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230 QUESTIONS

~ QUESTIONS RESOLUES. ()

Solution du probléme enonce & la page 127 de
ce volume.
Par M. ***
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ENON CE. Partager un tétraédre en deux parties équivalentes , par

un plan qui coupe deux couples d’arétes opposées, de maniére gue
Vaire de la section soit un minimum ?

Solution. Soit partagé les quatre arétes dont il s’agit en deux
parties égales ; il est aisé de voir que leurs milieux seront les som-
mets des angles d’un parallélogramme , et seront conséquemment dans
un méme plan paralléle , a la fois, aux deux arétes restantes; d’ott il

résulte que ce plan partagera le tétraédre en deux troncs de prismes
triangulaires.

Or il arrivra , 2 la fois, 1.° que ce méme plan partagera le té-

traédre en deux parties équivalentes ; 2.° que parmi tous les plans

qui, coupant les mémes arétes , satisferont & cette condition , celui-la
donnera une section dont Vaire sera un minimum. (**)

Si les arétes sur lesquelles doivent étre situés les sommets des
angles de la section ne sont pas désignées, le probleme sera sus-
ceptible de trois solutions , parce que , dans un tétraédre, il y a trois
manicres de choisir deux couples d’arétes opposées. (***)

(*) Les rédacteurs n’ont encore regu aucune solution du probléme énonce ala page
326 de ce volume,

(**) On propose de démontrer ces deux théorémes,

(***) On propose de déterminer quelle est celle des trois solutions qui répond
a0 minimum-minimorur:



