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Solution du problème de la page I60 de ce volume.

Par M. G E R G O N N E.

RÉSOLUES.

ENONCÉ. Déterminer ce qu’il faut substituer à la place des cinq
coefficiens différentiels partiels

dans une fonction ou une équation qui les renferme , lorsqu’on passe
de l’hypothèse où z est fonction de x et y, à celle où x , y , z, sont

toutes trois fonctions de deux- nouvelles variables indépendantes u
et v ?

Solution. Les formules demandées sont plus compliquées que
difficiles à construire , et c’est sans doute pour cette raison qu’au-
cun géomètre ne s’est occupé de leur recherche. Néanmoins, comme
ces formules peuvent être utiles dans plusieurs rencontres , je vais.

suppléer, à leur égard, à l’espèce d’omission que présentent les traiter

de calcul différentiel.

Par l’intermédiaire de x et y , la variable subordonnée z pouvant
tout aussi bien être considérée comme fonction de u et il que comme

fonction de et y , on doit avoir à la fois-

et par conséquent,
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mais parce que x et y sont , l’un et l’autre , des fonctions de u et

v , on doit avoir aussi

substituant donc dans l’équation précédente , elle deviendra

La différentielle complète de cette équation , par rapport à u et
v , sera r

or à cause de l’indépendance des différentielles du et dv, les équa-
tions (I) et (II) se partagent dans les cinq suivantes :

(*) Ces équations, en y changeant x et y en u et v , et vice versâ , rentrent dans

celles qu’a données M. Lacroix , pour une transformation analogue à celle-ci ; mais
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Si , dans ces équations, on considère p , q , r , s , t , comme incon-

nues , on tirera d’abord des deux premières

posant alors, pour abréger,

auquel cas les valeurs de p et q deviennent

on tirera des trois dernières équations

qui en diffère en ce que , dans la sienne , ce sont M et v qui sont considérés comme des
fonctions de x et y , 3 tandis qu’ici , au contraire ce sont ces dernières variables que
nous considérons comme des fonctions des premières. ( Voyez le Traité de calcul

et de calcul ; tome II, pages 565 et 566. )
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Telles sont les formules demandées.

Quoique le procédé que nous venons d’employer , pour par-
venir au but, ne laisse rien à desirer du côté de la brièveté, on
pourrait lui reprocher d’être basé sur la considération des quantités
infiniment petites du et dv ; mais on peut le présenter sous une forme
analogue à celle que l’illustre auteur de la Théorie des fonctions.
analitiques (*) a indiquée pour le changement de la variable indé-

pendante, dans les fonctions d’une seule variable ; ne reposant alors

que sur la série de Tailor , il pourra être traduit dans toutes les

notations. Voici ce qu’il faut faire pour cela.

Concevons qu’on fasse subir à u et v des accroissemens arbitraires

et indépendans , respectivement désignés par g et h , on pourra,

par la série de Tailor , développer les valeurs correspondantes de x
et y , et en posant pour abréger ,

ces valeurs seront

z, comme fonction de x et y, deviendra done

(*) Voyez cet ouvrage , n.o 200.
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mais comme par l’intermédiaire de x et y, la variable subordonnée
z est aussi fonction de u et v, on peut dire également quelle de-

viendra

on doit donc avoir

mettant, dans cette dernière équation , pour G et H leurs valeurs , et

ordonnant l’équation résultante par rapport aux puissances et pro-
’duits de puissances des accroissemens g et h , tous les termes de

cette équation , en vertu de l’indépendance de ces accroissemens, de-
vront séparément se détruire ; et , en exprimant qu’ils se détruisent
en elfet, on obtiendra une suite indéfinie d’équations , dont les.

cinq premières seront les mêmes que celles que nous avons obtenues

ci-dessus et donneront conséquemment les mêmes valeurs pour p,
q , r , s , t.

Voici encore, pour parvenir au même but , une autre méthode qui,
je crois, n’a été indiquée nulle part, et qui, sans être aussi labo-

rieuse que la précédente , a , comme elle , l’avantage de ne dépendre
aucunement de la considération des infiniment petits ; elle s’applique
d’ailleurs, avec une extrême facilité, au changement de la variable

indépendante , dans les fonctions d’une seule variable.

Soit l’équation M=o , dans laquelle M est supposée une fonc-

tion quelconque de x, y, z ; si l’on cherche ses dérivées successives ,
en considérant z comme une fonction de x et y, celles du premier 
ordre seront
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si , au contraire, dans la même équation M=o, on considère x , y,
z , comme fonctions de deux nouvelles variables u et v , ses deux
dérivées du premier ordre seront

si maintenant , entre les quatre équations (A), (B), (A’), (B’), on
élimine deux quelconques des trois fonctions dM dx, dM dy, dM dz, la troi-
sième disparaîtra d’elle-même ; on obtiendra donc ainsi deux équa-
tiens ne renfermant plus que dx du, dx dv, dy du, dy dv, dz du, dz dv, combines

avec p et q, et qui donneront , pour ces deux coefficiens différentiels
les valeurs que nous leur avons déjà assignées.

Soit maintenant formé les équations du second ordre , sous l’un
et sous l’autre point de vue. En considérant d’abord z comme fonc-
tion de x et y p les équations (A) et (B) donneront

considérant ensuite x , y 9 z , comme fonctions de u et v , on dc-

duira des équations (A’) et (B’)
(C’)
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Alors , si entre les dix équations (A) , (B) , (C) , (D) , (E) , (A’) ,
(B’) , (C’) , (D’) , (E’) , on élimine p et q , et en outre cinq des
neuf fonctions 

les quatre autres disparaîtront d’elles-mêmes , et les valeurs de r ,
s , t , tirées des trois équations finales seront les mêmes que ci-dessus.

Tom 1. 35
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Le cas le plus simple que puisse présenter le problème général

que nous venons de résoudre , est celui où l’on veut passer de l’hy-
pothèse où z est fonction de x et y à celle où , par exemple, x est
fonction de y et z ; on peut poser alors

d’où

par suite de quoi les valeurs générales de p , q , r , s , t , deviennent


