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348 FORMULES

TRIGONOMETRIE.

Démonstration de quelques formules de trigonomeétrie
rectiligne et de trigonomeélrie spherique;

Par M. GERGONNE.

[ T s Vo Via Ve Vo Vo ¥
§. L

SOIENT désignés par @, b, ¢ les trois cétés d’un triangle, soit
rectiligne soit spherique, et par .4, B, C les angles qui leur sont
respectivement opposés.
Sl s’agit d’un triangle rectiligne, on aura
2bcCos.Ad = b*~-c*—a?
2acCos.B=a*~}-c>—b* .
Si Pon prend successivement la somme et la différence de ces deux
équations , il viendra en réduisant
aCos.B4+bCos.A=c ,
- ¢(aCos.B—tCos. A)=a*—b* .
Multipliant ces deux derniers , membre & membre , et réduisant encore,
on aura , en transposant,
b*(1—Cos.>A)=a*(1—Cos.*B) ,
ou b*Sin2A=a*Sin.2 B
ou enfin b6Sin.A=aSin.B.
S’il sagit d'un triangle sphérique on aura
Sin.58in.cCos. A = Cos.a—Cos.6Cos.c ,
Sin.aSin.cCos.B=Cos.b—Ces.aCos.c .

Prenant successivement la somme et la différence de ces équations,
il viendra

Sin.
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Sin.¢(Sin.aCos.B~-Sin.5Cos.A) = (1 — Cos.c)(Cos.b+Cos.a) ,
Sin.¢(Sin.aCos. B—Sin.6Cos.A) = (1-+Cos.c) (Cos.b—Cos.a) .
Multipliant ces deux derniéres équations , membre & membre, en
observant que (1—Cos.c)(1-}Cos.c)=1—Cos.>c =Sin.’c , et divisant

par Sin.*c, on aura

Sin.?@Cos.? B—Sin 26 Cos.? A—Cos.*b—Cos.?a = Sin.>¢—Sin.*b ,
ou, ecn transposant ,f -

Sin.?*4{1—Cos.* A= Sin.2a(1—Cos.*B) ,
ou Sin.248in.2.4 = Sin.2eSin.* B
ou enfin Sin.bSin. A =S8in.aSin.B.

Cette manitre de déduire des equations fondamentales la propor-
tionnalité des sinus des angles aux cotés opposés, dansle triangle
rectiligne , et aux sinus de ces cotés , dans le triangle sphérique,
me parait remarquable par sa simplicité et son uniformité.

§. 1L

Conservons les mémes notations que ci-dessus, et soit posé, en outre ,
a+b~+c=2s.

Dans le triangle rectiligne , on a , ‘sans aucune ambiguité de signes,

Sin. > A~V(s—-b)(s—c) Cos. - A_Vs(s—-a)
Sin.: B= ]/(s—ms—co . Cos:B=R D,
: ca ca

Sin.2 C= V(S—-a)(s—b) , Cos.iC= $(5==¢) ;
' J ab s ab

On déduit-de 13
S(Sm—c)

. . (s=b) == (s—a)
Sin.:(4+ B)=S8in.; ACos.: B+ Cos.: ASin.: B= -————;—-——-—-V_ —

Cos.2 (4+B)=Cos.: 4Cos.> BT-Sin. Asm.'B_"‘“("”)]/ Sl 2

c’est-a-dire ,
—-b e G ot S —
Sin.: AiB);E__)?E._@Cos.}C,COS.f(A_‘tB) FC Sin. e

Tom. 111, 48
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prenant successivement les signes supérieurs et les signes inféricurs, -
en ayant égard a la valeur de s , et réduisant, il viendra

Sin.:(4+4B)=Cos.: C ,
Cos.: (A+B)=Sin.:C ,
Sin (d—B)=""2CesiC

Cos.: (A—B)= ‘f_*c_‘f Sin.1C .

Ces formules sont, pour les triangles rectilignes, ce que sont, pour
les triangles sphériques, les formales de MM. Gauss et Delambre,
démontrés par M. Servois, & la page 84 du second volume de ce
recueil.

En divisant successivement la premitre par la seconde, la troisieme
par la quatridme, la premiére par la troisitme , et la seconde par
la quatriéme , il vient

Tang. 1(A—i‘-B)--_"Cot iC

v

Tang. —(A—B): ——Cot i1C,
b= Sin. 1 (A-—B)
e St A B ¢
Cos. £ (A--B) .
atb= Cos. £ (A-{—B)

Ces dernitres formules sont exactement , pour les triangles rectilignes,
ce que sont les Analogies de Néper pour les triangles sphériques.
Dans le triangle sphérique , on a, sans aucune ambiguité de signes,

Sin.: A= Sin. (s==b)Sin,(s==c) Cos. : A— Sin.sSin.(s—a)
Sin.bSin.c ’ ) ; Sin b5
Sin. 2 =__V8in.(s—-c)8in.(s——a) Cos. } B__me SSINL(s=—=b) |
Sin.cSin.a Sm ¢Snae '

Sin.% C::VSin.(s—'a)Siri.(s-—b)’ COS.%C:"-‘ Sin.sSin, (s==c)
SinaSind ’ T SinaSind ~

On déduit de 13
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1 T 1 . Sin. -—b)jSin.(s-—-a) Sins Sin. (s—
8in, } {4~ B)=8in.} 4Cos.3 B+Cos.+ ASin. 1 B= o 2° LI S
”" Sin.¢ Sin.eSin.b
Cos. } (A+B)""‘Cos “ACOS B+Sln Abm. B— Sin.s 7= Sin. G—C)V&" G—a)Simn.(5—B)
Sin.¢ Sin.adin.b ¢
. oy Sin.(s—b)==Sin. (s=—
ou bien  Sin. (4+B)= “2ETHESNG—a) Cos.iC

28in, £¢Cos. L ¢
Cos.2 (A+B)= S0t =SnG=d) oo 0
23in 7 ¢Cos. £ ¢
En prenant successivement les signes supéueurs et les signes infé-
rieurs, se rappelant qu’en général
Sin.z4 Sin.y = 2Sin.  (#~+y)Cos. * (z—y) ,
Sin.z—S8in.y = 2Cos. 2 (x—y)Sin. L (x—7) .
et faisant attention 3 la valeur de s, il viendra
. Cos. X (a—b
Sin. (d+B)= ) Cos.iC
Cos. 2
Sin. X
Sin. 2 (dA—B)= 22 f<
Sin. 1

<a+b)
Cos

.Cos.;‘-C R

Cos. : (A+B)-— .Sin.: C ,

Cos.? (A= B)= S““Sf (‘f'”’ .Sin.: C .
m.;c
Ces formules sont celles de MM. Gauss et Délambre; dont il a dté

question ci-dessus.
i En divisant successivement la premiére par la troisiéme , la seconde

par la quatritme , la quatri¢me par la troisiéme > et enfin la seconde

par la premiére , il vient

Tang. ! (A+B)= > 2=

Cos. -; (@)
1 (a—b)
Sin. & (e~-8)
. Cos. & T (A".B) . .
Tang.: (a-+d)= Con t A B) Tang.lc ,

. Sin.t (A—B) .
Taﬂg- T <ﬂ"‘"&)-: m Tang. ‘;0' .

Cot.; C

Tang.;(A—B)= Cot.2C ,
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Cette maniére de parvenir aux Analogies de Néper , outre son extréme

brieveté, a donc encore I'avantage de donner , chemin faisant , d’autres
formules utiles.

Au moyen de ce qui précéde, et de ce quon sait d’ailleurs , la
trigonométrie analitique , tant rectiligne que sphérique , me parait
pouvoir étre réduite au plus haut degré de simplicité et de symétrie,




