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TRIANGLES SPHERIQUES RECTANGLES. 197

TRIGONOMETRIE SPHERIQUE.

Analogies entre les triangles rectangles reclilignes el
spheriques ;

Par M. LuuiLIER, professeur de mathématiques A Tacadémie
impériale de Gentve.
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ON connait,, depuis long-temps, plusieurs analogies entre les trian-
gles rectilignes et les triangles sphériques ; mais ces analogies sont
purement relatives aux différens cas que présente leur résolution.

Je me propose ici de faire remarquer la correspondance qui a lieu
entre les triangles rectilignes rectangles et les triangles sphériques rec-
tangles, sous le rapport des propriétés fondamentales des premiers ;
c’est une considération dont je ne crois pas que personne se soit oc-
cupé jusqu’ici.

Les propriétés fondamentales des triangles rectilignes rectangles
sont les sulvantes :

1.° Le quarré de Phypothénuse est égal a la somme des quarrés
des deux autres cotés. ‘

2,° Du sommet de P'angle droit, soit abaissé une perpendiculaire
sur I'hypothénuse ; le quarré de chaque cété est égal au rectangle
~ de I'hypothénuse par le segment adjacent.

3.° De la, les quarrés des c6tés sont entre eux comme les segmens
adjacens de I’hypothénuse.

4.° Le quarré de la hauteur est égal au rectangle des segmens
de I'hypothénuse.

dom. I, 27



198 TRIANGLES SPHERIQUES

5.° L’hypothénuse , les cotés et la hauteur forment une propor-
tion géométrique.

Je vais développer , sur les triangles sphériques des théorémes cor-
respondans & ceux que je viens d’énencer sur les triangles rectilignes.

. THEOREME 1. Dans tout triangle sphérique rectangle, le quarré
du sinus de la demi-hypothénuse est égal & la somme des produits
des quarrés des sinus de chaque demi-coté par le quarré du cosi-
nus de la moitié de auire. ’

Soient A, B, C, les c6tds d’un triangle sphérique rectangle , dont
A est 'hypothénuse.
© Jaffirme que Sin.*!A=8in.2:B Cos.*:C4-8in.*;C Cos.2:B.

Démonstration.

Cos.A =Cos.B Cos.C = (2Cos.>>B—1)(2C0s.*;C—1)
= 4Cos.*:B Cos.>:C—2Cos.*:B—2Cos.>; C+-1

:
=1—2Cos.*:B(x -——Cos.*fC)———zCos.f%C(I —Cos.*:B)
= 1—28in.2:B Cos.>2C—2Sin.>;CCos.*;B ;

donc

1—Cos.A=2{Sin,*;B Cos.*:C+-Sin.”;C Cos.*;B} ;
mais
1—Cos, A = 2Sin.22A ;
donc, enfin,
Sin.?; A =Sin.>:B Cos.?: C+-Sin.>>C. Cos.*: B,

C.Q.F.D.

Corollaire 1, L’application aux triangles rectilignes a lieu en subs-
tituant aux sinus des demi-c6tés ces demi-cotés eux-mémes, et en
substituant 'unité & leurs cosinus,

Corollaire II. Soit désigné par & langle formé par les chordes
des jambes de langle droit d’un triangle sphérique rectangle. Les
chordes des: trois cotés étant les doubles des sinus des moitiés de ces
cOtés , on aura » par la trigonométrie rectiligne, 'équation suivante :
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Sin.*; A=S8in.>.B—2Sin..BSin.: C Cos.z—+4+Sin.?:C ;
= Sin.;{ BCOS.‘%C%-Six).’f CCos.tB ( Théoréme L) 3
de ]a : ‘ o R Foe
28in.2B Sin.2C Cos.z = Sin.*: B(1—Cos.2! C)4-Sin.*:C (1—Cos.: B)
=28in.>:BSin.?>;C ;
donc Cos.z=8m.:BSin.;C .

Savoir , Dans tout triangle sphérique rectangle , le produit durayon
par le cosinus de Pangle formé par les chordes des arcs qui sont
les jambes de langle droit , est égal au produit des sinus des moi-
1iés de ces aercs.

Corollaire 1I1. Dans un triangle sphérique dont un cété est un qua-
drans : le quarré du cosinus de la moitié de I’angle opposé au qua-
drans est égal 4 la somme des produits du quarré du sinus de cha-
cun des demi-angles restans par le quarré du cosinus de la moitié
de Pautre. Ce corollaire se déduit immédiatement du Z%éoréme I, par
la considération du triangle polaire ou supplémentaire.

THEOREME II. Dans tout triangle sphérique rectangle , le quarré
du sinus d'un des cOtés est au produit du sinus de I'hypothénuse
par le sinus du segment adjacent & ce cité, comme le sinus total
est au cosinus de ['autre segment de ['hypothénuse.

Soient B/ et C/ les segmens de lhypothénuse faits par la hau-
teur , et adjacens aux cétés B et C respectivement.

Jaffirme que Sin*;B: Sin.ASin.B/=1 : Cos.C.

Démonstration. Soit £ la hauteur du triangle sphérique.

On a Cos.B=Cos.~ Cos.B/ ,
Co5.C=Cos.% Cos.C’ ;

N Cos.B : Cos.C=Cos.B’: Cos.C’ ,

Cos.*B : Cos.B Cos.C=Cos.B/ : Cos.C’ ,

oun Cos.*B : Cos,A=Cos.B : Cos.l’ ;

donc
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done \ Cos.?B : Cos.ACos.B/=1 : Cos.(/ , ~

et 1—~Cos.*B : Cos.C/—Cos.ACos.B’=1 : Cos.C/ ,

ou - SinB:Cos.C'—Cos.ACosB/=1: Cos.C/ , )
or C=A—F;

d’ott Cos.C/—Cos. ACos.B’=Sin.A Sin.B/ ;

donc, enfin , Sin.’B: Sin.ASin.B/=1 : Cos.C".

C.Q.F.D.

Corollaire. 1 application aux triangles rectilignes a lieu en subs-
‘tituant aux sinus de A de B et de B/ ces quantités” elles-mémes ; et
en substituant 'unité au cosinus de C’.

THEOREME III. Dans tout triangle sphérique rectangle , les

_quarrés des sinus des cotés sont enire eux comme les sinus des
doubles des segmens adjacens.

Tout étant comme précédemment ,

Jaffirme que Sin.’B: Sin*C=S8in.2B/: Sin.2C,
Démonstration.

Puisque ( Théoréme II.) Sin.*B: Sin.ASin.B/’=1 : Cos.C/ ,
on doit avoir  Sin.’B: Sin. A=S8in.B/: Cos.C’ ,

. et pareillement  Sin. A : Sin*C=Cos.B/ : Sin.( ;

done Sin*B : Sin.*C=Sin.B/Cos.B : Sin.C/Cos.C/ ,
ou enfin Sin.?B : Sin.2C=_S8in.2B/ : Sin.2C’.
C.Q.F.D.

Corollaire. L’application aux triangles rectilignes a lieu, en subs-
tituant aux sinus des cotés et des doubles segmens, les cotés et les
doubles scgmens cux-meémes.

THEOREME IV. Dans tout triangle sphérique rectangle , le
quarré du sinus de la hauteur est au produit des sinus des seg-
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mens de Uhypothénuse , comme le quarré du rayon est au produit
des cosinus de ces segmens.

Tout étant comme précédemment ,
Jaffirme que Sin.*%: SinB/Sin.C/=1 : Cos.B/Cos.C’.

Démonstration.

Par le ( Théoréme II') Sin.*B: Sin.ASin.B/=1 : Cos.C/ ;

mais Sin. B : Sin.A =Sinb:1 ,

d’ot ~ Sin. B:Sin.:Sin.B/=1 : Cos.(/ ;

et pareillement  $in.CSin.c: Sin.C/ = 1 : Cos. B/ 5

donc Sin.B Sin.c Sin. C Sin. : Sin.B/ Sin.C/=1 : Cos.B/Cos.C/;
or Sin.B Sin.c=8in.C Sin.s =Sin.% ;

done, enfin , Sin.*% : SinB/Sin.C/=1 : Cos. B/ Cos.C/.
C.Q.F.D.

Corollaire. La proposition correspondante sur les triangles rectilignes
_ s’obtient , en substituant aux sinus de la hauteur et des segmens,
ces quantités elles—-mémes, et en substituant l'unité & chacun des
cosinus des segmens.

THEOREME V. Dans tout triangle sphérique rectangle , le si-
nus de I'hypothénuse , les sinus des cotés et le sinus de la hau-
feur , sont en proporiion géoméirique.

Tout étant comme précédemment ,

Jaffirme que Sin.A : Sin.B=S8in.C: Sin./.

Démonsiration. 4

on a * Sin.A : Sin.B=1: Sin.? ,

et ~ Sin.C: Sin. =1:8ind ;
donc Sin.A : Sin.B=Sin.C : Sin.A.
C.Q.F.D.

Corollaire. La proposition correspondante , sur les triangles rectilignes,
s’obtient en substituant aux sinus les quantités elles-mémes.



