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ANALISE ÉLÉMENTAIRE.

Considérations propres à fournir , dans un grand
nombre de cas , des limites extrêmes , très-approchées ,
des racines des équations numériques ;

Par M. DE MAIZIÈRE , professeur de mathématiques des Pages
de LL. MM., et professeur de mathématiques spéciales
au lycée de Versailles.

LIMITES DES RACINES DES ÉQUATIONS.

I. ON sait que l’emploi des dérivées successives conduit, d’une
manière sure , au nombre entier immédiatement supérieur à la plus
grande racine additive d’une équation ; que cette méthode est très-

rapide, si cette plus grande racine est un petit nombre ; mais qu’elle
devient très-pénible , et pour ainsi dire impraticable , lorsqu’au con-
traire la plus grande racine additive est un grand nombre, sur-
tout si l’équation est d’un degré un peu élevé.

La méthode que je vais exposer pourra sembler moins générale ;
mais elle est beaucoup plus rapide, dans le cas où la plus grande
racine additive est un grand nombre. Elle est fondée sur un théorème
généralement connu ; elle n’en est , en quelque sorte, que le dévelop-
pement ; et elle est d’ailleurs si variée qu’elle peut être considérée
comme satisfaisant à tous les cas.

IL Une équation quelconque X=o, peut être représentée comme
il suit : 

-Pi étant son premier coefficient soustractif et -Pk soc coef-
Tom. III. 6
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ficient soustractif le plus éloigné de zéro. On sait que) dans cet

état de choses, on doit avoir

Quoique la démonstration de cette proposition ne soit pas difficile,
et qu’elle se trouve dans plusieurs ouvrages élémentaires ; comme on
s’est quelquefois mépris sur le sens des mots , et sur la véritable

interprétation du résultat ; on ne trouvera peut-être pas mauvais

que je reproduise ici cette démonstration.
On aura

si, L étant substituée à x , dans X=o , le résultat est additif,
et si les résultats ultérieurs conservent le signe +, pour tout nom-
bre substitué &#x3E;L. Or, de la somme des additifs de (1), la plus
petite valeur est m ; et de la somme des soustractifs , la valeur la
plus éloignée de zéro est

valeur qu’elle aurait, en effet , si chaque terme était soustractif

depuis le premier soustractif -Pixm-i, et s’ils avaient tous pour
coefficiens le coefficient -Pk le plus éloigné de zéro. x sera donc L,
si, pour le nombre L, et pour tout nombre supérieur a L, on a

Dans cette relation , le polynôme Lm-i+Lm-i-2+L...+I
est le quotient de la division de Lm-i+I-I par L-I; donc la con-
dition (4) sera remplie, si la suivante est satisfaite

Cette dernière peut être mise sous cette autre forme

et l’on voit que la condition (6) sera satisfaite par L, et par tout

nombre supérieur à L, si l’on a seulement



43DES ÉQUATIONS.

pourvu toutefois que L soit trouvé &#x3E; i ; sans quoi la relation (7)
pourrait ne pas entraîner la relation (6). La relation (7) , et Con-
séquemment toutes les précédentes seront donc satisfaites, ( sauf l’ex-
ception qui vient d’être indiquée), si l’on a

ou

ou encore

or, cette dernière condition sera remplie par L et , à fortiori, par
tout nombre plus grand que L, si l’on a seulement

ou

ou enfin

Maintenant, pour L et pour tout nombre &#x3E;L, la relation (10)
sera satisfaite , ainsi que chacune des précédentes, jusqu’à la rela-

tion (7) ; et, parce que (t3) donne L&#x3E;I, les mêmes nombres qui
satisferont à (10) satisferont aussi à (6), et par conséquent à la

relation (4) ; donc 

III. Voici présentement diverses observations propres à déduire de
cette formule une limite très-approchée de la plus grande racine

additive , même dans les cas qui paraissent les moins favorables.
I.° Si le premier coefficient soustractif -Pi était précédé d’un

coefficient additif Ph, tel qu’on eût



44 LIMITES DES RACINES

comme alors le binôme Phxm-h-Pixm-i serait additif , pour toute

valeur de x&#x3E;I; on pourrait faire abstraction du signe - qui
précède Pi, et considérer comme premier coefficient soustractif le

premier -Pi, des suivans, qui ne se trouverait précédé d’aucun
coefficient additif au moins aussi éloigné de zéro.

2.° Si -Pk, coefficient soustractif le plus éloigné de zéro , était

précédé d’un coefficient additif Pg, tel qu’on eût

on pourrait, a ce coefficient, substituer le premier -Pk, des sui-

vans, que ne précéderait pas un coefficient additif au moins aussi

éloigné de zéro. 
3.° Si , le second terme étant négatif , le premier trinôme

xm-P1xm-1+p2xm-2, mis sous la forme xm-2(x2-P1x+P2),
avait ses deux dernières racines imaginaires ; ce qui arriverait si
l’on avait P2I4P2; ce trinôme resterait additif, quelque valeur
réelle qu’on donnât à x ; on pourrait donc faire abstraction du

signe - du second terme , et prendre tant pour premier coefficient sous-
tractif que pour coefficient soustractif le plus éloigné de zéro, ceux des sui-
vans qui satiferaient à ces conditions. A quoi on doit ajouter qu’on pour-
rait, à l’égard de ces derniers, faire usage des deux remarques précédentes.

4.° Si -Pixm-i ou -Pkxm-k pouvaient être compris , comme

seconds termes, dans des trinômes à racines imaginaires ’ on pourrait
faire ahstraction des signes - qui les affectent , et les considérer
cotnme additifs.

5.° Si l’un ou l’autre des termes -Pix-mi, -Pkxm-k peuvent être
compris dans un groupe de termes rendus additifs, par une subs-

titution très-inférieure à celle que donne l’usage de la formule , même
modifiée , L=1+Pk ; alors ces termes devront tous être considérés

comme s’ils étaient positifs, et il faudra les remplacer par des termes
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choisis dans les deux parties restantes du premier membre de

l’équation.
6.° Enfin, si l’on pouvait décomposer le premier membre de

X=o en plusieurs groupes rendus respectivement additifs par L1,
L2, L3 ,.... tous I+Pk; on serait sûr que x devrait être

inférieur au plus grand de tous les nombres LI’ L2, L3,...
IV. EXEMPLEI. Soit l’équation

On sait que la formule indiquée par Lacroix donnerait L=40I.
Le premier usage de la formule I+Pk donne L=2I. On peut
modifier cette limite en écrivant l’équation (i) comme il suit

or, comme le binôme 10x4-I0x3 est toujours additif, pour x&#x3E;I,
la formule I+Pk donne L= I+400 ou L=6.
On peut encore écrire la proposée sous la forme

et , comme le 4..c terme est rendu additif par x=4, on a L=4.
Enfin la proposée peut être écrite comme il suit

et, comme le trinôme x2-80x+I700 a ses racines imaginaires on
a L=I.

EXEMPLE II. Soit l’équation 

Le premier emploi de la formule I+Pk donne L=4000I. Mais,
en écrivant la proposée sous la forme

comme les racines du trinôme x2-30x+226 sont imaginaires, on
pourra prendre L=I+40000 ou L=I6.
On peut encore écrire la proposée comme il suit :
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x, par ce qui précède, devant être &#x3E;6, on peut taire abstraction

du terme 34x2(x2-1000 34), toujours additif, pour toute valeur de x

au-dessus de cette limite; on pourra donc prendre L+1+40000,
pourvu que cette valeur ne soit pas inférieure à 6 ; elle peut donc
être admise, car elle donne L=I0.

EXEMPLE III. Soit l’équation

Ce cas est un des plus favorables à la méthode des dérivées suc-

cessives, qui donne bientôt L= 2. Le premier usage de la formule

I+Pk donne L=4 ; mais, en mettant la proposée sous la forme

on trouve L=3. Ainsi, dans les cas même les plus défavorables,
la méthode que je viens d’exposer ne le cède guère à celle des dérivées.

Je ne dirai rien de la limite des racines soustractives 3 dont la

recherche peut toujours , comme l’on sait, être ramenée à ce

qui précède.

ANALISE TRANSCENDANTE.
De l’intégration des équations linéaires d’un ordre

quelconque, à coefficiens constans, dans le cas des
racines égales ;

Par M. F. M.

À M. LE RÉDACTEUR DES ANNALES.

MONSIEUR,

ON sait qu’en procédant à l’intégration des équations linéaires , S
coefficiens constans , la substitution de emx au lieu de y, semble


