

Arc. (Cos. = — J = C{x— y/Z^p)—^. (9)

Pour déterminer les constantes C et O , supposons d'abord que

la vitesse constante de P soit l ; de manière qu'on ait—z=.b. En

mettant cette valeur dans l'équation (8) , elle deviendra

ày
\-lC\/ &—y*=O. (io)

Supposons ensuite qu'à l'origine des temps le point P soit à
l'origine des coordonnées , et que la verge a forme alors un angle
m avec Taxe des x. Supposons de plus que la vitesse initiale de
M parallèlement à Taxe des y soit c7 en sorte que pour / = o et

y=;tfSin.* on ait — =£ ; l'équation (10) deviendra ainsi
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c+alCCos.«=o , d'où C— - ? — .

L'intégrale seconde (9) , rapportée au même état initial, devient

Are^Cos.^Sin.*)^::^7 , d'où Oz=.\?z--*,

On a ainsi

C'est l'équation demandée de la courbe décrite par les corps M»
On voit que cette courbe est une cycloïde générale , rapportée à la
droite parcourue par le centre du cercle générateur ; ce cercle a
pour rayon la longueur a de la verge ; sou centre est l'extrémité
P de cette verge • et le rapport des vitesses de translation du centre
et de rotation des points de la circonférence autour de ce centre est
celui de bCos.* à c ; de manière que la cycloïde sera allongée or-
dinaire ou raccourcie , suivant qu'on aura bCos.a^>c v $Cos.*=£
ou bCos.cc<£c.

L'équation (11) contient, comme une des données, la vitesse
initiale de M dans le sens des y -, on aurait pu y introduire sa vitesse
dans le sens des oc. Si , en effet , Ton met dans l'intégrale pre-

îniere (o) pour -.: - , sa valeur , on aura

àxf , _, âxf dx
\-Cy = o .

Soit ensuite cl la vitesse initiale de M dans le sens de jr? en sorte

qu'on ait— = £ / , cette équation deviendra £+tf#CSin,#—^ = 0 7
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introduisant donc cette valeur dans l'équation de la courbe , elle
deviendra

V / + ) A ^Si^rV / a 2_> .2+__.)Arc.

de sorte qu'il y a entre les vitesses initiales c et c1 la relation

L'équation (11) est en défaut , lorsqu'on a « = j a r ; mais alors
on emploie l'équation (12) qui devient

ab / y
A C

ab / y \
A-=t/û=—va — - Arc. Cos. = — ) .

J c'~b \ a /

De même 5 si #r=o, l'équation (12) est en défaut; mais alors l'é-
quation (11) devient

- ab / y \
x~ \/ a2—y2-\ Arc. ( Sin.=r — J .

Pour déterminer la vitesse de M , en un point quelconque de
la courbe , nous avons les équations

cy <\y c\fa2 r*
dt aCos.H ? àt aCos.«

donc

aGos.2oe.

Ainsi ? suivant qu'on aura y = a ou y = — a , on aura aussi

c c

— ou »--=3+
OS

II est aisé de yoir que ce sont là la plus petite et la plus grande
vitesses du point M ; la première a lieu au point le plus haut et
la seconde au point le plus bas de chaque cycloïde. donc , dans la
eycloïde ordinaire , pour laquelle on a c = bCos.» , la vitesse du
point M est nulle , chaque fois qu'il parvient à son maximum d'élé-
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ration , eï elfe est double de celle du point P , chaque fois qu*il
parvient à son maximum d'abaissement. (*)

Le temps se trouve par la formule = laquelle donne

et, comme on a en même temps y~aSin.» et / = o , il s'ensuit
que £ " = * , ce qui donne

Ainsi, lorsque )'=#> on a

ûCos.# ( sn-f-i )

( )

n étant un nombre entier positif quelconque ; d'où il suit que le

temps employé a parcourir une cycloïde entière est = —

Jua torce accélératrice />= ; mais

• •• . d O U

aCos.»

et , comme on a d'ailleurs

dt aQos,ec

il s'ensuit qu'on doit avoir

P a

ce qui donne, pour la valeur initiale de p , /? = — — .

(*) Voyez la page 98 du deuxième volume de ce recueil.
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Réflexions et recherches sur le même problème ;

Par M. GERGONNE,

Ce problème se trouve traité par Claîraut , ainsi que plusieurs
autres problèmes analogues , dans le volume de XAcadémie des
sciences de Paris pour 1786. Ce géomètre prouve très-bien , par
des considérations purement synthétiques , que l'espace élémentaire
parcouru par le point P dans un instant quelconque ? divisé
par l'angle que forment entre elles les deux directions de la
verge a , au commencement et à la fin de cet instant , est une
quantité constante : d'où il suit que le point M décrit une circon-
férence autour du point P , d'un mouvement uniforme , pendant
que ce dernier se meut uniformément sur une droite , et qu'ainsi
la Trotoire est une cycloïde.

Clairaut s'était occupé de ce problème à l'occasion d'une dis-
cussion qu'il avait eue avec Fontaine 7 lequel prétendait que, dans
le mouvement 7 la direction de la verge devait constamment être
tangente à la courbe ; d3où il concluait que la Traduire n'était
autre que la courbe aux tangentes égales ; ce qui réduisait le pro-
blème à un simple problème de géométrie.

Malgré la solution de Clairaut, beaucoup de géomètres ont continue
jusqu'ici , avec Fontaine , à ne pas distinguer la Traduire de la
Courbe aux tangentes égales. Ils en ont même conclu, et ont dû
en conclure f en effet , que , ni la vitesse constante ou variable du
point P , ni le frottement ni la résistance du milieu , qui agissent
toujours dans la direction du mouvement ? laquelle est ici la môme
que celle de la verge a , ne pouvaient aucunement modifier la
nature de la courbe. Quant à Clairaut ? il accordait bien à Fon-
taine , ce qui , ce me semble , était beaucoup trop , que lorsque
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le corps M frottait sur le plan horisontal et qu'il n'y avait aucune
vitesse imprimée , la Tracioire pouvait être une courbe aux tan-
gentes égales , et son dessein était seulement de dcirontrer que
ce devait être une cycloide ? dans le cas où le frottement et les autres
obstacles étaient nuls.

Dans un mémoire que j'ai lu , il y a quelques mois , à l'académie
du Gard, j'ai ébaucbé la solution du problème général des tractoires
dans les milieux résistans, en supposant que le point P décrit 5 dans
l'espace , une courbe donnée quelconque , à double courbure , et
qu'il la décrit d'un mouvement varié aussi quelconque; on voit qu'il
suffirait de supposer la verge pesante et flexible , et d'avoir égard
à son poids et à sa courbure , pour obtenir la théorie complète du
Cerf-volant.

En particularisant mes résultats pour les rendre propres au cas
présent, je suis parvenu , en général, à des conclusions semblables
à celles de M. Français. Cependant , comme ma marche diffère un
peu de la sienne ? je pense qu'on ne sera pas fâché de trouver
ici un rapprochement des deux méthodes.

Pour me débarrasser de la rainure et de la considération des
masses , je me suis proposé ce cas particulier du problème, ainsi
qu'il suit :

PROBLÈME. Un point P parcourant Vaxe des x d'un mou-
vement uniforme , avec une vitesse connue égale à b ? exerce une

force attractive ou répulsive inconnue 5 constante ou variable y sur
un autre point M , absolument libre d'ailleurs , posé sur le plan
des coordonnées que Von suppose rectangulaires. Il action de P sur
M est telle que ces deux points sont toujours maintenus à une
distance constante a lune de Vautre. On demande ? d'après cela,

• la nature de l'a courbe décrite par le point M , ainsi que les
autres circonstances du mouvement ?

Solution. Soient, à une époque quelconque , x et y les coor-
données de M, x' l'abscisse d e P , et p l'action de P sur 31; cette
action s'exerçant suivant la droite qui joint ces deux points, il s'en-

suit
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Suit que ses composantes parallèles aux axes des x et des y sont

ccmm^x^ y

respectivement —/? , —/?,d'où il résulte que les équations du
a a

mouvement du point M doivent être , / étant la variable indé-
pendante ,

d*x x—x' <Iv y

a quoi il faut joindre

(x-x>)>+y>=a , (3) ^ j f = * - (-0
Cela pose, si Ton différencie deux fois l'équation (3), en ayant

égard à l'équation (4) , il viendra

o. (6)

Mais y d'un autre côte > en éliminant p entre les équations (i) el
(2) 9 on obtient

v ' dt* ' dt* KJJ

En éliminant x, — , — entre les équations (3) , (5) , (G), (7^

en aura

équation dont l'intégrale première est

J = Cx/^=p=: C(x-x*) ; (9)

valeur qui, substituée dans l'équation (5) , donne
^
— = ^ _ C y =—C\/a'—ix—x'y- . (10)

Tom, IF.
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Eliminant donc / entre les équations (9) et (10) ; on aura pour
équation différentielle de la trajectoire

équation que Ton reconnaît déjà pour être celle d'une cycloïde,
laquelle sera allongée , ordinaire ou raccourcie 3 suivant les diverses
valeurs qu'on attribuera à la constante C.

Pour déterminer cette constante C , M. Français considère suc-
cessivement les deux composantes , parallèles aux axes , de 1 im-
pulsion initiale qu'il suppose avoir été imprimée originairement à
M , ce qui le conduit à une équation de relation entre ses com-
posantes ; équation qui entraîne cette conséquence paradoxale
que Tune de ces composantes est donnée lorsqu'on donne l'autre ,
et qu'ainsi on n'a pas la liberté d'imprimer à M une vitesse initiale
qui soit à la fois arbitraire d'intensité et de direction.

Il m'a semblé qu'on ne pouvait guère expliquer cette sorte de paradoxe
qu'en considérant qu'il n'entre point dans l'esprit des procédés ana-
litiques d'admettre que le point P commence brusquement à se
mouvoir avec la vitesse finie et constante b , et que les formules
ci-dessus doivent supposer tacitement que ce point était déjà en
mouvement avant d'être parvenu au lieu où on le suppose arrivé
à l'instant par lequel on compte / = o . Ce qu'on appelle ici vitesse
initiale ne doit donc être autre chose que celle qu'il faudrait imprimer à
M , à cette époque , afin de suppléer au défaut effectif du mou-
vement de ce point , antérieurement à cette même époque ; et voilà
sans doute pourquoi cette vitesse initiale n'est point à la fois arbi-
traire de grandeur et de direction. Je ne propose ceci , au surplus,
que comme une simple conjecture , qui a besoin d'être marie par
la n-lloxion.

Afin donc de déterminer la constante C , je supposerai qu'à l'époque
pour laquelle on compte / = o 9 le point M se trouve avoir une
Vitesse c. soit imprimée ; soit antérieurement acquise ? dans une di-
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rectîon formant un angle £ avec Taxe des x , et dont les compo-

santes 5 respectivement parallèles aux axes des x et des y 5 seront

consfqi>eimnent cCos.p et rôin.,3 ; je supposerai d'ailleurs > avec M.

Français, qu'à la même époque le point P est a l'origine et que

la verge a fait un angle « avec Taxe des x ; c'est-à-dire, que je

•supposerai qu'on a en même temps

t=zo , •—• =^Cos./3> —- =Sin . s , ^r=^Cos.« ^ y=ûS\n.ec .

À '7aide de ces diverses suppositions , les équations (9) et (10) de-

viendront

^Sin.,s = CaCos.ec y

d'où
cSm.S b—cCos.fi

aCos.cc aSin.ee>

ce qui donne l'équation de relation

^CoS.(/S 1^=: bCoS.ec. ( I 3)

Si présentement on intègre l 'équation ( i l ) on trouvera

les circonstances initiales du mouvement donnent , en réduisant

en sorte qu'on a définitivement

équation dans laquelle , en vertu de la relation (i3) , on pourra

substituer pour C l'une quelconque des deux, valeurs données par

les équations (12)* On aura ensuite
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Mais l'équation (9) donne , en intégrant et ayant égard aux cir-
constances initiales du mouvement,

-«=Arc.(sin. = ^ •Ci-

d'où

donc

II parait bien établi , par tout ce qui précède , que , tant qu'on
fera abstraction du frottement et de la résistance du milieu , et
qu'on supposera le mouvement du point P rectiligne et uniforme,
la tractoire plane sera une cycloïde. Supposons présentement 7 s'il
est possible , qu'en ayant égard soit au frottement y soit à la résis-
tance du milieu , soit à tout autre obstacle agissant dans un sens
directement opposé à celui du mouvement du point M , la trac-
toire put devenir la courbe aux tangentes égales ; la suppression
de tous ces obstacles revenant à l'introduction d'une force égale
et contraire à leur somme , dirigée dans le sens du mouvement,
ne devrait altérer en aucune sorte la nature de la courbe, et n'aurait
d'autre effet que d'augmenter ou diminuer plus ou moins la tension
ou compression de la verge a 5 et de faire varier l'intensité et la
direction de la puissance variable à appliquer au point P pour lui
faire décrire une ligne droite d'un mouvement uniforme 5 avec la
vitesse b% la tractoire devrait donc dans ce cas , comme dans le premier,
être une courbe aux tangentes égales ; or , nous venons de voir
qu'alors elle est une cycloïde ; donc dans le premier cas elle ne
saurait être une courbe aux tangentes égales. Ainsi, loin que jamais,
par l'effet du frottement et de la résistance du milieu , la tractoire
puisse devenir une courbe aux tangentes égales , cette courbe est
peut-être la seule au contraire que le point M ne puisse jamais
décrire , du moins tant que ce point ne sera §oumis à l'action d'au-
cune force étrangère au système*
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Pour ne rien laisser à désirer sur ce sujet , je rais finalement
chercher quelle est la force accélératrice qui devrait agir sur le point
M pour lui faire décrire la courbe aux tangentes égales ; c'est-à-
dire , que je vais résoudre le problème suivant :

PROBLÈME. Pendant qu'un point P parcourt Vaxe des x ,
d'un mouvement uniforme, avec la vitesse b , un autre point INI
se meut d'un mouvement carié et curviligne sur le plan des xy.
Le mouvement de ce dernier point est tel que toujours il se trouve
à une même distance constante a du point P et qu'en outre la
droite mobile qui joint ces deux points est perpétuellement tangente
à la courbe décrue par le point M. On demande d*après cela quelle
est la nature de cette courbe , et quelle est la jorce accélératrice
qui agit sur M ?

Solution. Soient conservées les notations et conventions du pro-
plème précédent. L'invariabilité de la distance entre les points M
et P sera exprimée par l'équation

(*-_*/)»-+./«=*• ; (i)

et la propriété dont jouit la droite qui les joint, d'être perpétuellement
tangente à la courbe décrite par M 9 sera exprimée par cette autre
équation

Eliminant x~—x' entre elles , il viendra

équation dont l'Intégrale est

Si, pour déterminer la constante ? on suppose , comme ci-dessus,
qu'on ait en même temps
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il viendra

PROBLÈME

f *=—dLog.Tang. \

ce qui donne 3 enfin, pour l'équation de la courbe aux tangentes égales

/ (3)

Présentement, en considérant / comme la variable indépendante,
nous pouvons mettre l'équation (2) sous la forme

àt (4)

d'un autre côté, en différenciant l'équation (1) , il vient, à cause
dx'

(5)

De ces deux équations on tire

ùt

dt
, by\[a^

(6)

(7)

On trouve ensuite , par une nouvelle diiïérentiation

_ (3)
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àt*

En désignant donc par X9 Y9 respectivement, les composantes de
la force accélératrice , parallèlement aux axes , on aura

5 JL —— " 1 ' ' I

e t , conséquemment ; si Ton désigne cette force par $ , on aura

et elle fera, avec Taxe des x 9 un angle dont la tangente tabulaire sera

d'où II est facile de conclure que ses composantes , suivant la tau-
gente et suivant la normale , seront respectivement

ai '

On volt donc que la puissance <p n'est point dirigée suivant MP.
Rien ne serait plus facile maintenant que d'obtenir x , y J

— , - ^ , f j , — et f en fonction de / ; mais nous croyons
dt àt dtz dt2

superflu de nous arrêter à la recherche de ces diverses expressions*
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QUESTIONS PROPOSÉES.

Problème de dynamique.

JLJE point de suspension d'un pendule simple > à Pétat de repos f

étant subitement entraîné d'un mouvement rectiligne et uniforme ,
avec une vitesse connue } le long d'une droite horisontale , on pro-
po5e d'assigner la nature de la courbe décrite par l'extrémité in-
férieure de ce pendule , ainsi que toutes les autres circonstances de
son mouvement ?

On fait abstraction ici de la résistance du milieu.

Théorème de Géométrie.

Les pieds des perpendiculaires abaissées sur les plans des f#ces

d'un tétraèdre, de l'un quelconque des points de la surface de la

sphère circonscrite , sont tous quatre situés dans un même plan.
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ASTRONOMIE PRATIQUE.

Mémoire sur Tusage du réticule rhombe , pour les
observations des taches du soleil et de la lune;

Par M. H. FLAUGERGUES , astronome , correspondant de la
première classe de l'institut.

XL ne parnît pas que les astronomes aient ? jusqu'à présent , em-
ployé le Réticule rhombe (*) pour observer les taches du soleil (**)
et de la lune. Toutes les observations de ce genre qui me sont
connues , et pour lesquelles on s'est servi de réticules ? ont été faites

(*) C'est ainsi qu'on doit nommer le réticule dont Bradley passe pour ôtre
l'inventeur, et non pas Réticule rhomboïde, puisque le parallélogramme foimé
par les côtés de ce réticule est équilaléral , ce qui caractérise le rhombe et le
différencie du rhomboïde , suivant la définition d'Euclide i ¥a/u,fioç , « ttrévhivçov....
VopÇtôu^iç , è\ , o ii îrowXevçov, (Euclidis, Elem. lib. I , définit. 32 et 33. ) II
est inconcevable que, depuis plus de soixante ans , les, astronomes se soient tous
accordés à se servir d'une expression aussi impropre.

(**) L'observation assidue des taches du soleii, outre son utilité générale pour
déterminer les élémens de la rotation de cet astre , et pour décider la question
fameuse si ses taches appartiennent aux mêmes points physiques au g'obe du soit îl ,
ou si elles naissent spontanément dans la zone qui leur est affectée , peut encore
conduire à la découverte des petites planètes qui peuvent exister dans l'espace,
entre Mercure et le soleil , ainsi qu'à celle des comètes dont le périhélie étant
très-près de cet astre passent par ce point de leur orbite aux environs de leur
conjonction inférieure , avec peu de latitude , et ne peuvent ainsi être aperçues
que dans leur passage sur le di>que du soleil. C'est sans doute un phénomène *Je
ce genre que vit M. Dangos y le 18 janvier 1798, et qu'il avait dvjk apeivu en 1784

Tom. IF, n.° XI, i." mai 1814. 43
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au moyen des passages des taches et des bords du soleil et de la
lune , ou des cornes de ce dernier astre , lo^sqVil était en croissant,
aux fils hjrisontal et vertical de ia lunette d'un quart de cercle ?

ou par le fi! horaire et les obliques d'en réticule de 45°. Un célèbre
astronome (*) pensait même que le réticule rhombe ne pouvait
sercir pour lobseivation desaMr.es qui ont un diamètre considérable 3

comme le soleil et la lune -, et P pour le rendre propre à cet usage ,
il avait fait appliquer au réticule de sa lunette parallaetique deux
fils parallèles à la grande diagonale et passant par le sommet de
chaque angle obtus • mais cette addition , qui complique l'observation ?

est fort inutile 9 et l'on peut très-facilement et très-exactement dé-
terminer la position d'une tache à l'égard du centre du soleil ou
de la lune avec le réticule rhombe , tel qu'il est décrit dans l'as-
tronomie de ]\I. de Lalande (**) en s'y prenant de la manière suivante.

Soit VYXZ (fig. i) un réticule rhombe , dont la petite diagonale
ZY est parallèle à l'cquateur. Représentons par le cercle S l'image
du soleil , qui est supposée se mouvoir en rasant par son boid le
fil parallèle passant sur la diagonale ZY , et dont le centre décrit
par conséquent la ligne AÀW , parallèle à cette même diagonale
et à l'équateur. Supposons que ; ce centre étant en A , le bord
précédent de l'image du soleil touche en B le côté ZX du réticule;
cette image continuant d'avancer , et son centre étant parvenu au
point A/, le mémo bord touchera le côté XY du réticule au point
IV. Ce centre parvenu au point A / ;

 9 le bord suivant touchera le

( Clef des cabinets des Souverains , n.° 386 , du 2,1 pluviôse an 6 , pag. 3485).
J'espère que la méthode facile de déterminer la position de ces lâches que Ton
trouvera dans ce mémoire ramènera l'attention des astronomes sur ce sujet
important. Au reste , il est possible que cette méthode ait été déjà trouvée par
des astronomes dont les écrits ne me sont pas connus. Il serait à propos de con-
sulter là-dessus le tome 4-e des Œuvres du P. Boscovich , où il est beaucoup
parlé du réticule de B radie v ; je n'ai pu me procurer cet ouvrage.

(*) M. Darquier , Lettres sur Vastronomie pratique) Paris 1786, page 07.

(**) Astronomie de M. <3e Lalande, 3 . e édit. , lom. 2, , pag» 069 et suiv.
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côté ZX du réticule au point B / ; ; et enfin, le centre de l'image
du soleil parvenu au point A/u , le même bord touchera le coté
XY du réticule au point B / / / . Je nomme contacts extérieurs les
contacts qui ont lieu aux points B et B v / , et contacts intérieurs ceux
qui ont lieu aux points W et B7/. Puisque la ligne AkN/ est la ligne dé-
crite par le centre de l'Image du soleii , dans son trajet par le réticule ,
la ligne E F sera la corde décrite par ce centre , en dedans du ré-
ticule. Si on tire la diagonale X V , cette ligne sera perpendiculaire
à EF qu'elle divisera en deux parties égales au point D. Cette diagonale
di\isera pareillement l'angle YXZ du réticule en deux angles égaux
E X D , FXD. Nommons b un de ces angles et menons enfin du
centre de l'image du soleil , dans ces quatre positions A , A7, A77, A77/

aux points de contact correspondais , lesjj rayons ÀB , A7B7, A77B7/,
A777B77/

 9 dont le second et le troisième se coupent en H sur X V .
Cela posé, les triangles rectangles Bx\E , D X E , ayant les angles

en E opposés au sommet , sont semblables; et, par la même raison,
les triangles rectangles B//7A777F et DXF ,] qui ont les angles en F
opposés au sommet, sont aussi semblables*

Les triangles rectangles DA7IÏ , B7XH , qui ont les angles en H x

opposés au sommet , sont semblables ; et pareillement les triangles
rectangles DA77H , B / 7XII, qui ont les angles opposés au sommet
au même point H , sont aussi semblables.

Par conséquent les angles BAE , B/7A77E sont égaux chacun à
l'angle DXE; et les angles B ^ A ^ F , B7A7F sont égaux chacun à
l'angle DXF ; c/est-à-dire , que 1rs quatre angles BAE , B^VF ,
B^A^E , B / / /A / / /F sont égaux chacun à la moitié de l'angle du
réticule ou à h ; et puisque les eûtes AB , A'IV , A ^ B " , Kf:/Wf

sont égaux, les triangles ABE , A'IVF , A^'B^E , A ^ l i ^ F sont égaux
en tout.

Il est évident qu'au moment du premier contact exteneur, le
centre de l'image du soleil étant au point A 5 sa distance au milieu
D de la corde EF est AD = AE-j-;-EF, et qu'au moment du premier
contact intérieur y le centre de l'image du soleil étant parvenu au
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point À; , sa distance au même point D est À/D = À/F-—|EF, Si
on retranche cette dernière équation de la première ( en faisant
attention que A'F:=AE ) , on aura AD—A;D~ AA^AE-j-^EF
—A'F-»--EF=EF. On prouvera tout de même (puisque A^'FrrA^E),
que A'"D-A'<D = A"'A"==A/' 'F-hiEF—A^E+iEF=EF , d'où
l'on tire ce théorème général : La ligne parcourue par le centre
de F image du soleil, dans V intervalle de temps entre le premier
contact extérieur et le premier contact intérieur , est égale à la
ligne que parcourt le même centre dans l'intervalle entre le second
contact intérieur et le second contact extérieur ; et ces deux lignes
sont chacune égale à la ligne que décrit le centre de Fimage du
soleil en dedans du réticule.

D'après ce théorème , qui a lieu dans toute espèce de réticule
rhombe , on peut, avec la plus grande facilité , trouver la valeur
de la corde que décrit le centre de l'image solaire en dedans du
réticule , puisqu'il ne faut pour cela que réduire en degrés l'inter-
valle de temps entre le premier contact extérieur et le premier
contact intérieur, ou l'intervalle de temps entre le second contact
intérieur et le second contact extérieur. On comparera ensuite , suivant
la méthode qu'exige la nature du rhombe formé par les côtés de
ce réticule , cette valeur avec la valeur de la corde décrite par la
tache en dedans du réticule , déterminée au moyen du temps que
cette tache a employé à le traverser réduit en degrés , et Ton aura
la différence de déclinaison entre la tache et le centre du soleil.

Par exemple , dans le réticule de Bradley , où la moitié de la
grande diagonale est égale à la petite diagonale , si Ton nomme T
le temps écoulé entre les deux premiers et les deux seconds contacts,
ê le temps que la tache a employé pour traverser le réticule 3 et D
la différence de déclinaison ; on aura

(en supposant que la pendule est réglée sur le moyen mouvement).
Le signe en indique que l'on doit retrancher ô de T ou T de $ ,
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suivant que T ^ é . La tache sera au nord du centre du soleil si,

la déclinaison du soleil étant boréale , cet astre a passé dans la
partie supérieure du réticule , et que le temps que cette tache a
employé pour traverser ce réticule soit plus long que le temps que
le centre du soleil a employé à le traverser. Si une de ces conditions
vient à changer , ou toutes les trois ensemble , la tache sera au
sud du centre du soleil.

On doit observer les quatre contacts autant qu'il est possible,
parce que l'observation des deux derniers sert à vérifier celle des
deux premiers. Cependant , si le champ de la moitié du réticule
n'était pas assez grand pour qu'on put y observer les contacts in-
térieurs , ce qui arrive lorsque le diamètre de l'Image solaire est à
la moitié de la grande diagonale du réticule dans un rapport plus
grand que celui du rayon à la moitié de la somme du rayon et
du sinus de la moitié de l'angle aigu du réticule , on déterminera la
corde décrite par le centre du soleil , en dedans du réticule , au
moyen seulement des deux contacts extérieurs ; car , dans le triangle
rectangle ABE , on a ( en supposant le rayon des tables ~ i )

AE : AB : : i : Cos.£ ; donc AE = -— . p a r la même raison A//7F
Cos.6 r

À'"B"' AB . 1 4
= ^ J = ZZZ ; e t 9 Pms(lue AAW=EF+AE+AWF , on a

EF=AA'"_
Cos.£ '

c'est-à-dire , que la corde décrite par le centre du soleil en dedans
du réticule est égale à la ligne décrite par ce centre dans Vin-
tervalle de temps écoulé entre les deux contacts extérieurs, diminuée
du auotieni de la division du diamètre du soleil par le cosinus
de la moitié de Vangle aigu du réticule.

Si, à raison de l'interposition des nuages, ou par quelque autre
accident, on ne pouvait observer que les deux contacts intérieurs,
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on déterminerait de même la valeur de la corde décrite par le centre
du soleil 5 en dedans du réticule ; car il est évident que , lors du
premier contact intérieur, la distance du centre du soleil au milieu

D de la corde EF est A/DmA'F—DF= ^ l — ^EF, et qu'à Fins-

tant du second contact intérieur cette distance est A / /D=A / /E—DE

= — fEF ; ajoutant ces deux équations > en faisant attention

que A/B/=A//B//==AB, on aura

Cos.&

d'où Ton tire

EF=^5—A'A" ;
Cos.»

c'est-a-dîre , que la corde décrite par le crntre du soleil en dedans
du réticule est égale au quotient de la division du -diamètre du soleil
par le cosinus de la moitié de Vangle aigu du réticule , moins la
ligne décrite par le centre du soleil dans l'intervalle de temps écoulé
entre les deux contacts intérieurs*

Lorsque le réticule est si petit ou l'amplification de la lunette
si grande que le rapport du demi-diamètre de l'image du soleil à
la moitié de la grande diagonale du réticule est plus grand que
celui du rayon au cosinus-verse de la moitié de l'angle aigu du réti-
cule ? les contacts de l'image solaire ne peuvent plus avoir lieu , ni
en dedans m en dehors du réticule , et cet instrument devient
alors inutile pour l'usage que nous proposons ici.

Ainsi, par exemple, dans le réticule de Bradley, où la moitié
h de l'un des angles aigus est de 2G.0 33' 54// , si le rapport du demi-
diamètre de l'image solaire a la moitié de la grande diagonale du
réticule est plus grand que celui de 1 à 0,^206 , ou que cette
demi-diagonale sous-tende dans le ciel un angle plus petit que 22/ 4f//

( le diamètre du soleil apogée étant de oi/ oif/) ? on ne pourra
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observer, daus ce réticule, les contacts intérieurs: et si ce rapport
ebi plus grand que celui de i à coSao , ou que cette moitié de
la grande diagonale sous-tendc clans le ciel un angle moindre 8 / 3 i / 7 ,
ce réticule ne pourra être d'aucun usage pour l'observation des taches
du soleil. Hors ce dernier cas , 5*1 on a observé seulement les deux
contacts extérieurs . et qu'on réduise en degrés le temps écoulé entre
ces deux contacts , c'est-à-dire , entre le commencement de rentrée
et la sortie totale du soleil hors du réticule ; on retranchera de cet
arc le diamètre du soleil divisé par le cosinus de 2G0 33 / 5 4 " ,
ou , ce qui revient au même , multiplié par la sécante de cet arc ,
qui est é^ale à I , I I 8 O 3 ; le reste sera l'arc que l'on peut prendre
pour une ligne droite décrite par le centre du soleil en dedans du
réticule. On retranchera , au contraire, du diamètre du soleil multipUé
par 1,11800, le temps écoulé entre les deux contacts intérieurs ré-
duits en degrés, si on n'a observé que les deux contacts intérieurs .
et on aura également la corde décrite par le centre du soleil en
dedans du réticule , dans ce dernier cas.

Pour déterminer la différence d'ascensions droites on additionnera
les temps des deux contacts extérieurs ou les temps des deux contacts
intérieurs , et Ton prendra la moitié de la somme , ce qui donnera
le temps du passage du centre du soleil par la diagonale XV ou
par le cercle horaire qui passe par le milieu du réticule. On addi-
tionnera de même les temps de l'entrée et de la sortie de la tache
du réticule , et la moitié de la somme donnera le temps du passage
de la tache au même cercle horaire. La différence des temps de
ces deux passages sera la différence en ascension droite dont la
tache sera plus avancée que le centre du soleil , si le passage de
ce centre au cercle horaire a précédé le passage de la tache ? et
au contraire moins avancée , si le passage de cette tache a suivi
le passage du centre du soleil.

Si on observe le premier contact extérieur et le premier contact
intérieur ou bien le second contact intérieur et le second contact
extérieur, on pourra également déterminer le temps du passage du
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centre da soleil par le cercle horaire qui passe par le milieu du
réticule. Pour cela , on remarquera que la distance du centre de
limage solaire à la grande diagonale du réticule à l'instant du premier

contact extérieur est égale à -—- + | E F , et que cette distancera
Cos.o

AT»

l'instant du premier contact intérieur, est égale à ^EF;donc,

au milieu du temps écoulé entre le premier contact extérieur et le
premier contact intérieur, la distance de l'Image solaire à cette diagonale
, . AB

à droite est égale a — - -, par la même raison , le centre de l'Image

solaire , au milieu du temps écoulé entre le second contact Intérieur
et le second contact extérieur est éloigné de la même diagonale à

gauche de la même quantité - — - ; par conséquent , pour -avoir le

temps du passage du centre du soleil an cercle horaire qui passe
par le milieu du réticule , on additionnera le temps du premier
contact extérieur avec le temps du premier contact intérieur , on
prendra la moitié de la somme à laquelle on ajoutera la quantité

* réduite en temps , c'est-à-dire, le demi-diamètre du soleil divisé par
Cos.ô r

i5Cos.Dsc.OCos,# ; on retranchera au contraire cette même quantité
ûe la moitié de la somme des temps du second contact intérieur et
du second contact extérieur ; et , dans les deux cas , on aura le
temps du passage du centre du soleil au cercle horaire qui passe
par le milieu du réticule ; et , en comparant ces temps avec le temps
du passage de la tache par le même cercle , on aura la différence
d'ascension droite de cette tache avec le centre du soleil.

Le réticule rhomhe peut , comme on voit , servir pour déter-
miner la position des taches d'un astre dont on ne peut voir qu'un
seul hord : comme cela a lieu pour la lune ( le jour de l'opposition
excepté ) ; puisqu'il suffit , pour avoir la corde décrite par le centre
de la lune 9 d'observer le premier contact extéxieur et le premier

contact
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contact Intérieur du bord précèdent, lorsque la lune est en croissant,
ou le second contact intérieur et le second contact extérieur, lors-
que la lune est en decours. On prendra la différence entre le temps
écoulé entre ces deux contacts , respectivement dans chaque cas ?

et le temps que la tache a mis pour traverser le réticule , en re -
tranchant le plus petit du plus grand ; et on multipliera cette dif-
férence de temps , pour la réduire en arc ( si le réticule employé
est celui de Bradley ) par

36o.°(Cos.Décl.App.îO_ ,

( 0 étant le temps écoulé entre le passage de la lune au méridien
qui a précédé et celui qui a suivi l'observation ) le produit sera
la différence de déclinaison entre la tache et le centre de la lune.
La tache sera au nord du centre de la lune si , la Inné étant au
nord de Péquateur et passant par la partie supérieure du réticule 7

le temps employé par la tache pour traverser ce réticule est
plus long que le temps écoulé entre les deux contacts. La tache
sera, au contraire, au sud du centre de la lune , si une de ces
conditions vient à changer , ou toutes les trois ensemble.

Pour déterminer le passage du centre de la lune par le cercle
horaire qui passe par le milieu du réticule , on remarquera , comme
nous l'avons déjà fait, que la distance de ce centre à ce cercle horaire ,

à l'instant du premier contact extérieur est égale à f-^EF, et

que cette distance, à l'instant du premier contact intérieur est égale i

f E F ; donc, au milieu du temps écoulé entre le premier
Cos.0 L

contact extérieur et le premier contact intérieur, la distance du centre

de la lune au cercle horaire est égale à ; par conséquent, pcar

avoir le passage de ce centre à ce cercle , on additionnera le temps

du premier contact extérieur avec le temps du premier contact in--.
térieur ; et on prendra la moitié de la somme à laquelle on ajoutera

Tom. IF, Ai
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la quantité : rcduite en temps , c est-a-dire , le demi-diamètre
A COS.P

horisontal de la lune multiplié par

e
36o.oCos.Décl.App.i)Cos b '

on retranchera au contraire cette même quantité de la moitié de la
somme des temps du second contact intérieur et du second contact
extérieur, et on aura, dans les deux cas, le passage du centre de
la lune par le cercle horaire qui passe par le milieu du réticule ;
e t , en comparant ce temps avec le temps du passage de la tache par
le même cercle , on conclura la différence d'ascension droite entre
]a tache et le centre de la lune.

On corrigera ensuite les différences d'ascension droite et de dé-
clinaison trouvées par les méthodes précédentes des effets du chan-
gement de la réfraction et de la. parallaxe en déclinaison pendant
le temps du passage par le réticule , suivant les formes connues (*).

Le calcul de la différence des déclinaisons est un peu plus simple,
en se servant du réticule de Bradley ; mais ce petit avantage ne
compense pas la difficulté qu'il y a de construire exactement ce
réticule. Je propose aux astronomes de substituer au rhombe choisi
par Bradley un rhombe composé de deux triangles équilatéraux
opposés , et décrits sur une même ligne servant de base qui devient
la petite diagonale de ce rhombe représenté dans la figure. La
description du triangle équilatéral qui fait le sujet de la première
proposition des élémens d'Euclide , est la plus simple et la plus
facile de toutes les opérations géométriques. On pourra donc cons-

(*) Vojez VAstronomie de M. de Lalande , 3.e édit. , tom. 2. , pag. 679 et
$uiv. , ou le Traite de trigonométrie rectiïigne et sphèrique par M. Cagnoli ,
a.e édit., pag. 4/6 et suiv.
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truire , avec la plus grande exactitude , le réticule que je propose $
et , pour réduire les observations que Ton fera avec ce nouvel ins-
trument , il suffit de remarquer que la moitié CX de la grande
diagonale est à la petite diagonale YZ ( égale au coté du rhombe )

comme \Jl est à 2. Il faut donc multiplier par Y-l la différence

des cordes décrites dans ce réticule par les astres que Ton compare ;
c'est-à-dire ( en conservant les dénominations précédentes ) , qu'on
a , pour les observations faites à ce réticule >

. fJJ^l • Cos.Décl.0

. (12,9904.Cos.Décl.0).

On pourrait môme , sans craindre d'erreur sensible , multiplier simple-

ment la différence des temps des passages par 13 fois le cosinus de la décli-

naison du soleil ; et le calcul des observations, faites au nouveau réticule

sera aussi simple que celui des observations faites au réticule de Bradley.

A l'égard des formules que nous avons données pour les obser-

vations des taches de la lune, on les réduira à ce nouveau réti-

cule 3 en les multipliant p a r ^ ou par o,8G6 ; et comme y dans

ce nouveau réticule } l'angle b est de 3o.° , il faudra diviser le
diamètre du soleil par le cosinus de 3o.° f ou , ce qui revient au
même, le multiplier par la sécante qui est égale à 1,1547 » dans
toutes les formules où entre l'expression du diamètre du soleil y

divisé par le cosinus de la moitié de l'angle aigu du réticule. Dans
ce réticule la moitié de la grande diagonale doit sous-tendre dans
le ciel un angle de plus de 237 3c)// pour que les contacts intérieurs
puissent avoir lieu , et de plus de r]/ 5Sy/ pour les contacts extérieurs»
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DYNAMIQUE.

Solution nouvelle du problème de la Tractoire plane, et
éclair ci ssemens sur ce problème ;

Par M. DUBUAT , professeur à l'école de l'artillerie et du
génie*

Lettre de M. FRANÇAIS, professeur à l'école de l'artillerie
et du génie,

Au Rédacteur des Annales ;

MONSIEUR ,

j'avais prévu que vous dussiez publier aussi prochaînement la
solution donnée par feu mon frère du problème de la Tractoire (*) ,
je n'aurais pas omis la phrase suivante , qui vient immédiatement
après l'équation ^Cos.a-f-^Sin.^rr^Cos^.

« II faut faire attention que ces vitesses initiales ne sont pas celles
» qu'on a pu imprimer au mobile M par quelque impulsion ; ce
» sont les résultats et de l'impulsion imprimée à M et de l'action
i) de P sur M ; de sorte que , s'il n'y a point d'impulsion, elles

{*) Voyez la page 3o5 de ce volume.
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» sont dues uniquement à l'action de P. La vitesse h n'est pas non
» plus due à la seule action de la force accélératrice p, mais à cette
» action modifiée par l'effet de l'impulsion donnée à M. »

Cette phrase aurait servi à éclaircir l'espèce de paradoxe que TOUS

trouvez dans cette équation de condition. Mais voici une note ,
sur le même objet y qui m'a été remise par mon collègue M. Dubuat;
elle explique complètement la signification de cette équation, et offre
un très-bel exemple de la manière de déterminer les vitesses initiales
dans les problèmes de mécanique. Vous penserez sans doute comme
moi, Monsieur , qu'elle ne sera pas déplacée dans les Annales.

1. L'équatîon ^Cos.a-f-^Sin.^rr^Cos.* n'est autre chose que l'é-
quation générale de condition (x—x/)(dx-— dtf^Hhydy=o, dans laquelle
on a mis pour les variables dxJ, àx y dy , x—xy, y les valeurs
bat , c;àt y cdt , aCos.u, aS'm.a , qu'elles ont à l'origine du mou-
vement.

2. Or, l'équation générale (x—x^dx—àx^-^ydy^o signifie que
(J X u'V*

les vitesses variables •— , —• du point M , dans la direction des

axes des coordonnées , sont telles que, si de la vitesse — , sui-

dx'
vant l'axe des x , on retranche la vitesse — du point P , la vitesse

àx—dy i • 4f .
restante — j — torme , avec la vitesse — suivant 1 axe des y, une

résultante perpendiculaire au rayon vecteur PM ; d'où il suit que
la vitesse du point M , considérée soit au commencement soit dans
la suite du mouvement , peut toujours être décomposée en deux
vitesses , Tune parallèle à l'axe des x constante et égale à b , l'autre
perpendiculaire au rayon vecteur , et dont la valeur peut être
queîcunque.

3. Donc, si la vitesse imprimée au point M , à l'origine du mou-
vement y n'est pas décomposable en deux vitesses suivant la même
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loi , cette vitesse n'est pas la vitesse initiale d'après laquelle il faut
déterminer les constantes d'intégration.

4. Soit ? à l'origine du mouvement 5 V la vitesse imprimée au
point M , et £ l'angle que fait sa direction avec Taxe des oc : ses
composantes sont FCos.p , dans le sens des ce , et FSin.£ , dans le
sens des y.

La première composante FCos./s est équivalente aux deux vitesses
b et FCos./â—b , dont la première b subsiste seule , en vertu de
l'équation de condition; mais la vitesse FCos./3—b n'est pas détruite
en totalité : en la décomposant en deux vitesses s l'ifne suivant le
rayon vecteur > et l'autre perpendiculaire à ce rayon ; celle-ci, dont
l'expression est (FCos.p—£)Sin.<4 ? subsiste ? tandis que l'autre est
«détruite.

La vitesse FSin./s , imprimée dans le sens des y ? étant aussi dé-
composée en deux vitesses , l'une suivant le rayon vecteur , et
l'autre perpendiculaire à ce rayon ; la seconde subsiste seule ? et
son expression est FSin./sCos.*.

5. La vitesse initiale , résultant de la vitesse imprimée V > est
donc composée d'une vitesse b, parallèle à Taxe des x , et d'une
vitesse (VCos.fi—i/)Sin.«s-f-FSin.£Cos.# , perpendiculaire au rayon
vecteur; ce qui donne pour la composante d delà vitesse initiale %

suivant Taxe des ce

et pour la composante c de la vitesse initiale suivant Taxe des

6» Mais voici une autre difficulté que présentent les équations
(11) et (12).

Si l'on fait , dans la première £ = 0 , ou cl—3 = o dans la se-
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conde , on a x~\/ a^—jzJr ce ; ce qui n'a pas de signification. Pour
lever cette difficulté , je remarque qu'en vertu de l'équation de con-
dition [c/—b)Cos.u+cS\n.u=o, l'hypothèse £ = o donne (c/—£)Cos.«=o,
et par conséquent c/-=-b ou Cos.#=o.

Soient d'abord c=o , c' — b. Ces deux équations signifient que
la vitesse initiale du point M , parallèle à l'axe des y est nulle , et
que sa vitesse initiale parallèle à Taxe des y est h , et égale par
conséquent à la vitesse du point P dans le môme sens ; les deux
points M et P sont donc animés, à l'origine du mouvement , de
vitesses égales et parallèles ; l'équation de condition laisse subsister
ces deux vitesses dans le premier Instant et dans toute la suite du
mouvement. Le point M décrit donc une droite parallèle à Taxe
des x, avec une vitesse constante et égale à b*P ce qui donne y~Const*
et oc=-bt-\-Const.

Soit ? en second lieu 9 c—o et Cos.#=o. Ces deux équations si-
gnifient que la vitesse initiale du point M parallèlement aux y ,
est nulle , et que l'ordonnée du même point est aussi nulle , à
l'origine du mouvement , sans rien déterminer sur la vitesse initiale
parallèle aux x. Les deux points M , P , à l'origine du mouvement,
sont donc sur l'axe des x , et le point P a une vitesse b qui , en
vertu de l'équation de condition, ne peut ni augmenter ni diminuer.
Il est aisé de conclure de là que le système des deux points se
mouvra , dans le premier instant et pendant toute la durée du mou-
vement, sur Taxe des # , avec une vitesse commune b ; c'est-à-dire r

qu'on aura y=o , x~bt-\-Const*
Au surplus 5 le problème peut être résolu de la manière suivante :
7. Les équations de condition sont ? en faisant le rayon vec-

teur = 1 9

celles du mouvement sont
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une indéterminée. Soient yrrSin.p et or—x/^=Cos.<p; en subs-
tituant ces valeurs dans les équations du mouvement, on trouve

— — Sin.<p— —

et , en éliminant p ,

d2<p = o , donc cp — Àt+A') et

En déterminant les constantes d'après la vitesse initiale V, faisant
avec Taxe des x un angle £ , on a

y = Si

Ces formules expriment que le point M se meut autour du point
P d'un mouvement uniforme et continu , avec une vitesse j^Sin^-Hs)

8. Si Ton suppose , comme ci-dessus , que la vitesse initiale du
point M , parallèle à l'axe des y est nulle , et que celle parallèle
à Taxe des x est b \ on trouve , en faisant V—h et /3 = o ,*y=Sin.« ,
^rzz^/+Cos.« ; résultat conforme à celui du n.° 6, Si Ton suppose
encore que la vitesse initiale du point M , parallèlement aux y est
nulle, et que l'ordonnée du même point est aussi nulle, à l'origine
du mouvement; on trouvera > en faisant * = o , p=o 9 conformément
à ces hypothèses, y = o , or = ^/-j-i , comme ci-dessus.

Metz , le 25 avril Î 8 I 4 .
CHRONOLOGIE-
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CHRONOLOGIE.

Supplément à Varticle sur le calendrier inséré à la
page 2j3 de ce volume ;

Par M. J. F. FRANÇAIS , professeur à l'école de l'artillerie
et du géDÎe#

JL ROBLÉME 1IL Trouver Vâge moyen de la lune , pour une
date donnée d'une année quelconque , tant dans le calendrier Julien,
que dans le calendrier Grégorien ?

Solution. En conservant les notations du problème i ,Cr et repré-
sentant de plus par i le reste de fa division de la date du jour
donné* comptée depuis le i.er janvier, par 5g 5 et par L l'âge
cherché de la lune , on aura

Z = 53+/—dznSo+i—d—3o = 5 /—d— 59=53-4-/— d— 89.

on choisit, entre ces quatre valeurs, celle qui donne X<3o.
Remarque. On peut obtenir immédiatement i 9 en ajoutant à la

date du mois le nombre correspondant de la table suivante.

janv.

0

fév.

3 i

mars.

0

asril.

3 i

mai. juin.

33

jiiii.

4

août.

35

sept.

7

OC.

3 ;

nov.

9

fiée,

Exemple. On demande l'âge de la lune au 17 d'avril 7^53 , dans
le calendrier Grégorien ?

On a ici d—2.2. , / = ^ 8 ; donc
Tom. IF. ^
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£=53+48—3*—59=2* ,

ainsi la lune aura zo jours.
S'il s'agissait du 1.2 d'avril de la meure année, dans le calendrier

Julien, on aurait J ~ 2 0 , z:=43 ; d'où

ainsi la lune aura 17 jours.
Je ne pense pas que l'âge moyen de la lune , donné par celte

métbode , dilfère jamais d'un jour entier de son âge vrai.
Ce problème joint aux deux autres me paraît présenter un ca-

lendrier perpétuel aussi complet qu'il soit possible , du moins pour
l'usage civil , qui est l'objet principal d'un calendrier.

Metz, le ̂ 5 d'avril 1814.

GEOMETRIE.

Recherche de la surface plane de moindre contour 9

enlise toutes celles de même étendue , et du corps
de moindre surface 7 entre tous ceux de même vo-
lume ;

Par un ABONNÉ.

ce qui va suivre , j'admettrai , comme propositions faciles
à établir, les deux lemmes suivans :

LEMME 1. Entre tous les trapèzes qui ont les deux mêmes
cotes parallèles et la même section perpendiculaire à ces côtés ,
celui dans lequel la somme des côtés non parallèles est un mi-
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nîmum, est le trapèze dans lequel la droite qvi joint les milieux des cô-
tés parallèles est perpendiculaire à la direction commune de ces cotés.

LEMME IL Entre tous les troncs de parallélipipèdes qui ont
les quatre mêmes arêtes latérales et la même section perpendiculaire
à ces arêtes , celui dans lequel la somme des aires des faces non
parallèles est un minimum , est le tronc de parallélipipède dans lequel
les milieux des arêtes latérales se trouvent situés dans un même
plan perpendiculaire à la direction commune de ces arêtes. (*)

PROBLÈME L Entre toutes les surfaces planes d'une même
étendue donnée , quelle est celle qui a le moindre périmètre ?

Solution. Le caractère de la surface cherchée est qu'en conservant
la nième étendue ? elle ne puisse changer de ligure ; sans augmenter
de contour.

Concevons qu'on nous donne une surface plane comme étant celle
de moindre contour , parmi toutes celles d'une étendue égale à la sienne.

Menons , dans cette surface > une corde quelconque C -, et une
perpendiculaire P sur le milieu de cette corde. Concevons ensuite
une infinité d'autres cordes infiniment voisines les unes des autres,
et toutes parallèles à C -, elles diviseront la surface donnée en élé—
mens que l'on pourra considérer comme des trapèzes ? dont les
côtés non parallèles formeront , par leur réunion ^ le périmètre de
la surface dont il s'agit.

Supposons que quelques - uns de ces trapèzes n'aient pas les»
milieux de leurs côtés parallèles sur la droite P , nous pourrons,
dans l'un quelconque de ceux-ci , faire glisser les côtés parallèles
perpendiculairement à P , jusqu'à ce qu'ils soient parvenus à cette
situation ; nous pourrons en faire ensuite de môme pour les deux
trapèzes élémentaires entre lesquels celui-là se trouve situé? et
continuer ainsi , de proche en proche, jusqu'à ce que nous ayons
amené toutes les cordas parallèles à C à avoir leur milieu sur P.

(*) Voyez , pour la démonstration «le ces propositions , i"aiticle des G
résolues ? qui suit immédiatement celui-ci> J- D. G.
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Par cette transformation , nous n'aurons rien changé à l'étendue

de la surface proposée , et nous aurons ( Lemme I ) diminué son
contour ; d'où nous devrons conclure que ce contour n'était pas
d'abord un minimum.

Le caractère de la surface de moindre contour est donc que toutes
les cordes perpendiculaires à P aient leur milieu sur cette droite
ou , en d'autres termes , que P en soit un diamètre principal ; e t ,
puisque la direction de P est arbitraire , il en faut conclure que
tous les diamètres de la surface de moindre contour doivent être des
dîamètres principaux : propriété qui appartient exclusivement au cercle.

Corollaire I. Il résulte de là que , de toutes les surfaces planes de
même contour , le cercle est celle qui a le plus d'étendue.

Soient en effet C un cercle et S une autre surface plane quel-
conque de même périmètre p. Concevons un cercle C ; équivalent
à S , et soit p/ soit périmètre. D'après ce qui précède , on aura
p/<Cp , d'où on devra conclure C / < C ; puis donc qu'on a C / = S ,
on aura aussi S<C»

Corollaire IL De toutes les surfaces planes de même étendue 9

terminées par une droite donnée a et par une ligne se terminant aux ex-
trémités de cette droite ? celle de moindre contour est le segment de
cercle dont a est la corde.

Soient ea effet S le segment et T une autre surface équivalente
construite aussi sur a , et soient respectivement s et t les longueurs
des deux lignes qui , avec a 9 terminent ces surfaces. Soit achevée
la circonférence dont s fait partie ; soient s/ l'arc et S/ le segment
supplémentaires -, on aura , par Thypothèse S/~f-S = 8 / + T ; si dons
on pouvait avoic s^>t , on aurait aussi s/-\-s^>s/-i~^ , d'où il résul-
terait cette conséquence absurde que le cercle n'est point la surface
du moindre contour 5 parmi toutes celles de même étendue.

Corollaire I1L De toutes les surfaces planes de même contour ,
terminées par une droite donnée a , et par une ligne se terminant
aux deux extrémités de cette droite , celle de plus grande étendue
est le segment de cercle dont a est la corde.
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Soient en effet S ce segment et T une autre surface construite

également sur a , et ayant même périmètre p que S. Soit construit
sur a un segment S/ équivalent à T et dont le périmètre soit p/ ;
nous aurons ( Coroll. I I ) pf <^p , d'où nous conclurons S / < S ; puis
donc que nous avons S 7 = T , nous aurons aussi T < S ,

PROBLÈME IL Entre tous les corps d'un même çolume donné,
quel est celui qui est terminé par la moindre surface ?

Solution. Le caractère du corps cherché est qu'en conservant le
même volume ? il ne puisse changer de figure sans augmenter de
surface.

Concevons qu'on nous donne un corps comme étant celui de
moindre surface , entre tous ceux d'un volume égal au sien.

Menons 7 dans l'intérieur de ce corps , une corde quelconque C ,
et , par le milieu de cette corde , conduisons un plan P qui lui
soit perpendiculaire. Par l'intersection de C et P ? faisons passer
arbitrairement, dans le plan P , deux droites M , N perpendiculaires
entre elles. Menons , dans le même plan , une infinité de parallèles
à M et une infinité de parallèles à N , et enfin par les unes et
les autres conduisons des plans perpendiculaires à P. Ces plans di-
viseront le corps proposé en une infinité d'élémens , lesquels pourront
être considérés comme des troncs de parallélipipèdes dont les faces
non parallèles formeront , par leur réunion , la surface du corps
dont il s'agit.

Supposons que quelques-uns de ces troncs de parallélipipèdes n'aient
pas les milieux de leurs arêtes latérales sur le plan P ; nous pourrons ,
dans l'un quelconque de ceux-ci, faire glisser les arêtes latérales 5

perpendiculairement au plan P , jusqu'à ce qu'elles soient parvenues
a cette situation ; nous pourrons ensuite en faire de même pour les
huit troncs de parallélipipèdes élémentaires entre lesquels celui-là
se trouve situé , et continuer ainsi ? de proche en proche ? jusqu'à
ce que nous ayons amené toutes les cordes parallèles à C à avoir
leur milieu sur le plan P.
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Par cette transformation , nous n'aurons rien changé au volume

3u corps proposé , et nous aurons ( Lemme II ) diminué sa surface ;
d'où nous devrons conclure que cette surface n'était pas d'abord un
minimum.

Le caractère du corps de moindre surface est donc que toutes
les cordes perpendiculaires au plan P aient leur milieu sur ce plan
ou ? en d'autres termes , que le plan P soit un plan-diamètre prin-
cipal ; et, puisque la direction de P est arbitraire , il en faut conclure
que tous les plans-diamètres du corps de moindre surface doivent
être des plans principaux : propriété qui appartient exclusivement
à la sphère.

Par un raisonnement tout à fait semblable à celui qui a été em-
ployé ci-dessus > on conclura facilement de ce résultat les trois corol-
laires suivans :

Corollaire L Entre tous les corps de même surface , la sphère
est celui qui a le plus grand volume.

Corollaire 11* De tous les corps de même volume , terminés d'une
part par un cercle donné et de l'autre par une surface se termi-
minant à la circonférence de ce cercle 7 celui de moindre surface
est le segment sphérique dont ce cercle est la base.

Corollaire IIL De tous les corps de même surface, terminés d'une
part par un cercle donné et de l'autre par une surface se terminant
à la circonférence de ce cercle ? celui du plus grand volume est
le segment sphérique qui a ce même cercle pour base»

Remarque. J'ai cru d'autant plus utile de ramener la démonstration
des propriétés de minimum dont jouissent le cercle et la sphère à
des notions élémentaires que ces propriétés ne sont pas moins remar-
quables qu'elles sont importantes ? et que les démonstrations qu'on
en a données par la méthode des variations , outre qu'elles reposent
sur des considérations trop élevées pour être à la portée du vulgaire
des géomètres , ne me paraissent point assez développées pour ne
laisser aucun nuage dans l'esprit.
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Par exemple , Bossut, à la page 474 du second volume de son

Calcul intégral, ramène le problème à l'intégration des équations

dans lesquelles on a

maïs , au lieu d'intégrer ces équations , il se contente de faire voir
qu'elles sont satisfaites par l'équation de la sphère , ce qui paraît
prouver seulement que la sphère est un cas particulier de la surface
plus générale qui résout le problème , et n'exclut pas conséquemment
toute autre surface qui pourrait également ? comme cas particulier f

être déduite de celle-là.
L'élimination de P et Q donne l'équation du second ordre

et c'est sous cette forme que la présente M. Lacroix à la page ( 717 )
de la première édition de son Traité de calcul intégral', mais M.
Lacroix observe lui-même que cette équation n'est pas seulement
satisfaite par l'équation d'une sphère , mais encore par celle d'un
cylindre. Voilà donc une difficulté qui me paraîtrait digne d'oc-
cuper les analistes , et dont l'éclaircissement semblerait propre à
jeter quelque lumière sur les applications de la méthode des va-
riations ; applications communément trop peu développées dans les
traites relatifs à cette branche d'analise.



344 QUESTIONS

QUESTIONS RÉSOLUES.

Solutions des quatre problèmes de géométrie proposés
à la page 2.36 de ce volume.

Solution du premier problème ;

Par M. C. CASTELNAU , élève du lycée de Nismes.

1 HÊORÈME. De tous les trapèzes qui ont les deux mêmes côtés
parallèles , et la même section perpendiculaire à ces côtés, celui
de moindre contour est le trapèze isocèle , c'est-à-dire, celui dans
lequel la droite qui joint les milieux des côtés parallèles est per-
pendiculaire à leur direction commune*

Démonstration, Soit le trapèze isocèle ABCD ( fig. 2 ) et un
autre trapèze A'B'CD de même hauteur , et dans lequel on ait
A/B/=AJB ; et conséquemment AA/ = BB/ ; il s'agit de prouver que
le contour de ce dernier surpasse celui du premier.

La question se réduit évidemment à prouver que DA/-4-CB/ est
plus grand que DA+CB.

Pour y parvenir, soit prolongé DA, au-delà de A , de manière
qu'on ait AE —AD et soit menée A7E.

Par cette construction s les triangles AEA7 , BCD; sont égaux ;
car on a A i / n B B / , A E = A D = B C , et Ang.A/AE=Ang.DAB=:
Ang.CBB'; donc E A ^ C B ^

Mais ; dans le triangle DAXE, on a
DA'
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DA/+A/E>DE=DA+AE ;

on aura donc aussi

DAH-CB' > DA+CB. (*)

Solutions des trois autres problèmes ;

Par un ABONNÉ,

LE M ME. De tous les troncs de prisme triangulaires dans les-
quels une face latérale , ïarête opposée et la section perpendiculaire
aux arêtes latérales sont les mêmes, celui dans lequel la somme
des aires des bases est la plus petite, est celui où les plans de ces
hases sont également inclinés sur celui de la face latérale donnée*

Démonstration. Soient ( fig. 3 ) AGHB la face latérale donnée,
MN l'arête opposée et CKF la section perpendiculaire aux arêtes/
aussi données.

Soient P f Q les projections respectives de M , N sur AGHB ;
menons MP , NQ et PQ , rencontrant respectivement GA , F C ,
H B e n S , L , T ; soit menée KL=MP=NQ ; des points P , Q
soient abaissées respectivement sur AG 7 BH les perpendiculaires P D ,

(*) La même démonstration prouve très- simplement , i.° que , de tous les
triangles de même base et de môme hauteur > le triangle isocèle est celui Je
moindre contour ; 2.,0 que , dans tout triangle , la droite qui va d'un sommet
au milieu du côté opposé est moindre que la demi-somme des deux autres côtés*

Par un raisonnement tout à fait semblable à celui de 3VL Casteinau , on par-»
viendra aisément à démontrer que , de tous les troncs de parallèlipipèdes dans
lesquels les arêtes latérales et la section qui leur est perpendiculaire sont les
mêmes , et où deux faces latérales opposées sont des trapèzes isocèles 7 celui
dont la somme des aires des bases , et consèquemment la surface totale est la
plus petite est celui dans lequel les deux autres faces latérales sont aussi des
trapèzes isocèles*

J. D. G.

Tom. IF. 46
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QE, et soient menées MD , N E , lesquelles seront aussi respecti-
vement perpendiculaires sur GA, HB.

Faisons

KL=MP=NQ=£.
=£ , Jng,llBC=p, Q T = / ,

Nous aurons.

Aire&M.Q,- \ AG. MD= \ A G 1 / M P
 x^.pD* = -, a s/k-+x-Sin,

si donc on a

on devra avoir

as/te-\-xiSmr~*,-\-hs/k2+y2§'m.2p=minimum ,

et par conséquent
ax$xS'm.zoc byèyS'm.*(*

mais , d'un autre] côté , on a

d'où
O. (2)

Par la combinaison de ces deux équations ? on aura

v '

mais , CF pouvant être également exprimé par aSln.it et par IS'm.p ,"
on doit avoir

^Sîn./3=^Sîn.* ; (4)
équation qui, multipliant là précédente, donne

^ ^
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PD _ Q E

ÔU MD " S i '

ou encore Cw.MDP=Cw.NEQ , d'où

comme nous l'avions annoncée.

THÉORÈME. De tous les troncs de prismes triangulaires qui
ont les trois mêmes arêtes latérales et la même section perpen-
diculaire à ces arêtes 7 celui de moindre surface est le tronc
de prisme triangulaire dans lequel les milieux des arêtes latérales
sont dans un plan perpendiculaire à leur direction commune.

Démonstration. Ceci revient évidemment a dire qu'il faut que
Finclinaison du plan de l'une des bases sur celui de chacune des
faces latérales soit égale à l'inclinaison du plan de l'autre base sur
celui de la même face.

Supposons ? en effet, qu'il n'en soit pas ainsi et qu'il y ait au
moins une des faces latérales sur laquelle les deux bases soient
inégalement inclinées ; en faisant mouvoir l'arête latérale opposée
suivant sa propre direction, on pourrait toujours amener les incli-
naisons à être égales ; et comme , par cette transformation la surface
du tronc se trouverait diminuée ( Lemme ) , on devrait en conclure
qu'elle n'était pas d'abord un minimum.

Corollaire. Et 9 comme tous les troncs de prismes triangulaires
qui ont les mêmes arêtes latérales et la même section perpendiculaire
à ces arêtes ont aussi la même surface latérale , il en faut conclure
que celui dans lequel le plan qui contient les milieux des arêtes
latérales est perpendiculaire à leur direction commune, est aussi celui
dont la somme des aires des deux bases est la moindre possible.

THÉORÈME. De tous les troncs de parallèlipipedes qui ont
les mêmes arêtes latérales et la même section perpendiculaire à
ces arêtes , celui de moindre surface est le tronc de parallélipipède
dans lequel le plan qui contient les milieux des arêtes latérales ? est
vcrpendiculaire à leur direction commune.

Démonstration. En effet, tous les parallélépipèdes formés avec



348 QUESTIONS RESOLUE»,
les mêmes arêtes latérales et la même section perpendiculaire \ ces
arêtes ayant la même surface latérale 9 il suffit , pour remplir la
la condition prescrite , que la somme des aires des bases ou , ce
qui revient au même , la somme de leurs moitiés soit la moindre
possible ; ce qui ramène la question au précédent corollaire ? et prouve
la vérité de la proposition.

Corollaire. Donc aussi de tous les troncs de parallélépipèdes qui
ont les mêmes arêtes latérales et la même section perpendiculaire à
ces arêtes , celui dans lequel la somme des aires des bases est la
plus petite , est le tronc de parallèlipipède dans lequel le plan qui
contient les milieux des arêtes latérales, est perpendiculaire à leur
direction commune.

THÉORÈME. De tous les troncs de parallèlipipèdes qui ont les
deux mêmes faces latérales opposées et la même section perpen-
diculaire aux arêtes latérales , celui de moindre surface est le tronc
de parallèlipipède dans lequel les plans des deux bases ont des in-
clinaisons égales sur les faces latérales données.

Démonstration. En effet, dans tous les troncs de parallèlipipèdes
de cette nature , la surface latérale étant constante ; pour que la
surface totale soit un minimum / i l est nécessaire et il suffit que la
somme des aires des bases ou , ce qui revient au même, la somme
des moitiés de ces aires soit la moindre possible , ce qui ramène la
question au cas du lemme ci-dessus > et démontre conséquemment
la vérité de la proposition.

Corollaire. Il est facile de conclure de là que , si les deux faces
latérales opposées que Ton suppose être données sont des trapèzes
isocèles , les deux autres faces latérales opposées devront être aussi
des trapèzes isocèles. (*)

(*) La théorie développée dans le précédent article étant très-claire , il serait
à désirer, afin de rendre cette théorie tout à Fait élément aire , qu'on put trouver,
pour les trois derniers problèmes, ou tout au moins pour le second , quelque
solution aussi simple que celle que M» Castelnau a donnée du premier.

J. D. G.
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GEOMETRIE.

Recherche du cercle qui en touche trois autres sur,
une sphère ;

Par M. GERGONNE,

JLJANS un mémoire adressé îl y a quelques temps à l'académie
de Turin , j'ai déduit d'une analise très-courte et très-simple les
deux propositions suivantes :

i.° Trois cercles C , C , C / ; étant donnés d'une manière quel-
conque sur un même plan, soient menées les tangentes extérieures
communes à C et C' , à C et G" ; ces tangentes détermineront sur
C deux cordes de contact, se coupant en quelque point M ; elles
détermineront aussi sur les cercles G/ et O 7 deux autres cordes de
contact lesquelles , prolongées s'il est nécessaire , se couperont en un
autre point N ; or 7 si Ton joint ces points M et N par une droite ,
les intersections P 7 Q de celte droite avec C seront les points où ce cercle
sera touché par deux cercles touchant à la fois les trois cercles C , C / t

C / ; , et les touchant tous trois de la même manière ; c'est-à-dire , les en-
veloppant tous trois , ou les touchant tous trois extérieurement.

2.° Quatre sphères S , S7, S " , S/y/ étant données d'une manière

Tom.iy, w.° XII\ i.tJjuin 1814. 4?
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quelconque dans l'espace ? soient circonscrits extérieurement des cônes
aux sphères S et S 7 , 8 et S / ; , S et S / / ; ; ces cônes détermineront
sur la sphère S trois lignes de contact dont les plans se couperont
on un certain point M ; ces mêmes cônes détermineront aussi sur
S ' , S//f , S7// trois autres lignes de contact dont les plans , prolongés
s'il est nécessaire , se couperont en un autre point N ; or , si l'on
joint ces points M et N par une droite > les intersections P , Q de
cette droite avec la sphère S seront les points où cette sphcre sera
touchée par deux sphères touchant à la fois les quatre sphères S,
S 7 , S / ; , S//V et les touchant toutes quatre de la même manière;
c'est-à-dire 5 les enveloppant toutes quatre ou les touchant toutes
quatre extérieurement.

Il est clair que ces propositions donnent la solution directe des
problèmes où il s'agit de décrire un cercle qui touche trois cercles
donnés , ou de décrire une sphère qui touche quatre sphères données,
du moins lorsqu'on exige que les trois cercles ou les quatre sphères
donnés soient touchés de la même manière par le cercle ou par
la sphère cherchés ; mais j'ai fait voir, dans le mémoire cité , qu'en
faisant une combinaison convenable des angles et cônes, cir-
conscrits intérieurement avec les angles et cônes circonscrits exté-
rieurement , on pouvait obtenir , par un semblable procédé , les huit
cercles qui peuvent toucher à la fois trois cercles donnés et les
seize sphères qui peuvent toucher à la fois quatre sphères données.
J'ai cherché en outre ce que devenaient les Cordes de contact et
les plans de lignes de contact , lorsque les rayons de quelques-uns
des cercles ou de quelques-unes des sphères donnés devenaient nuls
ou infinis , et j'ai ainsi établi le moyen de ramener à des pro-
cédés uniformes , et faciles à retenir , tous les problèmes de Yiète
sur le contact des cercles , et ceux de Fermât sur le contact des
sphères.

L'élégante simplicité de ces solutions , indiquées tout naturellement
par l'anaUse , m'avait fait désirer que celles qui sont relatives k
trois cercles donnés sur un plan s'appliquassent également à trois
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cercles donnés sur une sphère (*) ; l'analogie m'avait même fait
soupçonner fortement qu'il devait en être ainsi. Le calcul m'a montré
que j'étais dans Terreur à cet égard ; mais en revanche , il m'a
fourni, pour trois cercles donnés sur une sphère , des constructions
qui peuvent facilement être transportées à trois cercles donnés sur
un plan , et même à quatre sphères données dans l'espace , et
qui ne sont pas plus compliquées que celles que je viens d'indiquer
sommairement ; de manière que j'ai enfin obtenu pour les problèmes
de Tune et de l'autre sorte cette parfaite uniformité à laquelle j'avais
principalement aspiré.

Avant d'entrer dans le détail des modifications que j'ai fait subir
à mes premières constructions , pour les rendre applicables à trois
cercles donnés sur une sphère , je dois présenter d'abord quelques
remarques propres à en faciliter l'intelligence.

On sait que rien n'est plus facile que d'obtenir l'équation de la
corde commune à deux cercles dont les équations sont données :
cette équation étant rationnelle , il s'ensuit que la droite à laquelle
elle appartient est réelle , lors même que les deux points qui doivent
en déterminer la situation sont imaginaires ; c'est-à-dire , que deux
cercles tracés sur un même plan ont encore une corde commune,
lors même qu'ils ne se coupent pas ; c'est cette corde que M. Gaultier
de Tours a dénommée VAxe radical des deux cercles (**)

On démontre aussi bien facilement, par l'analyse , et presqifle sans
calcul , que , trois cercles étant tracés sur un même plan 7 soit
qu'ils se coupent ou qu'ils ne se coupent pas , leurs axes radicaux ou
cordes communes deux à deux concourent en un même point
que M. Gaultier a nommé leur Centre radical. (***)

(*) M. Carnot , à la p-ige 4*5 Je sa Géométrie de position , a donne l'ébauche
d'une solution anaiitkjue de ce problème. On peut aussi consulter la Correspondance
sur Vécole poly.echnique , tome III«° , n.° 1 , janvier 1814 » Pa£- I0«

(**) Voyez le X M . ° cahier du Journal de l'école polytechnique*
Même ouvrage.
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Rien n'est plus aisé , comme on le voit , que de déterminer l'axe

radical ou corde commune de deux cercles qui se coupent. Lorsqu'au
contraire les deux cercles ne se coupent pas , la chose n'est guère
plus difficile. Si en effet on décrit arbitrairement un troisième cercle
qui coupe à la fois ces deux-là , il aura avec eux deux cordes
communes , et il résulte de ce que nous venons dt dire sur le
centre radical , que le point de concours de ces deux cordes est un
point de Taxe radical des deux cercles donnés ; et f comme on sait
d'ailleurs que cet axe doit être perpendiculaire à la droite qui joint
les centres, il se trouvera entièrement déterminé. Au surplus, on
trouvera peut-être plus commode , dans la pratique , de chercher
un second point de cet axe , par un procédé pareil à celui qui
aura fait trouver le premier.

Sachant ainsi trouver Taxe radical de deux cercles , lors même
qu'ils ne se coupent pas , la recherche du centre radical de trois
cercles , dans le cas même où ils ne se couperont pas , ne pré-
sentera plus aucune difficulté.

Tout ceci peut facilement être étendu à des sphères dans l'es-
pace. Ainsi le plan du cercle commun à deux sphères , lequel plan
existe encore lorsque ces sphères ne se coupent pas, est leur Plan
radical.

On détermine une droite appartenant à ce plan , en construisant une
sphère qui coupe à la fois les deux sphères données et prolongeant
les plans des intersections jusqu'à ce qu'ils se coupent. Pour déter-
miner entièrement ce plan , on peut indifféremment, ou déterminer
une nouvelle droite qui y soit située , ou conduire par l'un quel-
conque des points de ia première un plan perpendiculaire à la droite
qui joint les centres.

Si trois sphères coexistent dans l'espace , elles donneront > en les
considéFant deux, à deux , trois plans radicaux lesquels se couperont
suivant une même droite qu'on appellera leur Axe radical, et dont
la construction n'ofirira point de difficulté ; d'après ce qui vient
'J'etre dit.



SUR LA SPHERE. 353
Si , enfin , quatre sphères coexistent dans l'espace , elles donneront,

étant prises trois à trois, quatre axes radicaux , lesquels concourront
en un même point quî sera le Centre radical de ces quatre sphères.
Ce centre pourra donc être déterminé par ce qui précède.

Cela posé , soient i.e C , C ; , C / ; trois cercles donnés sur un
plan ; et soit O leur centre radical. Soient menées à ces cercles,
pris deux à deux , des tangentes communes extérieures ; ces tan-
gentes détermineront sur chaque cercle deux cordes de contact se.
coupant en un point; soient, pour les trois cercles respectivement,
P , P ' f P7/ ces points d'intersection. Si alors on mène les droites
OP , O P ; , O P " , elles détermineront sur C 7 C7 , C" respectivement
les points où ils devront être touchés par deux cercles les touchant tous
trois et les touchant tous de la même manière.

2.° Soient S , S7 , S" ? S//7 quatre sphères données dans l'es-
pace ; et soit O leur centre radical. Soient menés à ces sphères ,
prises deux à deux , des cônes circonscrits extérieurs j ces cônes
détermineront sur chaque sphère trois lignes de contact dont les
plans se couperont en un point ; soient , pour les quatre sphères
respectivement P , P ; , P " , P 7 " ces points d'intersection. Si alors
on mène les droites OP , O P / , O P " , OP" ' , elles détermineront
sur S , S 7 , S" , S"' respectivement les points où elles devront être
touchées par deux sphères qui les toucheront toutes quatre , et les
toucheront toutes de la même manière.

En faisant encore ici une convenable combinaison des angles et
cônes circonscrits intérieurement avec les angles et cônes circonscrits
extérieurement , on déduit de ces constructions , comme de celles
qui ont été précédemment indiquées , la détermination des huit
cercles qui peuvent toucher à la fois trois cercles donnés et celle
des seize sphères qui peuvent toucher à la fois quatre sphères
données. De plus , en faisant à ces constructions les modifications
qui conviennent an cas où les rayons de quelques-uns des cercles
ou de quelques-unes des sphères donnés deviennent nuls ou in-
finis 7 on ramène encore a comme dans le premier cas , à des procèdes
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uniformes la solution de tous les problèmes de Viète sur le contact
des cercles et de ceux de Fermât sur le eontact des sphères.

Je ne prétends pas décider si ces procédés ont en eux-mêmes
quelque avantage sur les premiers que j'inclinerais même à regar-
der comme plus simples ; mais c'est sous cette forme seulement que
la construction qui fait trouver les cercles qui touchent à la fois
trois cercles donnés sur un plan , donne aussi > sans aucune mo-
dification , les cercles qui touchent à la fois trois cercles donnés
sur une sphère.

C'est à prouver cette assertion que je consacre principalement cet
article. Le problème revient évidemment à celui-ci : Trois cônes
de même sommet étant donnés ; construire un quatrième cône ,
de même sommet qu'eux, qui les touche tous trois? et c'est sous
ce point de vue que je vais l'envisager.

Soient C , C / , C 7 trois cônes donnés, de même sommet, dont
les angles générateurs soient respectivement r y r1

 s r/;. Soit pris
leur sommet commun pour origine des coordonnées que nous sup-
posons rectangulaires ; et supposons que l'axe du dernier soit Taxe
des z. Représentons en outre par a % b y c , a1', h1 > cf respectivement
les cosinus des angles que forment les axes du premier et du second
avec les axes des coordonnées -, ce qui , comme l'on sait, donnera
lieu aux relations

i , ( i )

i . (2)

Désignons ensuite par A » B , C les cosinus des angles que forme
l'axe du cône cherché avec les axes des coordonnées } ce qm donnera
pareillement

i ; (3)
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et soît R son angle générateur. SI l'on veut que ce cène touche
extérîeuremennt les trois cônes donnés , il faudra que l'angle que
fera son axe avec Taxe de chacun d'eux soit égal à la somme
de leurs angles générateurs ; ce qui donnera

c A+b B+c C=z Cos.{R+r ) , (4)

*'A+b'B+c'C=Cos.(Il+r') , (5)

C=Cos.{R+r'') . (6)

Telles sont les équations qu'il faudrait combiner avec l'équation (3),
pour obtenir l'angle générateur R du cône cherché , et les cosinus
A , B , C des angles que forme son axe avec les axes des coor-
données ; et Ton voit évidemment que le problème aurait deux
solutions.

Il y a donc deux cônes cherchés dont chacun a une ligne de
contact avec l'un quelconque des cônes donnés , avec C7/ par exemple ;
et il est clair, d'après cela , que la recherche du plan qui contient
ces deux droites doit être un problème du premier degré seulement.

Soient donc x > y , z les coordonnées de la ligne de contact de
ÇJ avec le cône cherché ; nous connaissons déjà un lieu de cette
jlgne 9 et c'est le cône O7 lui-même ? dont l'équation est

(^3+J2)Cos.V / /=^2Sin.Y / / ; (7)

\\ n'est donc plus question que d'en chercher un second.
Or 5 cette ligne devant être dans un même plan avec les axe»

des deux cônes, il s'ensuit qu'on doit avoir

A>-=B* ; (8)

et conséquemment , en éliminant A, B, C, R entre les cinq ccjua-
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lions (3) , (4) > (5) , ( 6 ) , (8) , l 'équation résu l tan te , en x ; y 9 *

sera celle du second lieu demandé.

Mais on sait qu 'une ligne donnée par Pintersection de deux

surfaces est aussi sur toute surface dont l'équation serait une c o m -

binaison des équations de ces d e u x - l à ; d'où il suit q u e , dans

l 'él imination, nous pouvons nous aider de l'équation (7) pour s i m -

plifier nos résultats. Nous ne ferons ainsi que substituer au lieu

cherché quelque autre lieu plus simple ? coupant le cône e n s u i v a n t la

m ê m e droite.

A l'aide de cette attention 9 Pélimination devient très-facile. On

tire des équations (3) , (6) , (8) , en ayant égard à l'équation (7} ,

*Cos,r"Sin.(R-f-r")

~~ S i " f

sSin-r"

zSin.r"Cos.(R-f.r")

ces valeurs ëtant substituées dans les équations (4) et (5) , elles

deviendront

Mais on peut remarquer que

Cos.(R+.r)=Cos.[ (R+r'0-(.r«-r) }=Cos.(r^-r)C

Cos.(H+rO=Cos.{ (R+r^)-(r^rO }=Cos.(r"-r')Cos

on aura donc , en substituant et divisant par

r)]Tang.(R4-r'0+^Sïn.r"{c—Cos.(r"—.r)} = 0 9

d'où
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d'où l'on conclura, par l'élimination de Tang/ii-f-r'7)

.r"—zS'm.r"Sin,Q"—r) (a'x-\-b'y)Cos.r"— rSin.r"Sîn.(r"—r )̂
— « (Q)

c—Cos.(r"—r) c'—Cos.(r"~r') W

équation d'un plan dont l'intersection avec C/7 doit déterminer sur
ce cône la droite suivant laquelle il doit être touché par le cône
cherché. Cette équation restant la même lorsqu'on y change simul-
tanément les signes de r , r/ , rn , il s'ensuit que , pour les huit
combinaisons dont les signes de ces angles sont susceptibles , c'est-
à-dire, pour les huit solutions du problème, cette équation ne prend
que quatre formes distinctes , à chacune desquelles répondent consé-
quemment deux de ces solutions.

Pour construire le plan exprimé par l'éqnation (9) , il est né-
cessaire et il suffit de connaître deux droites qui y soient contenues;
c'est-à-dire , de trouver deux systèmes de deux équations en x ,
y , z qui jouissent de la propriété de rendre l'équation (9) identique.
E t réciproquement deux manières distinctes quelconques de rendre
lVquation (c)) identique , sans établir entre x > y , z des relations
qui excèdent le premier degré , conduiront à la connaissance de
deux droites qui détermineront le plan cherché.

Entre les diverses manières de rendre cette équation identique ;
lesquelles sont en nombre infini, nous choisirons les deux suivantes ;
i.° nous poserons séparément les deux membres de l'équation (9)

zS'mr~r»

égaux à —; ~̂ ; 2.0 nous poserons les mêmes membres égaux a
*—-/Cos.r7. Cela donnera, toutes réductions faites , les deux systèmes
d'équations

/—Sin.r)Sin..r// , )
] (10)

{a x+b y)CQs.r"~z(Cos.r--c'Cos.r") , i

(^/^+^/j}Cos.^/=-^Cos.r/-^Cos.r//>. )
Tom. IV. 48
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Ainsi, en construisant la droite exprimée par les équations ( io ) ?

puis la droite exprimée par les équations ( n ) , le plan conduit par
ces deux droites sera celui qu'exprime l'équation (g).

Ce qu'il y a de mieux à faire, pour construire les droites (10)
et ( I I ) , c'est de construire les plans dont ces droites sont les inter-
sections. Or , avec un peu d'attention, on reconnaît les plans (10)
pour ceux des lignes de contact du cône O 7 avec les plans tangens
communs extérieurs tant a ce cône et au cône C qu'au même cône
et au cône C/ , et on reconnaît les plans (i i) pour ceux suivant
lesquels les cônes C , C ; coupent respectivement le cône G7 , ou ,
en d'autres termes , pour les plans radicaux tant à C et C7/ qu'à C/

et C;/ (*) ; ce qui indique pour le cône cherché une construction

(*) Supposons, en effet , que l'équation du plan tangent commun aux cônes C et G"
soit

avec la condition

si l'on veut que ce plan tangent soit extérieur , c'est-à-dire , si l'on veut que ce plan

laisse les deux cônes d'un même coté , D , E , F seront déterminés par l'équation

(i3) jointe aux équations

F=Sin.r" ;

et l'on voit que le problème est du second degré , de manière qu'il y a deux plans tan-
gens.

Or , si l'on suppose que x, y , z désignent les coordonnées de l'une ou de l'autre
ligne de contact avec Of , les équations (12) , (i3) , (i4) > (io) devant avoir Keu en
même temps pour ces droites , le résultat de l'élimination de D f E , F entre elles sera
l'équation d'une surface contenant ces mêmes droites.

Ce résultat est facile à obtenir. On tire des équations (12) , (i4) > (i5)
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qui , appliquée ensuite à la recherche du cercle qui en touche trois
autres sur une sphère , revient a celle qui a tté enseignée plus haut.

Celle-ci se trouve mèrne établie par ce qui précède , puisqu'un
plan n'est autre chose qu'une sphère dont le rayon est infini.

B=—

(Sin r—cS'm.r")y-^-bzS'm.r1'

* ay^bx '

(Sin.r—cSm.r;/)x^azS\n.r"

ay—bx

C = Sin.r" ;

valeurs qui substituées dans l'équation (i3) donnent

]2+{Sin.r—cS'm.r")x+azSin rf^—{ay—bx

telle est donc l'équation d'une surface dont les intersections avec le cône C" détermi-
neront ses lignes de contact avec les deux plans qui touchent à la fois extérieurement
les cônes C/; et C.

Or en développant celte équation , la multipliant par Cos.2r" , et ayant égard à la
relation (i) , elle peut être mise sous cette forme

x)Cos.*r»— z(cSin.r'7—Sin.r)Sin.r"}»

or en la combinant avec celle de C/f qui est

r2=(x?4-j2+z2)Cos.V'v ;

elle se réduit simplement h

(«jr4-^y)Co«.2r//=r(cSin.r/'—Sin r)Sîn.r" ,

qui n'est , en cfTet , autre chose que la première des équations (10).
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TRIGONOMETRIE.

Essai sur diverses expressions approchées de la
circonférence du cercle.

Par M. T H . BARROIS.

Soient 772 et n deux nombres entiers positifs quelconques , et soient

p et P respectivement les périmètres des polygones réguliers de 2m/z

côtés inscrit et circonscrit au cercle dont le rayon est l'unité , et dont

eonséquemment la circonférence est 2.*r ; on aura évidemment.

r

Cos.

En second lieu , les équations des deux cônes C , C" étant respectivement

en les multipliant en croix et extrayant la racine quarrée de l'équation-produit, l'é-
quation résultante du premier degré , ayant lieu en mcme temps que ces deux-là ,
sera celle d'un plan contenant les droites suivant lesquelles ces deux cônes se coupent ;
or cette équation est

s,r—cCos.r'O >

c'est-à-dire la première des équations ( n ) .
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P—p=:2.m+*n Tang. — - S i n .

Mais on sait que , x étant un arc quelconque ; on a

,,2;=2Co$. ——Sin.
2.

:4Cos. —Cos. -—Sin. —
2. 4 4

:8Cos. —Cos. —Cos. —Sin. —
2. 4 o 8

= 2 m Cos . — Cos. — C o s . -J- Cos. — . . . ; . ; • , C o s . — S i a . —
2i 4 ^ ^ ^ 2"! 2̂ *

D'où

Cos. —Cos. ——Cos. -~- ,...Cos.—
2 4 8 a^

En faisant dans cette formule #=—- , elle deviendra

Sin. —
-m n

2m . Sin. • =.n r^ v r^ ™ r* ^ r-
LÉOS. — COS. — COS. r - . . . . COS.8/2 2m .7î

valeur qui ; substituée dans celles de p et P } les change en celles-ci
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272 Sh l .

\ T . (0
Cos.— Los. — Cos.—....Cos.

2.71 Ici Oïl 2mt7l

Cos.— Cos. — Los.—- ....Cos.2

l2îl

Et tels sont les périmètres des deux polygones dont il s'agit ; on

yoit que leurs expressions ne diffèrent que par le facteur Cos. qui

n'est qu'à la première puissance dans le dénominateur de la pre-
mière , tandis qu'il se trouve au quarré dans le dénominateur de
la seconde.

On a évidemment 2zr>p et 2 ^ < P ; on aura donc aussi

nSin. —

7
Cos. — Cos. — Cos. — .... Cos.

zn J+n on 2m.n

nS'm. —

Cos —Cos. — Cos.— ...Cos.a

2n l±n on 2'TJI

Voila donc deux limites de la valeur du nombre w ; limites d'autant
plus resserrées , toutes choses égales d'ailleurs , que m sera plus
grand. En prenant l'une ou l'autre pour valeur approchée de -* f

la limite de l'erreur sera

. ~ — Sin. —m
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Si donc on suppose /w= GO , on aura exactement, quel que soittf

nSin. —

(5)
Cos. —Cos. —Cos. — Cos. .... i

z k 8 6

îe nombre des facteurs du dénominateur devant être Infini , et con-
séquemment le dernier étant l'unité.

On sait que 9 x étant un arc quelconque , on a

COS. \ X= \ y / 2.+2C0S.X ,

Cos. \x= \ T/ 2-\-\/

d'où il̂  résulte ; pour l'équation (5) , cette autre forme

«Sin. •
n

» ; (6)

2+2C0S. — .....I
nn

Ainsi , toutes les fois que n sera l'un des nombres dans lesquels
la circonférence peut être géométriquement divisée , c'est-à-dire,
quelqu'un des nombres de la suite 2 , 3 , 5 , 17 , 257 >. . . . , l'ex-
pression de zr sera entièrement algébrique.

Si* par exemple, on suppose n—2, d'où Sin. —=Sin. —- = 1 ? et
n 2

Cos. — = Cos. — = 0 , il viendra
n 2



36+ THEORIE

Si, ensuite , on suppose 72 = 3 , d'où Sin.— =Sin. — = f ^/3 , et
71 O

Cos. — = Cos. — = f, il viendra
n à

et ainî>i de suite.

Ces diverses expressions semblent propres à mettre en évidence
l'incommensurabilité du nombre «• et de toutes les puissances de
ce nombre.

PHILOSOPHIE MATHÉMATIQUE.

Sur la théorie des imaginai?*es.

Extrait dune lettre adressée au Rédacteur des Annales ;

Par M- J. F. FRANÇAIS , professeur à l'école de l'artillerie
et du génie.

J E VOUS remercie ? Monsieur, de la réponse que vous avez faite
à l'objection principale de M. Servois , contre la nouvelle théorie

des
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des Imaginaires (*\ M. Servais /a pas été le premier à m'opposer
cette difficulté , et ma réponse a toujours été exactement conforme
à la vôtre. Les objections de cette nature me paraissent toutes avoir
leur source dans une méprise qui peut aisément échapper par l'effet
de l'habitude , et qui consiste à confondre des droites données de
grandeur et de position avec leur grandeur absolue.

Voici , Monsieur , quelqnes exemples de la manière de passer de
mes notations aux notations ordinaires et aux résultats connus.

L'équation d'un triangle dont la base coïncide avec l'axe des abs-
cisses est

a -\-b ~c ,
* — fi

d'où on tire

aS'in. te—Z'Sin.jS = o .

et par conséquent, en prenant la somme et la différence des quarts

L'équation d'un cercle rapporté au centre est

d'où on tire

(*) Voyez la page 2.28 de ce volume.
Tom. IF.
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L'équation d'un cercle rapporté au diamètre est

d'où on tire

L'équation d'une ellipse rapportée au foyer est

d'où on tire

Vous voyez , Monsieur , avec quelle facilité on arrive aux ré-
sultats connus.

Metz, le 19 d'avril 1814.
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Note transmise par M. LACROIX à J / . T^ECTEN , pro-
fesseur de mathématiques spéciales au lycée de
Nismes.

Dans la première partie des Transactions philosophiques de 1806,
page 23 , je trouve un mémoire écrit en français par M. Buée ,
communiqué à la Société Royale de Londres, par M. William Mor-
gan , et dont le sujet est le même que celui des mémoires de MM.
Français et Argand ( Annales de mathématiques , tom. 1Y ). L'au-
teur prétend « que y / ^ 7 n'est pas le signe d'une opération arith-
» métique ou d'une opération purement géométrique : c'est un signe
t> de perpendicularité. C'est un signe purement descriptif, un signe
» qui indique la direction d'une ligne , abstraction faite de sa lon-
» gueur » ( ce sont les expressions mêmes de l'auteur ) (*).

(*) En publiant cette note > il est bien loin de notre pensée à chercher à en-

lever à M. Argand la propriété de ses idées. Son idée principale, je veux dire

celle qui consiste à considérer ^ — i comme un «igné de perpendiculaire , est

d'ailleurs si simple et si naturelle que , loin d'être surpris qu'elle se soit présentée

aussi à M. Buée, on a lieu de s'étonner, au contraire , qu'elle ait tant tardé à

éclore , et qu'elle ne se soit pas offerte à la pensée d'un plus grand nombre de

géomètres.

Ceux de nos lecteurs qui ont sous la main les Recueils de la Société royale

s'empresseront sans doute de faire une comparaison plus étendue entre les idéei

de M. Buée et celles de MM. Argand et Français.
J. D. G.
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GEOMETRIE TRANSCENDANTE.

Démonslration des principaux Théorèmes de M. Duny
sur la courbure des surfaces j

Par M. GERGONJNTE.

xVX» Dupîn , capitaine du génie maritime , ancien élève de l'école po-
lytechnique 5 a publié , vers la fin de I 8 I 3 ? S O U S le titre modeste de
Dèvcloppemens de Géométrie (*) , un de ces ouvrages dont nous ne
croyons pas pouvoir nous dispenser de faire mention dans ce recueil , et
sur lesquels nous aimerions même à arrêter long-temps nos lecteurs, si
d'autres objets ne réclamaient l'espace dont il nous est permis de dis-
poser.

Nous avions d'abord songé à donner une simple analise de l'ouvrage
de M. Dupin ; mais , cette tâche ayant déjà été remplie par plusieurs
journaux , nous avons pensé faire une chose plus convenable et plus
utile à la fois 7 en présentant ici les principaux points de la doctrine
de l'auteur dans un cadre assez resserré pour qu'il soit permis de l'in-
troduire dans les traités élémentaires, où son importance doit désormais
lui faire trouver place.

Nous nous assujettirons } dans cet exposé ? à écarter toute notion
d'Infiniment petits , et à n'employer que le développement en série ,
suivant les principes de la Théorie des fonctions analitiques y persuadés
que cette attention, qui d'ailleurs n'entraînera guère plus de longueur,
ne pourra qu'être agréable à ceux de nos lecteurs qui attachent
encore quelque prix à la rigueur des procédés.

(*) ln~4«0 d'environ 4^o pages ; chez madame veuve Courcier , à Paris.
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Dans tout ce qui va suivre , nous ferons , pour abréger ? et
suivant l'usage

dr __ dz
dx J dy ' J

d7z dp d2r dp dq d2z dq

dx2 dx dxJy dy dx * dy2 dy '

À", Y, Z seront les coordonnées courantes dans l'espace, et nous
les supposerons constamment rectangulaires.

§• I-

Théorie des TAISGENTES CONJUGUÉES.

Concevons que , par deux points pris arbitrairement sur une
surface courbe , on mène une sécante à cette surface ; et imaginons ,
en outre , les plans tangens en ces deux points , lesquels se cou-
peront suivant une droite extérieure à la surface dont il s'agit.

Concevons qu'ensuite l'un des points pris sur la surface courbe
se rapproche peu à peu de l'autre , en suivant une courbe tracée
arbitrairement sur cette surface , et passant par ces deux points ; il est
facile d'apercevoir qu'alors la sécante et la commune section des deux
plans tangens tendront sans cesse à devenir deux tangentes se coupant
en celui des deux points qui sera demeuré immobile , et qu'elles
le deviendront en effet , lorsqu'enfin l'autre point coïncidera avec
celui-là ; ce sont ces deux tangentes que M. Dupin a nommées
Tangentes conjuguées. Nous allons chercher la loi analitique qui les
lie Tune à l'autre , et justifier ainsi leur dénomination.

Soient M , M ; deux points d'une surface courbe dont l'équation soit

T{x,y,z) = o , (0

et soient les coordonnées de ces points ainsi qu'il suit :
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peur M pour

Z-z ;

d'où résultera , en vertu de la série de Taylor,

Y=y+h

Z=z-\-k

Les équations de la sécante WM/ seront

X-x= \{Z-z Y-y= jiZ-z) . (3)

Le plan tangent par le point M ayant pour équation

Z-z=p(X-x)+9(Y~y) ; (4)

l'équation du plan tangent par le point M' sera

Z-z-k = ̂ +^4-^+..0(X^^-^)+(fH-^+^+..0(lr~r--^). (5)

Dans la recherche de l'intersection de ces deux plans , on pourra ?

à cotte dernière équation, substituer sa diflerence avec la première,

laquelle est, toutes réductions faites , et ayant égard à l'équation (2),

On aura , d'un autre côté , pour Péquaiion de la projection de
MM' sur le plan des XY

Y-y=-{X-x).<
O

(7)

Si preseniemcnt on pose
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d'où

g.3«V»4-.;.. 5 (9)

les équations (6) et (7) deviendront respectivement, en réduisant

} ( f g + g . » . V + . . . (10)

r — r = (*-.ar)Tang.. (11)

Si enfin on suppose ^ = 0 , auquel cas ces équations deviendront celles
des projections sur le plan des XY de deux tangentes conjuguées me-
nées à la surface (1) par le point M ; on aura 7 pour les équations des
projections de ces deux tangentes ,

y) = o , (12)

Y—y = (X—*)Tang.«. ( 11 )

Si, en place de la première de ces deux équations , on écrit simplement

on aura

ou

d'où Ton voit que ces deux tangentes sont parfaitement réciproques .
et que la première peut être déduite de la seconde comme celle-ci
peut l'être de l'autre.

Si présentement nous supposons que le point M ait été pris pour
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origine des coordonnées , et le plan tangent en ce point pour
plan des XY, auquel cas Taxe des Z sera dirigé suivant la nor-
male ; nous aurons

et conséquemment les équations ( n ) et (i3) , lesquelles deviendront
alors celles des tangentes conjuguées elles-mêmes , se réduiront à

g g ()

* et £ étant toujours liés par la relation (i4)«
Si Ton veut que les tangentes conjuguées soient rectangulaires ,

on aura , en outre ,

i+Tang,«Tang.s = o , (16)

équation qu i , étant combinée avec l'équation (i4)> donne

de manière que les valeurs particulières de Tang.a et Tang.p qui
répondent à ce cas seront données par l'équation

/Tang.2*—(r—;)Tar,g.«—J = O. (17)

nous appellerons à l'avenir Tangentes conjuguées principales , ou
simplement Tangentes principales , celles qui sont déterminées par
cette équation.

La direction des axes des x et des y ne se trouvant pas fixée
par ce qui précède , profitons de leur indétermination pour les faire
coïncider avec les tangentes principales; il faudra, pour cela que,
des deux racines de l'équation (17) , l'une soit nulle et l'autre in-
finie. Ces deux conditions concourent à donner ^ = 0 , en sorte que
Téquation de relation (i4) entre les directions des deux tangentes
conjuguées quelconques se réduit simplement à
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,3 — o ; (18)

« et /ft étant les angles que forment ces deux tangentes avec l'une
des tangentes principales.

On voit par là que deux tangentes conjuguées quelconques passent
dans les quatre angles formes par les tangentes principales , ou
dans deux seulement , suivant que r et / sont de mêmes signes
ou de signes contraires,

§. II.

Théorie des INDICATRICES»

Pour déterminer le cercle osculateur et conséquemment le rayon
de courbure d'une courbe plane, en un quelconque de ses points,
on peut, entre autres moyens, employer le suivant , qui se prête
assez commodément au calcul.

On mène la normale au point dont ïl s'agit , et on mène une
perpendiculaire sur le milieu de la droite qui joint ce point h un autre
point quelconque de la courbe ; l'intersection de cette perpendi-
culaire avec la normale est évidemment le centre du cercle qui ,
touchant la courbe au premier de ces deux points , passerait en
môme temps par l'autre.

Si l'on suppose ensuite que le dernier de ces deux points , sans
quitter la courbe , vienne coïncider avec le premier, le cercle de-
viendra osculateur de la courbe au point donné ; son centre et son
rayon seront donc le centre et le rayon de courbure de la courbe
en ce po'nt.

Un procédé analogue peut aussi être employé à déterminer le
rayon de courbure d'une section normale quelconque faite à une
surface courbe. Retournons donc à nos points M , M/ du §. précédent.
Concevons une section par un plan passant par le dernier de ces

Tom. IF. 5o
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points et par la normale au premier ; concevons un autre plan
perpendiculaire sur le milieu de la droite qui joint ces deux points;
ce dernier plan coupera la normale en un point qui deviendra le
centre de courbure de la section normale pour le point M de cette
section, lorsque le point M7 viendra coïncider avec lui.

Traduisons ce procédé en analise ; les équations de la normale
en M sont

celle du plan passant par cette droite et par le point MX sera

-9gXZ-*)=o, (20)

enfin on trouvera, pour celle du plan perpendiculaire sur le milieu
de MM' ,

2>g{X—x)-\"ih{Y—y)-\-ik[Z—z)=g*-\-h*-\-k*. (21)

Si l'on combine cette dernière équation avec celles de la nor-
male , on trouvera pour les équations du centre du cercle tangent
à la section normale en M et passant par M' , en ayant égard à
l'équation (2) ,

(22)

le rayon de ce cercle sera donc
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Soit fait présentement, comme dans le §• précédent, h =^Tang, « ,

l'équation de la projection de MM' sur le plan des XY sera
comme alors

; ( n )

et le rayon du cercle aura pour expression

) {(/y+yTang *) +

Si finalement on suppose g = o , cette expression deviendra celle

du rayon de courbure de la section normale , de manière qu'en

désignant par R ce ra\on de courbure, on aura

Supposons encore , comme dans le §. précédent , qu'on ait trans-

porté l'origine en M , qu'on ait pris les tangentes principales pour

axes des X et des Y et la normale pour axe des Z ; on aura ,

comme alors

et conséquemment

1-4-Tang^

Désignons respectivement par À et B les valeurs de R qui ré-

pondent à Tang.#=o et Tang.«= oo , c'est-à-dire , les rayons de

courbure des sections suivant les plans des XZ et des YZ ; rayon

que t pour les distinguer des autres , nous appellerons Rayons de cour-

hure principaux , ou simplement Rayons principaux ; tout comme

nous appellerons Sections principales les sections faites suivant les

mômes plans ; nous aurons ainsi

i i

r
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Soit présentement C une longueur constante arbitraire quelconque,

et concevons que f sur la tangente dont l'équation est

en porte , à partir de l'origine, une longueur égale à \/ cïî ; on
déterminera ainsi sur le plan des XY un certain point dont la si-
tuation variera avec l'angle * ; voyons donc à quelle courbe ce
point appartient.

Nommons x 7 y les coordonnées de ce point variable ; nous aurons

Tang.«=— et x2+y2 — CR ;
oc

subtituant ces valeurs dans l'équation (32) , elle deviendra

ou , en mettant pour r et / leurs valeurs, données par les équations
(33) , et divisant ensuite par C,

CA CB '
posant donc

\/*CA — a ,
on aura finalement

bu
b*x*+a*y2?=a2b2 , (34)

équation d'une ellipse ou d'une hyperbole , suivant que À et B sont
de mêmes signes ou de signes contraires. C'est cette courbe que M.
Du pin appelle Y Indicatrice.

Si, dans l'équation (18) , on met pour r et t leurs valeurs données
par les équations (33) s elle deviendra

ou, en multipliant par C et substituant
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équation qui exprime , comme Ton sait , la relation entre les angles
*, £ que deux diamètres conjugués quelconques de la courbe (34)
doivent faire avec l'axe des x.

Voici présentement les plus importantes des conséquences qui
peuvent être dédukes de ces divers résultats. On voit d'abord que ,
si ayant mené le plan tangent en un point quelconque d'une surface
courbe , et tracé des droites sur ce plan par le point de contact,
on imagine des sections planes faites suivant ces droites et la normale >

et qu'on porte sur ces mômes droites , à partir du point de contact,
et de part et d'autre de ce point , des longueurs proportionnelles
aux racines quarrées des rayons de courbure des sections normales
qui leur répondent respectivement ; l'ensemble des points déterminés
par ce procédé formera une ligne du îecond ordre ayant le point
de contact pour centre , e- dont les diamètres conjugués seront des
tangentes conjuguées de la surface dont il s'agit.

Donc i.* de toutes les sections normales qui peuvent être faites
tn un même point quelconque d'une surface quelconque , celles de plus
grande et de moindre courbure se ccupent toujours à angles droits.
On peut appeler Rayons principaux les rayons de courbure de ces
deux sections.

2.0 En appelant Rayons conjugués les rayons de courbure des
sections normales dirigées suivant deux tangentes conjuguées , on
peut dire que la somme de deux rayons conjugués quelconques
pris avec leurs signes est constante et égale à la somme des rayons
principaux , pris aussi avec leurs signes.

3.° On peut dire encore que le produit de deux rayons con-
jugués quelconques et du quarré de l'angle des plans des sections
normales auxquelles ils appartiennent ? est également une quantité
constante et égale au produit des rayons principaux.
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4.° On voit aussi que , connaissant seulement deux rayons con-

jugués , et l'angle que forment entre eux les plans des sections
normales auxquelles ils répondent , on a tout ce qu'il faut pour
assigner les directions des sections principales et la grandeur des
rayons principaux, et pour en conclure par suite la grandeur du
rayon de courbure d'une section normale donnée de direction ? ou
la direction de la section normale à laquelle répond un rayon de
courbure donné,

5.° En général , chaque théorème relatf aux diamètres conjugués
d'une ligne du second ordre doit avoir son analogue dans la théorie
de la courbure des surfaces ; et l'examen des diverses circonstances
que peut présenter cette courbure en diiîérens points d'une même
surface , ou sur diverses surfaces , se réduit uniquement à la dis-
cussion des variétés que peuvent présenter les lignes du second oidre
pourvues de centre. Ainsi, par exemple, on voit que, si en un point
d'une surface courbe , deux courbures rectangulaires sont égales et
de même signe , toutes les autres courbures en ce point seront
égales entre elles et à celles-là. Si toutes les courbures eu un rnème
point d'une surface ne sont pis de mêmes s'gnes, cette surlace aura,
en ce point, des courbures infinies suivant deux directions telles que
les sections normales qui diviseront en deux parties égales Jcs quatre
angles formés par ces deux directions , seront les sections principales.

Nous renvoyons, pour le surplus, à l'ouvrage même de M-Dupin,
qui renferme un grand nombre d'autres recherches importantes, et
qu'on ne peut lire qu'avec beaucoup de fruit.
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QUESTIONS RÉSOLUES.

Démonstration du premier des deux théorèmes énoncés
à la page 196 de ce volume ;

Par M. B.***, abonné.

JL HÊOIÎÈME. Deux hexagones étant tracés arlitrairement sur
le plan d'une section conique ;

Ï.° ti les sommets de Vun sont respectivement les pôles des
côtés de Vautre , les sommets de ce dernier seront réciproquement
les pèles des cotés du premier.

2.0 Si, en outre, les points de concours des prolongemens des
côtés opposés de Vun des deux sont tous trois situés sur une même
ligne droite, les diagonales joignant les sommets opposés de l'autre
se couperont toutes trois au même point, qui sera le pôle de cette droite
et réciproquement.

Démonstration. Soient ABCDEF , aledef les deux hexagones pro*
posés.

i.° Supposons que a soit le pôle de ÀB et h le pôle de BC , il
s'ensuivra que tous les angles circonscrits à la courbe dans lesquels la
corde de contact passera par a, auront le sommet sur AB , et que tous
les angles circonscrits à la même courbe , dont la corde de contact pas-
sera par b , auront leur sommet sur BC ; donc l'angle circonscrit dont
la corde de contact passera à la fois par tf^et b , aura à la fois non
sommet sur AB et sur BC ; ce sommet sera donc en B ; le sommet
B sera donc le pôle du côté ab»

On démontrera de la même manière que , si les sommets c, d, e ,f
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sont respectivement les pôles de CD , DE , EF , FA , les sommets C ,

D , E , F , A seront respectivement les pôles de le 7 cd, de, ef, ja f

ce qui établit la vente de la première partie du théorème,

2.0 Soient G le point de concours de ÀB el D E , H le point de con-

cours de BC et EF , K le point do concours de CD et FA ; supposons

que les trois points G, H , K soient situes sur une mémo ligne droite 7

et soit o le pôle de cette droite.

G étant le point de concours de AB et DE , dont les pôles

respectifs sont a et */, on prouvera, comme ci-dessin:, que G est

le pôle de la diagonale ad ; puis donc que G est sur GHK , dont

le pôle est o , il s'ensuit que la diagonJe ad p^v-̂  par le point

o. On prouvera de la même manière que iei> deu u- ŝ diagonales

he y cf doivent passer par ce point o.

Réciproquement si les diagonales ad, le, * / se coupent en un

même point o , et que leurs pôles respectifs SOILUI G , II , K , ces

trois points devront être situés sur la droite dont o est le pôle ;

maïs G , comme pôle de ad , dont les extrémités a et d sont les

pôles respectifs de AB et DE , devra être le point de concours de

ces deux dernières droites. Par une raison semblable, H et K doivent

être les points de concours respectifs de BC et EF , CD et FA ; ainsi

ces trois points de concours sont sur la droite dont le pôle est <?*

Corollaire. Si le polygone ABCDEF est inscrit à la section co-

nique , il est aisé de voir que le polygone abedef lui serait circonscrit

et la toucherait aux sommets du premier, et que, réciproquement,

si le polygone abedef est circonscrit à la section conique , le polygone

ÀBCDEF lui sera inscrit et aura ses sommets aux points de contact

des côtés du premier avec la courbe.

Si donc il était seulement démontré que , dans tout hexagone

inscrit à une section conique , les points de concours des prolon-

gemens des côtés opposés sont tous trois sur une même ligne droite,

il se trouverait établi , par ce qui précède, que, dans tout hexagone

circonscrit à une section conique , les diagonales qui joignent les

sommets opposés , se coupent toutes trois en un même point.
Et
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Et réciproquement, s'il était seulement démontre que , dans tout

hexagone circonscrit à une section conique , les diagonales qui
joignent les sommets opposés se coupent toutes trois au même point,
il se trouverait établi , par ce qui précède , que , dans tout hexagone
inscrit à une section conique , les points de concours des prolon-
gemens des côtés opposés sont tous trois sur une même ligne droite»

Démonstration de la propriété des hexagones inscrits
et circonscrits à une sec don conique ;

Par M. GERGONNE.

THEOREME L Dans tout hexagone inscrit à une section co-
nique , les points de concours des directions des côtés opposés sont
tous trois sur une même ligne droite.

Démonstration. Soient A , B , C , D , E , F les sommets con-
sécutifs de l'hexagone dont 11 s'agit , G le point de concours de
AB et DE , H e t R les points de concours de CB et CD , res-
pectivement , avec une droite menée arbitrairement par G ; soit
enfin Z le point de concours de EH et AK. Supposons que l'ar-
bitraire HK tourne autour du point G, et cherchons quelle est la
courbe que décrira le point variable Z ? (*)

Soient C l'origine, CB Taxe des x, CD Taxe des y ; et soient
les équations des points donnés ainsi qu'il suit

x=a , ( x=g , ( x—o , ( x=o , x—d >

Bj Cj DJ E

Les équations de AB et DE seront respectivement

(*) C'en à dessein que je sous-entends la figure. Un des principaux titres de
supériorité de Tanalise sur la géométrie est que , cette dernière raisonnant sur
des figures construites d'une manière déterminée , on est souvent en droit de
craindre que les résultats auxquels elle conduit ne dépendent de la nature Indi-
viduelle de ces figures. Les solutions purement analitiques ne présentent point
ma pareil inconvénient.

Tom. IF. 5i
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d'après quoi , et en posant pour abréger

<th+g(l>—k)=p , eg-+-h[a-g) = q , de—(a-g)(b-hsj=r

on trouvera, pour les équations du point G ,
q p

l'équation de l'arbitraire HK sera donc de la forme

y

d'après quoi on trouvera
\dç—ep hep—dq

Ar * hr

les équations de EH et AK seront donc respectivement

\r{ex—ay)—ep{x—

éliminant donc entre elles l'arbitraire x , réduisant et divisant par r ,
on trouvera , pour la courbe décrite par le point Z , l'équation du
second degré

r{dy—bx)[ex—ay)—dq(ex—ûyjy^b)—ep(dy—bx)(x—a)=^o ;

laquelle montre déjà évidemment que la courbe passe par les trois
points A , C , E. En la développant , remettant pour p , q , r
leurs valeurs et réduisant , on parvient très-aisément à lui donner
cette nouvelle forme

be[a{b—h)—dj—h ]>—g)x

+\de{d-Sj(e-h—ab(a—Syj> -//)] xy = o ;

-\-ad[b[a—g)—c(d—gy}\ (y—k)y

et Ton voit alors que la courbe passe , en outre , p3r les points
B , D ; puis donc que deux sections coniques distinctes ne sauraient
passer par les cinq mêmes points , il en faut conclure que la courbe
décrite par le point variable Z est la section conique donnée elle-
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même ; îl y aura donc une situation de l'arbitraire HK qui fera
coïncider le point Z avec le sixième sommet F ; et , comme les
trois points G , H , K ne cessent jamais d'être en ligne droite , la
proposition se trouve ainsi établie.

THÉORÈME IL Dans tout hexagone circonscrit à une section
conique , les diagonales qui joignent les sommets opposés se coupent
toutes trois au même point.

Démonstration, Concevons que Ton ait joint les points de contact
consécutifs par des cordes ; ces cordes formeront un hexagone inscrit
dont les cotes auront respectivement pour pôles les sommets du premier.

Par le précèdent théorème, les points de concours des directions
des côtés opposes de l'hexagone inscrit seront tous trois situés sur
une même ligne droite.

Donc , en vertu du théorème démontré par M. B.*** , les dia-
gonales joignant les sommets opposés de l'hexagone circonscrit se
coupent tjutes trois au même point.

Remarque. A la page 78 de ce volume, j'ai démontré ces deux
théorèmes indépendamment l'un de l'autre , par des considérations
géométriques et sans aucune sorte de calcul.

Les démonstrations de ce genre ne laissent sans doute rien à désirer du
côté de l'élégance et de !a brièveté ; mais malheureusement il est rare
qu'elles ne soient pas sujettes à quelques exceptions ou limitations.

On connaît , par exemple , la manière dont M. Monge démontre
le concours en un même point des cordes communes à trois cercles
pris deux à deux ; mais on a pu remarquer que sa démonstration
est en défaut, lorsque les trois cercles, laissant un vide entre eux ,
n'ont point une portion qui leur soit commune à tous. La démonstration
que ce géomètre a donnée de la propriété des pôles, se trouve pareil-
lement eu défaut, lorsque le pôle d'une section conique est extérieur
à la courbe. On en peut encore dire aulant de sa démonstration de
la propriété des tangentes extérieures à trois cercles pris deux à
deux , lorsque l'un de ces cercles se trouve compris entre les tangentes
communes aux deux autres.
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Par ces ïnotifs , j'inclinerais à préférer à la démonstration de la

page 78 la démonstration précédente qui n'est d'ailleurs ni longue
ni compliquée.

QUESTIONS PROPOSÉES*
Problèmes de Géométrie.

I. JL ROIS points du périmètre d'une ellipse étant donnés de position >
et ses diamètres principaux étant donnés de grandeur, construire
l'ellipse ?

IL Six points de la surface d'un ellipsoïde étant donnés de posi-
tion , et ses diamètres principaux étant donnés de grandeur , cons-
truire l'ellipsoïde ?

Théorèmes de Géométrie.

I. SI deux ellipses , tellement situées sur un plan que deux dia-
mètres conjugués de Tune soient parallèles à deux diamètres conju-
gués de l'autre , se coupent en quatre points, ces quatre points seront
sur une troisième ellipse dans laquelle les diamètres conjugés égaux
seront respectivement parallèles aux diamètres conjugués que l'on
suppose être déjà parallèles dans les deux premières.

II. Si trois ellipsoïdes f tellement situes dans l'espace que trais
diamètres conjugués de l'un quelconque soient respectivement parallèles
\ trois diamètres conjugués de chacun des deux autres , se coupent
€n huit points ; ces huit points seront sur un quatrième ellipsoïde dans
lequel les diamètres conjugués égaux seront respectivement parallèles
aux diamètres conjugués que Ton suppose être déjà parallèles dans
les trois premiers.

F I N DU T O M E QUATRIÈME.
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Essai sur la transformation des fractions ; par M. Penjon. 265—273.

ASTRONOMIE.

Essai d'une nouvelle solution des principaux problèmes d'astronomie ; par M.
Kramp. ( Premier mémoire. ) x6i—180.

Recherche des élémens d'une orbite elliptique dont trois rayons vecteurs sont
donnés de grandeur et de position; par M. Kramp. 197—201.

Essai d'une nouvelle solution des principaux problèmes d'astronomie ; par 3NÏ.
Kramp. ( deuxième mémoire. ) 237—7250,

ASTRONOMIE PRATIQUE.

Mémoire sur l'usage du Jicticul Rhombe pour les observations des taches du
soleil et de la lune ; par M. Flaugergues. 321—332.

CHRONOLOGIE.

Calendrier perpétuel ; par M. Servais. 84—90»
Solution directe des principaux problèmes du calendrier ; par M. J. F.

Français, 270—276,

Supplément sur le môme sujet \ par le même* 337—335,
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C O R R E S P O N D A N C E .

Lettre de M. Va Bourguet au rédacteur des Annales y en réponse h une
lettre de M. Bret. 56—58.

Lettre de M. Bèrard au rédacteur des Annales , en réponse à une lettre de
M. Bret, 58—5g.

Lettre de M* Bret au rédacteur des Annales y en réponse aux deux préeé-
dentés- 90—92^

DYNAMIQUE.

Véritable solution du problème de la tractoire plane ; par feu Français. Soïr*—'3iî.
Réflexions et recherches sur le même problème ; par M. Gergonne. 3n—020*.
Solution nouvelle du problème de la tractoire plane et éclaircissemens sur ce

problème ; par M. Dubuat^ 33a—337*.

GÉOMÉTRIE.

Solutions d'ua problème sur les anses de paniers ; par MM. Argand et
Bèrard. 2 56—^65..

Recherche de la surface plane de moindre contour entre toutes celles de
même aire , et du corps de moindre surface entre tous ceux de même volume ;
par un Abonné, 338—344»

Solutions de quatre problèmes de géométrie % relatifs aux Maxima et aux Mi-
nima ; par M^Castelnau et un Abonné. 344—^49-

Recherche du cercle qui en touche trois autres , soit sur un plan , soit sur une
sphère , et de la sphère qui en touche, quatre autres dans l'e&puce $ par M,.
Gergonne*. 34y—0G0-

GÉOMÉTRIE AN A]L ITIQUE.

Mémoire sur les surfaces du second ordre , précédé de la recherche des for-
mules fondamentales de la géuméhie analitique à trois dimensions ? dans le et s-
des coordonnées obliques ; p;.r M. Bret. 90—115..

Recherche de l'ellipse de plus grande surface inscriptihle à un irianpji' (k'iiiiê,
de IMlipsu de moindre surface circonscriptible à un triangle donne, de rdlip^oiJe;
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de plu* grand volume înscriptible à un tétraèdre donné et de l'ellipsoïde de
moin Ire volume circonscriplîble à un tétraèdre donné ; par M. Bèrard. 2B4— ̂ 94»

Recherche du cône tangent à trois cônes donnés ? de même sommet que lui ;
par M. Gergonne. 349—36o,

Démonstration analitique des propriétés des hexagones inscrits et circonscrits
aux sections coniques ; par M. Gergonne. 381—384*

GÉOMÉTRIE DES COURBES.

Essai sur l'expression analitique des courbes , uvk'pendamnv. nt de leur situation
sur un plan ; par M. Gergonne, 4 - - ~ J 6 .

Solution d'un problème de géométrie t relatif à la théorie des solutions jn:iti-
culivres ; par M. Senois. , iSr—160

Démonstrations d'une propriété de la parabole;par MM. Blassabieau , Guilkaimie *
Gobert , et Bèrard. ico—187.

Solution de ce problème : le foyer et trois points du périmètre d'ut.e ellipse
étant donnés 9 construire F ellipse ; par M. Kramp. 11,7-—101.

Démonstrations de ce théorème : les rectangles qui » ayant respectivement pour
diagonales deux diamètres conjugués quelconques d'une section conique , ont
leurs côtés parallèles à ses axes , sont équivalens ; par MM. hèrard et
Gobert, ^53—256.

Démonstration d'une propriété des sections coniques ; par M. Encontre fils.
294—296.

Démonstration d'un théorème relatif à la géométrie de la règle \ par M. B.
379—381.

Démonstration analitique de la propriété des hexagones inscrits et circonscrits
aux sections coniques i par M. Gêrgonne\ 081—384-

GÉOMÉTRIE PRATIQUE.

Solution de ce problème : prolonger la direction d'une droite au-delà d'un
obstacle , a\>ec Vequerre d'arpenteur seulement , et sans employer aucun chaînage ;
par M. Servois. 200—2o3.

GÉOMÉTRIE DE LA REGLE.

Application de la doctrine des projections à la démonstration géométrique des
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propriétés des hexagones inscrits et circonscrits aux sections coniques ; par M,
Gergonne, 78—84»

GÉOMÉTRIE TRANSCENDANTE.

Essai sur l'expression analîtique des courbes , indépendamment de leur situation
sur un plan ; par M. Gergonne. ^2—jG.

Recherche sur le lieu géométrique des sommets des cônes de même base ,
dont l'angle au sommet a même capacité ; par INI. Kramp. 187—196.

Recherche de la surface de moindre contour entre toutes celles de m<lnie
aire et du corps de moindre fui face entre tous ceux de même volume ; par un
Abonné, 338—344-

Démonstration des principaux théorèmes de M. Dupin sur la courbure des
surfaces; par M. Gergonne. 368—^79*

MATHEMATIQUES APPLIQUÉES.

Recherches analiliques sur la construction des thermomètres métalliques e\\
forme de montre ; par M. Argand. 29—42«

Recherches sur le tracé des voûtes en anses de paniers ; par MM. Argand
et Bérard. 266—2G5,

OPTIQUE PRATIQUE.

Recherches sur la construction des miroirs concaves de grandes dimensions ;
par M. A. 180—183,

P H I L O S O P H I E MATHEMATIQUE.

Réflexions sur la théorie des quantités négatives ; par M. Gergonne. G**20,
Nouveaux principes de géométrie de position , et interprétation géométrique

des symboles imaginaires ; par M. J . F. Français. 61 — 72.
Essai sur une manière de représenter les quantités imaginaires dans les cons-

tructions géométriques ; par M. Arganâ. i33—i4$-
Lettres de MM. Français et Servois au rédacteur des Annales sur la nouvelle

théorie des imaginaires. 322—236,
Autre lettre de M. Français au rédacteur des Annales sur le même sujet, 364-3C7.
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Note de M- Lacroix sur le même *ujct. 3G7—368.

RÉCRÉATIONS MATHÉMATIQUES.

Recherches sur un tour de cartes ; par M. Gergonne, 376—284.

TRIGONOMETRIE.

Essai sur diverses expressions approchées de la circonférence du cercle ; par

M. TA, Barrois. 36o—364.
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CORRECTIONS ET ADDITIONS.

CORRECTIONS ET ADDITIONS

Pour le tome quatrième des Annales.

L AGE 91 , mettez au bas de la noie J. D. G.
Page 92 , ligne 7 —en remontant ; mettez une virgule après
Page 2.60, lignes i3 et i5 — claie lisez : clé

Ligne 17 — rn ; lisez : rn .
Ligne 23 — rs ; lisez : rn .
Ligne 27 — ecz ; lisez: ut .

Page 262 , au dénominateur de la valeur de X — , au lieu Je ^4—M ; lisez :
2(^4—M).

Page 2.6^. , ligne i3 — x~=b yj'^^ct ; lisez : x~=-A 3 y = B .
Page 338, ligne 6, ajoutez : dans le cas des années bissextiles, il faudra appli-

quer ici les remarques qui suivent le problème II ( page 275. )
Page 367 , ligne 5 — je j lisez : on.

Supplément à /'Errata du Tome //.e .

Page 11 , équation 3i —pfxlf—q'xn ; lisez :pfyll—iifxtf*
Ligne 4 $ en remontant — ( oc3—J2)J ,• lisez : (o;2+ja)3»

Page i 3 , à la note — (3a, 33) ; lisez: (33 , 34)•

T» 1. r 772—72+1 , , 772—Tl 1

rage 207 , ligne 5 , en remontant lisez : «.
7ï+1 n+i

T , ffitmmm7l 772 —72
Ligne 2 , en remontant — lisez : — .

n 72+1

Supplément à /'Errata du Tome III.6

Page 107 , ligne 8 —2c ; lisez : 2C.




