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I69

GÉOMÉTRIE.

Mémoire sur la polyédrométrie ; contenant une démons-
tration directe du Théorème d’Euler sur les polyèdres ,
et un examen des diverses exceptions auxquelles ce
théorème est assujetti ;

Par M. LHUILIER , professeur de mathématiques à l’académie-
impériale de Genève.

( EXTRAIT ) Par M. GERCONNE.

RECHERCHES SUR LES POLYÈDRES.

JE me propose ici de rendre compte d’un mémoire , sur les polyèdres
que M. Lhuilier a bien voulu me communiquer, et que son étendue
m’oblige à regrets d’abréger. Dans l’extrait que j’en vais faire,
j’apporterai tous mes soins à ne rien ornettre de ce qui peut intéresser
le lecteur.

Je vais d’abord laisser M. Lhuilier exposer lui-même le sujet de
ses recherches et les motifs qui l’ont déterminé à s’y, livrer.

« Le théorème de polyédrométrie d’Euler, suivant lequel, dans
3) tout polyèdre , la somme du nombre des faces et du nombre
» des angles solides surpasse de deux unités le nombre des arêtes ,
o peut être regardé comme fondamental dans cette partie de la
» géométrie (*). Il correspond à la proposition de géométrie plane
» suivant laquelle , dans tout polygone rectiligne , le nombre des

(*) Voyez les Mémoires de Pétersbourg , pour I752 et I753 , imprimés en 17
Tom. III. 24
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» angles est égal au nombre des côtés. Mais , tandis que cette

» dernière proposition n’exige aucun développement , et ne souffre

M aucune exception , la proposition correspondante sur les polyèdres
» n’est rien moins qu’évidente , et n’est pas plus générale. Dans un
» premier travail, l’auteur, n’ayant pu en trouver la démonstration ,
» se contenta de l’exposer sur plusieurs solides d’espèces différentes;
» et il présenta comme probable, et comme fondée sur l’analogie
» seulement , la conclusion tirée de ces cas particuliers à la pro-
» position générale. Dans on second travail , sur le même sujet ,
» l’auteur donne enfin la démonstration de sa proposition. Il la tire

» de la possibilité de diminuer d’une unité le nombre des angles
» solides d’un polyèdre ( non tétraèdral ) ; d’où découle la possibilité
» de le ramener à une pyramide, et en particulier à une pyramide
D tétraèdrale. L’auteur développe cette possibilité, et il en tire les

» conséquences relatives à la diminution correspondante du nombre
» des faces et du nombre des arêtes.

» Dans les mêmes mémoires, Euler développe deux autres théorème
» sur les polyèdres , relatifs à fa valeur de la somme des angles
» plans qui entrent dans la composition d’un polyèdre. Il démontre

» que cette valeur est quatre angles droits, multipliés par l’excès du
» nombre des arêtes sur le nombre des faces , ou quatre angles droits
» multipliés par un nombre inférieur de deux unités à celui des
3) angles solides. Cette dernière expression lui paraît , avec raison ,
» bien remarquable. Elle répond à la valeur de la somme des angles
» plans d’une figure rectiligne, dans le nombre de ses côtés ou de

» ses angles. L’auteur, après l’avoir tirée des deux premiers théorèmes,
» en a donné une démonstration immédiate , fondée sur le principe
» déjà exposé ; savoir : sur la possibilité de diminuer d’une unité le

» nombre des angles solides d’un polyèdre ( non tétraèdral ).
» Legendre , dans ses Élémens de géométrie , a démontré les

» mêmes théorèmes d’une manière remarquable par sa brièveté. Sa
» démonstration est fondée sur l’expression de la surface d’un poly-
» gone sphérique dans ses angles . Comme cette dernière expression



I7ISUR LES POLYÈDRES. 
» suppose des principes déjà établis sur les figures sphériques, ce
» qui exige des développemens préliminaires; la brièveté de la démons-
» tration de Legendre n’est ( suçant moi qu’apparente ; et cette

D démonstration ne me parait pas avoir le degré de simplicité qu’on
» est en droit de désirer , pour une proposition fondamentale.

3) Il parait qu’Euler a fait des tentatives inutiles pour démontrer

» ses théorèmes , par la décomposition du polyèdre en pyramides
» ayant pour sommet commun un point pris dans l’intérieur de ce
» polyèdre , et ayant ses faces pour bases. Hic modus ( dit-il
» solidum quodcunque in pyramides resolvendi ad pr0153sens institutum
D parum confert. Cette assertion d’Euler m’a paru remarquable ;
» elle a fixé mon attention ; et le résultat de mes méditations, sur
» ce sujet , me paraît satisfaisant. Je trouve que la décomposition
)) rejetée par Euler, comme inutile, conduit à la démonstration

» demandée , d’une manière très-simple et très-lumineuse, ainsi que
» je le développerai dans ce mémoire.

» Cette légère observation , relative a une simple différence dans 
» le procédé d’une démonstration , ne sera, au surplus , que secon-
» daire dans ce qui va suivre. Je me propose principalement de

» montrer que le théorème d’Euler souffre des exceptions nom-
» breuses, et qu’il n’est vrai , d’une manière générale , que pour les
» polyèdres qui n’ont point de parties rentrantes , soit quant aux
» angles plans qui forment les angles solides, soit quant aux angles
» dièdres ou aux inclinaisons de leurs faces ; ou , ce qui revient

% encore au même , pour les solides qui sont en entier , d’un même
» côté du plan de chacune de leurs faces. Ces polyèdres sont, à

n la vérité, ceux qu’on a coutume de considérer principalement
» dans les élémens. Cependant la définition des polyèdres, suivant
» laquelle ils sont des solides terminés de toutes parts , par des
» figures planes , n’exclut point les polyèdres à parties rentrantes.

» A moins donc qu’on n’avertisse ( ainsi que le fait Legendre
» qu’on s’occupe exclusivement des premiers polyèdres, on s’expose
» à donner comme générales des conclusions qui ne sont applicables
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» qu’au point de vue particulier sous lequel on a envisagé le sujet
» dont on s’occupe. » 

On voit, par cet exposé, que le mémoire de M. Lhuilier ren-
ferme deux parties bien distinctes. Dans la première , l’auteur se

propose de démontrer le théorème d"Euler , d’une manière qui lui
est propre. Son but, dans la seconde, est d’indiquer les diverses
sortes d’exceptions auxquelles ce théorème est sujet. Je suivrai la

même division dans Fanatise de ce mémoire.
i. La première proposition que M. Lhuilier établit , et qui est

presque évidente d’elle-même , est que, dans toute pyramide, le

nombre des faces, plus le nombre des angles solides -surpasse de

deux unités le nombre des arêtes. On voit en effet que , si l’on

désigne respectivement par F, S, A ces trois nombres , et qu’on
représente par m le nombre des côtés du polygone base de la pyra-
niide , on aura 

d’où

2. M. Lhuilier établit ensuite cet autre théorème : Si deux polyèdres
sont tels que , dans chacun , le nombre des faces, plus le nombre
des angles solides surpasse de deux unités le nombre des arétes ;
et si , en même temps, ces deux polyèdres ont une face égale par
laquelle ils puissent être appliqués l’un à l’autre ; dans le polyèdre
résultant de leur réunion , la somme du nombre des faces et du

nombre des angles solides surpassera aussi de deux unités le nombre
des arêtes. 

Pour prouver cette proposition, M. Lhuilier considère que si n

désigne le nombre des côtés des faces des deux polyèdres que l’on
fait coïncider ; que de plus p, p’ et P désignent tant les deux corps
que le corps formé de leur assemblage ; que les nombres de faces d’angles
solides et d’arêtes soient f, s, a , pour p , qu’ils soient f’ , s’ , a’ ,

pour p’ , et qu’ils soient enfin F , S, A , pour P, on devra avoir
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d’où

mais, par l’hypothèse ,

donc

Je dois observer ici qu’il n’est pas vrai généralement que , comme
le suppose M. Lhuilier, la coïncidence des deux polyèdres diminue
de n le nombre total , tant de leurs angles solides que de leurs

arêtes , et de 2 le nombre de leurs faces; mais néanmoins la pro-

position est vraie dans tous les cas.

D’abord , par l’application des deux solides, l’un contre l’autre,
il peut arriver que deux faces correspondantes et adjacentes aux
faces superposées coïncident, de manière à ne former , par leur

réunion , qu’une face unique ; le solide composé aura donc une face

de moins qu’il n’en aurait eu sans cette circonstance ; mais il aura

aussi une arête de moins. Si donc le nombre des coïncidences de

cette nature est m, tandis que j se changera en F-m , A se

changera aussi en A-m, ce qui ne changera rien à l’équation
F+S==A+2.
Deux angles solides, correspondans dans les deux corps, peuvent

être trièdres , et tels que , par leur réunion , ils forment un angle
dièdre. Cette circonstance entraînera la réduction de quatre faces à

deux, celle de quatre arêtes à une seule , et la suppression d’un
angle solide. Si donc cela arrive m fois, F se changera en F-2m ,
S en S-m , et A en A-3m ; ce qui ne changera encore rien à

l’équation F+S=A+2.
Il est essentiel de remarquer que si, dans un angle solide du

corps total résultant de la réunion de deux angles solides corres-

pondans des corps partiels , deux arêtes se trouvaient ne former qu’une
seule ligne droite cette ligne droite n’en devrait pas moins être
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comptée pour deux arêtes distinctes. En général , il faudra supposer,
dans tout ce qui va suivre , que , si plusieurs sommets d’un polyèdre
se trouvent situés sur une même ligne droite , et que cette ligne
droite soit en même temps arête de tous les angles solides auxquels
ces sommets appartiennent , elle devra être comptée pour autant
d’arêtes distinctes que ces sommets y formeront de divisions.

3. Le tour de raisonnement qui vient d’être employé, pour démontrer
la seconde proposition de M. Lhuilier , peut être appliqué à démontrer
une proposition de géométrie plane dont on n’a encore donné nulle

part jusqu’ici une démonstration complète. Cette proposition est que ,
dans tout polygone, plans et rectiligne , la somme des angles
intérieurs vaut deux angles droits pris autant de fois moins deux
que le polygone a de côtés. Les démonstrations qu’on en donne

communément suppose que le polygone est convexe ou que du moins
il existe quelque point , dans son intérieur, par lequel il est impossible
de faire passer une droite qui rencontre son périmètre en plus de
deux points. Voici comment on en peut obtenir une démonstration
générale, et tout à fait indépendante de la nature du polygone.

Il faut d’abord démontrer que si, dans deux polygones, la somme
des angles intérieurs faut deux angles droits, pris autant de fois
moins deux que ces polygones ont de côtés ; et , si ces polygones
ont un côté égal par lequel ils puissent être réunis l’un à l’aûtre,
de manière à ne plus former qu’un polygone unique , la somme

des angles intérieurs de ce nouveau polygone sera encore égale à
deux angles droits, pris autant de fois moins deux que ce polygone
aura de côtés.

Soient , en effet, , p , p’ les deux polygones proposés ; soit P le

polygone résultant de leur assemblage ; soient respectivement m, ml r
M les nombres de côtés de ces polygones ; soit A l’angle droit et
soient enfin respectivement s , s’ , 8 les sommes d’angles intérieurs
de trois polygones.

D’après l’hypothèse , on aura
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Présentement dans la réunion des deux polygones , il peut se

présenter les trois cas que voici : i.11 ou aucun des deux angles
adjacents au côté commun, dans l’un des polygones ne sera sup-

plément de son correspondant dans l’autre polygone ; 2.° ou l’un

seulement de ces angles , dans le premier, sera supplément de son
correspondant dans le second ; 3.° ou enfin ils seront tous deux , 
dans le premier, supplémens de leurs corrcspondans dans le second.

Dans le premier cas , on aura

d’où

Dans le second cas, on aura

d’où

Enfin , d-ans 1e troisième cas , on aura

d’où

Cela posé, soit un polygone non convexe , ayant des angles
rentralls , en nombre quelconque. Si par le sommet de l’un quel-
conque de ces angles rentrans , on mène une droite indétinie qui
passe entre les côtés de cet angle, cette droite divisera le polygone 
en deux autres qui-, pris ensemble , auront évidemment un angle 
rentrant de moins que le premier. Opérant donc de la même manière
sur ceux-ci , et poursuivant continuellement ainsi le polygone proposé
se trouvera enfin divisé en un certain nombre de polygones convexes ,
dans chacun desquels la somme des angles intérieurs sera, comme
l’on sait, égale à deux angles droits, pris autant de fois moins deux
que ce polygone aura de côtés.

Le polygone proposé pouvant donc être considéré comme formé
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par l’application successive de ces polygones partiels les uns contre

les autres ; en vertu du théorème démontré , il devra jouir aussi de
la même propriété.
De là résulte cette conséquence , savoir : que le plus petit nombre

des triangles dans lesquels un polygone quelconque puisse être

divisé , est toujours inférieur de deux unités au nombre de ses côtés.
4. Cette conséquence , et le principe d’où elle dérive , ne sont

vrais , au surplus , qu’autant que le polygone est terminé par une seule
ligne continue. On ne pourrait l’appliquer, par exemple , au polygone
annulaire ou couronne polygonale, c’est-à-dire, à l’espace plan compris
entre deux polygones décrits l’un dans l’autre.

Soient m et ml les nombres de côtés des polygones extérieur et

intérieur bornant la couronne. Tandis que la somme des angles du
premier devra être estimée 2(m-2)0394 , la somme des angles du second
devra être estimée 4m’0394-2m’-2)0394 ou 2(m’+2)0394 ; la somme des

angles intérieurs de la couronne sera donc 2(m+m’)0394 , c’est-à-dire ,
autant de fois deux angles droits qu’elle aura de côtés ; elle ne pourra
donc être divisée en un moindre nombre de triangles.
En général , un espace plan peut être compris entre n polygones 2

extérieurs les uns aux autres , et un polygone qui les enferme tous.

Si M est le nombre total des lignes droites qui terminent cet espace,
la somme de ses angles intérieurs sera 2[M+2(n-I)]0394.

5. Je reviens au mémoire de M. Lhuilier. L’auteur établit pour
troisième proposition que, si un corps est composé d’un nombre

quelconque de pyramides , ayant un sommet commun ; de manière
que ces pyramides soient appliquées , deux à deux , par des faces
latérales communes ; le nombre des faces de ce corps augmenté du
nombre de ses angles solides surpassera de deux unités le nombre
de ses arêtes. Cette proposition est, en effet, une conséquence
nécessaire et évidente de ce qui a été démontré (i et 2).
M. Lhuilier observe ensuite que , bien que la démonstration de

cette proposition suppose que chaque nouvelle pyramide qu’on intro-
duit ne s’applique au corps formé de la réunion des autres que

par
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par un-e seule face latérale , elle aura lieu également , si la coïn-

cidence a lieu pour un plus grand nombre de faces de la nouvelle

pyramide introduite.
En supposant , en effet, que cette coïncidence s’opère par n faces

latérales consécutives , au lieu de s’opérer par une seule ; il en résultera,
dans le solide total , une diminution de 2(n-I) faces , de (n-I)
angles solides et de 3(n-I) arêtes ; F , S , A se changeront donc
respectivement en F-2(n-I), S-(n-I) , A-3(n-I); ce qui
ne changera rien à l’équation F+S=A+2. Ce raisonnement s’ap-
.pliquant évidemment au cas où la dernière pyramide coïnciderait

avec l’avant - dernier solide par toutes ses faces latérales, en rem-

plissant un creux pyramidal qui y serait resté ; je me dispenserai
de transcrire icx ce que M. Lhuilier dit en particulier , relativement
à ce cas. Je ne dirai rien non plus du cas on la réunion de deux

pyramides amenerait leurs bases à ne plus former qu’un seul plan ;
d’autant qu’en complétant , comme je l’ai fait , la démonstration de
la deuxième proposition de M. Lhuilier , l’examen particulier de ce
cas devient absolument superflu.

6. De tout ce qui précède résulte évidemment que, dans toutpolyèdre,
le nombre des faces augmenté du nombre des angles solides, sur-
passe de deux unités le nombre des arêtes , toutes les fois, du

moins , que ce polyèdre pourra être considéré comme composé de

pyramides ayant un sommet commun ; ce qui aura lieu pour tout

polyèdre convexe, et plus généralement pour tout polyèdre dans
l’intérieur duquel il y aura au moins un point par lequel il sera

impossible de faire passer une droite qui rencontre sa surface en

plus de deux points. Mais, en appliquant à la proposition (2) un
raisonnement analague à celui qui a été fait (3)? pour les polygones,
on parviendra aisément à se convaincre que le Théorème d’Euler

est vrai généralement , pour les polyèdres convexes ou non convexes
sauf les exceptions dont il sera parlé ci-après.

1 

7. Ce théorème est , au surplus, susceptible d’une démonstration
qui, sans être plus longue que celle de M. Legendre, a sur elle l’avan-

Tom. III 25
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tage d’être tout-à-fait élémentaire. Je vais l’exposer en peu de mots.
Soit d’abord -N le nombre des côtés d’un polygone quelconque ;

soit divisé ce polygone , d’une manière arbitraire , en compartimens
polygonaux , par des droites concourant tant à ses sommets qu’à
différens points dans son intérieur. Soient f le nombre des polygones
partiels résultant de sa décomposition, s le nombre des points, y
compris les sommets du polygone donné , où concourent les droites

qui servent de côtés à ces polygones , et enfin a le nombre de ces

droites en y comprenant les N côtés du polygone donné.
Soient m, m’ , m" ,.... les nombres respectifs de côtés des poly-

gones partiels ; leurs sommes d’angles seront respectivement 2m0394-40394,
2m’0394-40394, 2m"0394-40394,.....; donc la somme de tous leurs

angles sera

cette somme devant être égale à la somme 2(N-2)0394 des angles
intérieurs du polygone proposé, plus a autant de fois quatre angles
droits qu’il y a de points de concours intérieurs , et le nombre de

ceux-ci étant évidemment s-N , on aura

ou plus simplement

mais chaque ligne, excepté les côtés du polygone proposé, servant
de côté à deux polygones . on doit avoir

ajoutant cette équation à la précédente , il viendra , en réduisant ,
transposant et divisant par 2 , 

c’est-à-dire, que le nombre des polygones partiels , augmenté du
nombre des points de concours des droites qui les forment , surpasse
d’une unité le nombre de ces droites. 
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Cela posé, soit un polyèdre dont une face soit transparente ; et

concevons que l’oeil s’approche assez de cette face , extérieurement ,
pour qu’il puisse apercevoir l’intérieur de toutes les autres faces ; ce

qui sera toujours possible , lorsque le polyèdre sera convexe. Les

choses étant ainsi disposées , concevons qu’il soit fait, sur le plan
de la face transparente, une perspective de l’ensemble de toutes les

autres. En conservant les mêmes notations que ci-dessus , cette pers
pective sera un polygone divisé en F-I compartimens polygonaux,
terminés par A droites concourant en S points. On aura donc , pax
ce qui précède.

d’où

Ceci ne s’applique généralement , à la vérité , qu’aux polyèdres
convexes ; mais nous avons déjà vu que la proposition étant vraie

pour les polyèdres de cette nature , elle l’est aussi pour tous les

autres.

Au surplus , quelque simple que soit cette démonstration , on

lui préférera peut-être encore , avec raison , la belle démonstration

de M. Cauchy (*) , qui a le précieux avantage de ne supposer nul-
lement que le polyèdre soit convexe.

8. Si l’ori veut que , dans un polyèdre, toutes les faces aient un

même nombre f de côtés , et tous les angles solides un même nom-

bre s d’arêtes, on aura, pour déterminer A, F, S les trois équations

Ces équations n’éprouvant aucun changement , lorsqu’on y permute
à la fois f contre s et F contre S , on en conclut que les polyèdres
de cette nature sont réciproques , deux à deux ; en sorte que, dans
les deux d’une même couple , le nombre des arêtes est le même,

Ct) Voyez la Correspondance sur l’école polytechnique , tom. II, n.° 3, jan-
vier I8II , page 253.
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et que , de plus , le nombre des faces de chacun est le même que
le nombre des sommets de l’autre ; ce qui permet de les inscrire ou
circonscrire l’un à l’autre.

De ces équations on tire

La nécessité d’avoir pour, f , s , F, S, A des nombres entiers positifs ,
plus grands que borne les solutions de ces équations aux

suivantes :

f =3 , 3 , 4 , 3 , 5 , 3 , 6 , 4 ,
s =3 , 4 , 3 , 5 , 3 , 6 , 3 , 4 ,
F=4 , 8 , 6 , 20 , I2 , ~ , ~ , ~ ,

S=4 , 6 , 8 , I2 , 20 , ~ , ~ , ~ ,

A=6 , I2 , I2 , 30 , 30 , ~ , ~ , ~ .

On conclut de là que non seulement il n’y a que cinq corps
réguliers , mais qu’il ne peut exister que cinq sortes de polyèdres ,
réguliers ou non , dont toutes les faces aient le même nombre de

côtés, et tous les angles solides le même nombre d’arêtes.

On voit , en outre , que la sphère peut, sous trois points de vue

différens, être considérée comme un polyèdre régulier , ayant des

faces infiniment petites en nombre infini ; ces faces pouvant être

ou des triangles réunis six par six , ou des hexagones réunis trois

par trois, ou enfin des quarrés réunis quatre par quatre.
On voit encore qu’un plan ne peut être exactement couvert avec

des polygones d’une même sorte , assemblés en même nombre autour
de chaque sommet, que de trois manières différentes , savoir avec
des triangles rassemblés six par six ; 2.° avec des quarrés assemblés
quatre par quatre; 3.° avec des hexagones assemblés trois par trois.
On voit enfin que les polyèdres réguliers de mêmes couples sont

le tétraèdre avec lui-même, l’hexaèdre avec l’octaèdre , .le dodécaèdre
avec l’icosaèdre, la sphère couverte d’hexagones avec la sphère cou- 
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verte de triangles , et enfin la sphère couverte de quarrés avec

elle-même (*).
9. Après avoir démontré, de la manière que nous avons dit ci-

dessus , le théorème fondamental d’Euler, M. Lhuilier s’occupe de

la démonstration du second théorème, relatif à l’expression de la

somme des angles des faces d’un polyèdre : voici cette démonstration.
Soient f 3 , f4 , f 5 ,.....f1l les nombres qui expriment combien il

y a , dans un polyèdre , de faces ayant respectivement 3y 4 , 5,.....n
côtés ; soient F le nombre total des faces du polyèdre, A le nombre

de ses arêtes, et V la valeur totale des angles de ses faces. L’angle
droit étant pris pour une unité, on aura

ou

ou , enfin ,

c’est-à-dire, la somme des angles des faces d’un polyèdre vaut
quatre angles droits, pris autant de fois qu’il y a d’unités dans
l’excès du nombre des arétes de ce polyèdre sur le nombre de

ses faces.

c’est-à-dire , la somme des angles desfaces d’un polyèdre vaut quatre
angles droits pris autant de fois moins deux que le polyèdre a de
sommets.

(*) Dans les Mémoires de l’académie des sciences de Paris , pour I725, M.
de Mairan a donné des recherches curieuses relatives à l’inscription et à la circons-
cription du cube à l’octaèdre ; mais personne , que je sache , ne s’est occupé des
mêmes questions relativement aux autres couples de polyèdres. Les recherches de ce
genre exigent d’autant plus de sagacité qu’on ne saurait guère y appliquer les inéthodes
ordinaires.
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M. L’huilier remarque que les deux équations V=4(A-F) et

V=4-(S-2) étant susceptibles d’être démontrées directement, et indépen-
damment l’une de l’autre, il en résulte de nouveau F+S=A+2;
mais il ne croit pas devoir s’arrêter à développer ce moyen de

démonstration.

10. IVI. Lhuilier indique encore un autre moyen de démonstration
assez simple, et que je vais développer brièvement.

Soient F, S, A respectivement les nombres de faces de sommets
et d’arétes d’un tronc de prisme que , pour fixer les idées , on peut
supposer faire partie d’un prisme droit ; si l’on désigne par m le

nombre des côtés du polygone qui sert de base à ce tronc, on aura
évidemment

d’oû

c’est-à-dire , que dans un tronc de prisme, le nombre des faces ,
augmenté du nombre des sommets, surpasse de deux unités le
nombre des arêtes.

Soit présentement un corps formé par une suite de troncs de

prismes droits , dont les bases inférieures, toutes situées sur un

même plan horizontal, et contiguës les unes aux autres, forment,

par leur réunion, un poligone unique ; ces troncs se trouvant unis

les uns aux autres par des faces latérales égales. Par un raisonnement
semblable à celui qui a été développé (5), on prouvera aisément

que , dans le corps formé de l’assemblage de ces prismes, le nombre
des faces , augmenté du nombre des sommets, surpasse de deux unités
le nombre des arêtes.

La base supérieure de ce corps est une surface polyèdre non fermée.
Désignons par f le nombre de ses faces , par s le nombre de ses

sommets , et par a le nombre de ses arêtes. Soit N le nombre des

côtés de la base inférieure du même corps ; soient F le nombre

total de ses faces , S le nombre total de ses sommets et A le nombre
total de ses arêtes, nous aurons évidemment
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puis donc qu’on doit avoir

il viendra

ou, en réduisant

c’est-à-dire , que , dans une surface polyèdre , non fermée, le nombre
des faces, augmenté du nombre des sommets, surpasse d’une unité
le nombre des arêtes, pourvu cependant que cette surface soit de

nature à ce que les perpendiculaires à un- plan convenablement situé
par rapport à elle, ne la rencontrent qu’en un seul point.

Soit enfin un polyèdre quelconque auquel on circonscrive un prisme
dont les arêtes aient une direction telle qu’aucune d’elles ne se

confonde avec ses faces. Ce prisme touchera le polyèdre selon une
suite d’arêtes consécutives qui diviseront sa surface en deux surfaces

polyèdres non fermées. Soient respectivement f et f’ les nombres de
faces de ces deux portions , s et sI leurs nombres de sommets , et

enfin a et al leurs nombres d’arétes ; on aura , par ce qui, précède ,

Soient ensuite F le nombre total des faces du polyèdre, S le

nombre de ses sommets , et A le nombre de ses arêtes. En désignant
par N le nombre des côtés du polygone, plan ou gauche, qui termine
ses deux parties , on aura évidemment

d’où

Ceci suppose toujours, au surplus, qu’il y a un certain plan tel

que les droites qui lui sont perpendiculaires ne rencontrent la surface
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du polyèdre qu’en deux points au plus ; mais tout plan satisfait à
cette condition lorsque le polyèdre est convexe ; et l’on sait que le

théorème , une fois démontré pour les polyèdres de cette nature, peut
être facilement étendu à tous les autres.

Dans la seconde partie de son mémoire, M. Lhuilier, ainsi que
je l’ai annoncé, s’occupe des diverses exceptions auxquelles le Théorème
d’Euler est assujetti. Ces exceptions sont de trois sortes. Je vais les
présenter successivement. 

II. La première sorte d’exception a lieu lorsque le polyèdre ren-

ferme une cavité intérieure ; c’est-à-dire , lorsqu’il est compris entre deux
surfaces isolées et entièrement renfermées l’une dans l’autre.

Soient alors , en effet, f, s, a les nombres de faces , de sommets
et d’arêtes de la surface extérieure ; soient f’ , s’ , a’ les nombres

analogues pour la surface intérieure ; on aura , par ce qui précède ,

d’où

mais, eu désignant par F le nombre total des faces du polyèdre ,
par S le nombre total de ses sommets , et par A le nombre total

de ses arêtes, on aura évidemment

on aura donc aussi

c’est-à-dire, que, dans un tel polyèdre , le nombre desfaces, augmenté
du nombre des sommets , surpasse de quatre unités le nombre
de s arêtes.

En
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En général , un corps peut être compris entre n surfaces polyèdres

fermées , extérieures les unes aux autres, et une surface polyèdre
fermée qui les renferme toutes; en conservant d’ailleurs les mêmes

notations que ci-dessus , on a alors

Si l’on représente par V la valeur totale de la somme des angles
des faces d’un tel polyèdre, on aura (9)

12. La seconde sorte d’exception a lieu , lorsque le polyèdre est

annulaire; c’est-à-dire , lorsqu’étant d’ailleurs compris sous une surface
unique, il a une ouverture qui le traverse de part en part.

Concevons que l’on fasse à un tel anneau une section plane qui ,
en supposant les deux faces de la section séparées, le fasse rentrer

dans la classe des polyèdres ordinaires ; soient alors désignés par FI le-
nombre de ses faces , par SI le nombre de ses sommets y et par 41
le nombre de ses arêtes ; on aura, comme ci-dessus ,

Soient les nombres de côtés de deux faces de la section ; conce-
vons que l’on soude ces deux faces l’une à l’autre, pour rétablir le

polyèdre dans son état primitif ; soient alors S , F, A les quantités
analogues à celles que nous avions désignées par SI , F’ , A’ , lorsque le

polyèdre était ouvert ; en raisonnant comme nous l’avons fait (2),
on se convaincra qu’on doit avoir

ou

Tom. III. 26
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c’est-à-dire, que, dans un tel polyèdre , le nombre des faces ,
augmenté du nombre des sommets , est précisément égal au nombre
des arêtes.

En général un polyèdre terminé par une surface unique peut être
percé , de part en part , par un nombre plus ou moins grand d’ou -
vertures distinctes. Si n désigne le nombre de ses ouvertures ,
on aura

Si l’on représente par V la valeur totale de la somme des angles
des faces d’un tel polyèdre , on aura (g)

13. J’avais, depuis long-temps , remarque ces deux premières sortes
d’exceptions ; mais M. Lhuilier est , je crois, le premier qui ait fait
attention à la troisième ; et elle devait d’autant plus facilement échapper
à l’observation des géomètres , que les polyèdres auxquels elle est
relative , ne paraissent pas différer essentiellement de ceux que l’on

est dans l’usage de considérer. Cette troisième sorte d’exception a

lieu. lorsque quelques-unes des faces du polyèdre sont des polygones
compris dans l’exception qui a été développée (4) ; comme , par

exemple , lorsqu’une des faces du polyèdre est une couronne poly- 
gonale ; ainsi qu’il arrive , lorsque le polyèdre résulte de l’union de

deux autres polyèdres, par deux faces inégales , dont la plus petite
se trouve entièrement comprise dans la plus grande.

Pour passer, de suite , au cas le plus général , supposons que
l’une des faces du polyèdre soit comprise entre n polygones extérieurs
les uns aux autres et un polygone qui les renferme tous. Il est facile
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de se convaincre qu’en menant convenablement , dans cette face
n+I diagonales , elles la diviseront en deux polygones qui ne se

trouveront plus dans le cas d’exception ; de manière qu’il sera permis
de considérer alors ces deux polygones comme deux faces du

polyèdre, pourvu que l’on considere les n+I diagonales qu’on aura
menées comme autant de nouvelles arêtes. Le polyèdre se trouvant

ainsi hors du cas d’exception ; si l’on désigne par F’ le nombre total de ses
faces , la face dont il s’agit étant comptée comme double ; par SI

le nombre de ses sommets ; et enfin par A’ le nombre de ses arêtes x
y compris les n+I diagonales dont il vient d’être question ; on
devra avoir 

Mais si l’on désigne par F, S, A les mêmes choses pour le polyèdre
considéré sous le premier point de vue , on aura évidemment

en substituant donc et transposant , il viendra

c’est-à-dire , que’ dans un telpolyèdre , le nombre cles faces augmentè
du nombre des sommets surpasse le nombre des arêtes de deux

unités augmentées du nombre des polygones intérieurs à la face qui
fait exception , ou d’une unité augmentée du nombre total des poly-
gones qui terminent cette face.
En général , le polyèdre peut avoir plusieurs faces dans le cas

d’exception développé (4.); et si, pour celles qui suivent la première ,
en désigne par n’ , n" , n’’’ ,.... ce que nous avons désigne par li,
pour celie-cl on aura
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Si l’on représente par V la valeur totale des angles des faces d’un
tel polyèdre , on aura 

ainsi, il n’y a lieu ici à aucune exception quant à la valeur de

la somme des angles des faces, lorsqu’on évalue cette somme en

fonction du nombre des sommets. 
« L’exception que je viens d’exposer » dit M. Lhuilier » doit se

» présenter fréquemment dans la nature. Dans les agrégations mu-
» tuelles des corps, et en particulier dans les groupes de cristaux ,
» à moins qu’il n’y ait une cause puissante qui les détermine à-

» s’appliquer par des faces coïncidentes , il doit se rencontrer des

» cas où l’application se fait d’une manière propre a donner lieu

» à l’exception dont il s’agit. Aussi ai-je vu , dans la belle collection

» de minéraux que possède mon ami et collègue le professeur Pictet ,
» l’un des inspecteurs généraux de l’université , différens groupes
» de cristaux , conformes à cette exception ; parmi lesquels j’ai remar-
» ,qué des groupes de cristaux de spath calcaire , et -des grès de la
» carrière de Montmartre. )

I4. M. Lhuilier termine par observer que les trois sortes d’exceptions
qu’il vient de considérer, et qui paraissent être les seules auxquelles
le théorème d’Euler puisse être sujet, pouvant se trouver réunis dans
un même polyèdre, et s’y trouver chacune indéfiniment ; il s’ensuit

qu’il peut exister des polyèdres dans lesquels le nombre des faces

augmenté du nombre des sommets surpasse le nombre des arêtes ou
soit surpassé par lui d’un nombre d’unités donné et quelconque.

Si i représente le nombre des cavités intérieures d’un polyèdre ;
que o désigne le nombre des ouvertures qui y sont pratiquées , de
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part en part , et qu’enfin plusieurs des faces soient bornées par des

polygones intérieurs au nombre de p, pl , p" ,.... pour chacune
d’elles respectivement ; on aura

et conséquemment la condition nécessaire et suffisante pour que le

polyèdre ne fasse pas exception au théorème d’Euler, sera

GÉOMÉTRIE.

Démonstration de deux théorèmes de polyédrométrie ;

Par M. FRANÇAIS , professeur de mathématiques à l’école
impériale de l’artillerie et du génie. 

EN désignant par S le nombre des sommets ou angles solides d’ui
polyèdre quelconque ; par A le nombre de ses arêtes ; par F 1

nombre de ses faces ; par P la somme des angles plans de ces même
faces; et enfin parj9 un angle droit; on a ces deux théorèmes d’Euler

(*) Voyez le précédent mémoire. 
J. D. G.


