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PROBLEME DE MAXIMIS ET MINIMIS, 17

GEOMETRIE.

Solution d'un probléme de gcéomelrie , dépendant de la
théorie des maximis el mininis ;

Par M. LuuiLier , professeur de mathématiques a 'académie
impériale de Geneve.

AWV

_P ROBLEME. Par un point donné de position , dans un angle
connu , faire passer une droite de maniére que sa partie inierceptée
entre les cbtés de Pangle soit la moindre possible ? (*)

Soit ACA/ ( ig. 1 ) un angle donné, et soit P un point donné entre
les c6tés de cet angle; il s’agit de mener, par ce point P, une droite
dont la partie interceptée dans 'angle ACA’ soit la moindre possible.

Solution. Soient XX et ZZ/ deux droites égales inscrites dans 1'angle
ACA’ et passant par P. De ce point comme centre , avec les rayons
PZ et PX/, soient décrits deux arcs de cercle Zz et X/a/ » compris

dans les angles XPZ et X/PZ/

Puisque XX/=77/ ,
on doit avoir Xz="Z/x".
Or, LimXz :Zz =1:TangX,

Lim.Z z : X/#/=PX :PX’/,

(*) Ce probléme a été traité par M. Puissant , ( Recueil de diverses propesitions , etc.,
deuxiéme édition, pag. 423); mais son analise est toute dificrente de celle de M.

Lhuilier.
( Note des éditeurs, )
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18 PROBLEME DE MAXIMIS
Lim. X’/ : 7/ a/=Tang.X/: 1
done LimX z : 7/ 2/=PX.Tang.X’: PX"Tang.X.
Donc, lorsque XX/ est la plus petite , on doit avoir
PX. Tang X/=PX’. Tang.X ,
d'ol PX : PX/=Tang.X : Tang. X/,

Par P soient menées & CA et CA’ des paralleles rencontrant ces
droites en B et B/ ; et, par le méme point solent menées aux mémes
firoites des perpendiculaires les rencontrant en D et D/; on aura

PX:PX/:: BX:PB/:: BX:CB ;
donc BX:CB:: Tang.X: Tang.X’.
FPremier cas. Que l'angle C soit droit, on aura

Tang.X/=Cot.X et BX=BPCotX ;

done BP Cot.X : CB=Tang X : Cot.X ,
et par éonséquént
CB Cot.2X BX3
— =Cot X = e
BP  TangX X BP: ?

done
BX3=CB.BP? ;
on aura de méme

BX”*=CB.BP>=BP.CB".

Le probléme sera donc résolu puisque BX et B/X/ seront donnds en
fonctions de quantités connues , et on voit quil n’aura alors qu'une
soluntion.

Deuzitme cas. Que Pangle C ne soit pas droit, On parvient ¥ une
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dquation du troisitme degré (*); soit qu’on prenne pour inconnue la
distance du point X & quelque point donné sur CB, soit qu’on prenne
pour inconnues les tangentes des angles X ou X

Je vais, par exemple, chercher la position du point X , par sa

distance & quelque point donné sur CB, et construire Péquation cor-
respondante.

(*) On parvient & une équation fort simple en procédant comme il suit :

Soit ACB, (fig. 2) I'angle donné, soit P le point donné et soit enfin XY la
droite cherchée. Soit mené CP==K ; soient faits AngPCA=«, AngPCB=¢,
Ang.CPX=f; on aura Ang.CPY===—0; donc

Ang. CXP=m—(04}-2) , } % Sin.CXP=Sin.(¢4-=) ,
d’ot

Ang.CYP:( e—ﬁ) 2 Sin.CYP:Sm. (0—!3) 2
done

Sin.a Sin «

Y—K . —— PX=K. cooo— _ :
PY=K Sin.(6—g) -’ X=K Sin.(64-a) ’

6t par conséquent

Sin.o )
Sin. (=) Sin. (—p) *

Sin.g + Sin.
Sin.(6—p) ~ Sin.(¢4-=)

1l faudra donc, pour avoir la valeur de 8 qui convient au minimum , égaler & zéro
la différentielle de ;

XY:PY-{-PX::K{ } =K Sin.(«-}-8) .

Sin.¢ .
Sin.(6~-«)Sin,(6—g) ’

ce qui donnera
Sin.(é+u)$i11.(G—ﬁ)Cos.é—{Sin.(é—{-u)Cos.(G—-ﬁ)-l-Sin.(é—ﬁ)Cos.(é—}-z)}Sin,s:o,
En divisant cetle équation par Sin.(#4-=)Sin(é—pg)Sin.8 elle devient
Cot.b=Cot.(¢~}-#)4Cot.(4—8) ;
dquation équivalente a celle-ci

Cot.«Cot.8—1 = Cot.gCot.b-f-1

Cot.4= Cot.o4-Cot.8 ' Cot.g—Cot.0 ’

Iaquelle devient, en chassant les dénominateurs et réduisant ,
Cot.30-4-(24-Cot.«Cot.8)Cot. §4-(Cot.e—Col.8)=0 ;

équation du troisitme degré, sans second terme.
( Note des éditeurs, )
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On a, comme il vient d’étre prouvé ci-dessus ,

BX: CB=Cot.X’: Cot.X ;

DX DX’
or T — X/ = —
’ Cot. X o5 Cot. X 5D
donc
DXr DX D'Xr DX
: m— —— = — — (*
BX:CB PD T PD CB ' PB ) -

et conséquemment
BX : PB=D’X’: DX=B/X/—B'D’: DX ,
| =B/X/><BX—BD/xBX : DXxBX ,
'=B/D/*<BE—BD/><BX : BX xDX (**),
=BD/<EX : BX xXDX ;

done
BX:PB=BD/'}XEX:BXxDX , -
BX:: PB<BD/=EX:DX=EXxDX:DX= ,

on

ou enfin  BX*:CBX<BD =EXXDX:DX* (***).

Sur ED, comme diametre , soit décrit un cercle , et du point X soit

™ A cause des triangles semblables PDB et PD/B/.
(**) Par les triangles semblables, on a les deux proportions

B'X’': BP=BP : BX ,
dot B’X/: BD'=BE:BX ou B/X/xBX==B/D'XBE.
B’P : BD'=BE : BP ;
(***) A causc de BD: B'D'=PB:PB ou CB, qui donne
PBxB/D/=CBxBD.

¢ Notes des éditeurs. )
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¢levée 3 DE une perpendiculaire rencontrant en V la circonférence de ce
cercle; on aura EX X DX =XV ; substituantdonc dans la proportion ci-
dessus , elle deviendra

BX»: CBXBD=XV2:DX*®,

ou BX :y/CBxsD=XV : DX ,
d’olt BX<XDX=XVy/CBx<BD.

De 13 découle la construction suivante pour déterminer le point X.
Soit PB paralléle & CA’ rencontrant CA en B; soit PD perpen-
diculaire 4 CA ; soit aussi PD/ perpendiculaire 3 CA’ et rencontrant
CA en E.Sur DE comme diamétre , soit décrit un cercle ; soit en-
suite décrite la parabole qui est le lien géoméirique de I'équation

BXD <X =XVyy/CBxBD ; par le point V ol cette parabole ren—
contre la circonférence du cercle soit abaissée une perpendiculaire VX
sur CA ; alors le pied X de cette perpendiculaire sera le point cher-
ché; de maniere qu’en menant par X et P une droite terminée en X’
a CA’/, cette droite sera la plus petite de toutes celles qui, passant
par P, se termineront & CA et CA’.

Remargue 1.7¢ 1’équation PXTang.X’ =PX’/Tang.X devient indé-
pendante de la nature des lignes entre lesquelles il faut inscrire la
plus petite des droites qui passent par le point donné ; en substituant
aux angles X, X/ les angles que fait XX/ avec les tangentes mendes
par les points X, X/ aux courbes sur lesquelles ces points se trou-
vent situés.

Remarque 11™° Lorsque le point P est sur la droite qui coupe I'an~
gle ACA’ en deux parties égales, la plus petite des droites & ins—
crire est { comme il est connu ) perpendiculaire & la droite CP.

Remarque I1™° On pourrait obtenir le minimum proposé , en ré-
solvant ce probleme détermind : Inscrire @ un angle donné une drotte
d'une longueur donnée passant par un pornt donné? et en cherchant
les limites résultant de la comstruction. Or, cc probléme déterminé
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est susceptible d’une construction élégante par le cercle et par I'hy-
perbole rapportés & ses asymptotes.

Remarque IV.™° On rameéne a peu pres de la méme maniére & un
probléme déterminé les problémes suivans: Par un point donné , sur
une surface , sphérique , et dansun angle sphérique formé sur cette
surface ; mener un arc de grarnd cercle dont la partie inscrite dans
langle sphérique soit la plus petite , ou tel que laire ou le contour
du iriangle retranché soit un minimum ?




