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TRIGONOMETRIE.

Démonstration de quelques formules trigonomeélriques
nouvelles ou peu connues ;
Par M. pu BourcueT, professeur de mathématiques spéciales
au lycée impérial.

b ¥ Vo Vo 2o Vo W VI WL 1, V]

SOIT o(n) une fonction que‘lcoflcitxe"d’{xn nembre 7, que nous sup-
posons essentiellement entier et positif ; convenons, pour abréger,
dc dénoter simplement par Ple(g....A)% le produit de toutes les
valeurs qué recoit la fonction ¢(7) , lorsqu’on y met successivement pour
n les nombres conse(,utlfs de la smte naturelle g , g1, g2,00, b5
en sorte qu ‘on  ait ’ : )

Pio(g.../=0(5) > (1) < ¢(g+°) XX ‘P(ﬁ)

Cette notation admise, le Théoréme de Céte donne

“4""‘2“""Z’""COS‘Z+54"‘=P§a2qub.cos,f_‘i_T_“:‘_)i’:':i 420 }

la complication des calculs quelle exige. Il désirerait done que Pon pit détermines
tous les systémes de valeurs des inconnues qui satisfont 4 des équations proposées ,

sans élre obligé d’y avoir recours. Cest 14, en effet, un sujet qui serait tout & fait

digne de fixer laltention des géométres. Toute la difficulté du probléme se “réduiraie

évidemment 4 savoir déterminer sans résoudre aucur}e “équation , 1.0 les limites

extrémes des valeurs de chacune des inconnues ; 2.° une limite au-dessous de laquelle *
ne pit tombher la différence enire deux valews de chacune de ces mémes

inconnues,

J. D. G,
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pourvu qu’on prenne successivement le signe —= et le signe -
dans le second membre.
En exposant b=a, cette formule devient

2a4"'(1--Cos.z)=P§2a"‘[1 ~+Cos. w] ! H
- ‘ - 2m S

sortant de dessous le signe P le facteur 24* qui deviendra au dehors

22mg4m . remarquant que 1—Cos.z=2Sin*:z, etdivisant par 4a*,
il viendra . ~

Sinz22iz=2o%m2 .P{ 1 +Cos. w; 3

2m
ou
Sin.=zz=z=m-=.z:§:+cosﬁ<°-m—____l>zﬂrf§ <P 1 Cos. _(__L”.“_Q”’_'*'__§ ,
- U am
ou ] ’
) S.m-":A'-=2”“".P{~x—-—(los.«1 w% ,
2m

ou.

. . 2001 ztz
Sin2lz=22m"*_ P! Sin,? ( tn &3 >
2m ’
ou , en extrayant la racine quarrée

.‘ M ', 2(0,wM==1) w4z
: Sm-;z=z’"".P§Sm. e % .

2m

Faisant enfin z=2x, il viendra

) . . (O..m=1)mtx
Siniz=2™ '.P%Sm.( —~ + §

En développant le second membre de cette équation , elle deviendra

Sin.g=2™",Sin. ;n"i .Sin.’%f. Sin.zwﬂ- ..Sin. (m‘—z)zr}_*_x. Si .(m—-x)zr+x. . ®

m

. . (m=—n)z-t-x . Nam—x '
mais comme , en geénéral , Sin, —————— =S8in. , on pourra
m m

encore mettre la méme équation sous cette auire forme
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wfx |, 2 .
.Sin. eveOin.

.
m m m

Sin.z= 2", Sin. —.Sin. Sin. =, Q)
m m .

Ces formules assez remarquables en elles-mémes , conduisent immé-

diatement a celles que Lacroix a démontrées, d’apres Lhuilier, dans

son Traité des différences et des séries (*). 1l suffit, en effet, pour

les en déduire , de faire dans l'équation (I), z=1I=, et dans 14

quation (I) , #=Z= , en multipliant cette derni¢re par 2. On

obtient ainsi :
. I = ., 3= . am—3 = ., ame=1 =
1=2™*Sin.— —.Sin.— —...Sin. — .Sin, - . (B)
m 22 m 2 2 m 2
. 1w, 3 =wm ., o2me3m _., 2m=1 = -
v 2=2".8in.— =.Sin.— — ..Sin, — . Sin. - . (A
2m 2 am 2 2m 2 am 2

La formule (B) est un peu plus élégante que celle de Lhuilier, que
Lacroix a désignée par la méme lettre. La différence nait de ce qu’ici
les valeurs de 7 commencent a I'unité, tandis que, dans la formule
de Lhuilier , elles commencent 4 zéro.

En concentrant, pour plus de bridveté, les seconds membres des
équations (B) et (A), et multipliant la premiére par 2 , elles
deviennent

2=2"’P§ Sin, 2= zrg , (B)

2m

, ;=2mP§Sin. 2—-——-——-(1';";3—!;-2 5 (A)

et il est tres-remarquable qu’on obtient la racine quarrée du produit

. 1) =
2mP{ Sln.z(x w} >

2mn

. - . =
par la simple substitution de~ 3 =.
2

2

De cette relation on peut conclure , en quarrant ’dquation (A7) ,

(*) Voyez le n.° 1094, page 431, équations (A) et (B).
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o
¥

ou , en se rappelant que Sin.2x=2Sin.xCos.z

2mp %Sin.g 2(T..m)=—1 §§ _-_P{ 28in. M:L-ECOS. 2(Totn)—1 3§

am 22m 2 2m 2

5
ou, en remarquant que 2 est 7z fois facteur dans le second membre,

P {Sin.‘ 2Lt ~f\§=P {S'm. 2N B g, 2T = % >
2 21

2m 2 2m 2
ou encore
Lo 7n) - L 2(L.an)e=1 . T Yo Y—
P§S'm.2( 2l ‘fngsm. (-t =} =P§Sm. 20 If%PiCos.z(r ™ ’f§ ;
2m 2) am 2 2m 2 am 2
ou enfin
)=l =z 77y ey
P{Sin. 2L —} =P3Cos.:2<I et 32 ; (€)
2m 2 am 2

d’ou résulte encore .

P% Tang. 2(Lmy—1 = } =1,

21 2

ol Y7

@ .
Posant = d’ott m=o= et 2m—1=

, 11 viendra , en
m & 24

substituant dans 1’équation (C) et développant,

Sin.#Sin.3#Sin.5@...Sin( & w==s)=Co0s.4C05.39C05.54....C08.( £ &) ; )}

équation qui, au surplus , se vérifie aisément d’elle-méme, en
observant que

Sin. .= COS.( fﬂ'- a)
Sin.34==Cos.(; 7e—23)
@ ® o g 9 o v 8 2 a®oe0seence 2
Sin.(:w—34)=Cos.3s ,

Sin(fwe= #)=Cos. & .
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Si Von divise le premier membre de l'équation (D) par le second,
et vice versd , il viendra

Tang.sTang.34....Tang.(:#—s) = Cot.aCot.34....Cot.(; 7—a)=1 .

L’équation (A) peut étre écrite ainsi

2m-1 =T, 3= . S5z . (em—i1)=
1=2"2.,8in.— Sin, =——Sin, =——,.....Sin. 5
4m 4m 4m 4m

@ ’ 1 *
en y mettant pour 7 la valeur T et ayant égard & I'équation (D),

elle devient

= Sin.wSin..?m...Sin.( -:- T — @) == COS.wCOS.gw.uGOS.( ‘:- = -—-w) .

wT—2a

2 4o

L’équation (II) divisée par Sin. —= devient
m

Sin.x wr-fx 2 Sz (m-—1)z}-2x
i . " . . .
=2™*,Sin, —— Sin. Sin. e SINy —————
. m m m m
Sin.—
m

faisant , dans cettec équation, #=o0 , en remarquant qualors on
doit avoir

Sin.x. N
=m , (*>

. x
Sin, =
m

il viendra, en divisant par 2m-* »

m 3= (m=—13z

. T oo am o, .
= Sin. — Sin. = Sin.—...Sin,—— ;-
Cm m m m

am=*

w w . .
posant alors — ==¢, dot m= — , il viendra
m @

- @

= Sin.eSin.245in.30. .00 Sin(e—s) . (E)

Z-1
&
2 . @

™ Yoyez mon Traité de calcul différentiel et intégral , art, 6o,
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12 \ 4 M = ¢ A
Or , par 'hypotheése , 2 ctant un nombre entier , — doiten étre un
&

aussi ; clest-3-dire , que @ est un sous-multiple de =. Si, en outre,
il est aussi un sous-multiple de =, ce qui aura toujours lieu,
dans la nouvelle division du cercle , toutes les fois que «, sous-

multiple de = , ne sera pas 8° ou 40°; la série (E) aura un nombre
w

3 . @ me »
——1 impair de facteur; et le (-—- ) facteur , qui sera le moyen
@ 24

. @ .
entre tous , sera Sin.fz=1; de plus, les— —1 facteurs situds 2
2@

. . . =
la droite de celui-ld , seront respectivement égaux aux ——1 facteurs
2@

situés & sa gauche, puisque la somme des arcs également distants
des extrémes et constamment égale & =. Donc » en extrayant la
racine quarrée des deux membres de l'équation (E), il viendra

= = Sin.oSin.2081.3gureer St (L)
w N
— f
@

2Y e =Co05.9C05.26C05.3 w.00se. Cos.(:7—0) 3

d'olt on tire encore les équations
:Tang.wTang.szang.Sw..........Tang.(fa-—@,)
1
=Cot. ¢ Cot. 2, Cot. 3s.eseu. Cot. (;7—a)

Si nous posons ,==1°; nous aurons

—e "OO_ 4oo __ 20 _ 10 .
2199 2200 5100 209 7,

en passant donc aux logarithmes de Briggs , nous trouverons

Log.Sin.1°4-Log.Sin.2%}-Log.Sin.3o4wwf-Log. Sin.ggo=1—09°Log.2 , ()
Log.Tang.1°4-Log. Tang.2%}-Log.Tang.3.04. ,.~}-Log. Tang.g9°=0 ; G
mais si au rayon 1 on veut sybstituer lerayon 1 00000 000OO,
comme on le fait dans les tables trigonométriques, afin d’éviter les
logarithmes négatifs , il faudra ajouter gq dixaines au second

membre
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membre de 'équation (F); si de plus on veut pousser jusqu’d 10c°, cette
¢quation deviendra

Log.Sin.I°+Log.Sin,z°+Log.Siu.3°+....+Log.Sin.looozmo1—991'..03.2 N
c’est-a-dire , ,
Log.Sin.1°+Log.Sin.2°+4-Log.Sin:3°+-...4-Log.Sin.100°=g71, 1953.
Ainsi pour le rayon 1 00000 00000 et la division centésimale , le
prodait des sinus naturels de tous les degrés du quart de cercle est
un nombre qui a g72 chiffres & sa partie entitre.

Si @, sous-multiple de =, ne lest pas de =, ce qui aura lieu
seulement , comme nous l'avons déja observé , lorsque » sera égal
4 40° ou a 8° ; alors le second membre de I'équation (E) aura un
nombre pair de facteurs ; et sa premitre moitié , dont le dernier
facteur sera Sin:(z—w&), sera égale & la dernitre, dont le premier
facteur sera Sin.; (=—o). Extrayant donc la racine quarrée des deux
membres , 1l viendra '

o

» =Sil’l.mSIl’l.2aSin.3a.....S‘ln‘f(zr—-—-ea) -
-;—X

2 . @

En faisant successivement #=/0° et »=8°, on aura

Sin.40°Sin.80°= /5 ;
Sin.8°.8in.16°.8in.24°.8in.32°.... Sin.g6° =

4ogbr :

Tom. IlI, | 4



