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QUESTIONS RESOLVULS. 59

QUESTIONS RESOLUES.

Solutions du probléme de probabilité proposé a la
P Pro}
page 324 du second volume des Annales ;

Par MM. TEpENAT , correspondant de la premicre classe de
IInstitut , recteur de académie de Nismes; D. Encoxtrz ,
professeur, doyen de la faculté des sciences de académie
de Montpellier; LuuiLier, professeur de math€ématiques
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60 QUESTIONS
3 Tacadémie impériale de Genéve ; Le Granp et Rocrar,
professeurs de mathématiques a Saint-Brieux.

[a Yo Vi Vi Vi, Vig Vo Vig Vo V]

_ENON CE. Une loterie étant composée de m numéros 1, 2, 3,...m,
dont il en sort n & chaque tirage ; quelle est la probabilité que,
parmi les n numéros d'un méme tirage, il ne se trouvera pas deuz
nombres consécutifs de la suite naturelle ?

Je vais rendre un compte sommaire des diverses solutions qul ont
été donndes de ce probléme , en insistant principalement sur les
différences essenticlles qu’elles pourront offrir.

Je commencerai par la démonstration d’un principe sur lequel
reposent toutes ces solutions. Ce principe est géne’ralement connu j
mais , la démonstration qu’en ont fourni MM. Le Grand et Rochat

étant trés-courte , on me pardonnera de la rapporter ici.
Solent

>
I

I + 2 + 3 +ec.-+ m , s
1.2 +2‘3 +3'4 +“°-+ m(m+1) > »
S, =r1.2342.3.443.454+. ... Fm(m=4-1)(n42) ,
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Sp=1.23..p423 4 (pF 143450 (p2) 40 m (1D @nd2) o mp—3)-
U s'agit de prouver qu'on doit avoir -
S:= * m(m-+t1),
§,= 1 m(m+1)(m-+-2) ,
L (=) m3) ;
sp:ﬁ—l;n(m+1)(m+z)§m+3>.....(m+p~1><m+p>.
Pour y parvenir, supposons que cette loi se soit vérifide pour les
m-—1 premiers termes de la dernitre suite, de manitre quon ait
1.2.3. .p+2.3./{.u‘.(p+l)+3.4.5...(p+2)+...+(m-—l)(m)(m+x)...(m+p—2)
)4

= pEn (P (02) (M L) wens (ofp==2) (-p—1) ;
2 l N
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on aura alors

I
+1

szp (m==1) () (m~=1).. (p—2 (nfp=1)-f-r2 (- 1) (mf-2) s (Mofp==1)

ou Sp= p;— m(mA-1)(m2)an (mp—1) { (m—1)(p41)} ,

ou Sp= I-’i; m(m—~4-1)(m~4-2) o (m=p—1) (m-+p).

11 est donc prouvé par la que cette formule serait vraie pour les
m premiers termes de la suite , si elle était vraie pour ses m—i
premiers termes ; or , il est aisé de se convaincre quelle est vraie -

pour les deux premiers; car on a

1.2.30.p42.3 4 pF1 =234 p[14-(p41)]
'—_;-7 234 p(pA1) (042) 5.

ainsi Pexpression de Sp est exacte , et il en doit étre de méme de
celles de §,, §,, §,,.... qui n'en sont que des cas particuliers.
il résulte aussi de 14 qu'on doit avoir

Mz = m—3 me——4 Ml  Mmee2
—/—}— -+ - e e L T B . N

I 1 2

m—3 m—4  m m==y me=3 me—

-+ :*.m:°+...+6+3+x= —.—. =,

2 o]

1 2
Ml m==5 =6 = m—5 m—6 m—y Me==3 m—f m==5 mep

. \— - . . ~+.it10-}+441= .  — .

I 2 3 1 2 3 I 2 3 4

S8 4 s 9 8 ¢ 8 5 8 8@ 3 5 4 8 5.5 4+ 2 8 e o s £ 8 s s e 28 @ 8 o ¢ 8 F 8 s s e 0 2 B G &S s T e .o e @ s s s a2

Je passe présentement & la question proposée. Comme il est connu
que, lorsqu’un événement dépend de quelques chances, comprises
parmi plusieurs autres , toutes également possibles, la probabilité de
cet événement est exprimée par une fraction dont le numérateur est
le nombre des chances de l'arrivée desquelles cet événement dépend ,
et dont lc dénominateur est le nombre total des chances ; et comme,
d’un autre c6té, on sait de combien de maniéres » numéros peu-—
veat étre choisis entre 7z; on voit que la question se réduit a déterminer
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de comb%én de manitres les m mnombres 1.2.3..7.7m peuvent é&tre
pris # & » sans que, dans aucune. combinaison , il se trouve deux
ou un plus grand nowbre de numéros conséeutifs,

On peut chercher directement le nombre des combinaisons de cette
sorte ; ou bien on peut, au contraire , chercher le nombre de celles
qui renferment des numéros consécutifs; puisque ce dernier nombre,
retranché du nombre total des combinaisons 7z 4 n, donnera pour
reste le nombre des combinaisons dont il est question dans P’énoncé
du probléme. C’est ce dernier parti qu;a pris. M. Lhuilier. Pour
abréger le discours, il appelle dmbe successif I'assemblage de deux
numeéros se succédant consécutivement dans la suite des nombres
naturels ; soit que ces numeéros solent seuls , soit qu’ils fassent partie
d’une combinaison d’un plus grand nombre de numéros. Cette défi-
nition posée, M. Lhuilier parvient 4 la formule générale par la
considération des cas particuliers , en procédant i peu prés comme
il suit.

1. Dans lecasde =1, le nombre des tirages qui donnent des

. L. m m
ambes successifs est évidemment o= ——=

I

2.° Dans le cas de #=2, le nombre des tirages qui dennent des
ambes successifs est évidemment

me—1 m m=—1I M= M2

. — . .

I 1 2 I 2 ’

3.° Dans le cas de n=3; si 1 et font tous deux parties d’un
tirage , on pouarra leur adjoindre I'un quelconque des m—2 numéres
restans ; si, au contraire , 1 doit faire partie d'un tirage, sans que 2
doive s’y trouver, il faudra lui adjoindre toutes les combinaisons deux
4 deux des m—2 numéros restans qui peuvent fournir des ambes
consécutifs , et dont le nombre est, par ce qui précéde, m—3.

Ainsi le nombre des tirages ayant 1 pour leur plus petit numéro,
et présentant des ambes successifs , sera (m—2)-+(m—3) ; parecille-
ment le nombre de ceux d'entre eux qui auront 2 pour leur plus

petit numéro , sera (m—3)-m—4); le nombre de ceux qui aurent 3
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pour leur plus petit numéro, sera (m—4)+(m—>5) , et ainsi de suite.
On voit, d’aprds cela, que le nombre total des-tirages de trois
numeéros présentant des ambes successifs, sera
§ (m—2)-(m=3) }4{ (n—3)m—1) } - { (m==pop- (m—5) } ok § 140 }
={m=—2)+(m—3) =+~ 1} - { =3y (n—4f) - (m—5)+.. 1 }

Mm—1 m=—2  m=—2 m—3 m me—1 -2 Mme—2 m==3 m—;
e . . .

1 2 I 2 1 2 3 1 2 3

4.° Dans le cas de =4 ; 1 et 2 devant faire a la fois partie

Me—2  m—3

4 2

d’'un méme tirage, on pourra leur adjoindre chacune des

combinaisons deux & deux fournies par les m—-2 numeéros restans.
Si au contraire 1 doit faire partie d'un tirage, sans que 2 doive s’y
trouver ; il faudra adjoindre a4 ce numéro 1 toutes celles des com-
binaisons trois a trois des m-——2 numéros restans qui présenteront

des ambes successifs et dont le nombre est, par ce qui précede,
m—3 m—4f = m—f me=h

) ¢ 2 1 2
Ainsi le nombre des tirages de quatre numéros qui, présentant des
ambes successifs , auront 1 pour leur plus petit numéro, sera

Mm=—2 m=—3 | m==3 m—f = m=—f m—5
. . .

- -+ ; le nombre des tirages de
k 4 2 1 2 I 2

cette sorte qui auront 2 pour leur plus petit numéro , devra donc étre

m—3 m— m=—4i m=—5 . m—5 m—~06 .
. 4—i-‘ . -+ . ; le nombre de ceux qui auront
1 2 b ¢ 2 X 2

. L Y
3 pour leur plus petit numéro, sera semblablement ——:—— ==
. 1 a2
m—b m—6 . m—6 m==7 .. .
el -~ T > et ainsi de suite.
On voit, d’aprés cela, que le nombre total des tirages de quatre

numéros présentant des ambes successifs , sera

. -+ .

M=z m=—3  m—3 m—f = m—f m=5
i + 20
1 2 1 2 . ¢ 2

I+ g m=—3 ) me=—=f  m—4 ) m—"5 + m—>5 ) m—6 ;

{ 1 2 1 2 1 2
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%m-—-ﬁ m—5 m—b m—6 m-—6 m-—7}

% . -+
1 2 1

z + + \
£ 3 . 1 -+ ) 3
{ + +

—4 | m—f m—5
T = + T = +m1 *.?1_2—-+°".+6+3+1

m—6 m—7y

. m=—4 m—5  m—5 m—b6 ”
+§ 1 2 1 2 + 1 o634

2

m—5 m-—6 s
T 2 I 2 + 1 2 +....+6+a+x§

I

. .

Mem1 M2 m—23 m—2 m—3 m—},

m—3 m—4 m—5
+ —— e

1 2 "3 1.2 3

m m—t m—2 m=—3 m—3 m—4 m—5 m—6

123.4*1.2.3.4.

M. Lhuilier applique encore ce raisonnement au cas ot 2=>5 et,
3 raison de la marche uniforme du procedé, il est conduit & con-
sidérer le nombre des tirages de 2 numéros qui présentent des ambes
consécutifs comme étant la djfférence enire le (m—n-t1)™° et le
(m——2n-4-2)"° nombres figurés du 7™ ordre. Or, comme le premier
de ces deux nombres figurés exprime le numbre total des tirages
de » numéros , il en résulte que le dernier représente le nombre de
ceux d'entre eux qui n'ont point d’ambes successifs.

M. Lhuilier observe , au surplus, que l'on pourrait s’assurer d'une
maniére rigoureuse de P'exactitude de ce résultat, par le raisonne-
ment connu qui consiste & prouver que, ‘si ce résultat est exact,

pour des tirages de n—1 numéros, il doit l’étre aussi pour des
tirages de » numéros.

MM. Tédenat , Encontre , le Grand et Rochat ont au contraire
cherché & calculer directement le nombre des chances favorables.
Pour parvenir & leur but, ils supposent qu'on a fait des chances
de cette sorte divers growpes , en plagant dans le premier groupe

toutes
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toutes celles dont le plus petit numéro est 1, dans le second toutes
celles dont le plus petit numéro est 2, dans le troisitrne toutes
celles dont le plus petit numéro est 3, et ainsi de suite. Les choses
ainsi entendues , voici comment ils procédent.

1.° I est d’abord évident que , il ne doit sortir qu'un seul

numéro & chaque tirage , le nombre des chances favorables sera
m

le nombre total des chances , c’est-a-dire , 7 ou <

2.2 Sl doit sortir deux numéros & chaque tirage , celles des
chances favorables dont le plus petit numéro sera 1, ne pourront
étre complétées que par quelqu’un des m—=2 numéros 3, 4, 5,...m ;
le nombre de ces chances sera done m—2.

Celles des chances favorables dont le plus petit numéro sera 2,
ne pourront étre complétées que par quelqu'un des 7,—3 numéros
4,5, 6,....m; le nombre de ces chances sera donc m—3.

Celles des chances favorables dont le plus petit numéro sera 3,
ne pourront étre complétées que par quelqu’un des m—/4 numéros
5,6, 7,....m; le nombre de ces chances sera donc m—4.

Et ainsi de suite, jusqu’a la chance favorable dont le plus petit
numéro sera m—=2 , laquelle sera unique : attendu qu’elle ne pourra
étre complétée que par le seul numéro m. (

Ainsi , dans le cas de n=2, le nombre total des chances favo~

rables sera
(n——2)4-(m—3)+(m—f)4 ... . F2-41= m—2 m—1

I 2

c'est-a-dire , le (m—2)™°® nombre triangulaire.

3.2 8§l doit sortir trois numéros 4 chaque tirage , celies des
chances favorables dont le plus petit numéro sera 1, ne pourront
étre complétées que par celles des combinaisons deux a deux des
m—2 numeéros 3, 4, 55....m qui ne présentent poini de nom-
bres consécutifs , et dont le nombre est , par ce qui précede ,

(m==2)=—2  (M=—2)=—1 m—4 m—3
° ou o omm——
I 2 1 2

Tom. 1. 9
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Celles des chances favorables dont le plus petit numeéro sera 2,
ne pourront étre complétées que par celles des combinaisons deux

3 deux des m—3 numéros 4, 5, 6,....m, qui ne présentent point
de nombres consécutifs , et dont le nombre est, par ce qui précéde .

(me=—=3)==2  (Mm=—3)——1 me——b5 m—4
b 2 1 2

Celles des chances favorables dont le plus petit numéro sera 3 ,
ne pourront &tre complétées que par celles des combinaisons deux
a deux des m—4 numéros 5, 6, 7,....7m qui ne présentent point
de nombres consécutifs , et dontle nombre est, par ce qui précede,

(M=—i)==2  (=—l)—1 m—6 m—5
. (s}

I 2 X 2

Et ainsi de suite, jusqu'd la chance favorable dont le plus petit
numéro sera m—4 , laquelle sera unique : attenda gu’elle ne pourra
étre complétée que par les deux seuls numéros m—=2 et m.

Ainsi , dans le cas de n=3, le nombre total des chances
favorables est

Ml me—=3 m=—=5 me=i

+m ‘m +.:“+3+x=m14.m .m 9.;

1 2 2 3

— RS

.
I 2 1 2

cest-a-dire , le (m—4)™° nombre pyramidal.

4.° §il doit sortir quatre numéros a chaque tirage ; celles des

chances favorables dont le plus petit numéro sera 1, ne pourront
étre complétées que par celles des cembinaisons trois & trois des
m—2 numéros 3, 4, 5,....m qui ne présentent point de nom-
bres consécutifs , et dont le nombre est, par ce qui précede,

(M=)}  (M=—2)==3 (mw=2)—2
. . ou
I 2 3

m—0 . m=—5 m=—f

1 2 3

Celles des chances favorables dont le plus petit numéro sera 2,

ne pourront &tre complétées que par celles des combinaisons trois
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3 . . .
a trois des m—3 numéros 4, 5, G,....7m qui ne présentent point
de nombres consécatifs , et dont le nombre est, par ce qui précede,

(m=—3)—4 m=—3H—3 (m=—3)—2 M7 e m—5
. . cu . . .
I 2 3 I 2 3

Celles des chances favorables dont le plus petit numéro sera 3,
ne pourront étre complétées que par celles des combinaisons trois
a trois des m—4 numéros 5, 6, 7 ,....m qui ne présentent point

de nombres consécutifs , et dont le nombre est, par ce qui précede,
e
==t n—PH—3 (m—hH—2  m—8 m—7 m—b
. . 0 . . L]
1 2 3 I 2 3

Et ainst de suite, jusqu'a la chance favorable ayant m—=6 pour
son plus petit numéro , laquclle sera unique; attendu qu’elle ne pourra
_Atre complétée que par les trois seuls numeéros me—yg , m—z, m.

Ainsi , dans le cas de n=4, le nombre total des chances favo~
rables est

m—6 m=—5 m—4f = m—7 m=—6 m=—5  m—8 m—7 m—6

. ore I
X 2 3 1 2 3 + 1 2 3 Frotit
__m=—b6 m—b5 me—=} m—3

1 2 3 " 4 ?

clest-a-dire , le (m—6)™° nombre figuré du 4.° ordre.

La marche parfaitement uniforme de ce procédé eonduit & con-
clure,, sans qu’il soit nécessaire de pousser linduction plus avant,
qu'en général , n désignant le nombre des numéros qui sortent a
chaque tirage , le nombre des tirages différens qui ne présentent
point de numdéros consécutifs, est le (w2 —2n-4-2)"° nombre hguré
du 2™° ordre ; c’est-a~dire ,

Me=2nef-d  me=m2n-f-4

3 Se e

m—cn-}-2 Memn=f-1
- — e

7

X 2

ce qu'il serait d’ailleurs facile d’¢tablir par un raissnnement rigoureux.
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Si présentement on considere que le nombre total des tirages possibles
de » numéros parmi m est

—

m M1 e Mme—n-}-1
. . Py te s a0

1 2 3 n ’

-~

on en conclura que la probabilité demandée par I’énoncé de la question est

m—an-~2  Mmeecn-p-3 me—2n--4 m=—=n~f-1
m Y ome—r T me—a2 "“m—n-{-l :

M. Encontre remarque que , si 'on avait égard & lordre de sortie
des numéros , dans chaque tirage , le nombre des tirages dans lesquels
il ne se trouverait pas deux numéros voisins dans la suite des nom-
- bres naturels , serait simplement

(m=—=2n—~4-2)(1n=2n-4-3)(m—:2n+44). . . . (m—n—+1) ;

et comme alors le nombre total des tirages possibles serait

m . (m—1) .« (m—2) . .c. (m=—n-1) ;

il sensuit que la probabilité cherchée serait encore la méme que
dans le premier cas.

M. Tédenat observe que, lorsque n=1(m-t1), le nombre des
tirages sans numéros consécutifs se réduit a P'unité , et qu’il devient
nul, si Yon a > I(@mt1).

On peut encore parvenir au but par une autre méthode qui peut
paraitre un peu moins simple que les précédentes , mais qui a sur
elles I'avantage de résoudre , outre la question proposée , une autre
question non moins intéressante , et qui a avec elle une trés-grande
analogie. Je vais I'exposer bri¢vement.

Pour étre plus court et plus clair , j’adopterai les dénominations’
suivantes :

Jappellerai Combinaison totalement continue, toute combinaison
dont les numéros , du plus petit au plus grand, se trouveront étre
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des nombres consécutifs de la suite naturelle. J'appellerai Combinaison
totalement discontinue , toute combinaison dans laquelle il sera
impossible de rencontrer deux nombres consécutifs de la méme suite.
Quant aux combinaisons formdes en partie de nombres conséculifs
et en partie de nombres non consécutifs, elles pourront étre indif-
féremment appelées Combinaisons partiellement continues ou Com-
binaisons partiellement discontinues.

Jobserve présentement que chacune de ces diverses sortes de
combinaisons peut étre considérée sous deux points de vue trés-
distincts. On peut supposer tous les numéros 4 combiner disposés
les uns & c6té des autres, du premier au dernier , suivant l'ordre
de leur grandeur, sur une ligne droite, sur une branche de courbe
ou sur une portion de polygone; ou bien on peut les supposer
rangés, suivant le méme ordre, soit sur la circonférence d’un cercle,
soit sur toute autre courbe fermée, soit enfin sur le périmetre d’un
polygone ; et les deux numéros extrémes qui, dans le premier cas,
ne seront point consécutifs, devront étre réputés tels dans le second.
Jappellerai Combinaisons rectilignes les combinaisons faites avec
les numéros disposés de la premitre de ces deux manidres , et
Combinaisons circulaires celles qui seront faites avec les numéros
rangés conformément a la seconde hypothése. Lies unes et les autres
pourront étre d’ailleurs zozalement ou particllement continues ou
discontinues.

Il est d’abord clair que 72 numéros, pris » ¥ 2, doivent fournir
m combinaisons circulaires et m—n—--1 combinaisons rectilignes
totalement continues; mais le nombre de leurs combinaisons, soit
rectilignes soit circulaires , totalement discontinues, n’est point aussi
facile & déterminer.

La question ou Pon propose de déterminer combien 72 numéros,
pris 2 a n, peuvent fournir de combinaisons circulaires totalement
discontinues , revient a celle-ci : Urn polygone de m cétés étant
donné , combien peut-on construire de polygones de n cdtés dont
tous les sommets soient des sommets du polygone donné sans qu’au-
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cun de leurs cbiés soit coté de ce polygone ? Sur quoi il faut
remarquer qu’ici toute diagonale isolée doit étre considérée comme un
polygone de deux cétés dont les cotés se confondent ; et que tout
sommet doit &tre considéré comme un polygone d'un seul coté.

La question ot V'on propose de déterminer combien m numéros,
pris » 4 n, peuvent fournir de combinaisens rectilignes, totalement
discontinues , revient & celle-ci : Une portion de polygone de m
sommets , ou de m—1 cdlés, éiant donnée ; combien peut-on cons—
truire de portions de polygones den sommets , ou de n—1x cbés ,
dont les sommets soient tous des sommets dela portion de polygone
donnée , sans qu'aucun de leurs cOtés soient cltés de cette portion
de polygone P Clest proprement 1 la question qui a été proposée.

Je vais mener de front ces deux questions ; mais je dois observer
auparavant que , comme ici la disposition respective des numéros
dans chaque combinaison , n’est de nulle considération ; on peut
supposer qu’ils sont rangés , dans toutes, par ordre de grandeur |
et qu'ainsi les polygones et portions de polygone dont il s’agit
d’assigner le nombre, doivent étre convexes, si les polygones ou portions
de polygones donnés sont supposés tels.

1.° Il est d’abord évident que le nombre des extraits , soit circu=

laires soit rectilignes , totalement discontinus, n’est autre que le

. . m
nombre total des extraits, c’est-a-dire, — .
X

2.° L’adoption d'un numéro quelconque, pour faire partie d’'un
ambe circulaire totalement disecontinu , donnant Vexclusion i ses
deux voisins , & droite et 3 gauche, on ne pourra lui adjoindre que
les extraits rectilignes , totalement discontinus, que pourront fournir

les —3 numéros restans , et dont le nombre est par ce qui précede ,
m=—3 . . .
- Si l'on en fait de méme successivement , pour chacun des m

1 3 13 mha .
numéros , le nombre des ambes qu’on aura formés sera m. —— ; mais ,
- - 1

chaque ambe se trouvant ainsi répété deux fois, il sensuit que le
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pombre des ambes circulaires, totalement discontinus que 72 numéros
peuvent fournir, est seulement

m 7 m—Y
T e

2 I

Pour passer de 1a aux ambes rectilignes , on remarquera que le
seul de ces ambes qui ait été exclu du nombre de ceux qui viennent
d’étre formds , est celui qui résulte de 'assemblage des deux numéros
extrémes. Ainsi, le nombre des ambes rectilignes, totalement dis-
continus,, que 72 numéros peuvent fournir est

m m—3 eI Momms
———— el —— —,

2 I I 2

3.° L’adoption d’un numéro quelconque , pour faire partic d’un
terne circulaire , totalement discontinu , donnant Uexclusion i ses
deux voisins , & droite et 3 gauche ; on ne pourra lui adjoindre
que les ambes rectilignes , totalement discontinus, que pourront four-
nir les m—3 numéros restans , et dont le nombre est, par ce qui
précede , (m—f)_l . (m_j)—z ou m.:[f . m:5 . Si Pon en fait de
méme successivement , pour chacun des 7 numéros , le nombre

s . me—h me—b .
des ternes quon aura formés sera m . - s mais, chaque terne
2
. . 7. 2 Ty . . - ’ .
se trouvant ainsi évidemment répété trois fois , il s’ensuit que le
nombre des ternes circulaires , totalement discontinus, que 7 numéros
peuvent fournir est seulement

m me—f m—b

0 -
3 1 2

Pour passer de la aux ternes rectilignes , il faudra joindre & ce
résultat le nombre des ternes circulaires dont les numéros extrémes
font partie , sans renfermer d’autres numéros consécutifs , et dont
le second et le pénultidme se trouvent conséquemment exclus; or,
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ce nombre de ternes est évidemment égal au mnombre des extraits
rectilignes , totalement discontinus que peuvent fournir les m—4

. . m—4 . .

numéros restans , c’est-a-dire,, par ce qui préctde, — . Ainsi, le
I

nombre des ternes rectilignes , totalement discontinus , que 7z numéros

peuvent fournir est

Me—t  me=b +m—4 _ m2—5m-p6 m—4 __m—2 m=—3 me—4

. = . . .
I 2 1 1.2 3 1 2 3

m
3

4.° L’adoption d’'un numéro quelconque , pour faire partiec d'un
quaterne circulaire, totalement discontinu, donnant I'exclusion & ses
deux voisins, a4 droite et & gauche ; on ne pourra lui adjoindre que
les ternes rectilignes , totalement discontinus, que pourront fournir

les m—3 numeéros restans , et dont le nombre est, par ce qui précede,
(n==3)—z2 (m=—3)=~3 (m=—3)=—4 m—5 m—6 m=-y . .
. . ou . . . 8i Pon en fait
1 2 3 I 2 3

de méme successivement , pour chacun des 7 numéros , le nombre
s , m—5 m—6 m-—y .

des quaternes qu’on aura formdés sera . . . s mais ,

I 2 3

chaque quaterne se trouvant ainsi évidemment répété quatre fois ,
il s’ensuit que le nombre des quaternes circulaires, totalement dis-

continus, que 7z numéros peuvent fournir est seulement

m-—5 m—6 m=—7y

bs 2 3

e K]

Pour passer de la aux quaternes rectilignes, il faudra joindre &
ce résultat le nombre des quaternes circulaires, dont les deux numéros
extrémes font partie , et dont le second et’ le pénuliiéme se trouvent
conséquemment exclus; or, ce nombre de quaternes est évidemment
égal au nombre des ambes rectilignes , totalement discontinus, que
peuvent fournir les m—4 numéres restans, c’est-a-dire, par ce qui-.

(m=—f)=—1  (Mm—f)=—2 m—5 m=—06

précede , . - ou —— . ——. Ainsi , le nombre des

quaternes
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quaternes rectilignes , totalement discontinus , que 72 numéros peu-
vent fournir est

m=—5 me=6 mey = mee5 m=—6 m—7md-12 m=5 m—6

— .

1 2 3 X 2 1.2 3 4

__m—-3 M=l =5 m=——G

T 2 3 4

ENE

Comme on apergoit déja facilement , sans pousser 'induction plus
loin, la loi de ces divers rdsultats , je vais de suite en prouver
Pexactitude , pour le cas général ou les m numéros doivent étre
pris n 4 n.

Soient respectivement désignés par C,,, et R, le nombre des
combinaisons circulaires et le nombre des combinaisons rectilignes ,
totalement discontinues que peuvent fournir 7z numéres , pris 2 a n.

L’adoption d’un numéro quelconque, pour faire partie de l'une
des combinaisons circulaires , 2 & 7, totalement discontinues , donnant
Pexclusion a ses deux voisins, & droite et a3 gauche, on ne pourra
Iui adjoindre que les combinaisons rectilignes , 2—1 & n—1, totale-
ment discontinues , que pourront fournir les 72--3 numéros restans , et
dont le nombre devra éire représenté par 2, _; ,,_ . Sil'onen fait de méme
successivement , pour chacun des 7z numéros, le nombre des combinai~
sons 7 a 2 quon aura formées, sera R, _,,,—, ; mais, chaque combinai-
son, n & n, se trouvant ainsi évidemment répétée 2 fois , il s’ensuit
qu’on doit avoir seulement

m
cm,u= '; Bm*;,n«q; (I}

Pour passer de 14 aux combinaisons rectilignes, il faudra joindre
3 ce résultat le nombre des combinaisons circulaires, z & #, dont
les deux numéros extrémes font parties , sans renfermer d’autres
numéros consécutifs , et dout le second et le pénultitme se
trouvent conséquemment exclus; or , ce nombre de combinaisons
est évidernment égal au nombre des combinaisons rectilignes, n—2

Tom. 111 10 -
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) n—2, totalement discontinues , que peuvent fournir les m—z
numéros restans , c’est-a-dire , Bp_, 5. On a donc d’aprés cela

Bow=Crp¥Bry g ier (ID)

Telles sont les ¢équations générales de relation entre le nombre
des combinaisons rectilignes et le nombre des combinaisons circu-
laires , et dont Vintégration résoudrait completement les deux
problémes,

De ces deux équations on en peut facilement déduire deux autres
dans lesquelles B et € soient séparés. Si, en effet, on élimine
€y entre elles, on aura d’abord )

m

Bm,n-_‘ ;Rm-;,n-x +Bm-4,u—z . (r)

Si, ensuite, on change 7 ct 2 respectivement en m—/ et n—2,

dans la premiére , et en m—3 et n—1, dans la seconde , il
viendra

(n—=2)Cr_ 4u-r=(m—4)Ry_. Po=3 3
Cm' 3sn=-1 ='Rm— 3 I""Rm—7,u- 3 3

d’olt on conclura, par Vélimination de R,_,,., et la substitution
de la valeur de R,_;,,-, , donnée par l'équation (I)

m m =2
Cm,n= -;l- Cm—i,n-x + —

n m—4

Co-tpre (0

Si mainténant , en suivant Vanalogie indiquée par les rdsultats
précédemment obtenus, on pose

R m—n-1 m—n Mm—n—1r m—2an-}-2
— . .
m,n i 2 3 c a0 n p]
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M Me—pemI  esspemn m=—ai-}-1

C = = . e 08 o0 >
7

msn =
I 2 n—I

il sera facile de se convaincre que ces ‘valeurs satisfont aux équations
(r) et (¢) , et conséquemment aux équations (I) et (II), et quiainsi
elles en sont les intégrales ; ce qui garantit exactitude de ces
deux formules.

D’aprés inspection des mémes formules, on voit aisément quon
peut écrire

me=on-}-2

AN
Bm— IsR—1 (r/}

n

Crnes e (¢)

dquations qui conséquemment peuvent remplacer , soit les équations
() et (¢), soit les équations (I) et (II).
Les valeurs successives de Cpm,, qui répondentd n=1, 2, 3,...2,

c’est-a—dire ,

m m m—3 m m—f m=5 m m—5 m—6 m—y
— — —  — ol . L] 0 -
1’ 1 2 ' 1 2 3 7 1 2 3 4

c e 00 o

sont trés-remarquables, parce qu’elles entrent , comme coefficiens ,

dans un grand nombre de développemens. Ce sont, en particulier,

les coefficiens des termes du développement de 2Cos.mx, ordonné

suivant les puissances descendantes de 2Cos.x. Ces sortes de nom-

bres, qui se représentent fréquemment dans I'analise , regoivent donc,
.

par ce qui précéde, une interprétation & la fois combinatoire et

géométrique.
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QUESTIONS PROPOSEES.

Théorémes de Statique.

1. SI P'on joint, par des droites, le milieu de chacune des diago-
nales d’un quadrilatére 3 un point de l’autre diagonale, qui soit autant
éloigné de l'une de ses extrémités, que le point d’intersection des
deux diagonales est éloigné de son autre extrémité ; l'intersection
de ces deux droites sera le centre de gravité de laire du qua-
drilatére

1I. Soit déterminé, sur chacune des deux diagonales de la base
d’une pyramide quadrangulaire , un point qui soit autant éloigné de
Yune de ses extrémitds , que le point d’intersection des deux
diagonales est éloigné de son autre extrémité.

Si, da point ainsi déterminé, sur chaque diagonale , on méne une
droite au centre de gravité de l’aire du triangle qui, ayant pour base
Vautre diagonale , a son sommet au sommet de la pyramide ; les deux
droites ainsi menées se couperont en un point, et ce point sera le
centre de gravité du volume de cette pyramide.




