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RECHERCHES SUR LES POLYEDRES. 16

GEOMETRIE.

Memoire sur la polyédrométrie ; contenant une demons=
tration directe du Théoreme d'Euler sur les polyédres ,
et un examen des diverses exceptions auxquelles ce
théoréme est assujelli;

Par M, Luvinier , professeur de mathématiques a I'académie
impériale de Genéve.

( Exrrair ) Par M. GERGONNE.

[a Y % Yo Vio V1o W, W, Vi Vi 3

JE me propose ici de rendre compte d’'un mémoire , sur les polytdres
que M. Lhuilier a bien voulu me communiquer, et que son étendue
m’oblige 3 regrets d’abréger. Dans Dextrait que jen vais faire,
j'apporterai tous mes soins a ne rien omettre de ce qui peut intéresser

le lecteur.

Je vais d’abord laisser M. Lhuilier exposer lui-méme le sujet de
ses recherches et les motifs qui 'ont déterminé a s’y livrer.

« Le théoréme de polyédrométrie d’Euler, suivant lequel , dans
» tout polyédre, la somme du nombre des faces et du nombre
» des angles solides surpasse de deux unités le nombre des arétes ,
» peut étre regardé comme fondamental dans cette partie de la
» géométrie (*). Il correspond a la proposition de géométrie plane
» suivant laquelle , dans tout polygone rectiligne , le nombre des

(*) Voyez les Mémoires de Pétersbourg , pour 1752 et 1753 , imprimés en 1758.

Tom. IIL. 24
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angles est égal au nombre des coiés. Mais , tandis que cette
derniére proposition n’exige aucun développement , et ne souffre
aucune exception , la proposition correspondante sur les polyedres
n’est rien moins qu’évidente , et n’est pas plus générale. Dans un

» premier travail , ['auteur, n’ayant pu en trouver la démonstration ,
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se contenta de lexposer sur plusieurs solides d’especes différentes;
et il présenta comme probable , et comme fondée sur l'analogie
seulement , la conclusion tiréde de ces cas particuliers a la pro-
position générale. Dans un second travail , sur le méme sujet,
Vauteur donne enfin la démonstration de sa proposition. 1l la tire
de la possibilité de diminuer d’une unité le nombre des angles
solides d’'un polyddre ( non tétratdral ); d’ou découle la possibilité
de le ramener & une pyramide , et en particulier 3 une pyramide
tétratdrale. L’auteur développe cette possibilité, et il en tire les
conséquences relatives 4 la diminution correspondante du mnombre
des faces et du nombre des arétes.

» Dans les mémes mémoires,, Euler développe deux autres théorémes
sur les polyedres , relatifs & fa valeur de la somme des angles
plans qui entrent dans la composition d’un polyedre. 1l démontre
que cette valear est quatre angles droits, multiplids par Vexcés du
nombre des arétes sur le nombre des faces , ou quatre angles droits
multipliés par un nombre inférieur de deux unités 4 celui des
angles solides. Cette derniére expression lui parait, avec raison,
bien remarquable. Elle répond ala valeur de la somme des angles
plans d’une figure rectiligne, dans le nombre de ses cétés ou de
ses angles, L’auteur, aprés Pavoir tirée des deux premiers théorémes,
en a donné une démonstration immédiate , fondée sur le principe
déja exposé ; savoir: sur la possibilité de diminuer d’une unité le
nombre des angles solides d’un polyedre ( non tétratdral ).

» Liegendre , dans ses Elémens de géométrie , a démontré les
mémes théorémes d'une maniere remarquable par sa britveté. Sa
démonstration est fondée sur Vexpression de la surface d’un poly-
gone sphérique dans ses ang'cs. Comme cette derniére expression
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SUR LES POLYEDRES. 15
suppose des principes déja établis sur les figurés sphériques, ce
qui exige des développemens préliminaires; la brieveté de la démons-
tration de Legendre n’est ( suivant moi ) qu’apparente ; et cctte

"démonstration ne me parait pas avoir le degré de simplicité quon

est en droit de désirer , pour une proposition fondamentale.

» 1l parait qu’Euler a fait des tentatives inutiles pour démontrer
ses théorémes , par la décomposition du polyedre en pyramides
ayant pour semmet commun un point pris dans lintérieur de ce
polyedre , et ayant ses faces pour bases. Hic modus ( dit-il )
solidum quodcunque in pyramides resolvendi ad prasens institutum
parum. confert. Cette assertion d’Euler m’a paru remarquable ;
elle a fixé mon attention; et le résultat de mes méditations, sur
ce sujet, me parait satisfaisant. Je trouve que la décomposition
rejetée par Euler , comme inutile , conduit & la démonstration
demandée , d’'une maniére trés-simple et trés-lumineuse, ainsi que
je le développerai dans ce mémoire.

» Cette légere observation, relative & une simple différence dans
le procédé d’une” démonstration, ne sera, au surplus , que secon-
daire dans ce qui va suivre. Je me propose principalement de
montrer que le théoréme d’Euler souffre des exceptions nom-
breuses , et qu’il n’est vrai, d’une manitre générale, que pour les
polyédres qui n'ont point de parties rentrantes , soit quant aux
angles plans qui forment les angles solides, soit quant aux angles
ditdres ou aux inclinaisons de leurs faces ; ou , ce qui revient
encore au méme , pour les solides qui sont, en entier , d'un méme
c6té du plan de chacune de leurs faces. Ces polyédres sont, &
la vérité , ceux qu'on a coutame de considérer principalement
dans les élémens. Cependant la définition des polyedres, suivant
laquelle ils sont des solides termimés de toutes parts, par des
figures planes, n’exclut point les polyédres & parties rentrantes.
A moins donc qu'on n’avertisse ( ainsi que le fait Legendre ),
quon s’occupe exclusivement des premiers polyédres, on s’expose
2 donner comme générales des conclusions quine sont applicables



172 RECHERCHES
» qu’au point de vue particulier sous lequel on a envisagé le sujet
» dont on soccupe. »

On voit , par cet exposé, que le mémoire de M. Lhuilier ren~
ferme deux parties bien distinctes, Dans la premitre, lauteur se
proposc de démontrer le théortme d’Euler , d’'une maniére qui lui
est propre. Son' but, dans la seconde, est d’indiquer les diverses
sortes d’exceptions auxquelles ce théortme est sujet. Je suivrai la
méme division dans ’analise de ce mémoire.

1. La premitre proposition que M. Lhuilier établit, et qui est
presque évidente d'elle-méme , est que , dans toute pyramide , le
nombre des faces , plus le nombre des angles solides surpasse de
deux unités le nombre des aréies. On voit en effet que, si Pon
désigne respectivement par I, §, A ces trois nembres , et qu'on

représente par 72 le nombre des cétés du polygone base de la pyra-
mide , on aura

F=m-1 , S=m+41 , A=2m ;
d’ol
FA-S=om--2=A+4--2.

2. M. Lhuilier établit ensuite cet autre théoréme : 87 deux polyédres
sont tels que, dans chacun , le nombre des faces , plus le nombre
des angles solides surpasse de deux unités le nombre des arétes ;
et si, en méme lemps, ces deux polyédres ont une face égale par
laquelle ils puissent éire appliqués lun a lautre; dans le polyidre
résultant de leur réunion , la svmme du nombre des faces et du
nombre Ades angles solides surpassera aussi de deux unités le nombre
des arétes. ]

Pour prouver cette proposition, M. Lhuilier considére que si »
désigne le nombre des cotés des faces des deux polyedres que V'on
fait coincider ; que de plus p, p/ et P désignent tant les deux corps
que le corps formé de leurassemblage; que les nombres de faces d’angles
solides et d’arétes soient £, s, @, pour p, quils soient f/, s/, @/,
pour 7/, et quils soient enfin #, §, A, pour P, on devra avoir
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F=ftf—2 , =s4sl—n A=a+}a'—n ;
d’ol .
TS =)+ fi4s)—(n4-2)
mais , par I’hypothese,
Jrs=a+t=2 , f4s'=a'~4-=

e

ws

donc ]
F4-S=(a+4-a'—n)4-2=A-2.

Je dois observer ici qu’il n’est pas vrai généralement que , comme
le suppose M. Lhuilier, la coincidence des deux polytdres diminue
de » le nombre total , tant de leurs angles solides que de leurs
arétes, et de 2 le nombre de leurs faces; mais néanmoins la pro-
position est vraie dans tous les cas.

D’abord , par l'application des deux solides, l'un contre lautre ,
il peut arriver que deux faces correspondantes et adjacentes aux
faces superposées coincident , de mani¢re a ne former , par, leur
réunion , qu’une face unique; le solide composé aura donc une face
de moins qu'il n’en aurait cu sans cette circonstance ; mais il aura
aussi une aréte de moins. Si donc le nombre des coincidences de
cette nature est m, tandis que F se changera en F—m, A se
changera aussi en .4—m , ce qui ne changera rien a I'équation
F4-§=A2. i

Deux angles solides , correspondans dans les deux corps , peuvent
dtre triddres , et tels que, par leur réunion, ils forment un angle
diédre. Cette eirconstance entrainera la réduction de quatre faces a
deux, celle de quatre arétes a une seule , et la suppression d’un
angle solide. Si donc cela arrive 72 fois, F se changera en F—am,
Sen §—m, et 4 en 4—3m; ce qui ne changera encore rien 2
Péquation F4-S=A-}-=2.

Il est essentiel de remarquer que si, dans un angle solide du
corps tectal résultant de la réunion de deux angles solides corres—
pondans des corps partiels , deux arétes se trouvaient ne former qu’une
seale ligne droite, cette ligne droite n’en devrait pas moins étre
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comptée pour deux arétes distinctes. En général, il faudra supposer,
dans tout ce qui va suivre, que, si plusieurs sommets d’un polyeédre
se trouvent situés sur une méme ligne droite , et que cette ligne
droite soit en méme temps aréte de tous les angles solides auxquels
ces sommets appartiemnent , elle devra éire comptée pour autant
d’arétes distinctes que ces sommets y formeront de divisions.

3. Le tour de raisonnement qui vient d’étre employé, pour démontrer
la seconde proposition de M. Lhuilier , peut étre appliqué & démontrer
une proposition de géométrie plane dont on n’a encore donné nulle
part jusqu’ici une démonstration compléte. Cette proposition est que,
dans tout polygone , plans et reciiligne , la somme des angles
intérieurs vaut deux angles droits pris autent de fois moins deux
gue le polygone a de cbiés. Les démonstrations qu’on en donne
communément suppose que le palygone est convexe ou que du moins
il existe quelque point, dans son intérieur, par lequel il est impossible
de faire passer une droite qui rencontre son périmétre en plus de
deux points. Voici comment on en peut obtenir une démonstration
générale, et tout i fait indépendante de la nature du polygone.

1l faut d’abord démontrer que si, dans deux polygones, la somme
des angles intérieurs vaut deux angles droits , pris autant de jfois
moins deuz que ces polygones ont de cdtés; et, si ces polygones
ont un cbdté égal par lequel ils puissent étre réunis I'un & Pautre,
de maniére @ ne plus former qu'un polygone unique , la somme
des angles intérieurs de ce nouveau polygone sera encore égale &
deux angles droits , pris autant de fois moins deux que ce polygone
aura de cités.

Soient , en effet, p, p/ les deux polygones proposés; soit P le
polygone résultant de leur assemblage ; solent respectivement m, m/ ,
M les nombres de cotés de ces polygones ; soit A l'angle droit et

soient enfin respectivement s, s/, § les sommes d’angles intérieurs
de trois polygones.

D’aprés I'hypothése, on aura

s=2(m—2)A s'=2(m’—2)A.
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Présentement , dans la réunion des deux polygones ; il peut se
présenter les trois cas que voici : 1.° ou aucun des deux angles
adjacents au co6té commun , dans I'un des polygones, ne sera sup-
plément de son correspondant dans Jautre polygone; 2.° ou 1'un
seulement de ces angles, dans le premier , sera supplément de son
correspondant dans le second ; 3.° ou enfin ils seront tous deux,
dans le premier, supplémens de leurs correspondans dans le second.
Dans le premier cas , on aura
S=s+4s M=m-+tm'—2 ;
d’on ‘
S=z2(m+m'—4)A=2(M—2)A.

Dans le second cas, on aura

S=s4-s'—24 , M=m~m/—3

o

d’ou
S=a(m-tm/—5)A=2(M—2)A.
Enfin, dans le zroisiéme cas, on aura

S=s4-s'—44a M=m~-m'—4

e

d’ou
S=2(m~m/—6)A=1s(M—2)A.

Cela posé , soit un polygone mnon convexe , ayant des angles
rentrans , en nombre quelconque. Si par le sommet de l'un quel-
conque de ces angles rentrans , on méne une droite indéhinie qui
passe entre les c6tés de cet angle, cette droite divisera le polygone
en deux autres qui, pris ensemble , auront évidemment un angle
rentrant de moins que le premier. Opérant donc de la méme maniére
sur ceux-ci, et poursuivant continuellement ainsi, le polygone proposé
se trouvera enfin divisé en un certain nombre de polygones convexes ,
dans chacun desquels la somme des angles intéricurs sera, comme
Pon sait, égale & deux angles droits, pris aatant de fois moins deux
que ce polygone aura de cétés.

Le polygone proposé pouvant donc étre considéré comme formé
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par l'application successive de ces polygones partiels les uns contre
les autres; en vertu du théortme démontré , il devra jouir aussi de
la méme propriété.

De 1a résulte cette conséquence , savoir : que le plus petit nombre
des triangles dans lesquels un polygone quelconque puisse éire
divisé , est toujours inféricur de deux unités au nombre de ses cotés.

4. Cette conséquence , et le principe d’ou elle dérive , ne sont
vrais , au surplus, qu'autant que le polygone est terminé par une scule
ligne continue. On ne pourrait Pappliquer, par exemple , au polygone
annulaire ou couronne polygonale , c’est-a-dire , & I'espace plan compris
entre deux polygones déerits Pun dans Vautre.

Soient 2 et m’ les nombres de cotés des polygones extérieur et
intérieur bornant la couronne. Tandis que la somme des angles du
premier devra étre estimée 2(m—2)A, la scmme des angles du second
devra étre estimée 4m/A—2 m/—2)A ou 2(m/--2)A ; la somme des
angles intérieurs de la couronne sera donc 2(m—-m/ A, c’est-a-dire ,
autant de fois deux angles droits qu’elle aura de c6tés ; elle ne pourra
donc étre divisée en un moindre nombre de triangles.

En général, un espace plan peut étee compris entre # polygones,
extéricurs les uns aux autres, et un polygone qui les enferme tous.
Si M est le nombre total des lignes droites qui terminent cet espace,
la somme de ses angles intérieurs sera 2[ M—42(n—1)]A.

5. Je reviens au mémoire de M. Lhuilier. I’auteur établit pour
troisitme proposition que , sZ wn corps est composé d'un nombre
quelconque de pyramides , ayant un sommet commun ; de maniére
que ces pyramides soient appliquées, deux & deux , par des faces
latérales communes ; le nombre des faces de ce corps augmenté du
nombre de ses angles solides surpassera de deux unités le nombre
de ses arétes. Cette proposition est , en effet , une conséquence
nécessaire et évidente de ce qui a été démontré (1 et 2).

M. Lhuilier observe ensuite que , bien que la démonstration de
cette proposition suppose que chaque nouvelle pyramide qu’on intro-
duit ne s’applique au corps formé de la réunion des autres que

par
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par unc seule face latérale, elle aura liea également, s1 la coin=
cidence a lieu pour un plus grand nombre de faces de la nouvelle
pyramide introduite.

En supposant , en effet, que cette coincidence s’opére par 7 faces
latérales consécutives, au lieu de s’opérer par une seule ; il en résultera,
dans le solide total, une diminution de 2(n—r71) faces , de (7—1)
angles solides et de 3(n—r) arétes; F, S, 4 se changeront done
respectivement en F—az(n—1), S—(n—1), A—3(n—1); ce qui
ne changera rien & l’équation F4-§=A4-2. Ce raisonnement s’ap-
.pliquant évidemment au cas ou la derni¢re pyramide coinciderait
avec l’avant - dernier solide par toutes ses faces latérales, en rem-
plissant un creux pyramidal qui y serait resté ; je me dispenserai
de transcrire ici ce que M. Lhuilier dit en particulier , relativement
A ce cas. Je ne dirai rien non plus du eas ol la réunion de deux
pyramides amenerait leurs bases & ne plus former qu’un seul plan;
d'autant qu’en complétant, comme je l’ai fait, la démonstration de
la deusiéme proposition de M, Lhuilier, examen particulier de ce
cas devient absolument superflu.

6.De tout ce qui précede résulte évidemment que, dans tout polyédre,
le nombre des faces augmenté du nombre des angles solides , sur-
passe de deux unités le nombre des arétes, toutes les fois, du
moins , que ce polyédre pourra étre considéré comme composé de
pyramides ayant un sommet commun; ce qui aura lieu pour tout
polyidre convexe , et plus généralement pour tout polyédre dans
Vintérieur duquel il y aura au moins un point par lequel il sera
impossible de faire passer une droite qui rencontre sa surface en
plus de deux points. Mais , en appliquant & la proposition (2) un
raisonnement analague & celui qui a ét¢ fait (3), pour les polygones,
on parviendra aisément i se convaincre que le Thloréme o Euler
est vrai généralement , pour les polyédres convexes ou non convexes ,
sauf les exceptions dont il sera parlé ci-aprés.

7. Ce théoréme est, au surplus, susceptible d’une démonstration
qui, sans étre plus longue que celle de M. Legendre, a sur elle 'avan-

dom. 111 25
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tage d'étre tout-i-fait élémentaire. Je vais I'exposer en peu de mots.

Soit d’abord N le nombre des cétés d’un polygone quelconque ;
soit divisé ce polygone , d’une maniére arbitraire , en compartimens
polygonaux , par des droites concourant tant 4 ses sommets qu'd
différens points dans son intérieur. Soient f le nombre des polygones
partiels résultant de sa décomposition, s le nombre des points, y
compris les sommets du polygone donné , ol concourent les droites
qui servent de c6tés & ces polygones, et enfin @ le nombre de ces
droites en y comprenant les N cétés du polygone donné.

Soient 2, m’/, m’,.... les nombres respectifs de c6tés des poly-
gones partiels ; leurs sommes d’angles seront respectivement smA—4A,
2m/A—4A , 2m/A—4A,......; donc la somme de tous leurs
angles scra

a(mt-m/4m'4 ... O)A—4fA ,

cette somme devant étre égale & la somme 2(N—2)A des angles
intérieurs du polygone proposé, plus & autant de fois quatre angles
droits qu'il y a de points de concours intérieurs, et le nombre de
ceux-ci étant évidemment s—N, on aura

2(m—tm/—m’ =~ .. )A—LfA=2( N—2) A4 (s—N)A ,
ou plus simplement
m4-m/~m/!’'4~ ... . —2f=25=N—2 ;
mais chaque ligne, excepté les cétés du polygone proposé, servant
de coté 4 deux polygones, on doit avoir
2a=N-+t+m-t-m'++m/-..... ;

ajoutant cette équation A la précédente , il viendra , en réduisant,
transposant et divisant par 2,

JHs=a+1

c’est-a-dire, que Je nombre des polygones partiels , augmenté du
nombre des points de concours des droties qui les forment , surpasse
d’'une unité le nombre de ces droites.
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Cela posé, soit un polyédre dont une face soit transparente ; et
concevons que lceil s’approche assez de cette face, extérieurement,
pour qu’il puisse apercevoir I'intérieur de toutes les autres faces; ce
qui sera toujours possible , lorsque le polyedre sera convexe. Les
choses étant ainsi disposées , concevons qu’il soit fait, sur le plan
de la face transparente, une perspective de ’ensemble de toutes les
autres. En conservant les mémes notations que ci-dessus , cette pers~
pective sera un polygone divisé en F—1 compartimens polygonaux ,
terminés par A droites concourant en § points. On aura donc, pax
ce qui précede,
(F—r)+S= a1,
d’ot
F4-S=A4-4-2.
Ceci ne sapplique généralement , & la vérité , qu’aux polyedres
convexes ; mais nous avons déja vu que la proposition étant vraie

’
pour les polyidres de cette nature , elle l'est aussi peur tous les

autres.

Au surplus, quelque simple que soit cette démonstration , on
lui préférera peut-8tre encore , avec raison, la belle démonstration
de M. Cauchy (*), qui a le précieux avantage de ne supposer nul-

lement que le polyédre soit convexe.
8. Si 'on veut que, dans un polyédre, toutes les faces aient un

méme nombre f de cotés, et tous les angles solides un méme nom-
bre s d’arétes, on aura, pour déterminer A, F, § les trois équations

JF=24 |, s§=24 , S+-F=A-4--2.

Ces équations n’éprouvant aucun changement, lorsqu’'on y permute
A la fois f contre s et F' contre §, on en conclut que les polyedres
de cette nature sont réciproques , deux i deux ; en sorte que, dans
les deux d’une méme couple, le nombre des arétes ‘est le méme ,

(*) Voyez la Correspondance sur Uécole polytechnique , tom. 1I, n.° 3, jan-
vier 1811, page 253.
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et que, de plus,le nombre des faces de chacun estle méme que

Ie nombre des sommets de l'autre; ce qui permet de les inscrire ou
circonscrire 'un & Vautre.

De ces équations on tire
258
A= p=_ Y Y
2(Js—fs (S5 2 Ao—/s
La nécessité d’avoir pourf, s, F', S, 4 des nombres entiers positifs ,

plus grands que 2 , borne les solutions de ces équations aux
suivantes :

f=3’3!4’.355,3,6,4,
§=3,4,3,5,3,6,3, 4,
FP=4,8 ,6 ,20,12, &, o, ©,
§=4,6 ,8 12,20, @, ®, »,

— Al R
A=6, 12, 12,30, 30, ®, o, o

On conclut de 13 que non seulement il n'y a -que cinq corps

réguliers, mais qu’il ne peut exister que cinq sortes de polyedres ,:
réguliers ou non, dont toutes les faces alent le méme nombre de
cOtés , et tous les angles solides le méme nombre d’arétes.

On voit, en outre, que la sphere peut, sous trois points de vue
différens , étre considérée comme un polytdre régulier, ayant des
faces infiniment petites en nombre infini ; ces faces pouvant étre
ou des triangles réunis six par six , ou des hexagones réunis trois
par trois, ou enfin des quarrés réunis quatre par quatre.

On voit encore qu’un plan ne peut étre exactement couvert avec
des polygones d’'une méme sorte , assemblés en méme nombre autour
de chaque sommet, que’ de trois manitres différentes, savoir : avec
des triangles rassemblés six par six; 2.° avec des quarrés assemblés
quatre par quatre; 3.° avec des hexagones assemblés trois par trois.

On voit enfin que les polyedres réguliers de mémes couples sont
le tétraédre avec lui-méme, '’hexaddre avec loctaédre, le dodécaddre -
avec licosatdre , la sphére couverte d’hexagones avec la sphére cou-
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verte de triangles , et enfin la sphére couverte de quarrés avec

elle-méme (*).
9. Aprés avoir démontré , de la manitre que nous-avons dit ci-

dessus , le théoreme fondamental d’Euler, M. Lhuilier s'occupe de
la démonstration du second théoréme , relatif & l'expression de la
somme des angles des faces d’un polyédre : voici cette démonstration.

Sotent f5 , f4 5 f5seevesfy les nombres qui expriment combien il
y a , dans un polyédre , de faces ayant respectivement 3, 4, 5,.....7
c6tés 3 soient " le nombre total des faces du polyédre, A le nombre
de ses arétes, et 7 la valeur totale des angles de ses faces. L’angle
droit étant pris pour une unité, on aura

V=2of ,(3—2)~42f (4—2)F2f ;(5—=2)4 ..o }-2f(n—2) ,
ou
V=20/344f Yo dnf)— 4 )
ou, enfin , ,
Ve=4A—4F=4(A—F) ; =
Cest-a-dire , Ja somme des angles des faces d'un polyédre vaut.

quatre angles droits , pris autant de fois qu'il y a d'unités dans
lexcés du nombre des arétes de ce polyédre sur le nombre de

ses faces.
L’équation F4S=A4-+}2 donnant 4—F=8—2; on a aussi

V=4{§—2) ;
c'est-d-dire , la somme des angles des faces d'un polyldre vaut quatre
angles droits pris autant de fois moins deux que le polyédre a de

somimets.

(* Dans les Mémoires de Pacadémie des sciences de Paris, pour 1725, M,
de Mairan a donné des recherches curieuses relatives & I'inscription et 2 la circons-
cription du cube & Poctatdre; mais personne , que je sache, ne s’est occupé des
mémes questions relativement aux autres couples de polyédres. Les recherches de ce
geore exigent dautant plus de sagacilé qu'on ne saurait gutre y appliquer les méthodes

g
ordinaires.
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M. L’huilier remarque que les deux équations V=A(A—F) et
¥ = 4(S—-2) étant susceptibles d’étre démontrées directement, et indépen~
damment P'une de lautre, il en résulte de nouveau F-+S=A-}2;
mais il ne eroit pas devoir sarréter 4 développer ce moyen de
démonstration.

10. M. Lhuilier indique encore un autre moyen de démonstration
assez simple, et que je vais développer bri¢vement.

Soient F', §, A respectivement les nombres de faces de sommets
et d’arétes d’un tronc de prisme que , pour fixer les idées, on peut
supposer faire partie d'un prisme droit ; si l'on désigne par m le
nombre des cotés du polygone qui sert de base a ce tronc , on aura
évidemment

F=m-42 , S=2m , A=3m ;
d'ou
F4-S=3m+t2=A42 ;
c’est-d-dire , que , dans un tronc de prisme, le nombre des faces,
augmenté du nombre des sommets , surpasse de deux unités le
nombre des arétes.

Soit présentement un corps formé par une suite de troncs de
prismes droits , dont les bases inférieures , toutes situées sur un
méme plan horizontal, et contigués les unes aux autres , forment,
par leur réunion , un poligone unique; ces troncs se trouvant unis
les uns aux autres par des faces latérales égales. Par un raisonnement
semblable & celui qui a été développé (5), on prouvera aisément
que , dans le corps formé de I'assemblage de ces prismes, le nombre
des faces , augmenté du nombre des sommets , surpasse de deux unités
le nombre des arétes.

La base supérieure de ce corps est une surface polyédre non fermée.
Désignons par f le nombre de ses faces, par s le nombre de ses
sommets, et par @ le nombre de ses arétes. Soit N le nombre des
cotés de la base inférieure du méme corps; soient F le nombre
total de ses faces , § le nombre total de ses sommets et 4 le nombre
total de ses arétes , nous aurons évidemment
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) F=f4+N41 , S=s+N , A=a-}2N ;
puis donc qu’on doit avoir
Fd4-8=A-+4-2 ,
il viendra

(f4+N41)4(s+N)=(a~+42N)+}-= ,

ou, en réduisant
- JSHs=atr1 ;

c’est-2-dire , que , dans une surface polyédre , non fermée, le nombre
des faces, augmenté du nombre des sommets , surpasse dune unité
le nombre des arétes , pourvu cependant que cette surface soit de
nature 4 ce que les perpendiculaires & un plan convenablement situé
par rapport i elle, ne la rencontrent qu'en un seul point.

Soit enfin un polyeédre quelconque auquel on circonserive un prisme
dont les arétes aient une direction telle qu’aucune d’elles ne se
confonde avec ses faces. Ce prisme touchera le polyedre selon une
suite d’arétes consécutives qui diviseront sa surface en deux surfaces
polyédres non fermées. Soient respectivement f et f7 les nombres de
faces de ces deux portions, s et s/ leurs nombres de sommets , et
enlin @ et 4/ leurs nombres d’arétes; on aura, par ce qui précéde ,

fhs=atr ,  fs=at

Soient ensuite F le nombre total des faces du polyédre, § le
nombre de ses sommets, et A le nombre de ses arétes. En désignant
par N le nombre des cétés du polygone , planou gauche, qui termine
ses deux parties, on aura évidemment

F=f4f , S=s+s'—N , A=a4-a’'—N ;

d’oty
F4-S=(f4s)+(fl+s)—~N=(a-+a' —N)+t2= A2,

Ceci suppose toujours , au surplus , qu'il y a un certain plan tel
que les droites qui lui sont perpendiculaires ne rencontrent la surface
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du polyédre qu’en deux points au plus ; mais tout plan satisfait i
cette condition', lorsque le polyédre est convexe; et l'on sait que le
théoréme , une fois démontré pour les polyedres de cette nature , peut
étre facilement étendu i tous les autres.

Dans la seconde partie de son mémoire, M. Lhuilier, ainsi que
je ai annoneé, s’occupe des diverses exceptions auxquelles le Thdoréme
d’Euler est assujetti. Ces exceptions sont de trois sortes. Je vais les
présenter successivement.

11. La premiére sorte d’exception a lieu lorsque le polyédre ren-
ferme une cavitéintérieure ; c’est-a-dire , lorsqu’il est compris entre deux
surfaces isolées et entierement renfcrmées V'une dans autre.

Soient alors, en effet, f, s, @ les nombres de faces, de sommets
et d’arétes de la surface extérieure ; soient f/, s/, @’ les nombres
analogues pour la surface intérieure ; on aura, par ce qui précede ,

JSHs=at2 ; frts/=a'}2;

s =(ata+4 5

mais, en désignant par F le nombre total des faces du polyedre,
par S le nombre total de ses sommets, et par .4 le nombre total
‘de ses arétes , on aura évidemment

JS+f=F |, s+s/=8 ata'=A ;
on aura donc aussi
Ft-S=A+4 ;

c’est-a~dire, que , dansun tel polyédre , le nombre des faces , augmenté
du nombre des sommels , surpasse de quatre unités le nombre
des arétes.

En
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En général, un corps peut étre compris entre 7 surfaces polyédres
fermées , extérieures les unes anx autres, et une surface polyedre
fermée qui les renferme toutes; en conservant d’ailleurs les mémes

notations que ci-dessus, on a alors
F4-8§=A-4-2(n+).

Si l'on représente par 7~ la valeur totale de la somme des angles

des faces d’un tel polyedre, on aura (g)
V=4(Ad-—-F)y={4{[S5—2(n-1)].

12. La seconde sorte d’exception a lieu, lorsque le polyédre est
annulaire ; c’est-a-dire , lorsqu’étant d’ailleurs compris sous une surface
unfquc, il a une ouverture qui le traverse de part en part.

Concevons que l'on fasse & un tel anncau une section plane qui,
en supposant les deux faces de la section séparées, le fasse rentrer
dans la classe des polyédres ardinaires ; soient alors désignés par F7 le-
nombre de ses faces, par §/ le nombre de ses sommets, et par A’

le nombre de ses arétes ; on aura, comme ci-dessus,
Fr4-8'=A/~42.

Soient ~ les nombres de cétés de deux faces de la section ; conce-
vons que P'on soude ces deux faces l'une a lautre, pour rétablir le
polyé¢dre dans son état primitif ; soient alors §, F', A les quantités
analogues a celles que nous avions désignées par 8/, [/, A/, lorsque le
polyedre étajt ouvert; en raisonnant comme nous lavons fait (2),

on se convaincra quon doit avoir

F4+-§—A=F'+48§'~A/—2=2—2=0 ,

ou

TLom, 111,
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F4-85=4 ;

cest-a-dire , que , dans un tel polyédre , le nombre des faces,
augmenté du nombre des sommets , est préciscment égal au nombre
des arétes.

En général un polyddre terminé par une surface unique pent éire
percé , de part en part, par un nombre plus ou moins grand d’ou-

vertures distinctes. 8i 7z désigne le nombre de ses ouvertures,
on aura

F4+-S=A—2(n—1).

Si Pon représente par F” la valeur totale de la somme des angles
des faces d'un tel polyedre, on aura (g)

V=4A—F)=4[542n—1)].

13. Yavais , depuis long-temps , remarqué ces deux premidres sortes
d’exceptions ; mais M. Lhuilier est, je crois, le premier qui ait fait
attention a la troisiéme ; et elle devait d’autant plus facilement échapper
a Uobservation des géometres, que les polyedres auxquels elle est
relative, ne paraissent pas différer essentiellement de ceux que l'on
est dans l'usage de considérer. Cette troisitme sorte d’exception a
liea, lorsque quelques-unes des faces du polyedre sont des polygones
compris dans DPexception qui a été développée (4) ; comme , par
exemple , lorsqu’une des faces du polyddre est une couronne poly-
gonale ; ainsi qu’il arrive, lorsque le polyédre résulte de Punion de
deux autres polyedres, par deux faces inégales, dont la plus petite
se trouve entiérement comprise dans la plus grande.

Pour passer, de suite, au cas le plus général, supposons que
I'une des faces du polyedre soit comprise entre 2 polygones extérieurs
les uns aux autres et un polygone qui les renferme tous. Il est facile
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de se convaincre quen menant convenablement , dans cette face,
n-t1 diagonales, elles la diviseront en deux polygones qui ne se
trouveront plus dans le cas d’exception ; de maniére qu’il sera permis
de considérer alors ces deux polygones comme deux faces du
polyédre , peurvu que l'on considere les n--1 diagonales qu’on aura
mendes comme autant de nouvelles arétes. Le polyédre se trouvant
ainsi hors du cas d’exception ; si 'on désigne par #”le nombre total de ses
faces , la face dont il sagit étant comptée comme double ; par §
le nombre de ses sommets; et enfin par .4/ le nombre de scs arétes ,
y compris les #-f1 diagonales dont il vient d’étre question; on

devra avoir .

PAgS/=A'+2.

Mais si I'on désigne par F', S, A4 les mémes choses pour le polyedre,
considéré sous le premier point de vue, on aura évidemment

Fl'=F+41 , §=Ss , A'=A+4(n41) ;
en substituant donc et transposant , il viendra

F+S=A+4-(n+-2) ;

c’est-a-dire , que, dans un tel polyédre , le nombre des faces augn'zenté
du nombre des sommels surpasse le nombre des arétes de deuz
unités augmentées du nombre des polygones intérieurs & la face qut
Jait exception , ou d’unc unité augmentée du nombre total des poly-
gones qui terminent celte fece.

En général , le polyddre peut avoir plusieurs faces dans le cas
d’exception développé (4); et si, pour celles qui suivent la premicre,
en ddsigne par »/, n/, n//,.... ce que uous avons designé par 2,

pour celle-ci, on aura



188 RECHERCHES
F4-S=d+(CH4n+n/~n'"+...).

Si 'on représente par 7" la valeur totale des angles des faces d’un
tel polyedre, on aura :

V= 4§ (A—F)k(ndn/ . )Y = 4(5—2) 3

ainsi, 1l n’y a lieu ici 3 aucune exception quant a la valeur de
la somme des angles des faces, lorsqu’on évalue cette somme en
fonction du nombre des sommets.

« L’exception que je viens d’exposer » dit M. Lhuilier » doit se
» présenter fréquemment dans la nature. Dans les agrégations mu-
» tuelles des corps, et en particulier dans les groupes de cristaux,
4 moins quil n’y ait une cause puissante qui les détermine i-
» sappliquer par des faces coincidentes , il doit se rencontrer des
» cas ou Vapplication se fait d’une maniére propre i donner lieu
» A lexception dont il sagit. Aussi ai-je vu, dans la belie collection
» de minéraux que posséde mon ami et collegue le professeur Pictet ,
» l'un des inspecteurs généraux de Puniversité , différens groupes
» de cristaux , conformes a cette exception ; parmi lesquels j’ai remar-

qué des groupes de cristaux de spath calcaire , et des gres de la
» carriere de Montmartre. »

»

14. M. Lhuilier termine par observer que les trois sortes d’exceptions
qu’il vient de considérer, et qui paraissent étre les seules auxquelles
le théoréme d’Euler puisse étre sujet, pouvant se trouver réunis dans
un méme polyedre, et s’y trouver chacuue indéfiniment; il s’ensuit
qu’il peut exister des polyedres dans lesquels le nombre des faces
augmenté du nombre des sommets surpasse le nombre des arétes , ou
soit surpassé¢ par lui d’un nombre d’unités donné et quelconque.

Si 7 représente le nombre des cavités intérieures d’un polyedre ;
que o désigne le nombre des ouvertures qui y sont pratiquées, de
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part en part, et qu’enfin plusieurs des faces soient bornées par des
polygones intérieurs au nombre de p, p/ , p//,.... pour chacune
d'elles respectivement ; on aura

F+-§=d~4-2@—o0+1)+(pt-p/~4p/~4....) ;

et conséquemment la condition nécessaire et suffisante pour que le
polyédre ne fasse pas exception aun théoréme d'Euler, sera

- 204pt-p/p/-f=.. .. =20.

GEOMETRIE.
Deémonstration de deux théorémes de polyédroméirie ;

Par M. Frangats , professeur de mathématiques & I'école
impériale de lartillerie et du génie.

(o s Vi V1, Wi Vip V1o o Vo VL. ¥

EN désignant par § le nombre des sommets ou angles solides d’un
polyedre quelconque ; par A le nombre de ses arétes ; par F le
nombre de ses faces; par P la somme des angles plans de ces mémes
faces; et enfin par J) un angle droit; on a ces deux théorémes d’Euler

StF=At2 ; (1) P={D(5—2). (2) (%)

(") Voyez le précédent mémoire.



