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Abstract

In this note, we weaken a condition in the generalized abc-conjecture
proposed by us in a previous paper, and prove its analogue for non-
Archimedean entire functions, as well as a generalized Mason’s theorem
for polynomials.

1 Introduction

In all the paper, x will denote an algebraically closed field of characteristic
zero.

Let a be a non-zero integer. Then

lal = p~l ... pn
holds for distinct primes pi ..., pn. For a positive integer k, define

n

rk ~a1 _ T1 .

v=1
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Conjecture 1.1 ( [6~, [10~, [11~ ~ Let = 0,..., ,1~) be nonzero integers
such that the grratest common factor of ao, ..., ak is 1,

al .~.....~.. ak = ao, (1)
and no pmper subsum of (1) is equal to 0. Then for ~ > 0, there exists a
number such that max0~j~h{[03B1j]} ~ C(k,~) (03A0ki=0rk-1(ai)) 1+~,
max0~j~k{|aj|} ~ C(k,~)rk(k-1) 2 (a0 ... ak)1+~.

If k = 2, this corresponds to the well known abc-conjecture which also
is a consequence of the Vojta’s Conjecture (see Vojta [19]). Some special
cases of Conjecture l.l were given in [8] and (9~. In this note, we will
prove the analogue of Conjecture 1.1 for entire functions defined over non-
Archimedean fields:

Theorem 1.1 Let 03BA be complete for a non-trivial non-Archimedean absolute
value ~ I. . Let f j ( j = 0, , .. , k) be entire f unctions on r~ such that f o, ..., f k
have no common zeros, f ~ ( j =1, . . . , k) be linearly independent on t~ and

fi+...+fk=fo. (2)
Then the Nevanlinna f unctions T (r, f;) and Nh (r, f J) satisfy

max0~j~k{T(r,fj)}~03A3ki=0Nk-1 (r, 1 fi) - k(k-1) 2 log r + O(1)
max0~j~k{T(r,fj)} ~ Nk(k-1) 2 (r, 1 f0...fk) - k(k-1) 2 log r + O(1).

For the meaning of the above notations, we refer the reader to § 2. Under
a stronger condition that fo, f~ have no common zeros for j =1, ..., k, some
special cases of Theorem 1.1 were given in [7], [9]. If f is a polynomial, it is
easy to show

deg(f) = lim r~~ T(r,f) log r, rk (f) := lim nk (r, 1 f) = lim Nk(r, 1 f) log r.
As a direct consequence of Theorem 1.1, we obtain

Theorem 1,2 Let = 0, ... , k) be polynomials on 03BA such that fo, ..., f k
have no common zeros, f~ ( j =1, ~ ... , k) be linearly independent on ~ and

f1 + ... + fk = f0. (3)

Then max0~j~k{deg(fj)} ~ 03A3ki=0 rk-1 (fi) - k(k-1) 2,
max0~j~k{deg(fj)} ~ rk(k-1) (f0 ... fk) - k(k-1) 2.2
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When k = 2, it reduces to a Mason’s theorem (see (12), (~3~, (14~, (15~
and (18~ ) which has been generalized recently to fields of any characteristic
p by Boutabaa and Escassut (2~ . If k > 2, the following example

f0(z) = (z + 1)k-1, fi+1(z) = k - 1izi (i = 0, ..., k -1),

which obviously satisfy the conditions in Theorem 1.2, shows that the in-
equalities in the theorem, in fact, become equality for this example. Under
the stronger assumption that f o have no common zeros for j =1, ..., k,
Theorem I.2 was obtained by Hu-Yang [9j. . For any positive integer k and
any polynomial f on ~, note that

rk ~f )~ ~ ~1 ~f ) .

Theorem 1.2 yields immediately the following:

Theorem 1.3 Let fl, f 2, ’ ’ ’ , fk (k > 2) be linearly independent polyno-
mials in It. Put f o = f i + f 2 + ... + fk and assume that f ~, ..., f k have
no common zeros. Then the following inequalities max0~j~k{deg(fj)} ~
(k - 1) 03A3ki=0 r1 (fi) - k(k-1) 2

,

max0~j~k{deg(fj)} ~ k(k-1) 2 (r1 (f0 ... fk) -1), hold.

The inequality (1.3) was obtained independently by J. F. Voloch (20~,
W. D. Brownawell and D. Masser (4~. Earlier R. C. Mason (16~ derived this
estimate with ~k(k -1) replaced by 4k’1. J. Browkin and J. Brzezinski (3~
conjectured that the value 2k(k --1) in (1.3) would be replaced by 2k -
3. If the restriction on the linear independence of polynomials f1, ..., fk is
removed, we have

Theorem 1.4 For fixed integer k ~ 1, let fj (j = 0, ..., k) be non-zero

polynomials on r~ such that f i + ~ ~ + f k = f o. Assume also that not all the
f j are constants, and the fj are pairwise relatively prime. Then

max {deg(fj)} ~ (d - 1) (r1 (f0 ... fk) - 1) , (4)
_J-

where d is the dimension of the vector space spanned by the f= over ~c.

As an application of Theorem 1.2, we can derive the following:

Theorem 1.5 Given polynomials f1, f2, ..., fk (k ~ 2) in K, and positive
integers h(1  j  k) such that
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(a) fl11, fl22, ... , flkk are linearly independent over 03BA;

(b) f0, fl11, fl22, ..., flkk have no common zeros, where

f0 = 03A3 fljj.
j=I

Then the following inequality

{1- k - 1 lj } max 1~j~k deg (f ljj) ~ rk-1 (f0) - k(k - 1) 2 (5)

;=1 3 i~j~

holds.

Obviously, the inequality (5) implies

{1- k-1 lj} max 1~j~k deg (fljj)  deg (fljj) - k(k-1) 2. (fi)
{1-k-1 lj}max 1~j~k deg (fljj) ~ deg (fljj) - k(k-1) 2. (6)

For the case

k=2, ti =2, t2=3, (?)

and

f 1 = ,~~ f2 ‘ "9~ (8)

the inequality (s) yields

1 2 deg (g)  deg (f2 - g3) -1, (9)

which was proved for complex case by Davenport [5]. In fact, Davenport
proved that (9) is true as long as f 2 -- g3 ~ 0 (also see ~1~,(18~).

2 Basic facts

Let 03BA be an algebraically closed field of characteristic zero, complete for a
non-trivial non-Archimedean absolute value ~ ~ ~. Define

03BA[0;r] = {z ~ 03BA | |z| ~ r}.
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Let be the set of entire functions on It. Then each f 6 can be

given by a power series

cx>

(10)
n=o

such that for any z ~ 03BA, one has |anzn| ~ 0 as n ~ oo. Define the maximum
term:

(r,f) = max n~0|an|rn

with the associated the central index:

Then n (r, 1 f) just is the counting function of zeros of /, which denotes the
number of zeros (counting multiplicity) of f with absolute value::; r. Fix a
real po with po > 0. Define the valence function of zeros of f by

N(r, 1 f) = r03C10n(t, 1 f) tdt (r > 03C10). (11)

The field of fractions of will be denoted by M(~). An element f in
the set will be called a meromorphic function on x. Take f M(03BA).
Since greatest common divisors of any two elements in exist then there
are g, h with f = % such that ~ and h have no any common zeros in
the ring We can uniquely extend ~ to a meromorphic function f == ~
by denning

"’~’-~’~-~
Then the following Jensen formula

N (’’’ ~) ’ -~ f) ~~

holds, where

N(r,/)=~(r,-). .
Note that

(r, f1f2) = (r, f1) (r, f2), f1, f2 ~ M(03BA).
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Thus the Jensen formula implies

~(~)-~M)-~(~)~(~)-~~’)-~~’1 2 1 2 

(13)

Define the compensation function by

m(r,/)=max{0,log/z(r,/)}. .

As usual, we define the characteristic function:

T(r, f) = f) + f) (~  r  oo).

Then the following formula (see [8])

(14)

holds for any two distinct elements a, b U {oo}. In particular, if f is a
non-constant entire function in x, then

(i5)

for all a 6 ~.

We also denote the number of distinct zeros of f- a on r] by ~(r, y~)
and define 

y~___)=r~~ _ ~ ~~ (r>~.

Let nk(r, -~) denote the the number of zeros of f - a on x[0; r], where a
zero of f - a with multiplicity m will be counted as min{ m, A:} in nk(r, y~).
Write 

Nk(r, 1 f-a) = r03C10 nk(t, 1 f-a)dt (r > 03C10).

The following result is a non-Archimedean analogue of a result of Nevanlinna[17]:

Lemma 2.1 ([8], [9]) Let fj(j = 1, ..., k) be linearly independent mero-

morphic functions on K such that

/i+.--+A=l. (16)
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7hen

T(r,fj)  N(r, 1 fi) - N(r,fi) + N(r, W)
-N (r, 1 W) - k(k-1) 2 log r + O(1), 1~j~k 

(17)

where W is the Wronskian of f1, ..., fk.

3 Proof of the main theorems

Proof of Theorem I. I Applying Lemma 2. I to f1/f0, ..., fk/f0, we obtain

. ~ >  § ’~ (~> # > ~ i ~ (~’ j> + ’~l’~’ ~")T( r, 
f0) 

 N( r, 
fi) 

- 

N( r, 
f0) + N(r,W)

- N (r, I) - ~~~~ ~~ log r + O( i) , i  j  k, (18)

where W = W(f1/f0, ... , fk/f0) is the Wronskian of f1/f0, ..., fk/f0. Note
that

W = W( f1 f0, ..., fk f0) 
= 

W1 fk0,

where Wi = W(f1, ..., fk) is the Wronskian of f1, ..., fk. By the formula
(13) we obtain easily N(r, f0 fi) - N (r, fi f0) = N (r, 1 fi) - N (r, 1 f0),
N(r, W) - N (r, 1 W) = kN (r, 1 f0) - N (r, 1 W1), and hence, for I  j  n,
we obtain

T (r, fj f0) ~ N (r, 1 fi) - N (r, 1 W1) + N (r, f0 fj)
-N (r, 1 fj) - k(k - 1) 2 log r + O(1). (19)

Obviously, for each j = I, ..., k, we can choose entire functions h;, £o; and
j; such that jo; and j; have no common zeros, and

f0 = hjf0j, fj = hjfj.
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By simple observation, we find

N (r, 1 fj) - N (r, f0 fj) = N (r, 1 hj). (20)

Noting that, by (14) and (15),

T (~> °°§°/°) o + N I ~> °°/°q ; ~ * l N (~’ () o > N ~ ~’ ( , ~ ~ + °(i)
= max (T(r, fo), T(r, f;) ) + O(1 ) . (21)

Thus Theorem I.I follows from (19), (21) and the following estimates

k k

03A3 0fi - 0W1 ~ 03A3 0fi,k-1, (22)
I=0 I=0

k

£  P§~,,,j~ « , (23)
;=o 

0 ’ 2

where p) is the a-valued multiplicity of an element f E M(x) , and

P),k (Z) " ~’).

Take zo e It. Then p) (zo) = 0 for some s e (0, ..., n) since fo, ..., fk have
no common zeros. Note that, by the identity (2) ,

W1 = W(f1, ... , fs-1, f0, fs+1, ..., fn).

Obviously we have

0f(j)i(z0) ~ 0fi (z0) - 0fi,j(z0) ~ 0fi (z0) - 0fi,k-1 (z0), i ~ s, 1 ~ j ~ k - 1,

and, hence, 
0W1 (z0) ~ { 0fi(z0) - 0fi,k-1(z0)},

that is, 03A3ki=0 0fi(z0) - 0W1 (z0) = 03A3i~s 0fi(z0) - 0W1 (z0)
~ 03A3i~s 0fi, k-1 (z0) = 03A3ki=0 0fi, k-1 (z0). The inequality (23) can be obtained

similarly by comparing the multiplicities of zeros of fo ... fk and WI- Then
Theorem 1.1 follows from (19), (21), (22) and (23).
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Proof of Theorem 1.4. In the sequel, we will use the notation

fi ~ 0{f~l, ,.., f=,; } (24)
to denote that {i1, ..., isi} C {o,1, ..., k} - {i} are distinct, ..., fisi linearly
independent, and 

fi = c03B1fi03B1, c03B1 ~ 03BA - {0} (1 ~ 03B1 ~ si).
a=1

We proceed the proof of Theorem 1.4 by induction on k. For k = 1 it is
obviously true since if f o = f l, f o and f i relatively prime, then they both
are constants. Assume the theorem is true for all cases k’ with 2  k’  k,
and consider that of k + 1 polynomials. By the assumptions in Theorem 1.4,
at least two of the f i are non-constant. Note that if two of the f~ are
constants, then we may either eliminate them if their sum is zero or replace
them by their sum when it is not zero. Then the inductive hypothesis could
be applied to yield the desired result. Thus we may assume that at most
one of the f i is a constant. For each i E to, 1, ..., k}, it is easy to show that

fi ~ 0{fi1, ..., fisi}
for some ii ..., . Obviously, d > s= > 2 and ..., have no common

zeros since the f j are pairwise relatively prime. So by Theorem 1.3, we have

max 0~03B1~si { deg (fi03B1)} ~ ( si - 1) r1(fi03B1) - si (si - 1) 2, (25)

where io = i. Therefore, we obtain
max0~03B1~si {deg (fi03B1)}  (si - 1) (03A3si03B1=0 r1 (fi03B1) - 1)

 (d - 1) rl (/.) - l) = (~ - 1) (rl ( fo ~ ~ -1) , that is, for each
i ~ {0, 1, ..., k}, deg(fi) ~ (d -1) (r1 (f0 ... fk) -1) . Hence Theorem 1.4 is
proved.

Proof of Theorem 1.5. Theorem 1.2 implies

max 1~j~k deg (fljj) ~ max 0~j~k deg (fljj) ~ rk-1(fljj) - k(k-1) 2, (26)

where l0 = 1. . Note that

rk-1 (fljj) ~ (k-1)r1 (fj) ~ (k - 1) deg(fj) = k-1 lj deg (fljj) , j ~ 0.

(27)
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Hence (5) follows from (26) and (27).

Acknowledgement: The authors are indebt to the anonymous referee
for his/her careful reading of the manuscript, with helpful comments and
suggestions.
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