Annales mathématiques Blaise Pascal

S.V.LudKovsky
 Properties of quasi-invariant measures on topological groups and associated algebras

Annales mathématiques Blaise Pascal, tome 6, n ${ }^{\circ} 1$ (1999), p. 33-45
http://www.numdam.org/item?id=AMBP_1999__6_1_33_0
© Annales mathématiques Blaise Pascal, 1999, tous droits réservés.
L'accès aux archives de la revue « Annales mathématiques Blaise Pascal» (http:// math.univ-bpclermont.fr/ambp/) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

Properties of quasi-invariant measures on topological groups and associated algebras.

S.V. Ludkovsky

Mathematics subject classification (1991 Revision) 22A10, $43 A 05$. Permanent address: Theoretical Department, Institute of General Physics, Str. Vavilov 38, Moscow, 117942, Russia.

Abstract

Properties of quasi-invariant measures relative to dense subgroups are considered on topological groups. Mainly non-locally compact groups are considered such as (i) a group of diffeomorphisms $\operatorname{Diff}(t, M)$ of real or non-Archimedean manifold M in cases of locally compact and nonlocally compact M, where t is a class of smoothness, (ii) a Banach-Lie group over a classical or non-Archimedean field, (iii) loop groups of real and non-Archimedean manifolds.

Recently quasi-invariant measures on a group of diffeomorphisms were constructed for real locally compact M in $[8,24]$ and for non-locally compact real or non-Archimedean manifolds M in [10, 12, 14, 18, 20, 21]. Such groups are also Banach manifolds or strict inductive limits of their sequences. Then on a real and non-Archimedean loop groups and semigroups of families of mappings from one manifold into another they were elaborated in $[13,15,16$, 17]. On real Banach-Lie groups quasi-invaraint measures were constructed in [3].

This article is devoted to the investigation of properties of quasi-invariant measures that are important for analysis on topological groups and for construction irreducible representations [8, 23]. The following properties are investigated:
(1) convolutions of measures and functions,
(2) continuity of functions of measures,
(3) non-associative algebras generated with the help of quasi-invariant measures. The theorems given below show that many differences appear to be between locally compact and non-locally compact groups. The groups considered below are supposed to have structure of Banach manifolds over the corresponding fields.

1. Definitions. (a). Let G be a Hausdorff separable topological group. A real (or complex) Radon measure μ on $\operatorname{Af}(G, \mu)$ is called left-quasi-invariant (or right) relative to a dense subgroup H of G, if μ_{h} (or μ^{h}) is equivalent to μ for each $h \in H$, where $B f(G)$ is the Borel σ-field of G, $A f(G, \mu)$ is its completion by $\mu, \mu_{h}(A):=\mu\left(h^{-1} A\right), \mu^{h}(A):=\mu\left(A h^{-1}\right)$ for each $A \in A f(G, \mu), d_{\mu}(h, g):=\mu_{h}(d g) / \mu(d g)\left(\right.$ or $\left.\tilde{d}_{\mu}(h, g):=\mu^{h}(d g) / \mu(d g)\right)$ denote a left (or right) quasi-invariance factor. We assume that the uniformity τ_{G} on G is such that $\tau_{G} \mid H \subset \tau_{H},\left(G, \tau_{G}\right)$ and $\left(H, \tau_{H}\right)$ are complete. We suppose also that there exists an open base in $e \in H$ such that their closures in G are compact (such pairs exist for loop groups and groups of diffeomorphisms and Banach-Lie groups). We denote by $M_{l}(G, H)$ (or $M_{r}(G, H)$) the set of left-(or right) quasi-invariant measures on G relative to H with a finite norm $\|\mu\|:=\sup _{A \in A f(G, \mu)}|\mu(A)|<\infty$.
(b). Let $L_{H}^{p}(G, \mu, \mathbf{C})$ for $1 \leq p \leq \infty$ denotes the Banach space of functions $f: G \rightarrow \mathbf{C}$ such that $f_{h}(g) \in L^{p}(G, \mu, \mathbf{C})$ for each $h \in H$ and

$$
\|f\|_{L_{H}^{p}(G ; \mu, \mathrm{C})}:=\sup _{h \in H}\left\|f_{h}\right\|_{L^{p}(G, \mu, \mathrm{C})}<\infty
$$

where $f_{h}(g):=f\left(h^{-1} g\right)$ for each $g \in G$. For $\mu \in M_{l}(G, H)$ and $\nu \in M(H)$ let

$$
(\nu * \mu)(A):=\int_{H} \mu_{h}(A) \nu(d h) \text { and }(q * \tilde{*})(g):=\int_{H} f(h g) q(h) \nu(d h)
$$

be convolutions of measures and functions, where $M(H)$ is the space of Radon measures on H with a finite norm, $\nu \in M(H)$ and $q \in L^{s}(H, \nu, \mathbf{C})$, that is

$$
\left(\int_{H}|q(h)|^{s}|\nu|(d h)\right)^{1 / s}=:\|q\|_{L^{s}(H, \nu, \mathrm{C})}<\infty \text { for } 1 \leq s<\infty
$$

2. Lemma. The convolutions

$$
*: M(H) \times M_{l}(G, H) \rightarrow M_{l}(G, H) \text { and }
$$

$$
\tilde{\boldsymbol{*}}: L^{1}(H, \nu, \mathbf{C}) \times L_{H}^{1}(G, \mu, \mathbf{C}) \rightarrow L_{H}^{1}(G, \mu, \mathbf{C}) .
$$

are continuous \mathbf{C}-bilinear mappings
Proof. It follows immediately from the definitions, Fubini theorem and because $d_{\mu}(h, g) \in L^{1}(H \times G, \nu \times \mu, \mathbf{C})$. In fact one has,

$$
\|\nu * \mu\| \leq\|\nu\| \times\|\mu\|,\|q * f\|_{L_{H}^{1}(G, \mu, \mathbf{C})} \leq\|q\|_{L^{1}(H, \nu, \mathbf{C})} \times\|f\|_{L_{H}^{1}(G, \mu, \mathbf{C})}
$$

3. Definition. For $\mu \in M(G)$ its involution is given by the following formula: $\mu^{*}(A):=\overline{\mu\left(A^{-1}\right)}$, where \bar{b} denotes complex conjugated $b \in \mathbf{C}$, $A \in A f(G, \mu)$.
4. Lemma. Let $\mu \in M_{l}(G, H)$ and G and H be non-locally compact with structures of Banach manifolds. Then μ^{*} is not equivalent to μ.

Proof. Let $T: G \rightarrow T G$ be the tangent mapping. Then μ induces quasiinvariant measure λ from an open neighbourhood W of the unit $e \in G$ on a neighbourhood of the zero section V in $T_{e} G$ and then it has an extension onto the entire $T_{e} G$. Let at first $T_{e} G$ be a Hilbert space. Put $\operatorname{Inv}(g)=g^{-1}$ then $T \circ I n v \circ T^{-1}=: K$ on V is such that there is not any operator B of trace class on $T_{e} G$ such that $\tilde{M}_{\lambda} \subset B^{1 / 2} T_{e} G$ and $K T_{e} G \subset \tilde{M}_{\lambda}$, where $\operatorname{Re}(1-\theta(z)) \rightarrow 0$ for $(B z, z) \rightarrow 0$ and $z \in T_{e} G, \theta(z)$ is the characteristic functional of $\lambda, \tilde{M}_{\lambda}$ is the set of all $x \in T_{e} G$ such that λ_{x} is equivalent to λ (see theorem 19.1 [25]). Then using theorems for induced measures from a Hilbert space on a Banach space [2,9], we get the statement of lemma 4.
5. Lemma. For $\mu \in M_{l}(G, H)$ and $1 \leq p<\infty$ the translation map $(q, f) \rightarrow f_{q}(g)$ is continuous from $H \times L_{H}^{p}(G, \mu, \mathbf{C})$ into $L_{H}^{p}(G, \mu, \mathbf{C})$.

Proof. For metrizable G in view of the Lusin theorem (2.3.5 in [5]) and definitions of τ_{G} and τ_{H} for each $\epsilon>0$ there are a neighbourhood $V \ni e$ in H and compacts K_{1} and K in G such that the closure $c_{G} V K_{1}=: K_{2}$ is compact in G with $K_{2} \subset K$, the restriction $\left.f\right|_{K_{2}}$ is continuous and $(|\tilde{\mu}|+|\mu|)\left(G \backslash K_{2}\right)<$ ϵ, where $\tilde{\mu}(d g):=f(g) \mu(d g)$.
6. Proposition. For a probability measure $\mu \in M(G)$ there exists an approximate unit, that is a sequence of non-negative continuous functions $\psi_{i}: G \rightarrow \mathbf{R}$ such that $\int_{G} \psi_{i}(g) \mu(d g)=1$ and for each neighbourhood $U \ni e$ in G there exists i_{0} such that $\operatorname{supp}\left(\psi_{i}\right) \subset U$ for each $i>i_{0}$.

Proof follows from the Radon property of μ and the existence of countable base of neighbourhoods in $e \in G$.
7. Proposition. If $\left(\psi_{i}: i \in \mathbf{N}\right)$ is an approximate unit in H relative to a probability measure $\nu \in M(H)$, then $\lim _{i \rightarrow \infty} \psi_{i} * f=f$ in the $L_{H}^{1}(G, \mu, \mathbf{C})$ norm, where $\mu \in M_{l}(G, H), f \in L_{H}^{1}(G, \mu, \mathbf{C})$.

Proof follows from lemma III.11.18 [6] and lemmas 2, 5.
8. Lemma. Suppose $g \in L_{H}^{q}(G, \mu, \mathbf{C})$ and $\left(\left.g^{x}\right|_{H}\right) \in L^{q}(H, \nu$, C) for each $x \in G, f \in L^{p}(H, \nu, \mathbf{C})$ with $1<p<\infty, 1 / p+1 / q=1$, where $g^{x}(y):=g(y x)$ for each x and $y \in G$. Let μ and ν be probability measures, $\mu \in M_{l}(G, H)$, $\nu \in M(H)$. Then $f \tilde{*} g \in L_{H}^{1}(G, \mu, \mathbf{C})$ and there exists a function $h: G \rightarrow \mathbf{C}$ such that $\left.h\right|_{H}$ is continuous, $h=f * g \mu$-a.e. on G and h vanishes at ∞ on G.

Proof. In view of Fubini theorem and Hölder inequality we have

$$
\begin{gathered}
\|f \tilde{*} g\|_{L_{H}^{1}(G, \mu, \mathbf{C})}=\sup _{s \in H} \int_{G} \int_{H}|f(y)| \times|g(z)| \nu(d y) \mu\left((y s)^{-1} d z\right) \leq \\
\sup _{s \in H}\left(\int_{G} \int_{H}|g(z)|^{q} \nu(d y) \mu\left((y s)^{-1} d z\right)\right)^{1 / q} \times\left(\int_{G} \int_{H}|f(y)|^{p} \nu(d y) \mu\left((y s)^{-1} d z\right)^{1 / p} \leq\right. \\
\|f\|_{L^{p}(H, \nu, \mathbf{C})} \times\|g\|_{L_{H}^{q}(G, \mu, \mathbf{C})} \times \nu(H) \mu(G) .
\end{gathered}
$$

The equation $\alpha_{f}(\phi):=\int_{H} f(y) \overline{\phi(y)} \nu(d y)$ defines a continuous linear functional on $L^{q}(H, \nu, \mathbf{C})$. In view of lemma 5 the function $\alpha_{f}\left(g^{(s x)^{-1}}\right)=: \tilde{h}\left((s x)^{-1}\right)=$: $w(s, x)$ of two variables s and x is continuous on $H \times H$ for $s, x \in H$, since the mapping $(s, x) \mapsto(s x)^{-1}$ is continuous from $H \times H$ into H. By Fubini theorem (see §2.6.2 in [5])

$$
\begin{gathered}
\int_{G} h(y) \psi(y) \mu(d y)=\int_{G} \int_{H} f(y) g(y x) \psi(x) \nu(d y) \mu(d x)= \\
\int_{H} f(y)\left[\int_{G} g(y x) \psi(x) \mu(d x)\right] \nu(d y)
\end{gathered}
$$

for each $\psi \in L^{p}(G, \mu, \mathbf{C})$, since

$$
\int_{G} \int_{H}|f(y) g(y x) \psi(x)||\nu|(d y)|\mu|(d x)<\infty
$$

where $|\nu|$ denotes the variation of the real-valued measure $\nu, h(y):=\tilde{h}\left(y^{-1}\right)$. Here ψ is arbitrary in $L^{p}(G, \mu, \mathbf{C})$, from this it follows, that $\mu(\{y: h(y) \neq$ $(f \tilde{*} g)(y), y \in G\})=0$, since h and $(f \tilde{*} g)$ are μ-measurable functions due to Fubini theorem and the continuity of the composition and the inversion in a topological group. In view of Lusin theorem (see §2.3.5 in [5]) for each $\epsilon>0$ there are compact subsets $C \subset H$ and $D \subset G$ and functions $f^{\prime} \in L^{p}(H, \nu, \mathbf{C}$;
and $g^{\prime} \in L_{H}^{q}(G, \mu, \mathbf{C})$ with closed supports $\operatorname{supp}\left(f^{\prime}\right) \subset C, \operatorname{supp}\left(g^{\prime}\right) \subset D$ such that $c l_{G} C D$ is compact in G,

$$
\left\|f^{\prime}-f\right\|_{L^{p}(H, \nu, \mathrm{C})}<\epsilon \text { and }\left\|g^{\prime}-g\right\|_{L_{H}^{q}(G, \mu, \mathrm{C})}<\epsilon
$$

since by the supposition of $\S 1$ the group H has the base B_{H} of its topology τ_{H}, such that the closures $c l_{G} V$ are compact in G for each $V \in \mathrm{~B}_{H}$. From the inequality

$$
\left|h^{\prime}(x)-h(x)\right| \leq\left(\|f\|_{L^{p}(H, \nu, \mathbf{C})}+\epsilon\right) \epsilon+\epsilon\|g\|_{L_{H}^{q}(G, \mu, \mathbf{C})}
$$

it follows that for each $\delta>0$ there exists a compact subset $K \subset G$ with $|h(x)|<\delta$ for each $x \in G \backslash K$, where $h^{\prime}\left(x^{-1}\right):=\alpha_{f^{\prime}}\left(g^{\prime x}\right)$.
9. Proposition. Let $A, B \in A f(G, \mu), \mu$ and ν be probability measures, $\mu \in M_{l}(G, H), \nu \in M(H)$. Then the function $\zeta(x):=\mu(A \cap x B)$ is continuous on H and $\nu\left(y B^{-1} \cap H\right) \in L^{1}(H, \nu, \mathbf{C})$. Moreover, if $\mu(A) \mu(B)>0$, $\mu\left(\left\{y \in G: y B^{-1} \cap H \in A f(H, \nu)\right.\right.$ and $\left.\left.\nu\left(y B^{-1} \cap H\right)>0\right\}\right)>0$, then $\zeta(x) \neq 0$ on H.

Proof. Let $g_{x}(y):=\operatorname{ch}_{A}(y) c h_{B}\left(x^{-1} y\right)$, then $g_{x}(y) \in L_{H}^{q}(G, \mu, \mathbf{C})$ for $1<q<\infty$, where $\operatorname{ch}_{A}(y)$ is the characteristic function of A. In view of propositions 6 and 7 there exists $\lim _{i \rightarrow \infty} \psi_{i} * g_{x}=g_{x}$ in $L_{H}^{1}(G, \mu, \mathrm{C})$. In view of lemma III.11.18 [6] and lemma 8, $\left.\zeta(x)\right|_{H}$ is continous. There is the following inequality:

$$
1 \geq \int_{H} \mu(A \cap x B) \nu(d x)=\int_{H} \int_{G} c h_{A}(y) c h_{B}\left(x^{-1} y\right) \mu(d y) \nu(d x)
$$

In view of Fubini theorem there exists

$$
\begin{gathered}
\int_{H} c h_{B}\left(x^{-1} y\right) \nu(d y)=\nu\left(\left(y B^{-1}\right) \cap H\right) \in L^{1}(G, \mu, \mathbf{C}), \text { hence } \\
\int_{H} \mu(A \cap x B) \nu(d x)=\int_{G} \nu\left(y B^{-1} \cap H\right) c h_{A}(y) \mu(d y)
\end{gathered}
$$

10. Corollary. Let $A, B \in A f(G, \mu), \nu \in M(H)$ and $\mu \in M_{l}(G, H)$ be probability measures. Then denoting Int ${ }_{H} V$ the interior of a subset V of H with respect to τ_{H}, one has
(i) Int $_{H}(A B) \cap H \neq \emptyset$, when

$$
\mu(\{y \in G: \nu(y B \cap H)>0\})>0 ;
$$

(ii) $\operatorname{Int}_{H}\left(A A^{-1}\right) \ni e$, when

$$
\mu\left(\left\{y \in G: \nu\left(y A^{-1} \cap H\right)>0\right\}\right)>0 .
$$

Proof. $A B \cap H \supset\left\{x \in H: \mu\left(A \cap x B^{-1}\right)>0\right\}$.
11. Corollary. Let $G=H$. If $\mu \in M_{l}(G, H)$ is a probability measure, then G is a locally compact topological group.

Proof. Let us take $\nu=\mu$ and $A=C \cup C^{-1}$, where C is a compact subset of G with $\mu(C)>0$, whence $\mu(y A)>0$ for each $y \in G$ and inevitably $\operatorname{Int}{ }_{G}\left(A A^{-1}\right) \ni e$.
12. Lemma. Let $\mu \in M_{l}(G, H)$ be a probability measure and G be non-locally compact. Then $\mu(H)=0$.

Proof. This follows from theorem 19.2 [25] and theorem 3.21 and lemma 3.26 [19] and the proof of lemma 4, since the embedding $T_{e} H \hookrightarrow T_{e} G$ is a compact operator in the non-Archimedean case and of trace class in the real case (see also the papers about construction of quasi-invariant measures on the groups considered here $[3,8,10,12,13,14,16,17,18]$, $[20,21,24]$). Indeed, the measure μ on G is induced by the corresponding measure ν on a Banach space Z for which there exists a local diffeomorphism $A: W \rightarrow V$, where W is a neighbourhood of e in G and V is a neighbourhood of 0 in Z. The measure μ on G is quasi-invariant relative to H. Therefore, the measure ν on U is quasi-invariant relative to the action of elements $\psi \in W^{\prime} \subset W \cap H$ due to the local diffeomorphism A, that is, ν_{ϕ} is equivalent to ν for each $\phi:=$ $A \psi A^{-1}$, where $A W^{\prime} A^{-1} U \subset V, W^{\prime}$ is an open neighbourhood of e in H and U is an open neighbourhood of 0 in $Z, \nu_{o}(E):=\nu\left(\phi^{-1} E\right), \phi$ is an operator on Z such that it may be non-linear. The quasi-invariance factor $\rho_{\nu}(\phi, v)$ has expression through $\left|\operatorname{det}\left(\phi^{\prime}\right)\right|$ and the quasi-invariance factor $q_{\nu}(z, x)$ relative to linear shifts $z \in Z^{\prime}$ given by theorems from $\S 26$ [25] in the real case and theorem 3.28 [19] in the non-Archimedean case:

$$
\nu_{\phi}(d x) / \nu(d x)=\left|\operatorname{det}\left\{\phi^{\prime}\left(\phi^{-1}(x)\right)\right\}\right| q_{\nu}\left(x-\phi^{-1}(x), x\right)
$$

where $x \in U, \phi=A \psi A^{-1}, \psi \in W^{\prime}$. Then $\left(A \psi A^{-1} v-v\right) \in Z^{\prime}$ for each $v \in V$ and $\psi \in W^{\prime}$, where ν on Z is quasi-invariant relative to shifts on vectors $z \in Z^{\prime}$ and there exists a compact operator in the non-Archimedean case and an operator of trace class in the real case of embedding $\theta: Z^{\prime} \hookrightarrow Z$ such that $\nu\left(Z^{\prime}\right)=0$.
13. Theorem. Let $\left(G, \tau_{G}\right)$ and $\left(H, \tau_{H}\right)$ be a pair of topological non-locally compact groups G, H (Banach-Lie, Frechet-Lie or groups of diffeomorphisms or loop groups) with uniformities τ_{G}, τ_{H} such that H is dense in $\left(G, \tau_{G}\right)$ and there is a probability measure $\mu \in M_{l}(G, H)$ with continuous $d_{\mu}(z, g)$ on $H \times G$. Also let X be a Hilbert space over \mathbf{C} and $U(X)$ be the unitary group. Then (1) if $T: G \rightarrow U(X)$ is a weakly continuous representation, then there exists $T^{\prime}: G \rightarrow U(X)$ equal μ-a.e. to T and $\left.T^{\prime}\right|_{\left(H, \tau_{H}\right)}$ is strongly continuous;
(2) if $T: G \rightarrow U(X)$ is a weakly measurable representation and X is separable, then there exists $T^{\prime}: G \rightarrow U(X)$ equal to $T \mu$-a.e. and $\left.T^{\prime}\right|_{\left(H, \tau_{H}\right)}$ is strongly continuous.

Proof. Let $R(G):=(I) \cup L^{1}(G, \mu)$, where I is the unit operator on L^{1}. Then we can define

$$
A_{(\lambda e+a)_{h}}:=\lambda I+\int_{G} a_{h}(g)\left[d\left(h^{-1}, g\right)\right] T_{g} \mu(d g)
$$

where $a_{h}(g):=a\left(h^{-1} g\right)$. Then

$$
\left|\left(A_{(\lambda e+a)_{h}}-A_{\lambda e+a} \xi, \eta\right)\right| \leq \int_{G}\left|a_{h}(g) d_{\mu}(h, g)-a(g)\right|\left|\left(T_{g} \xi, \eta\right)\right| \mu(d g)
$$

hence $A_{a_{h}}$ is strongly continuous with respect to $h \in H$, that is,

$$
\lim _{h \rightarrow e}\left|A_{a_{h}} \xi-A_{a} \xi\right|=0
$$

Denote $A_{a_{h}}=T_{h}^{\prime} A_{a}$ as in $\S 29[22]$, so $T_{h}^{\prime} \xi=A_{a_{h}} \xi$, where $\xi=A_{a} \xi_{0}, a \in L^{1}$. Whence

$$
\begin{gathered}
\left(T_{h}^{\prime} \xi, T_{h}^{\prime} \xi\right)=\left(A_{a_{h}} \xi_{0}, A_{a_{h}} \xi_{0}\right)= \\
\int_{G} \bar{a}_{h}(g)\left(T_{g} \xi_{0}, T_{g^{\prime}} \xi_{0}\right) d_{\mu}\left(h^{-1}, g\right) d_{\mu}\left(h^{-1}, g^{\prime}\right) a_{h}\left(g^{\prime}\right) \mu(d g) \mu\left(d g^{\prime}\right) \\
=\int_{G} \bar{a}(z) a\left(z^{\prime}\right)\left(U_{z} \xi_{0}, U_{z^{\prime}} \xi_{0}\right) \mu(d z) \mu\left(d z^{\prime}\right)=(\xi, \xi)
\end{gathered}
$$

Therefore, T_{h}^{\prime} is uniquely extended to a unitary operator in the Hilbert space $X^{\prime} \subset X$. In view of lemma $12, \mu(H)=0$. Hence T^{\prime} may be considered equal to $T \mu$-a.e. Then the space $\operatorname{span}_{\mathbf{C}}\left[A_{a_{h}}: h \in H\right]$ is evidently dense in X, since

$$
\begin{gathered}
\left(A_{a_{h}} \xi_{1}, A_{x_{q}} \xi_{0}\right)=\left(\int_{G} a_{h}(g) T_{g} d\left(h^{-1}, g\right) \mu(d g) \xi_{1}, \int_{G} x_{q}\left(g^{\prime}\right) T_{g^{\prime}} d\left(q^{-1}, g^{\prime}\right) \mu\left(d g^{\prime}\right) \xi_{0}\right)= \\
\left(T_{h} \int_{G} a(g) T_{g} \mu(d g) \xi_{1}, T_{q} \int_{G} x\left(g^{\prime}\right) T_{g^{\prime}} \mu\left(d g^{\prime}\right)\right)=\left(T_{q^{-1} h} A_{a} \xi_{1}, A_{x} \xi_{0}\right)
\end{gathered}
$$

For proving the second statement let $\mathrm{R}:=\left[\xi: A_{a} \xi=0\right.$ for each $\left.a \in L^{1}(G, \mu)\right]$. If

$$
\left(A_{a} \xi, \eta\right)=\int_{G} a(g)\left(T_{g} \xi, \eta\right) \mu(d g)=\int_{G} a(g)\left(T_{g}^{\prime} \xi, \eta\right) \mu(d g)
$$

for each $a(g) \in L^{1}(G, \mu, \mathbf{C})$, then $\left(T_{g} \xi, \eta\right)=\left(T_{g}^{\prime} \xi, \eta\right)$ for μ-almost all $g \in G$. Suppose that $\left\{\xi_{n}: n \in \mathbf{N}\right\}$ is a complete orthonormal system in X. If $\xi \in X$, then

$$
\int_{G} a(g)\left(T_{g} \xi, \xi_{m}\right) \mu(d g)=0
$$

for each $g \in G \backslash S_{m}$, where $\mu\left(S_{m}\right)=0$. Therefore, $\left(T_{g} \xi, \xi_{m}\right)=0$ for each $m \in \mathbf{N}$, if $g \in G \backslash S$, where $S:=\bigcup_{m=1}^{\infty} S_{m}$. Hence $T_{g} \xi=0$ for each $g \subseteq G \backslash S$, consequently, $\xi=0$. Then $\left(T_{g} \xi_{n}, \xi_{m}\right)=\left(T_{g}^{\prime} \xi_{n}, \xi_{m}\right)$ for each $g \in G \backslash \gamma_{n, m}$, where $\mu\left(\gamma_{n, m}\right)=0$. Hence $\left(T_{g} \xi_{n}, \xi_{m}\right)=\left(T_{g}^{\prime} \xi_{n}, \xi_{m}\right)$ for each $n, m \in \mathbf{N}$ and each $g \in G \backslash \gamma$, where $\gamma:=\bigcup_{n, m} \gamma_{n, m}$ and $\mu(\gamma)=0$. Therefeore, $\mathrm{R}=0$.
14. Definition and note. Let $\left\{G_{i}: i \in \mathrm{~N}_{\mathrm{o}}\right\}$ be a sequence of topological groups such that $G=G_{0}, G_{i+1} \subset G_{i}$ and G_{i+1} is dense in G_{i} for each $i \in \mathbf{N}_{\mathrm{o}}$ and their topologies are denoted $\tau_{i},\left.\tau_{i}\right|_{G_{i+1}} \subset \tau_{i+1}$ for each i, where $N_{o}:=\{0,1,2, \ldots\}$. Suppose that these groups are supplied with real probability quasi-invariant measures μ^{i} on G_{i} relative to G_{i+1}. For example, such sequences exist for groups of diffeomorphisms or loop groups considered in previous papers $[10,12,13,15,16,17,18],[20,21]$. Let $L_{G_{i+1}}^{2}\left(G_{i} . \mu^{i}, \mathbf{C}\right)$ denotes a subspace of $L^{2}\left(G_{i}, \mu^{i}, \mathrm{C}\right)$ as in $\S 1(\mathrm{~b})$. Such spaces are Banach and not Hilbert in general. Let $\tilde{L}^{2}\left(G_{i+1}, \mu^{i+1}, L^{2}\left(G_{i}, \mu^{i}, \mathbf{C}\right)\right):=H_{i}$ denotes the subspace of $L^{2}\left(G_{i}, \mu^{i}, \mathbf{C}\right)$ of elements f such that

$$
\begin{aligned}
&\|f\|_{i}^{2}:=\left[\|f\|_{L^{2}\left(G_{i}, \mu^{i}, \mathrm{C}\right)}^{2}+\|f\|_{i}^{2}\right] / 2<\infty, \text { where } \\
&\|f\|_{i}^{2}:=\int_{G_{i+1}} \int_{G_{i}}\left|f\left(y^{-1} x\right)\right|^{2} \mu^{i}(d x) \mu^{i+1}(d y)
\end{aligned}
$$

Evidently H_{i} are Hilbert spaces due to the parallelogram identity. Let

$$
f^{i+1} * f^{i}(x):=\int_{G_{i+1}} f^{i+1}(y) f^{i}\left(y^{-1} x\right) \mu^{i+1}(d y)
$$

denotes the convolution of $f^{i} \in H_{i}$.
15. Lemma. The convolution $*: H_{i+1} \times H_{i} \rightarrow H_{i}$ is a continuous bilinear mapping.

Proof. In view of Fubini theorem and Cauchy inequality:

$$
\begin{gathered}
\int_{G_{i+1}} \int_{G_{i}}\left|f^{i+1} * f^{i}\left(z^{-1} x\right)\right|^{2} \mu^{i}(d x) \mu^{i+1}(d z)= \\
\int_{G_{i+1}} \int_{G_{i}} \int_{G_{i+1}} f^{i+1}(y) f^{i}\left(y^{-1} z^{-1} x\right) \mu^{i+1}(d y) \int_{G_{i+1}} \bar{f}^{i+1}(q) \bar{f}^{i}\left(q^{-1} z^{-1} x\right) \mu^{i+1}(d q) \mu^{i}(d x) \mu^{i+1}(d z) \\
\leq \int_{G_{i}} \int_{G_{i+1}}\left(\int_{G_{i+1}}\left|f^{i+1}(y)\right|^{2} \mu^{i+1}(d y)\right)^{1 / 2}\left(\int_{G_{i+1}}\left|f^{i+1}(q)\right|^{2} \mu^{i+1}(d q)\right)^{1 / 2} \\
\left(\int_{G_{i+1}}\left|f^{i}\left(y^{-1} z^{-1} x\right)\right|^{2} \mu^{i+1}(d y)\right)^{1 / 2}\left(\int_{G_{i+1}}\left|f^{i}\left(q^{-1} z^{-1} x\right)\right|^{2} \mu^{i+1}(d q)\right)^{1 / 2} \mu^{i}(d x) \mu^{i+1}(d z) \leq \\
\left\|f^{i+1}\right\|_{L^{2}\left(G_{i+1}, \mu^{i+1}, \mathbf{C}\right)}^{2} \int_{G_{i}}\left[\int_{G_{i+1}} \int_{G_{i+1}}\left|f^{i}\left(y^{-1} z^{-1} x\right)\right|^{2} \mu^{i+1}(d y) \mu^{i+1}(d z)\right]^{12} \\
{\left[\int_{G_{i+1}} \int_{G_{i+1}}\left|f^{i}\left(q^{-1} z^{-1} x\right)\right|^{2} \mu^{i+1}(d q) \mu^{i+1}(d z)\right]^{1 / 2} \mu^{i}(d x) \leq} \\
=\left\|f^{i+1}\right\|_{L^{2}\left(G_{i+1}, \mu^{i+1}, \mathbf{C}\right)}^{2} \int_{G_{i+1}} \int_{G_{i}} \int_{G_{i+1}}\left|f^{i}\left(y^{-1} z^{-1} x\right)\right|^{2} \mu^{i+1}(d y) \mu^{i+1}(d z) \mu^{i}(d x) \\
\left.\| f_{i+1}, \mu^{i+1}, \mathbf{C}\right) \\
\left(\int_{G_{i}} \int_{G_{i+1}} \int_{G_{i+1}}\left|f^{i}\left(y^{-1} \gamma\right)\right|^{2} \mu^{i+1}(d y) \mu_{L^{2}\left(G_{i+1}, \mu^{i+1}, \mathbf{C}\right)}^{i+1}(d z) d_{\mu^{i}}\left(z^{-1}, \gamma\right) \mu_{G^{i}}(d \gamma)\right) \leq \\
\left|f^{i}\left(z^{-1} x\right)\right|^{2} \mu^{i+1}(d z) \mu^{i}(d x), \text { since } \\
\int_{G_{i}} \int_{G_{i+1}} d_{\mu^{i}}\left(z^{-1}, \gamma\right) \mu^{i}(d \gamma) \mu^{i+1}(d z)=\int_{G_{i+1}} \mu^{i+1}(d z) \int_{G_{i}} \mu^{i}(z d \gamma)=1 . \text { Then } \\
\left\|f^{i+1} * f^{i}\right\|_{L^{2}\left(G_{i}, \mu^{i}, \mathbf{C}\right)}^{2}=\int_{G_{i}}\left|\int_{G_{i+1}} f^{i+1}(y) f^{i}\left(y^{-1} x\right) \mu^{i+1}(d y)\right|^{2} \mu^{i}(d x \\
\leq\left\|f^{i+1}\right\|_{L^{2}\left(G_{i+1}, \mu^{i+1}, \mathbf{C}\right)}^{2} \int_{G_{i}} \int_{G_{i+1}}\left|f^{i}\left(z^{-1} x\right)\right|^{2} \mu^{i+1}(d z) \mu^{i}(d x) . \text { Therefore, } \\
\left.\left\|f^{i+1} * f^{i}\right\|_{i} \leq\left\|f^{i+1}\right\|_{L^{2}\left(G_{i+1}, \mu^{i+1}, \mathbf{C}\right)}\right) f^{i} \|_{i} .
\end{gathered}
$$

16. Definition. Let $l_{2}\left(\left\{H_{i}: i \in \mathbf{N}_{\mathbf{0}}\right\}\right)=: H$ be the Hilbert space consisting of elements $f=\left(f^{i}: f^{i} \in H_{i}, i \in \mathbf{N}_{\mathbf{o}}\right)$: for which

$$
\|f\|^{2}:=\sum_{i=0}^{\infty}\left\|f^{i}\right\|_{i}^{2}<\infty .
$$

For elements f and $g \in H$ their convolution is defined by the formula: $f \star g:=$ h with $h^{i}:=f^{i+1} * g^{i}$ for each $i \in \mathbf{N}_{\mathbf{o}}$. Let $*: H \rightarrow H$ be an involution
such that $f^{*}:=\left(\bar{f}^{\wedge}: j \in \mathbf{N}_{\circ}\right)$, where $f^{j \wedge}\left(y_{j}\right):=f^{j}\left(y_{j}^{-1}\right)$ for each $y_{j} \in G_{j}$, $f:=\left(f^{j}: j \in \mathbf{N}_{\mathrm{o}}\right), \bar{z}$ denotes the complex conjugated $z \in \mathbf{C}$.
17. Lemma. H is a non-associative non-commutative Hilbert algebra with involution $*$, that is $*$ is conjugate-linear and $f^{* *}=f$ for each $f \in H$.

Proof. In view of Lemma 15 the convolution $h=f \star g$ in the Hilbert space H has the norm $\|h\| \leq\|f\|\|g\|$, hence is a continuous mapping from $H \times H$ into H. From its definition it follows that the convolution is bilinear. It is non-associative as follows from the computation of i-th terms of $(f \star g) \star q$ and $f \star(g \star q)$, which are $\left(f^{i+2} * g^{i+1}\right) * q^{i}$ and $f^{i+1} *\left(g^{i+1} * q^{i}\right)$ respectively, where f, g and $q \in H$. It is non-commutative, since there are f and $g \in H$ for which $f^{i+1} * g^{i}$ are not equal to $g^{i+1} * f^{i}$. Since $f^{j \wedge}\left(y_{j}\right)=f^{j}\left(y_{j}\right)$ and $\overline{\bar{z}}=z$. one has $f^{* *}=\left(f^{*}\right)^{*}=f$.
18. Note. In general $\left(f \star g^{*}\right)^{*} \neq g \star f^{*}$ for f and $g \in H$, since there exist f^{j} and g^{j} such that $g^{j+1} *\left(f^{j}\right)^{*} \neq\left(f^{j+1} *\left(g^{j}\right)^{*}\right)^{*}$. If $f \in H$ is such that $\left.f^{j}\right|_{G_{j-1}}=f^{j+1}$, then

$$
\left(\left(f^{j-1}\right)^{*} * f^{j}\right)(e)=\int_{G_{j+1}} \bar{f}^{j+1}\left(y^{-1}\right) f^{j+1}(y) \mu^{j+1}(d y)=\left\|f^{j+1}\right\|_{L^{2}\left(G_{j+1}, \mu^{j+1}, \mathbf{C}\right)},
$$

where $j \in \mathbf{N}_{\mathbf{o}}$.
19. Definition. Let $l_{2}(\mathrm{C})$ be the standard Hilbert space over the field \mathbf{C} be considered as a Hilbert algebra with the convolution $\alpha \star \beta=\gamma$ such that $\imath^{i}:=\alpha^{i+1} \beta^{i}$, where $\alpha:=\left(\alpha^{i}: \alpha^{i} \in \mathbf{C}, i \in \mathbf{N}_{\mathrm{o}}\right), \alpha, \beta$ and $\gamma \in l_{2}(\mathbf{C})$.
20. Note. The algebra $l_{2}(\mathbf{C})$ has two-sided ideals $J_{i}:=\left\{\alpha \in l_{2}(\mathbf{C})\right.$: $\alpha^{j}=0$ for each $\left.j>i\right\}$, where $i \in \mathbf{N}_{\mathbf{0}}$. That is, $J \star l_{2}(\mathbf{C}) \subset J$ and $l_{2}(\mathbf{C}) \star J=J$ and J is the C-linear subspace of $l_{2}(\mathbf{C})$, but $J \star l_{2}(\mathbf{C}) \neq J$. There are also right ideals, which are not left ideals: $K_{i}:=\left\{\alpha \in l_{2}(\mathbf{C}): \alpha^{j}=0\right.$ for each $j=0 . \ldots, i\}$, where $j \in \mathbf{N}_{\mathbf{o}}$. That is, $l_{2}(\mathbf{C}) \star K_{i}=K_{i}$, but $K_{i} \star l_{2}(\mathbf{C})=K_{i-1}$ for each $i \in \mathbf{N}_{\mathbf{o}}$, where $K_{-1}:=l_{2}(\mathbf{C})$. The algebra $l_{2}(\mathbf{C})$ is the particular case of H, when $G_{j}=\{e\}$ for each $j \in \mathbf{N}_{\mathbf{o}}$. We consider further H for non-trivial topological groups outlined above.
21. Theorem. If F is a maximal proper left or right ideal in H, then H / F is isomorphic as the nonassociative noncommutative algebra over \mathbf{C} with $l_{2}(\mathrm{C})$.

Proof. Since F is the ideal, it is the \mathbf{C}-linear subspace of H. Suppose, that there exists $j \in \mathbf{N}_{o}$ such that $f^{j}=0$ for each $f \in F$, then $f^{i}=0$ for each $i \in \mathbf{N}_{\mathrm{o}}$, since the space of bounded complex-valued continuous functions $C_{b}^{0}\left(G_{\infty}, \mathbf{C}\right)$ on $G_{\infty}:=\bigcap_{j=0}^{\infty} G_{j}$ is dense in each $H_{j}:=\left\{f^{j}: f \in H\right\}$
and $C_{b}^{0}\left(G_{\infty}, \mathbf{C}\right) \cap F_{j}=\{0\}$ and $\left.C_{b}^{0}\left(G_{j}, \mathbf{C}\right)\right|_{G_{j+1}} \supset C_{b}^{0}\left(G_{j+1}\right.$. $\left.\mathbf{C}\right)$. Therefore, $F_{j} \neq\{0\}$ for each $j \in \mathbf{N}_{\mathbf{o}}$, consequently, $\mathbf{C} \hookrightarrow F_{j}$ for each $j \in \mathbf{N}_{\mathbf{o}}$. Since \mathbf{C} is embeddable into each F_{j}, then there exists the embedding of $l_{2}(\mathbf{C})$ into F, where $H_{j}:=\left\{f^{j}: f \in H\right\}, \pi_{j}: H \rightarrow H_{j}$ are the natural projections.

The subalgebra F is closed in H, since H is a topological algebra and F is a maximal proper subalgebra. The space $H_{\infty}:=\bigcap_{j \in \mathbf{N}_{0}} H_{j}$ is dense in each H_{j} and the group $G_{\infty}:=\bigcap_{j \in \mathrm{~N}_{o}} G_{j}$ is dense in each G_{j}.

Suppose that $F_{i}=H_{i}$ for some $i \in \mathbf{N}_{\mathbf{o}}$, then $F_{j}=H_{j}$ for each $j \in \mathbf{N}_{\mathbf{o}}$, since $C_{b}^{0}\left(G_{\infty}, \mathbf{C}\right)$ is dense in each H_{j} and $\left.C_{b}^{0}\left(G_{j}, \mathbf{C}\right)\right|_{G_{j+1}} \supset C_{b}^{0}\left(G_{j+1}, \mathbf{C}\right)$. The ideal F is proper, consequently, $F_{j} \neq H_{j}$ as the \mathbf{C}-linear subspace for each $j \in \mathbf{N}_{\mathrm{o}}$, where $F_{j}=\pi_{j}(F)$.

There are linear continuous operators from $l_{2}(\mathbf{C})$ into $l_{2}(\mathbf{C})$ given by the following formulas: $x \mapsto\left(0, \ldots, 0, x^{0}, x^{1}, x^{2}, \ldots\right)$ with 0 as n coordinates at the beginning, $x \mapsto\left(x^{n}, x^{n+1}, x^{n+2}, \ldots\right)$ for $n \in \mathbf{N} ; x \mapsto\left(x^{k l+\sigma_{k}(i)}: k \in \mathbf{N}_{o}, i \in\right.$ $(0,1, \ldots, l-1)$), where $\mathbf{N} \ni l \geq 2, \sigma_{k} \in S_{l}$ are elements of the symmetric group S_{l} of the set $(0,1, \ldots, l-1)$. Then $f \star(g \star h)+l_{2}(\mathrm{C})$ and $(f \star g) \star h+l_{2}(\mathbf{C})$ are considered as the same class, also $f \star g+l_{2}(\mathrm{C})=g * f \div l_{2}(\mathrm{C})$ in $H / l_{2}(\mathbf{C})$, since $\left(f+l_{2}(\mathbf{C})\right) \star\left(g+l_{2}(\mathbf{C})\right)=f \star g+l_{2}(\mathbf{C})$ for each f, g and $h \in H$. For each $f, g, h \in F: f \star(g \star h)+l_{2}(\mathrm{C})$ and $(f * g) \star h+l_{2}(\mathrm{C})$ are considered as the same class, also $f \star g+l_{2}(\mathbf{C})=g \star f+l_{2}(\mathbf{C})$ in $F / l_{2}(\mathbf{C})$, since $\left(f+l_{2}(\mathbf{C})\right) \star\left(g+l_{2}(\mathbf{C})\right)=f \star g+l_{2}(\mathbf{C}) \subset F$ for each f and $g \in F$. Therefore, the quotient algebras $\mathrm{H} / l_{2}(\mathrm{C})$ and $F / l_{2}(\mathrm{C})$ are associative commutative Banach algebras.

Let us adjoint a unit to $H / l_{2}(\mathbf{C})$ and $F / l_{2}(\mathbf{C})$. As a consequence of the Gelfand and Mazur theorem we have, that $\left(H / l_{2}(\mathbf{C})\right) /\left(F / l_{2}(\mathbf{C})\right)$ is isomorphic with \mathbf{C} (see theorem V.6.12 [6] and theorem III.11.1 [22]). On the other hand, as it was proved above $F_{j} \neq H_{j}$ for each $j \in \mathbf{N}_{\mathrm{o}}$, hence there exists the following embedding $l_{2}(\mathbf{C}) \hookrightarrow(H / F)$ and $(H / F) / l_{2}(\mathbf{C})$ is isomorphic with $\left(H / l_{2}(\mathbf{C})\right) /\left(F / l_{2}(\mathbf{C})\right)$. Therefore, H / F is isomorphic with $l_{2}(\mathbf{C})$.

References

[1] N. Bourbaki. Lie groups and algebras (Moscow: Mir, 1976).
[2] Yu.L. Dalecky, S.V. Fomin. Measures and differential equations in infinite-dimensional space (Kluwer: Dordrecht, The Netherlands, 1991).
[3] Yu.L. Daletskii, Ya.I. Shnaiderman. Diffusion and quasi-invariant measures on infinite-dimensional Lie groups. Funct. Anal. and its Applications. 3 (1969), 156-158.
[4] R. Engelking. General topology (Moscow: Mir,1986).
[5] H.Federer. Geometric measure theory(Berlin:Springer-Verlag, 1969).
[6] J.M.G. Fell, R.S. Doran. Representations of $*$-algebras. locally compact groups, and Banach *-algebraic bundles (Acad. Pr.: Boston, 1988).
[7] E. Hewitt and K.A. Ross. Abstract harmenic analysis. Second edition (Berlin: Springer-Verlag, 1979).
[8] A.V. Kosyak. Irreducible Gaussian representations of the group of the interval and circle diffeomorphisms. J. Funct. Anal. 125i1994), 493-547.
[9] H.-H. Kuo. Gaussian measures in Banach spaces (Springer, Berlin, 1975).
[10] S.V. Ludkovsky. Measures on groups of diffeomorphisms of nonArchimedean Banach manifolds, Usp. Mat. Nauk. 51(1996), 169-170 (№ 2).
[11] S.V. Ludkovsky. Measurability of repesentations of locally compact groups. Math. Sb. 186 1995, 83-92 (№ 2).
[12] S.V. Ludkovsky. Measures on groups of diffeomorphisms of nonArchimedean manifolds, representations of groups and their applications. Theoret. i Mathem. Phys., 1999.
[13] S.V. Ludkovsky. Quasi-invariant measures on non-Archimedean semigroups of loops. Usp. Mat. Nauk, 53 (1998), 203-204 (ㄴo 3).
[14] S.V. Ludkovsky. Quasi-invariant measures on a group of diffeomorphisms of an infinite-dimensional real manifold and induced irreducible unitary representations. Rendiconti dell'Istituto di Matematica dell'Università di Trieste. Nuova Serie. 26 pages, is accepted for publication, 1999.
[15] S.V. Ludkovsky. Quasi-invariant measures on loop groups of Riemann manifolds. Dokl. Ross. Acad. Nauk, to appear.
[16] S.V. Ludkovsky. Gaussian quasi-invariant measures on loop groups and semigroups of real manifolds and their representations. IHES, Bures, France, preprint IHES/M/97/95.
[17] S.V. Ludkovsky. Quasi-invariant measures on non-Archimedean groups and semigroups of loops and paths, their representations. IHES/M/98/36.
[18] S.V. Ludkovsky. Quasi-invariant measures on groups of diffeomorphisms of Schwarz class of smoothness for real manifolds. IHES/M/97/96.
[19] S.V.Ludkovsky. Quasi-invariant and pseudo-differentiable measures on a non-Archimedean Banach space. Intern. Centre for Theoret. Phys. Trieste, Italy. Preprint (http://www.ictp.trieste.it) IC/96/210, Octcber 1996.
[20] S.V. Ludkovsky. Quasi-invariant measures on a non-Archimedean group of diffeomorphisms and on a Banach manifold. ICTP. IC/96/215, October, 1996.
[21] S.V. Ludkovsky. Quasi-invariant measures on groups of diffeomorphisms of real Banach manifolds. ICTP. IC/96/218, October, 1996.
[22] M.A. Naimark. Normed rings (Moscow: Nauka, 1968).
[23] Yu.A. Neretin. Representations of the Virasoro algebra and affine algebras. in: Itogi Nauki i Tech. Ser. Sovr. Probl. Math. Fund. Napravl(Moscow: Nauka) 22(1988), 163-230.
[24] E.T. Shavgulidze. About one measure quasi-invariant relative to an action of a diffeomorphisms group of a finite-dimensional manifold. Dokl. Akad. Nauk SSSR. 303(1988), 811-814.
[25] A.V. Skorohod. Integration in the Hilbert space (Moscow: Nauka, 1975).

