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LIMITES DES RACINES DES EQUATIONS., 4

ANALISE ELEMENTAIRE.

Considerations propres & fournir , dans un grand
nombre de cas, des limites extrémes , (rés-approchées ,
des racines des e€gquations numeriques ;
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Par M. pe Ma1zitRe , professeur de mathématiques des Pages
de LL. MM., et professeur de mathématiques spéciales

au lycée de Versailles.
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1. ON sait que l'emploi des dérivées successives conduit , d’une
maniére sure, au nombre entier immédiatement supérieur a la plus
grande racine additive d’une équation; que cette mdéthode est trés-
rapide , si cette plus grande racine est un petit nombre ; mais qu’elle
devient trés—pénible, et pour ainsi dire impraticable , lorsqu’au con-
traire la plus grande racine additive est un grand nombre , sur-
tout si ’équation est d’un degré un pea élevé.

La méthode que je vais expeser pourra sembler moins générale 3
mais elle est beaucoup plus rapide, dans le cas ou la plus grande
racine additive est un grand nembre. Elle est fondée sur un théoréme
généralement connu ; elle n’en est, en quelque sorte , que le dévelop-
pement ; et elle est d’ailleurs si variée qu’elle peut étre considérée
comme satisfaisant & tous les cas.

II. Une équation quelconque X=o , peut éire représentée comme
il suii
A"A4=P 2™ P g™ e =P ™ i — Pia ke - Pr=0; (1)
—P; étant son premier cocflicient scustractif ; et —P, som coef-
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42 LIMITES DES RACINES
ficient soustractif le plus ¢loigné de

état de choses , on doit avoir

L1+ Py - (2)
Quoique la démonstration de cette proposition ne soit pas difficile,
et qu'elle se trouve dans plusieurs ouvrages élémentaires ; comme on
s'est quelquefois mépris sur le sens des mots , et sur la véritable

interprétation du résultat; en me trouvera peut-étre pas mauvais

que je reproduise ici cette démonstration.
On aura

zéro. On sait que , dans cet

z<LL , 3)

si, L étant substituéde & x, dans X=o0, le résultat est additif,
et si les résultats ultérieurs conservent le signe -+, pour tout mom-
bre substitué >L. Or, de la somme des additifs de (1), la plus
petite valeur est a™; et de la somme des soustractifs, la valeur la
plus éloignée de zéro est

— P (2™ g m-im 1 g m=i-2 Fnnt1) 3
valeur quelle aurait , en effet , si chaque terme était soustractif
depuis le premier soustractif —P;z™i, et ¢ils avaient tous pour
cocfficiens le coefficient —P, le plus éloigné de zéro. x sera donc <L,
si, pour le nombre L, et pour tout nombre supérieur 3 L, on a’

Lm> P Lmidq-Lmist e fmeic2 g Ay, (4)
Dans cette relation , le polynéme LM-id-Lm-i-tg-fmi-24,  ty
est le quotient de la division de L™-+'—1 par L—1 ;doncla con-
dition (4) sera remplie, si la suivante est satisfaite
Lmeit4 T eey

r>pf @)

Cette dernitre peut étre mise sous cette autre forme

> P Lm-i+x _ P,

L—x L—1 3 (6)

et on voit que la condition (6) sera satisfaite par L, et par tout
nombre supérieur & L, si I'on a sculement

AN
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Lm-i—+1
Lmi ’I-Ji—L-:‘I-— 3 6))
pourvu toutefois que L soit trouvé >1 ; sans quoi la relation (7)
pourrait ne pas entrainer la relation (6). La relation (7), et con-
séquemment toutes les précédentes seront donc satisfaites , ( sauf Vex—
ception qui vient d’étre indiquée ), si l'on a

Ind—1) 2 PImi+t . (8)
ou
Lm0 (L-1)2 Py, (9)
ou e€ncore
| L Z—1)2 P, 5 (10)

or, cette dernitre condition sera remplie par L et, & forliori , par
tout nombre plus grand'que L, si Yon a seulement
(L=—1)i(L—1)=P, , (11)
ou -
- . @==R, ()
ou enfin
L=1-}{/P . (13)

Maintenant, pour L et pour tout nombre >Z, la relation (10)
sera satisfaite, ainsi que chacune des précédentes, jusqu'a la rela-
tion (7); et, parce que (13) donne L>1 , les mémes nombres qui
satisferont & (10) satisferont aussi 3 (6), et par conséquent 2a la
relation (4) ; donc

2L 14+ P, -

III. Voici présentement diverses observations propres 3 déduire de
cette formule une limite trés-approchée de la plus grande racine
additive , méme dans les cas qui paraissent les moins favorables.

1.° Si le premier coefficient soustractif —P; était précédé d’un
coefficient additif P, , tel qu’on ett
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-Ph>Pi 5

comme alors le binéme Ppa™-h—P;z™ serait additif, pour toute
valeur de 2>1; on pourrait faire abstraction du signe — qui
précéde P;, et considérer comme premier coefficient soustractif le

premier —P; des suivans, qui ne se trouverait précédé d’aucun
coefficient additif au moins aussi éloigné de zéro.

o

© Si —P,, coefficient soustractif le plus éloigné de zéro , était
cédé d’'un coefficient additif P, , tel qu'on et

O~

pr
>

on pourrait, 3 ce coefficient, substituer le premier —P;, des sui-

vans, que ne précéderait pas un coefficient additif au moins aussi
éloigné de zéro.

P, Py

32 8Si, le sccond terme étant négatif , le premier trindme
am—P a™ '4-P,2™* , mis sous la forme a™ *(x*—P 2+4P,),
avait ses deux dernitres racines imaginaires ; ce qui arriverait si
Pon avait P;<4P,; ce trinéme resterait additif , quelque valeur
réelle qu'on donnat & a ; on pourrait donc faire abstraction du
signe — du second terme , et prendre tant pour premier coeflicient sous-
tractif que pour coeflicient soustractif le plus éloigné de zéro, ceux des sui-
vans qui satiferaient & ces conditions. A quoi on doit ajouter qu’on pour-
rait, 4’égard de ces derniers, faire usage des deux remarques précédentes.

4° Si —Pga™i ou —Pa™* pouvaient étre compris , comme
seconds termes , dans des trindémes A racines imaginaires , on pourrait
faire abstraction des signes — qui les affectent , et les considérer
comme additifs,

5.° Si 'un ou Tautre des termes —P;z~mi, — P,a™* peuvent étre
compris dans un groupe de termes rendus additifs, par une subs-
titution trés-inférieure & celle que donne 'usage de la formule , méme
modifide, L=1-\/P,; alors ces termes devront tous étre considérés
comme s’ils étaient pos}tifs, et il faudra les remplacer par des termes
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choisis dans les deux parties restantes du premicr membre de
Iéquation.

6.° Enfin, si I'on pouvait décomposer le premier membre de
X=o0 en plusieurs groupes rendus respectivement additifs par L,
L,, L,,..... tous <1-4/P;; on serait sir que x devrait étre
inférieur au plus grand de tous les nembres L,, L,, L,,...

IV. EXEMPLE I. Soit I’équation
2823241023 +52"—4o0x+48500=0. (1)
On sait que la formule indiquée par Lacroix donnerait Z=jor.

Le premier usage de la formule 1~4-y/P; donne L=21. On peut
modifier cette limite en écrivant Péquation (1) comme il suit

24102t —102°+4Db2r*—400x+4-8500=0 ; (2)
~-132%
or, comme le bindme roz%—102° est toujours additif , poﬁr r>1,
la formule 1--y/P, donne L=1-4/%00 ou L=6.

On peut encore écrire la proposée sous la forme
wS4-10(2t—2°) 52> 4-132(2*—30)—1024-8500=0 ; (3)

et, comme le 4.° terme est rendu additif par #=4, ona L=/,
Enfin la proposée peut étre écrite comme il suit

24-10(@tmm2)4-1 3044 5(2*—80ox4-1700)=0 ;  (4)

et, comme le trinéme #*—S8ox--1700 a ses racines imaginaires , on
a L=1.

EXEMPLE 1II. Soit I'équation -

28— 302 4-2602*432°—10002*—400002——8600=0. (1)

Le premier emploi de la formule 1~/ P, donne L=4oo0o1. Mais,
en éerivant la proposée sous la forme
4 (x*—30x-4-226)4-3 424432’ —10002°—400002—8600=0 ; (2)
comme les racines du trinéme z*—3ox-+226 sont irriaginaires , OR

pourra prendre L=1-4~}7c0000 ou L=16.
On peut encore écrire la proposée comme il suit :
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;t”(m3—3ox+226)+3~”3+34xz<x2—MM)"“40000~”“‘8600=°; (3)

T3a
x, par ce qui précede, devant étre >6, on peut faire abstraction
du terme 34x*(2*—22), toujours additif , pour toute vale;ur de
au-dessus de cette limite ; on pourra donc prendre L=1-y/%oc00,

pourvu que cetie valeur ne soit pas inféricure a 6; elle peut donc
étre admise, car elle donme L=10.

EXEMPLE 1III. Soit I’équation
z*—ra-t7=o0. (1)

Ce cas est un des plus favorables & la méthode des dérivées suc-
cessives , qui donne bientét L=2. Le premier usage de la formule

1-+y/ P, donne L=4; mais, en mettant la proposée sous la forme
x(x*—7)+7=0 , (2)

on trouve L=3. Ainsi, dans les cas méme les plus défavorables,

la méthode que je viens d’exposer ne le ceéde guere A celle des dérivées.

Je ne dirail rien de la limite des racines soustractives, dont la

recherche peut toujours , comme lon sait , étre ramenée 3 ce
qui précede.




