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RESOLUES. 251

Solution du probléme de la page 160 de ce volume.

Par M. GERGONNE.

[a Via Vi Vi Via V8 e e =2

ENONCJ’;". Déterminer ce quil faut substituer & la place des cing

coefliciens différentiels partiels

dz__ dz &Zz__ dez _ dzz__t
dx—P’ dy_q’ dxﬂ——r’ dxd_y_s’ dy-"_ ?

dans une fonction ou une équation quiles renferme , lorsqu’on passe
de I’hypothése ol z est fonction de z et y,4 celle ou z,y, z, sont
toutes trois fonctions de deux- nouvelles variables indépendantes z
ety ?

Solution. Les formules demandées sont plus compliquées que
difficiles 3 construire, et c’est sans doute pour cette raison qu'au-
cun géometre ne s’est occupé de leur recherche. Néanmoins , comme
ces formules peuvent étre utiles dans plusieurs rencontres , je vais.
suppléer , & leur égard , & L'espéce d’omission que présentent les traités
de calcul différentiel.

Par Vintermédiaire de x et y , la variable subordonnée z pouvant
tout aussi bien étre considérée comme fonction de # et ¢ que comme
fonction de « et y , on doit avoir a la fois

dz . . d
de=pda—~+-gdy , dz:Edu-{—%édfé B

et par conséquent ,

dz d
pdo-t-gdy= I du— -éf de;
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mais , parce que x et y sont, Pun et lautre, des fonctions de # et

¢, on doit avoir aussi
da dx dy dy
=—du-4-— = “Ldo -
dv 7 du-t o de, dy dwdu-—}- dvdV ;
substituant donc dans I'équation précédente , elle deviendra

g dx dz dy dz

(1) V% ;)—i——-—{/m—-}c}u+§ + 3 -—é-idv_-o.

Ta différenticlle complete de cette équation , par rapport & u et

¢, sera -
[ d2x dx dx dy d
%duz du27+< ) 7‘+" +<y>t""—" du
dex day dx dx dx dy dx dy d_y d} d2z
(1) { ~+-= %dudvp—*-dudvq—*—du e v Mu] LL r%dudy

d2x dx dxdy dy d2z
~+ % dv’ +< ) e & a’ ()t—_} pi=0;

or, & cause de lindépendance des différentielles du et dv, les équa~
tions (1) et (1) se partagent dans les cing suivantes :

v

dz dy dz
(I) dup+duq~du’ (>— dvq
de2x / dx dx dy &w
2} —— D —— =
(O) duz dul \\du> 72 du du ctu) L= duz
d dx dx dx dy dx dy dy d dzz
+ drdx X dy a4y .)’
(4) dudy dud 7 7+ du dv * dy du s+ du dy dudv

'_’

dzx dy dv\2
Ol w+() T+ (T) =

2

M . .
(*) Ces équations , en y changeant x el yenuety, et pice versd, rentrent dans

b T . . . .

celles qua doandes M. Lacroix, pour une transformation analogue & celle-ci; mais
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Si, dans ces dquations, on considire Ps>qsTyS, ¢, commemcon~
nues , on tirera d’abord des deux premiéres

dy dz  dy d= dedz dxdz
dwdu Tdu & _525—79614'
dx d)f dx dy ? _f!x dy d.v_c dy ?
dudy -~ @ dz du dy ~ dv du
posant alors , pour abréger,
512’ dz dy dz _ dx dz dx dz dx dy dx d_y
dde  dudy "0 dude dy du > dudy dy ds
auquel cas les valeurs de p et ¢ deviennent
- _H
P= K2 79=%X"
on tirera des trois derniéres équations
=iy Dy dy  bydy by oy,
dv duz dy du dudy du/ dy=
1 2 d2z dy dy dez d2z
T +K§( dwr 2 dy du dudy ( ) dvzg ) 2
G y dy dzx dy\2 d2x
\ dv dar 23 du dudv du/ dez\ ¢
Cnfl ity [y dedydy | dedydy
dv d¢ duz | du dv Ay du dudv du du de?
1 dx@yc}z drdy+dxdj dz | dx dy &z
SE N T | 3% T d du|dude T @ du doe
G dx dy d2x [dedy ~dedy + dx dy dx
- dy g; dur du dv dy du | dudy du du de2

"
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}
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qui en différe en ce que, dans la sienne , ce sontu et ¢ qui sont considérés comme des

. e . 1ay S oy

fonctions de x et I tandis quici ,au contraire , ce sont ces derniéres variables que
. . . iy

nous considérons comme des fonctions des premiéres. ( Voyez le Traité de calcul

différentiel et de calcul intégral ;

tome 1T, pages 565 et 566. )



254 QUESTIONS
(H dv 23” - dx dx dzy (_!f 3‘(32- )
du2 dv du dudy du/ dp2

1 dzz dx dx d2z dx\2 d2z
e

du2 “ dv du dudy du/ dp2

2 d2x dx dx d2x 2 do2x
—G{ & dur = ,(-1; du dudv+ du> dvz} /

Telles sont les formules demandées.

Quoique le procédé que nous venons d’employer , pour par-
venir au bat, ne laisse rien 4 desirer du c6té de la brieveté , on
pourrait lui reprocher d’étre basé sur la considération des quantités
inhiniment petites dz et d¢ ; mais on peut le présenter sous une forme
analogue a celle que lillastre auteur de la Théorie des. fonctions.
analitiques (*) a indiquée pour le changement de la variable indé-
pendante , dans les fonctions d’une seule variable ; ne reposant alors
que sur la série de Tailor , il pourra étre traduit dans toutes les
notations. Voici ce qu’il faut faire pour cela.

Concevons qu’on fasse subir d z et ¢ des accroissemens arbitraires
et indépendans , respectivement désigndés par g et 2 , on pourra ,
par la série dc Tailor , développer les valeurs correspondantes de
et ¥ , et en posant, pour abréger ,

G — deg = dxh _dyg

dyh
du;+du:+“” du1+ +'”' ?

ces valeurs seront
2+G, y+H;

z,comme fonction de x et y, deviendra donc

6.  H
ztpstgT A

(*) Voyez cet ouvrage , n.° 200.
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mais comme , par l'intermédiaire de # ct y, la variable subordonnée
z est aussi fonction de # et ¢, on peut dire également qu'elle de~
viendra

dz g dz h
z+4§;?+dv1+”“ 4
on doit donc avoir
dz g dz

G, H g , dsh
p;+7—;+.-. —a";‘+d‘)l+--..

mettant, dans cette derniére équation , pour G et H leurs valeurs, et
ordonnant D’équation résultante par rapport aux puissances et pro-
duits de puissances des accroissemens g et A, tous les termes de
cette équation , en vertu de I'indépendance de ces accroissemens, de—
vront séparément se détruire ; et, en exprimant qu’ils se détruisent

en effet , on obtiendra une suite indéfinie d’équations , dont les.

¢inq premicres seront les mémes que celles que nous avons obtenues
ci-dessus , et donneront conséquemment les mémes valeurs pour p,
G758, Le

Voici encore , pour parvenir au méme but , une autre méthode qui,
je crois , n’a été indiquée nulle part, et qui, sans étre aussi labo-
rieuse que la précédente, a, comme elle, I'avantage de ne dépendre
aucunement de la considération des infiniment petits ; elle s’applique
d’ailleurs , avec une extréme facilité , au changement de la variable
indépendante , dans les fonctions d’une seule variable.

oit I’équation M=o , dans laquelle M est su e u onc-
Soit I'équation M=o , dans laquelle M est osée une fon

tion quelconque dex, y, z;si Pon cherche ses dérivées successives,
en considérant z comme une fonction de x et y , celles du premier

erdre seront

dM dM . dM dM
@& GFrtgp=e, B 7 7+ =05
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si, au contraire , dans la méme éqaation M=o, on considére z, ¥

z , comme fonctions de deux mnouvelles Vamables u ety , ses deux
dérivées du premier ordre scront

dM M dy -

dv du " dy de ' dzds 07
- dM de dM dy dM dz
@y Dl Ml e
dx dv dy dy dz dv

si maintenant , entre les quatre équations (A) , (B), (A, (B/), on
e . ) . dM  JdM dM
élimine deux quelconques des trois fonctions — , — ,

dx 7 dy dz
sitme disparaitra d’elle-méme ; on obtiendra donc ainsi deux équa-

, la troi-

. d dx d d d d
tions ne renfermant plus que puadical A A e

du’ &’ du? a0’ du? d ? combinés
avec p et ¢,et qui donneront, pour ces deax coefliciens dillérentiels,
les valeurs que nous leur avons déja assignées.
Soit maintenant formé les équations du second ordre , sous 'un
et sous l'autre point de vue. En considérant d’abord z comme fonc-
tion de # et y, les équations (A) et (B) donneront

dM d=M d=M
(C) —7+__10 +° S .—0s

deda? P+ dxz
&M = &M
(D) ”—"+ pretic Al et s vl e apre L
aM | &M EM &M
(E) —d;t+d”q+°dzuyq+df“ 03 -

eonsidérant ensuite # , ¥ , z , comme fonctions de z et ¢ , on dé-
duira des équations (A) et (BY)

()
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M My e iy
de du* dxc2 du dydz du du
12y d M dx dz |
cy (4 My ) M dwdz fo
( ) + dy du2 dxdz du du 0>

dM d2z d=M (dz}* d:M dx dy

Tr et o\ T ey @ w

4 —— — —— q— e ———

dx dudy dx* du dp dydz

dM dex dzM dx dx d=M g dy 6z

AM &y @Mdydy | &M(dede | deds) |
@) |- Ly EM Yy .__i_{_’f_i v 323 =0,
dy dudv dy=z du dv dadz { dudv * dv du

M drp | &M de de dﬂMgdxdy \dx;}y}..
4

\+ —c—{z ci:cg _(;—z; EZE'; dady { du dp dy du
P

, dM izic + dzM dy dz

dx dez dx3 dyde dv dv
dM d= y > + d=M dx cfz
dy dvz dxdz dv ds’

-

) +—

)=o.

dM doz d=M dz>3 d°M dx dy
dy

T E et e ® Tl & 4

[N

Alors , si entre Jes dix e’quatfons A),[B), ), D),E), @A),
®), (¢), ®), E), on dimine p et ¢, et en outre cing des

neuf fonctions _

M dM dM &M &M &M &M &M &M
do?-dy ¥ & P dwr? GyTt & dyds’ dedz  dady

les quatre autres disparaitront d’elles-mémes , et les valeurs de 7,
s, 1, tirées des trois équations fnales seront les mémes que ci-dessus.
Tom 1. 35
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Le cas le plus simple que puisse presenter le probléme général
que nous venons de résoudre , est celui ou I'on veut passer de 'hy-

pothése ot z est fonction de # et ¥ & celle ou , par exemple,, & est
fonction de y et z ; on peut poser alors

X=x , y=u, Z2=¥¢;

d’ol

dx ‘if (dx_dx d’x d' dzx__iifi :1:_35__(}2?
& dy? A de’ dwr dyr’ dudy dyde” der de?

dy dy dﬁy dy L
du.— ‘1 ? dv_o > dur > dudy o dv‘ © e

dz dz dz - d2z
du

dz
o Y mT %0 qayo 0 T 95

par suite de quoi les valears généralesde p, ¢,7,5,7, deviennent

dx
. - Y
= dx ? 7"‘*717 b
dz R dz
d2x : dx dox dx d2s
dz2 __52 dydz— (—i‘—y dz>
T dxNS 2 $= da\3 »
(% T)
<dx 2 d2e - de dx d2x 2 dax
- S — D T e e
7 dz / dy» dz dy dydz ( dzz .

) |



