Movasati, Hossein
Quasi-modular forms attached to elliptic curves, I  [ Formes quasimodulaires attachées aux courbes elliptiques, I ]
Annales mathématiques Blaise Pascal, Tome 19 (2012) no. 2 , p. 307-377
MR 3025138 | Zbl 1264.11031
doi : 10.5802/ambp.316
URL stable : http://www.numdam.org/item?id=AMBP_2012__19_2_307_0

Dans ce texte, on donne une interprétation géométrique des formes quasimodulaires en utilisant les modules des courbes elliptiques avec un point marqué dans leurs cohomologies de de Rham. De cette façon, les équations différentielles des formes modulaires et quasimodulaires sont interprétées comme des champs de vecteurs de ces espaces de modules. Elles peuvent être établies grâce à la connection de Gauss-Manin de la famille universelle de courbes elliptiques correspondante. Pour le groupe modulaire, on calcule une telle équation différentielle qui apparaît être celle de Ramanujan qui relie entre elles les séries d’Eisenstein. On explique aussi la notion de périodes construites à partir des intégrales elliptiques. Elles apparaissent comme le pont entre la notion algébrique de forme quasimodulaire et la définition en terme de fonction holomorphe sur le demi-plan de Poincaré. De cette façon, nous obtenons aussi une autre interprétation, essentiellement due à Halphen, de l’équation différentielle de Ramanujan en termes de fonctions hypergéométriques. L’interprétation des formes quasimodulaires comme sections de fibrés des jets et des problèmes de combinatoire énumérative sont aussi présentés.
In the present text we give a geometric interpretation of quasi-modular forms using moduli of elliptic curves with marked elements in their de Rham cohomologies. In this way differential equations of modular and quasi-modular forms are interpreted as vector fields on such moduli spaces and they can be calculated from the Gauss-Manin connection of the corresponding universal family of elliptic curves. For the full modular group such a differential equation is calculated and it turns out to be the Ramanujan differential equation between Eisenstein series. We also explain the notion of period map constructed from elliptic integrals. This turns out to be the bridge between the algebraic notion of a quasi-modular form and the one as a holomorphic function on the upper half plane. In this way we also get another interpretation, essentially due to Halphen, of the Ramanujan differential equation in terms of hypergeometric functions. The interpretation of quasi-modular forms as sections of jet bundles and some related enumerative problems are also presented.

Bibliographie

[1] Arnold, V. I.; Gusein-Zade, S. M.; Varchenko, A. N. Singularities of differentiable maps. Monodromy and asymptotics of integrals Vol. II, Birkhäuser Boston Inc., Boston, MA, Monographs in Mathematics, 83 (1988) MR 966191

[2] Cassels, J. W. S. Diophantine equations with special reference to elliptic curves, J. London Math. Soc., 41 (1966), p. 193–291 Article  MR 199150 | Zbl 0138.27002

[3] Darboux, G. Sur la théorie des coordonnées curvilignes et les systémes orthogonaux, Ann Ecole Normale Supérieure, 7 (1878), p. 101–150 MR 1508661

[4] Deligne, Pierre; Milne, James S.; Ogus, Arthur; Shih, Kuang-Yen Hodge cycles, motives, and Shimura varieties, Springer-Verlag, Berlin, Lecture Notes in Mathematics, 900 (1982) (Philosophical Studies Series in Philosophy, 20) MR 654325 | Zbl 0465.00010

[5] Diamond, Fred; Shurman, Jerry A first course in modular forms, Springer-Verlag, New York, Graduate Texts in Mathematics, 228 (2005) MR 2112196 | Zbl 1062.11022

[6] Dijkgraaf, Robbert Mirror symmetry and elliptic curves, The moduli space of curves (Texel Island, 1994), Birkhäuser Boston, Boston, MA (Progr. Math.) 129 (1995), p. 149–163 MR 1363055 | Zbl 0913.14007

[7] Eisenbud, David Commutative algebra, Springer-Verlag, New York, Graduate Texts in Mathematics, 150 (1995) MR 1322960 | Zbl 0819.13001

[8] Gannon, Terry Moonshine beyond the Monster, Cambridge University Press, Cambridge, Cambridge Monographs on Mathematical Physics (2006) (The bridge connecting algebra, modular forms and physics) Article  MR 2257727 | Zbl 1146.11026

[9] Van Der Geer, Gerard Siegel modular forms and their applications, The 1-2-3 of modular forms, Springer, Berlin (Universitext) (2008), p. 181–245 Article  MR 2409679 | Zbl pre05808164

[10] Gross, Benedict H. On an identity of Chowla and Selberg, J. Number Theory, 11 (1979) no. 3 S. Chowla Anniversary Issue, p. 344–348 Article  MR 544262 | Zbl 0418.14024

[11] Grothendieck, Alexander On the de Rham cohomology of algebraic varieties, Inst. Hautes Études Sci. Publ. Math. (1966) no. 29, p. 95–103 Numdam | MR 199194 | Zbl 0145.17602

[12] Halphen, G. H. Sur une systéme d’équations différetielles, C. R. Acad. Sci Paris, 92 (1881), p. 1101-1103

[13] Halphen, G. H. Traité des fonctions elliptiques et de leurs applications, Gauthier-Villars, Paris 1 (1886)

[14] Hartshorne, Robin Algebraic geometry, Springer-Verlag, New York (1977) (Graduate Texts in Mathematics, No. 52) MR 463157 | Zbl 0531.14001

[15] Hida, Haruzo Geometric modular forms and elliptic curves, World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ (2012) MR 2894984 | Zbl pre05984500

[16] Hoffman, Jerome W. Topics in elliptic curves and modular forms (2010) (Preprint available in the author’s homepage)

[17] Kaneko, Masanobu; Zagier, Don A generalized Jacobi theta function and quasimodular forms, The moduli space of curves (Texel Island, 1994), Birkhäuser Boston, Boston, MA (Progr. Math.) 129 (1995), p. 165–172 MR 1363056 | Zbl 0892.11015

[18] Katz, Nicholas M. p-adic interpolation of real analytic Eisenstein series, Ann. of Math. (2), 104 (1976) no. 3, p. 459–571 Article  MR 506271 | Zbl 0354.14007

[19] Kedlaya, Kiran S. p-adic cohomology: from theory to practice, p -adic geometry, Amer. Math. Soc., Providence, RI (Univ. Lecture Ser.) 45 (2008), p. 175–203 MR 2482348 | Zbl 1153.14016

[20] Lamotke, Klaus The topology of complex projective varieties after S. Lefschetz, Topology, 20 (1981) no. 1, p. 15–51 Article  MR 592569 | Zbl 0445.14010

[21] Lee, Min Ho Quasimodular forms and vector bundles, Bull. Aust. Math. Soc., 80 (2009) no. 3, p. 402–412 Article  MR 2569915 | Zbl 1225.11051

[22] Martin, François; Royer, Emmanuel Formes modulaires et périodes, Formes modulaires et transcendance, Soc. Math. France, Paris (Sémin. Congr.) 12 (2005), p. 1–117 MR 2186573 | Zbl 1104.11017

[23] Movasati, Hossein On differential modular forms and some analytic relations between Eisenstein series, Ramanujan J., 17 (2008) no. 1, p. 53–76 Article  MR 2439525 | Zbl 1244.11041

[24] Movasati, Hossein Eisenstein type series for Calabi-Yau varieties, Nuclear Phys. B, 847 (2011) no. 2, p. 460–484 Article  MR 2774983 | Zbl 1208.81223

[25] Movasati, Hossein Multiple integrals and modular differential equations, Instituto Nacional de Matemática Pura e Aplicada (IMPA), Rio de Janeiro, Publicações Matemáticas do IMPA. [IMPA Mathematical Publications] (2011) (28o Colóquio Brasileiro de Matemática. [28th Brazilian Mathematics Colloquium]) MR 2827610 | Zbl pre05983397

[26] Nesterenko, Y.V.; Philippon, P. Introduction to algebraic independence theory, Springer-Verlag, Berlin, Lecture Notes in Mathematics, 1752 (2001) (With contributions from F. Amoroso, D. Bertrand, W. D. Brownawell, G. Diaz, M. Laurent, Yuri V. Nesterenko, K. Nishioka, Patrice Philippon, G. Rémond, D. Roy and M. Waldschmidt,) MR 1837822

[27] Ohyama, Yousuke Differential relations of theta functions, Osaka J. Math., 32 (1995) no. 2, p. 431–450 MR 1355752 | Zbl 0864.34001

[28] Ohyama, Yousuke Differential equations for modular forms of level three, Funkcial. Ekvac., 44 (2001) no. 3, p. 377–389 MR 1893938 | Zbl 1145.11310

[29] Saito, Kyoji Primitive automorphic forms, Mathematics unlimited—2001 and beyond, Springer, Berlin (2001), p. 1003–1018 MR 1852200 | Zbl 1047.11513

[30] Sasai, Takao Monodromy representations of homology of certain elliptic surfaces, J. Math. Soc. Japan, 26 (1974), p. 296–305 Article  MR 346200 | Zbl 0273.14017

[31] Selmer, Ernst S. The Diophantine equation ax 3 +by 3 +cz 3 =0, Acta Math., 85 (1951), p. 203–362 (1 plate) Article  MR 41871 | Zbl 0042.26905

[32] Silverman, Joseph H. The arithmetic of elliptic curves, Springer, Dordrecht, Graduate Texts in Mathematics, 106 (2009) MR 2514094 | Zbl 1194.11005

[33] Tate, John Residues of differentials on curves, Ann. Sci. École Norm. Sup. (4), 1 (1968), p. 149–159 Numdam | MR 227171 | Zbl 0159.22702

[34] Voisin, Claire Hodge theory and complex algebraic geometry. I, Cambridge University Press, Cambridge, Cambridge Studies in Advanced Mathematics, 76 (2002) (Translated from the French original by Leila Schneps) MR 1967689 | Zbl 1005.14002

[35] Zudilin, W. The hypergeometric equation and Ramanujan functions, Ramanujan J., 7 (2003) no. 4, p. 435–447 Article  MR 2040982 | Zbl 1072.11052