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ANALISE TRANSCENDANTE.
Mémoire sur les facultés numériques ;

Par M. KRAMP , professeur, doyen de la faculté des sciences
de l’académie de Strasbourg.

ANNALES
DE MATHEMATIQUES

PURES ET APPLIQUÉES.

I. DANS mon Analise des réfractions astronomiques ( chap. III.
n.os I42 et 203 ) j’ai enseigné à trouver la valeur numérique de
toute faculté quelconque, par des séries convergentes à volonté ;
mais les méthodes que j’ai indiquées, pour parvenir à ce but , peu-
vent être considérablement simplifiées. Je donne le nom de Facultés
aux produits dont les facteurs constituent une progression arithmétique,
tels que 

et , pour désigner un pareil produit, j’ai proposé la notation

Les facultés forment une classe de fonctions très-élémentaires, tant

que leur exposant est un nombre entier, soit positif soit négatif;
mais, dans tous les autres cas, ces mêmes fonctions deviennent
absolument transcendantes. (*)

(*) La théorie des Facultés numériciues , que M. Kramp désigne aussi sous la

dénomination de Factorielles, et qui reviennent encore à ce que Vandermonde
a appelé Puissances du second ordre , n’ayant encore été déizeloppée jusqu’ici
que dans un très-petit nombre d’ouvrages, nous croyons convenable de donner

Tom. III. I
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2. J’observe que toute faculté numérique quelconque est constam-

ment réductible à la forme très-simple

ici une idée succincte de ces sortes de fonctions , et des notations par lesquelles
on les désigne.

Dans l’expression 

a est ce qu’on appelle la base de la faculté, r en est la différence, e t m en est

l’exposant; il est clair qu’on a, en renversant l’ordre des facteurs 

Dans le cas où r=o , la faculté se réduit évidemment à une simple puissance ;
ainsi on a

Att moyen d’un multiplicateur choisi d’une manière convenable , on petit chan-
ger , à volonté, soit la base soit la différence d’une faculté. Le principe de cette

transformation réside dans les équations suivantes, qui se vérifient d’elles-mêmes

par le simple développement ,

Si l’on éerit l’équation identique

suivant la notation des facultés, il viendra

ou en posant m+n=p , d’où n=p-m, et a’+mr=a, d’où a’=a-mr, et
renversant, cetle équation deviendra : 

faisant alors p=m , et réduiisant , il viendra

,ainsi toute faculté dont l’exposant est zéro vaut l’unité.
Si, dans la -n-ième équation, on fait p=o, en observant que, d’après ce qui

précède, (a-mr)o/r=I, il viendra 

ce quifournt l’interprétation des facultés dont l’exposant est négatif. On trouvera aussi que



3N U M È R I Q U E S.

ou à cette autre forme plus simple

si l’on veut adopter la ndtahon dont j’ai fait usage dans mes
Élémens d’arithmétique universelle, n.° 289.

et

Nous terminerons par un rapprochement entre les notations de Vandei monde
et celle de M. Kramp. Vandermonde fait 

d’où il suit qu’en rapprochant les deux notations , on a

Si , après avoir changé a en af , on pose a’-m+I=a, d’où al=a+nz-i , on
obtiendra cet autre rapprochement

Toutes les facultés pouvant être exprimées en fonction d’autres faculltfs dans

lesquelles la base et la différence sont également l’unité, et ces dernières devant,
en conséquence , se représenter fréquemment dans les calculs M. Kramp, dans son
Arithrnétique universeile = a proposé de les écrire simplement comme il suit:
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ce qui donne les deux expressions littérales qui suivent

lesquelles ont lieu quels que soient a et r. (*)
3. Les facultés numériques étant ainsi réduites, dans tous les

cas, à la forme bien plus simple y! , qui n’est fonction que d’une
seule variable ; il suffira de connaître les valeurs numériques de ces
derniers produits pour les y compris entre les simples limites

zéro et plus un, pour pouvoir en déduire immédiatement toutes les autres.
En effet, désignant par m une fraction comprise entre o et +I,
et par n un nombre entier quelconque , on voit que tous les nombres
possibles , positifs ou négatifs , rentrent dans la forme m+n. Or,
nous- avons

(*) Ces deux formules , qui reviennent entièrement au même , dans le cas d’un

exposant entier, doivent être soigneusement distinguées, dans le cas d’un exposant
non entier. Si l’on imagine une courbe ayant r pour abscisse et les facultés amlr pour
ordonnées cette courbe cessera d’être continue à r==o ; et celle qui aurait pour ordon-
nées les facultés aml-r ne sera pas la continuation de la première : bien qu’en cet
endroit elles aient une tangente commune , et le même rayon osculateur. Les absurdités

apparentes auxquelles j’ai été conduite dans mon Analise des réfractions, viennent
de ce qrae , par un excès de confiance dans la Loi de continuité , j’ai passé trop 
lébèrement de r positif à r néyatf, en étendant à celui-ci ce qui n’avait été
démontré que pour l’autre. 
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d’où l’on ,roit que la détermination des facultés (m±n)! ne dépend
que de celle de m ! i et des facultés (m+1)n/r et mn-I, à exposans
entiers. L’application aux cas particuliers donne, en supposant tou-
jours m moindre que l’unité,

4. Frappe de ces idées , M. Bessel , professeur d’astronomie à

Kôngisberg, a construit une table des logarithmes briggiens des fractions

depuis x=I jusqu’à x " 2, à dix décimales , avec leurs premières,
deuxièmes et troisièmes différences . qu’il a bien voulu me

communiquer, par une lettre du 7 mars de la présente année 1812.

Ajoutant aux logarithmes de la table de M. Bessel celui de 203C9, qui est
0,39308 99342,

on aura les logarithmes des produits y! entre y=o et y=I. Ces

produits sont égaux à l’unité, pour y= o et y=I. Ils parviennent
. a leur minimum vers y = 0,46; on a alors à peu près y ! = 0,885604. Pour
calculer ces logarithmes 3 l’auteur a employé une méthode particu-
lière, différente de la mienne, sur laquelle nous reviendrons plus loin.

Il est presque superflu d’avertir que tous les logarithmes de la
table ont une dixaine de trop à leur caractéristique. (*)

(*) Voyez la précédente note.
(**) Il parait, par la marche des quatrièmes différences, qu’on ne peut guère

compter sur le I0.e chiffre décimal des logarithmes de cette table.
J. D. G.
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TABLE des Logarithmes des valeurs que prend la facu!
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pour toutes les valeurs de y, depuis y=o jusqu’à y=I.
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5. Dans l’ouvrage déjà cité ( chapitre 111, 39) J’ai prouvé que,

h étant une fraction positive plus petite que 1 2, on a

mais, suivant les réductions enseignées ci-dessus, tn on a

d’où résulte

Ainsi, si l’on demandait la tangente de 66°.36’, on aurait h=0,37,
I-h=0.63, 1 2+h=0,87, 1 2-h=0,I3 ; d’où

Voici le calcul :

Log. 37 =I,56820 I724I,

Log, 63 =I,79934 05495,
Comp. arith. Log. 87 =8,06048 07474,
Comp. ari-th. Log. 13 =8,88605 66477,

Log. 0,87! =9,97856 40362,
Log. 0,I3! =9.97309 6I8I2,

Comp. arith. Log. 0.37! =0.0094 5III3,
Cornp. arith. Log. 0,62! =0,04708 93246,

Log. tang. 66°,36’ =0,36377 43220 

6.
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6. Il a été prouvé, dans le même ouvrage que

faisant n = 1 2, et faisant ensuite successivement m=h et m=1 2-h,
il viendra

et, comme il est prouve que

ces formules pourront être écrites comme il suit :

Ainsi , moyennant la table que nous venons de donner, on trou-
vera facilement, et jusqu’à dix décimales, le sinus, le cosinus et

la tangente de tout angle proposé.
7. L’intégrale 

prise depuis t=o jusqu’à t=oo étant égale à

le logarithme de cette intégrale , pour toutes les valeurs de m et

de n, se trouvera facilement par le moyen de la table.
8. L’Intégrale

prise depuis y=o jusqu’à y=I, étant égale à
Tom III.
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en employant les réductions qui ont été enseignées, on trouvera pour
l’expression de cette intégrale 

formule facile à calculer au moyen de notre table.

q. Venons présentement au calcul de cette table ; soient B2, B4,
B 6 , B8, ....les nombres de Bernoulli, à partir du second, en sorte

quon ait R2=+I I2, B4=-I I20, ..... (*). Dans ouvrage cite,

j’ai employé la notation 0393y, pour désigner la série

en y faisant successivement n égal à I, 2, 3, 4,....; voici les dix qui suivent
le premier avec leurs valeurs approchées, en décimales

B. = + I I2 =+ 0,08333 33333 33 ,

B =- I I20 =- 0,00833 33333 33 ,

B, =+ I 252 =+ 0,00396 82539 68 ,

B8 =- I 240 =- 0,04666 66666 67 , 
B10=+ I I32 =+ 0,00757 57575 76
B12=- 691 32160 =- 0,02109 27960 93,
BI4=+ I I2 =+ o,o8333 33333 33,

BI6=- 3637 9I60 =- 0,44325 98039 22,
BI8=+ 43867 I4364 =+ 3,05395 43302 70 

-J. D. G.
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Cette série, lorsque y est une petite fraction , est tellement conver-

gente que les trois et même les deux premiers termes suffisent pour
en trouver la valeur numérique jusqu’à neuf décimales. Souvent

même on pourra faire simplement 0393y=B203B3=I I2Y. On trouve le r

d’un nombre quelconque I2 par la formule qui suit : 

dans laquelle m désigne un nombre quelconque, pris à volonté ; on
peut le prendre égal à 4-, 5 ou 6, tout au plus. J’ai prouvé de

plus que

et qu on a ensuite

Ainsi les r de toutes les fractions de l’une ou de l’autre des deux

formes générales I m+I, 2 2m+I, m désignant un nombre entier quel-
conque se réduisent, dans tous les cas , a une simple addition de

logarithmes hyperboliques.
I0. Si l’on applique au cas de a=I, r=I, les formules de

1’ouvrage cité, on aura

( Refr. ast. chap. III, I8I ). La variable y sera, dans tous les
cas , une fraction moindre que l’unité, Si toutefois la série qui donne

0393 r 1+y 
et 0393I x-y ne paraît pas converger assez tôt, on prendra, à
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volonté , un nombre entier h, de 4 à 6 , ce qui suffira pour trouver
jusqu’à 8 décimales le logarithme qu’on demande. On aura alors,
moyennant les formules des n.os ic)5 et 204 de l’ouvrage cité :

Moyennant ces dernières formllles, le calcul des produits (+y)!? et
par conséquent aussi celui de toutes les facultés numériques à ex-
posans fractionnaires , ainsi que celui des autres fonctions qui pourront
y être ramenées, me parait réduit a sa plus grande simplicité. (*)

Mêlant le module. ( Voyez LACROIX, Traité élémentaire de calcul différentiel,
etc., 2.3 édit., page 595 ; on Traité des différences et des séries, pag. I42 ).

Soit fait, dans cette formule, x=N+y, N étant un nombre entier arbitraire, x
mais qu’il conviendra de prendre au moins égal à I0, et y étant la fraction comprise 
entre o et I pour laquelle on cherche la valeur de Logy!. En substituant dans

la formule ci-dessus, on obtiendra la valeur de Log.(N+y)!. Mais par les formules

de M. Kramp , on a

d’où

et, en passant aux logarithmes

donc

’Au surplus, la méthode de M. Kramp paraît beaucoup plus expéditive; et nous

n’indiquons celle-ci que pour ceux de nos lecteurs à qui les principes sur lesquels
repose la première ne seraient point familier,5,

J. D. G.


