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368 INVARIABILITE

ANALISE.

Theoréme genéral sur linvariabilité de la forme des

fonctions ;

Par M. pE Marzikre , professeur de mathématiques spéciales
au lycée de Versailles.

[ Fa Vo Vi, Vi Vi W W WL W3

I S OIT y une certaine fonction ¢, de forme en général inconnue ,
d'une variable x , considérée comme variable indépendante; ¢ (x) étant
supposée pouvoir varier , soit par les états de la variable x , soit par
la forme méme de la fonction désignée par ¢.-

S¢, pour un certain état particulier x, (*) de la variable princi-
pale , Iétat correspondant y, de la variable dependante est exprimé
par ¥ (x,) (**), on ¥, désigne une fonction déterminée de Uétat
X, 3 pour tout autre état x, de la variahle principale , I'état corres
pondant vy, de la variable dépendante sera exprimé par ¥ ((x,); cest-
a-dire , qu'on pourre éire sir, avant méme de connaitre la forme
de ¥, , que la relation entre y et x est invarialble (***).

™ x, doit se lire: & numéro a.
(™) F1 (x) se prononce : fonction numéro 1 de x numéro a.
a) ¢ P
(***) Ce théoréme , A raison de sa grande généralité , pouvant n’étre pas également
bien saisi par toutes les classes de lecteurs, il ne sera peut-&tre pas hors de propos de
xer , par 'application suivante , le sens précis qu'on doit y attacher.
fixer , par I'applicat te , les
Soit y une fonction e=(14-2)* d'une variable x ; si pour un certain état particulier

a ;~m de la variable principale {m éiant supposé entier et positif ) I'état correspondant
¥a de lavaviable dépendante est exprimé par

m-—1i
Z2f= 40y
Pyscii SRR

Fy (x)=F, m=1+7 o4 .
On
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On regarde communément cette proposition , prise dans le sens ge-
néral de son énoncé, comme un axiome, et néanmoins on croit ne pas
pouvoir se dispenser de démontrer diverses propositions particulitres
qui y sont renfermées. Il parait cependant qu’il n’est aucun cas ou
une démonstration soit moins indispensable que dans le cas de I'incom-
mensurabilité, que dans la généralisation des formules, soit de la tri-
gonométrie , soit de la transformation des coordonnées , soit des puis-
sances des polynomes , etc.

La seule condition de rigueur, entre les variables x et ¥, est qu’elles
soient , I'une et 'autre, assujéties a la loi de continuité ; en sorte que
Pon puisse concevoir deux états de 2 si voisins qu’on voudra, et assez
voisins pour qu’il leur corresponde deuax états de y dont la différence
tombe au-dessous d’une limite donnée, quelque petite qu'on la sup-

pose (*).

‘G

pour tout autre état, xj===—n ou x=—, de la variable principale , I'état correspondant

Q

5 de lavariable dépendante sera exprimé par
(=n) ; (——n) (—“n)—l' 2
F4

Fy(wp)=Fy(—n)=1-}

i H’"(q _ ( (") (“‘)“

(» Ceci n’a pas besoin d’explication, lorsque Ia série des dtats de x étant composée
de termes réels , celle des états correspondans de y ne comprend également que des
termes réels ; mais on peut considérer une suite d’états imaginaires de x ou, en ne
considérant que des élats réels de cette variable, il peut se faire que lasérie des états
correspondans de y ne renferme que des termes imaginaires ou soit composée de diverses
parties alternativement réelles et imaginaires , et alors on peul demander & quels ca-
ractéres on reconnaitra qu'une telle suite de termes est assujétie a la loi de continuité ?
Comme cela est sans difficulté pour les termes qui composent les parties réelles dela
série , il s’agit seulement d’expliquer dans quel sens on peut dire que , soit deux termes
imaginaires , soit un terme réel et un lerme imaginaire , se succédant consécutive~

oo

ou

ment , sont plus ou moins voisins.
. Pour cela nous remarquerons que la différence de deux pareils termes peut tou~

jours , en général, étre supposée imaginaire et de la forme p=g\—1; oril n’y a
Tom. I. 50
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Notre proposition sera démontrdce ( comme on le verra bientot ) si,
Tppy » Vagr Ctant deax états correspondans , aussi voisins qu’on vou-
dra de x,, Y., Tespectivement , on reconnait que la relation
ya—i-x:FZ(xa-!-l) (1>

est une absurdité; F', désignant une fonction déterminée, connue-ou

inconnue , autre que celle qui est désignée par F7,.

Pour établir cette proposition , formons le tableau des séries d’états
variables de x, y, F((2) , F,(2) ,.0.e.

x x, x, |ees x, Xgpy lons x, 4y
¥ ¥ yo ... Va Yarr Looe| ¥ (W
F()|F (@) [ F (@) oo | Fo(@) [Fr@ars) | - [Fu ()] (D)
F@)|F@ )| Fa@)| oo | Fa(@) [Fa(@ap )| oo [Fal@d)| (V)

s s ® e o] s cn 0 sk e evsetel oo s 00 2 s co0 et es e} s o0t

25806 o

Cela posé, soient ' R
A r,=i L (2) :
Yarr—  Ya=V 3
F! (xﬂ-{— I>_Fl (xa):: l:// 9 (4) ' v
Fy@ay )= Fla)=i" (5)

i, , ", i, . ...désignant des quantités qui, sans étre nulles , tom-
bent au-dessous d’une limite donnée, si petite qu’on voudra la supposer.
Si (1) est possible , on a, & cause de (3), et de §y,=F,(x,)

pas de doute quune telle expression ne puisse tendre vers zéro, puisq:'il suffit pour
cela que p et ¢ tendent eux-mémes vers cette limile commune. Nous dirons done
que les deux termes que nous considérons ici sont dautant plus voising que p et ¢
seront plus petits , el la loi de continuit? consistera, dane ce cas, en ce quon puisse
concevoir ces deux lermes assez voisins poar <ue p et g, sans ftre nulo, puissent

tomber , Pun et lautre, au-dessous d'une limite donnée, quelque petie d'ailleurs
’on suppose cette limite,
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FZ(xd+l)-Fl<xa)=l./ 2 (6) —~ -
donc (5), (6) donneront
Fo(w)—F (x)=i/—il =i/ )

Or, ce rdsultat est impossible ; car F,(2,) est une quantité déter-

minée , résultant de certaines opdrations sur la quantité x, et sur les
constantes implicites &, ¢,.....; I7,(#,) est aussi une quantité dé-.
terminée , qui résulte d’'un autre systéme d’opérations sur les quantités
Zar b,y e , qui sont exactement les mémes que dans F,(z,); donc
F(2,)—F,(x,) est aussi une quantité déterminée et ne peut consé-
quemment tomber au-dessous d'une limite si petite qu’on voudra; la
relation (7) est donc impossible et conséquemment la relation (1) Pest
aussi , si l'on suppoée F, différent de F, ; donc enfin F, est identi-
que avec F,.
11 suit de 13 que y, étant compris dans la série F,(x) létat y,, ,
qui avait été supposé =F, (%4 ), est aussi compris dans la méme série
puisque F, étant la méme chose que F, ; aussi /', (2, ,) est la méme
chose, que F,(#,4.,): or, cette proposition dtant générale , il s’ensuit
que pareillement y,, . est compris dans la méme série F, (x) et que
généralement, si ¥,4, y est compris, il en sera de méme de ¥,4 01,3
donC ¥,q ;3 5 Yt s s Yads »+eee- ¥, sont compris dans la méme série ;
donc enfin y,=F (x,) , comme nous I'avions annoncé.

1. La méme proposition est yraie & l'égard d'une fonction inconnue
y de deux variables principales x/, X' ; c'est-é-dire , que si , pour
les états simultanés x/,,, x",, , des deux derniéres , répondent & l'état
Vaar (*) de la premicre,on ey, =F (x/,, x,) w. (1),0u F, désigne
une fonciion déterminée , connue ou inconnue; pour lout auire sys-
téme x'y, , Xy, , d'états simultanés des deux variables principales ,
répondant & létat y,,. de la variable subordonnée, on doit avoir
également Yy, =F (8, x7p) eene. (2)e -
On peut, pour démentrer cette proposition , ou répéter exactement

* , M
(™) Yaran $'énonce y numéro, o prime, @ seconde.



372 INVARIABILITE DES FONCTIONS

4¢ raisonnement qui a servi & démontrer la premiére, ou employer un
nouveau raisonnement, non moins simple , et fondé sur cette premicre:
nous préférerons ce dernier mode de démonstration.

Pour parvenir de ¥, & ¥, considérons D’état intermédiaire ¥ are
Cet état se trouve dans la série des états de o(s/, 2//,,), pour lesquels
x”,, est constante ; ainsi ¢(2/, x/,) est une fonction d’une seule va-
riable 2/, et un de ses états particuliers est, par hypothese ¥, .=
Fo(x/y,2,,) ; donc toute la série o(2/ , x”,,) est de la forme
Fo(a’y x”u) ;5 done, en particulier, pour /i, 27, on a: Yym=
Fo(@y, 2700000 (3).

Maintenant , la valeur y,y, est camprise dans la série des états de
o(a/, , /") pour lesquels 27, est constant, #// seule variable, et dont
un état particulier est, (3), Yuan=F (@, &% ) ; done (1) toute la sé-
rie ¢(&/y , /) est de la méme forme que F', (¢’ ,2”,y) ; donc, en par-
ticulier ymn= F (&4 5 ®'/yn) , comme nous I'avions annoncé.

1I1. La proposition étant supposé vérifiée jusqua y =o[ 2/, 27/, ., a®],
elle sera vraie aussi pour y=o[a’, 3”7 esss, 2® , g&+D] En effet,

— k) (k1)
(k)“(k-i"l)—F; [x/al 9 //ali' v aR) 9 X (k‘:x)] (*) o (I)

i ® k1)

= x/ // x

nous allons voir que VPTPRCAC LS F.T L NPNPENCY h(k'H)]
k3

LR (2)0/

Pour nous en convaincre, considérons d’abord I’état intermédiaire

supposons ¥

alal vws a

i : ® G+1)
Yot w013 5 compris dans la série o[/, 27 2™, z o1y ] fone-

. . . o (1)
tion de % variables ( la derniére quantité xa(k.; ;) étant constante ), et dont

un état particulier est celui supposé (1). D’apres i’hypothése établie pour

. . . . (k) GR+1) 7
une fonction de % variables , on doit avoir ¢[2/, 4/, .uax , & (k_‘_,)]

®  k+1) n : -
/ //
F [#, & 05 @ g1y ] oee (3) 5 €t par conséquent ¥ oy P00

(k) (k+1)
/ !/ ‘
Fl [x " 5 X W g eseey xh(k) 9 J/ﬂ(k_‘. 1 )] eer (

Maintenant la valeur énoncée y,,n, ..., 0, k+1) est un état particulier

My aral swenna0O f (R 1) 'énonce : ¥ numéro , @ prime, @ seconde , ... @ accent k,
# accent (f4-1) .
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/ (] (k1) . -ariab ®+1)
de o[ o X s a0 X 1, fonction de la seule variable z7 " .

S ORI
et dont urr autre état particulier est /7, [a:’h/, x’/M ORERCTENTENS 1
) +1) 1
2

donc (T)on doitavoir ¥,y .., x00 G-+ 11=F, [x/h, 2 &7y e TG00 T 1)

/3
comme nous l’avons annoncé,

IV. Conclusion.La proposition étant effectivement prouvée (), (IT)
pourk=1, k=2, il sensuit (III) qu’clle est vraie pour A=3,k=4,...,
pour un nombre quelconque, pour un nombre 7 de variables.

V. 1l est maintenant facile de voir que cette proposition embrasse .
dans sa généralité, toutes celles qui concernent les incommensurables, les
formules trigonométriques , le développement de (142", m étant
queiconque, ete., etc. 1l ya plus, elle sapplique & des fonctions com-
posées de plusicurs séries’ séparées, comme sont les ordonnées des
deux parties d’une hyperbole ; la loi de continuité étant conservée,
dans les deux séries distinctes, par les expressions imaginaires qui ,
entre autres propriétés , ont l'importante destination de lier des résul-
tats qui , sans leurs intermédiaires, sembleraient isolés les uns des autres.




