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DERIVE DES MARCHES ALEATOIRES ET THEOREMES LIMITES

Léonard Gallardo

Résumé. Les marches aléatoires sur certains hypergroupes de dimension un sont des
chaines de Markov dont la dérive et la fonction moment d’ordre deux tendent vers
une limite & l'infini. Ces faits sont utilisés pour obtenir des théorémes limites.

Abstract. Random walks. on a class of one dimensional hypergroups are Markov
chains whose drift and second moment function have a limit at infinity. These facts
are used to obtain limit theorems.

1) Introduction : Une marche aléatoire sur E = R%(resp.ZZ% resp. un groupe
topologique G) peut étre vue comme un processus de sommes de variables aléatoires
i.i.d a valeurs dans E et de loi u ou comme une chaine de Markov sur E dont le
noyau de transition P est un noyau de convolution par u : P(z,dy) = &, * u(dy).
olt * est la convolution des mesures sur R%(resp.ZZ% resp.G). Cette maniére de
voir, plus analytique que la premiére, conserve un sens chaque fois qu’on dispose sur
M (FE) d’une opération *, associative, distributive par rapport & ’addition et vérifiant
quelques conditions supplémentaires et ceci méme si cette " convolution généralisée”
ne provient pas d'une structure de groupe. On appelle alors marche aléatoire toute
chaine de Markov dont le noyau markovien est un noyau de convolution généralisée.

Dans cet exposé nous nous proposons, aprés avoir présenté quelques convolutions
généralisées typiques, de mettre en évidence un phénoméne fréquent : La dérive
de la convolution. Il s’agit de la propriété suivante (cf. [G3]). Soit E un borélien
non borné de R? et * une convolution généralisée sur M (E) telle que (E. x) soit un
hypergroupe (cf. [B-H]). Sous certaines conditions, pour tout z € E, les limites

lim /E (u = )6, % 6,(du) = my(z)

|t}—o0
et

lim [ (u—t)26; * 6;(du) = my(z)

lt|—co JE
existent (6 désigne une masse de Dirac). Cette particularité peut étre mise a profit
pour étudier le comportement asymptotique des marches aléatoires associées & ces

" structures : TLC et loi des grands nombres. En fait ces résultats probabilistes

ne sont pas pour nous un but en eux mémes. Nous souhaitons plutét expliciter
les propriétés qui lient le comportement limite des marches aléatoires & la structure
asymptotique de la convolution décrite ci-dessus. Cette approche a 1'avantage d'étre
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directe et ne nécessite pas l'utilisation des propriétés spectrales habituelles (notion
de dual, transformation de Fourier --- ). Dans la suite nous utiliserons souvent les
abréviations m.a. pour marche aléatoire et v.a. pour variable aléatoire.

Cet article est la rédaction d'un exposé donné au colloque dédié & la mémoire
d’Albert Badrikian.

2) Exemples de convolutions et de marches aléatoires généralisées

A) Marches aléatoires radiales dans R :Si (X,) est une m.a. radiale dans R i.e.
dont les pas & dont des v.a. i.i.d invariantes par rotation, alors la distance eucli-
dienne de X, & l'origine est une chaine de Markov |X,| sur R, dont le novau de
transition est de la forme P(z,dy) = 6; *, p(dy), ou p est la loi de |£;] et *, est la
convolution “sphérique” sur M (R, ) donnée par

(2.1) (Ss%aby. f) = /_ 11 F(Jz? + 32 + 22y N dFa())

- (Vf € Cy(R.) et Vz,y € R,) et plus généralement par

(22) (wrav = [ [ (6 %0 by, Pu(dz)(dy)
pour g, v € M(R4), ol & = (d/2) — 1 et

FMa+1)
Vrl(a +1/2)
est la loi du cosinus de 'angle que fait un vecteur aléatoire uniformément distribué
sur S4_; avec une direction fixe (cf. [Ha]). Pour tout & € R, la convolution (2.2)
garde un sens méme si 'interprétation géométrique est perdue. Les m.a. associées
ont été étudiées par Kingman (cf. [K]).

(2.3) dF,(\) = (1= A3)2=Y24)

B) Marches isotropes sur la sphére : Soit (Ry) une suite de v.a. i.i.d & valeurs dans
SO(d+1) et e le pole nord de la sphere S; = SO(d + 1)/SO(d) de dimension d. Le
processus X, = e.R;.Ry. - - - R, des transformés successifs de e par Ry, RjR,.--- est
une m.a. sur Sg. Cette marche est isotrope (ou SO(d) invariante) si la loi de .X;
ne dépend que de la distance géodésique d(e, X;) de e & X;. A 'aide de-la formule
des triangles sphériques (cosz = coszcosy + sinzsinycosf), on peut voir que
| Xn| = d(e. X») est une chaine de Markov sur [0, 7] de noyau P(z,dy) = 6, * u(dy)
ol u est la loi de | X| et ol  est la convolution généralisée sur M ([0, #]) définie par
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(2.4) (b2 %6y, f) = /__11 f(arccos(cos z cosy + Asinzsiny))dF,(\)

(Vf € Co([0,7])) ol dF, avec @ = (d/2)—1 est donnée par (2.3) et plus généralement
pour p et v € M([0,7]), p * v est définie par bilinéarité comme en (2.2).

C) Marches isotropes sur I'espace hyperbolique : Soit Hy = SO(1,d)/SO(d)
I'espace hyperbolique de dimension d qui s’identifie & la nappe supérieure de
I'hyperboloide d’équation zZ — 23 — - — 3 = 1 dans R**!. Si e est le pole (sud)
de Hy et si (Rg) est une suite de v.a. i.i.d & valeurs dans SO(1,d), la marche
Xn =eRy- - R, sur Hy est isotrope si la loi de’ X ne dépend que de la distance
géodésique | X;| = d(e, X)) (i.e. si elle est SO(d) invariante). Rappelons que si z et
Y € Hy, on ad(z,y) = argch(zoyo— 11— - - — TnYa) (cf. [He]). En utilisant la for-
mule des triangles hyperboliques, on montre alors comme en B que | X,| = d(e. X,,)
est une chaine de Markov sur R, de noyau P(z,dy) = 8, * u(dy) ol u = px, et *
est la convolution généralisée sur M(IR,.) donnée par

(25) (6 +6,.1) = [ 11 f(argeh(chzchy + Ashzshy))dFa(A),

ou dF, avec a = (d/2) — 1 est donnée en (2.2) et f € Cp(R).

3) Convolutions généralisées et hypergroupes

Définition 3.1 : Soit E un espace topologique L.C.D. et * une opération bilinéaire
et séparément continue pour la topologie faible sur 1'espace M(E) des mesures de
Radon complexes bornées sur E. appelée convolution et qui préserve les probabilités
(ie. M(E)* My(E) € M,(E)). On dit que (E,*) est un hypergroupe si les
propriétés suivantes sont satisfaites

1) 62 % (by % 6,) = (6; % 6,) * 6. (Vz,y,z € E).
2) il existe e € E tel que 6, % 6; = 6, * 6, = 6, (Vz € E)

3) il existe une involution continue z — z~ de E telle que

a) (8; % 8y)™ = 6,- % 6,-

b) e € supp(é; * 6,) =z =y~

31‘1 pour p € M(E). u~ est 'image de u par £ — z~ et suppu désigne le support
e U.

4) supp(6, * &) est compact et
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a) 'application (z.y) — &, * §, de E? dans M;(E) est continue pour la topologie
faible.

b) I'application (z. y) — supp(é. *8,) de E? dans I’ensemble des parties compactes
de FE est continue pour la topologie de Hausdorff.

Dans cet article nous ne considérons que des hypergroupes commutatifs i.e. §;*6, =
8, * 6;(Vz,y € E). Notons en particulier que si I'involution z — z~ est l'identité
(i.e. z =z".Vz € E) ’hypergroupe est commutatif.

Les convolutions obtenues au paragraphe 1 donnent des structures d’hypergroupe
sur E = R, (resp.E = [0,7]) avec e = 0 et £~ = z. De nombreux exemples
d’hypergroupes figurent dans [B-H]. Les deux classes suivantes (dont la premiére
généralise les exemples A et C de 1) nous serviront d’exemple typique.

a) Hypergroupes de Chébli-Triméche : Soit A une fonction strictement croissante
non bornée sur R.. telle que A(0) = 0. On suppose A dérivable, A’/A décroissante
sur R} et A'(z)/A(z) = a/z + B(z) dans un voisinage de zéro, olt @ > 0 et B est
une fonction impaire de classe C*® sur R. Considérons l'opérateur

2 A@d
(3.1) L= 2 + A e

T2
La solution u sur R. x R, du probléme de Cauchy hyperbolique L;u = Lyu de

conditions initiales u(z,0) = f(z) et B_Z(I'O) = 0, s’écrit sous la forme

(32) u(@.y) = [ fwhy(dw)

ol pizy € Mi(IR4) est en fait & support dans l'intervalle |z — y|, z + y}(cf.[C]). En
posant 6, * 8, = piz,. on définit sur R, une structure d’hypergroupe. Comme cas
particulier pour A(z) = z°, on obtient 'hypergroupe de Kingman et pour A(x) =
shzx 'hypergroupe de 'exemple C.

b) Hypergroupes polynomiaux : Soient (p,),(g.) et (r») trois suites de nombres
réels telles que p, > 0,7, > 0,¢n41 > 0,90 = 0 et pp + gn + 7 = 1(Vn € IN). Les
polynémes définis par Py = 1, Pi(z) =z et

(3.3) ZPu(z) = guPn-1(2) + TaPa(Z) + PrPasr(z) (n 2 1),

forment une suite (P,) de polynémes orthogonaux sur [—1,1] par rapport & une

certaine mesure dIl(z). S’ils sont & coefficients de linéarisation non négatifs (i.e. si
m+n

Ym,n Pn(z)P.(z)= Z ¢(m,n,r)P.(z) avec c¢(m,n,r) > 0, Vr) on définit une
r=|m-n|

structure d’hypergroupe (N, *) sur IN en posant e = 0,n~ = n(Vn € N) et
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m+n
(34) bm*b= Y. c(m,n,1)6,.
r=(m-n|
C’est I'hypergroupe polynomial de parameétres (pn),(g.) et (rp). Il est dit a
parametres convergents si nlLu°1° Pn =D, ’}Lngo gn = g existent dans ]0. 1].

Beaucoup de familles classiques de polynomes orthogonaux sont associées a des
structures d’hypergroupes (cf. [L]). Par exemple les polynomes de Tchebychev don-
nent sur M(IN) la convolution

1
(3.5) 6 %6, = 5(6,,,,-,,, + 6mn)-
Définition 3.6 : Soit (E,*) un hypergroupe. On appelle marche aléatoire de loi

u(€ M,(E)) toute chaine de Markov homogene sur F dont le noyau markovien est
de la forme P(z,dy) = 6, * u(dy).

Remarque 3.7 : Le lecteur qui ne désire pas rentrer dans la problématique des hyper-
groupes peut continuer la lecture de cet article en considérant 1'une des convolutions
présentées dans le paragraphe 2 (exemples A et C).

4) Hypergroupes stables

Pour simplifier la présentation nous ne considérerons ici que des hypergroupes uni-
dimensionnels. Soit (£, *) un hypergroupe avec E un sous ensemble borélien non
borné de R muni de la topologie induite ; si E est un lattice, il est simplement muni
de la topologie discréte. On suppose que la convolution vérifie la propriété suivante
: il existe une constante C > 0 telle que : Vz,y € E et Yu € supp(6; * §,). on ait

(4.0) |u—y| < Clz|.
Par exemple dans le cas des hypergroupes de Chébli-Triméche et des hypergroupes

polynomiaux, on a E = R, (resp.IN) et supp(6; * 6,) C [|z — y| I + y); la condition
(4.0) est donc vérifiée avec C = 1.

Définition 4.1 : On dit que I'hypergroupe (E, ) est stable d’ordre 1 (S1 en abrégé)
si pour tout y € E

(4.1.1) lim / (u = )6, * 6y(du) = my(y)(€ R) existe.
[zl —oc JE
(E, *) sera dit stable d’ordre 2 (S2 en abrégé) si de plus : Vy € E.

(4.1.2) Izllim E(u — )6, * 6,(du) = ma(y)(€ R,) existe.
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Dans le cas E = R avec la convolution usuelle, on a trivialement m,(y) = y et
ma(y) = y2 Dans [G2] nous avons utilisé la terminologie stable pour stable d’ordre
1 et avons justifié I'utilisation de cette dénomination : c’est la convolution qui vérifie
une propriété de stabilité. Dans [G3] nous avons effectué une étude analytique des
fonctions m, et m, précédentes et nous avons en particulier obtenu les résultats
suivants :

Proposition 4.2 Tout hypergroupe de Chébli-Triméche est de type S2 avec les fonc-
tions m;, my données explicitement par :

(42.1) m(@) =20 [ (A@)™ [ A(E)dgdu

et

(42.2) my(e) = [ [(((A)dz)(2 + dpmy () Alu)d.
ol 2p= lim_ A'(z)/A(z) 2 0.

Proposition 4 Tout hypergroupe polynomial & parameétres convergents est de type
S2 avec

(4.3.1) my(n) = (p— q) P,(1)

(4.32) ma(n) = (p+ Q)P (1) + (P - @)*F(1)  (VneD).

5) Dérive des marches aléatoires sur les hypergroupes stables

Définition 5.1 : Etant donné une chaine de Markov (X,) homogéne sur un borélien
non borné E(C R), on appelle dérive de (X,), la fonction d (lorsqu’elle existe)
définie sur E par ’
(5.1.1) d(z) = E,(X) — z) = E(Xn — Xn-1] Xn-1 = 2),

et on appelle par abus de langage, moment d’ordre 2 la fonction (lorsqu’elle existe)
définie sur E par

(5.1.2) e5(z) = Eo((Xy = 2)%) = E((Xn — Xn-1)*|Xn-1 = 2)-

Définition 5.2 : Une chaine de Markov est dite de type Sl si elle a une dérive d
bornée sur E et telle que

(5.2.1) l1'1_1_1.1 d(z) = myi(€ R) existe.
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La chaine est dite de type S2 si elle est de type S1 et si elle a une fonction moment
d’ordre 2 telle que

(5.2.2) lI‘im c2(z) = my(€ R,) existe.
T|—00

Proposition 5.3 : Soit (E,*) un hypergroupe stable de type 1 (resp. de type 2).
Toute marche aléatoire sur (E, x) dont la loi 4 admet un moment d'ordre 1 (resp.
un moment d’ordre 2) est de type S1 (resp. de type S2) et on a

(5.3.1) my = [pmu(z)u(dz)
(5.3.2) (resp.my = [gma(z)p(dz)).

démonstration : On vérifie immédiatement grace a la condition (4.0) que d(z) existe
et que || d ||=< [ |ylu(dy) < +o0 par hypothese.

De plus on a

d(@) = [ (u = 2)6 widw) = [ ([ (w=2)8 +5,(dw)) ula)
et le théoreme de convergence dominée donne aussitot
lim d(z) = [ my(y)u(dy) = m.
Une démonstration analogue donne le résultat pour le cas de my0

6) Théorémes limites pour les marches aléatoires

On va considérer ici des chaines de Markov de type S1 et S2. Les résultats obtenus
s’appliqueront immédiatement aux marches aléatoires sur les hypergroupes de type
S1 (resp. S2). .

A) Généralités. Soit (X,) une chaine de Markov sur un borélien non borné E(C R)
dont la dérive existe.

, n
Proposition 6.1 : Le processus M, = X, — > d(Xi-1) est une martingale par

_ k=1
rapport a la filtration 7, = o(Xx; k < n). Si de plus (X,) & une fonction moment
d’ordre 2 (voir (5.2)) et si Z), = My — Mj_, est I'accroissement de M,, on a alors

(6.1.1) E(Z%|F-1) = ca(Xk-1) — d*(Xi-1) p.s.
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démonstration : Le fait que (M) est une martingale est facile & vérifier ; la formule
(6.1.1) résulte d’un calcul sans difficulté O

6.2 Hypothéses sur la chaine : Dans toute la suite du paragraphe 6 les considérations
de récurrence et transience vont jouer un role déterminant. On supposera donc soit
que l'espace des états E est discret (dans ce cas les notions de transience et récurrence
sont usuelles) soit que E est un borélien quelconque de R et dans ce cas

i) lorsque nous dirons que (X,) est récurrente. il faut entendre que (X,) est Harris
récurrente avec une mesure invariante (o-finie) A portée par E (¢f. [R]). La chaine
(X,) sera dite récurrente positive si A est de masse finie et récurrente nulle sinon.

ii) Nous dirons que (X,) est transiente si | X,| — co P; p.s. pour unz € E.

A) Loi des grands nombres

Proposition 6.3 : Soit (X,) une chaine de Markov ayant une fonction moment d'ordre
2 bornée sur E, alors

(6.3.1) lim (5- 2L Zd(Xk_l)) =0 P, ps. (Vz€E)
n—+oc n n k=1

démonstration : si ¢y est bornée sur E, d aussi et d’aprés (6.1.1), la suite E(Z}) est
fo <]

bornée donc la série Z n~2E(Z2) converge. D'apreés un résultat classique de Chow.
n=1

M,
on en déduit que lim — =0 P, ps. O
n—+o00 1N

Corollaire 6.4 : Si la chaine (X,) est transiente et de type S1, on a nEer — =

n
m; P, ps.

démonstration : d(X,) converge vers m; p.s. donc ses sommes de Cesaro aussi d ou
le résultat d’apres la proposition 6.3 0

Proposition 6.5 : Soit (X,) une chaine de Markov récurrente nuile ou transiente et
f une fonction définie sur E et telle que Il‘im f(z) =0. Alors
R4 mde o)

lim L zn: f(Xx)=0p.s. .

n—+o0o N =1

démonstration : si la chaine est transiente, le résultat est trivial. Dans le cas
récurrent nul nous généralisons un argument utilisé dans [G2] (théoréme 1.8) : Soit
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telle que A(Ep,) < +o0 et UnEy, = E. Posons fy = Ij_ikf. Pour tous m et k € IN,
ona

S A _ (D)
oo T Mg (X:) | MEm) O

. q .1
Du fait que A(Ey,) — +00, on en déduit que nkrilx - Z: fe(Xi) = 0 p.s. Comme f;

=1
converge uniformément vers f quand k — +oc, on en déduit le résultat annoncé O

Théoréme 6.6 : Soit (X,) une chaine de Markov de type S1 avec une fonction
moment d’ordre 2 bornée sur E, alors '

. . . X
a) si (X,) est récurrente positive , nln:go — =0ps.
- n

. X
b) si (X,) est récurrente nulle ou transiente, nlg}gc —nl =m; p.s.

démonstration : c'est une généralisation du Théoréme 1.8 de [G2] (voir aussi
[G1]. Dans le cas récurrent positif, on utilise le théoréme ergodique pour obtenir
n

n7'y " d(Xk-1) — (A d) ps. Or (A, d) = 0; il suffit d’appliquer la proposition 6.3.
k=1

Dans le cas transient, c'est le corollaire 6.4. Dans le cas récurrent nul, on applique
la proposition 6.5 avec f = d — m, puis la proposition 6.3 pour conclure ol

Remarque 6.7: Le résultat du Théoréme 6.6 s’applique immédiatement aux m.a.
avec moment d'ordre 2 sur les hypergroupes de type S1. Par une méthode de
troncature (cf. {G2] ou [G1]) on peut montrer que le résultat est encore valable pour
les m.a. avec moment d’ordre 1.

B) Théoréme limite central : Soit & > 0 ; considérons les hypotheses suivantes :
Hy(a) = "la fonction cq4(z) = E.(| X, — z|*) existe et est borné sur E”.

Hj : "1l existe une suite (75,) de v.a. i.i.d. ayant un moment d’ordre 2 telles que :
Vn € N*, | X, — Xp-1| < T, ps.”

Lorsque Hy(2) est satisfaite, on a ca(t) — (d(t))? > 0. On supposera que cette fonc-
tion n’est jamais nulle (i.e. (X,) n’a pas d’état absorbant). La condition H; est
automatiquement vérifiée pour une m.a. sur un hypergroupe vérifiant la-condition
(4.0) comme l'indique immédiatement la contrainte sur le support (voir [G2]).

Comme dans le cas de la loi des grands nombres, nous devons distinguer la nature
de la chaine de Markov (X,) , d’ol le résultat suivant en deux parties :
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Théoréme 6.8 : 1) Si (X,) est récurrente positive de mesure invariante ) et satisfait
Hy(2), alors

Ro3(X, = 3 d(Xee1)) - N(0,0%)(n — +00),
k=1

ott 02 = (), c; — d?).

2) Si (X,,) est récurrente nulle ou transiente, si elle est de type S2, si 6% = my—m? >
0 et si elle vérifie de plus soit Hy(2 + ¢) (pour un € > 0) soit Hj, on a

V(X — 3 (X)) -5 N(0,0%)(n — +00)

k=1
démonstration (voir [G4] pour les détails) : En posant g(t) = c3(t) — d*(t). dans
n
le cas 1) on utilise le théoréme ergodique pour montrer que si V. = Z g(Xy) et
k=1

s2 = E(V?), on a s;2V2 — 1 ps. Dans le cas 2) on obtient le méme résultat
grace & la proposition 6.5. Pour montrer que la martingale M, de 6.1. satisfait
la condition de Lindeberg, on applique le théoréme ergodique dans le cas 1) 4 la
fonction h(z) = Ez(Z}1)z,54) et dans le cas 2) on montre par une technique de
majoration que les moyennes de Cesaro de la suite de v.a.

W; = E (2T 5400121 Fi1) -
converge vers zéro en probabilité. Le théoréme en résulte

Corollaire 6.9 : Sous les hypothéses du théoréme (partie 2), si E = R, ou N, si
m; # 0 et si d(z) — m; = O(|z|™®) avec @ > 1/2, 0n a

n~ VX, — nm,) —C—> N(0,0%)(n — +0)

démonstration : On peut supposer & < 1. Soit €(z) = d(z) — m;. Comme d'aprés
n

la loi des grands nombres X; ~ km, p.s., on obtient que n™/2 Z €(Xk-1) — 0 p.s.
k=1

et le résultat découle alors du théoréme 6.8 0 -

Remarque 6.10 : 1) Le corollaire s’applique au cas des hypergroupes de Chébli-
Trimeéche avec p > 0 et dans le cas des hypergroupes polynomiaux avec p — ¢ > 0.
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2) D’autres types de théorémes limites peuvent étre obtenus par des techniques
spectrales ; le lecteur intéressé peut consulter [B.H.].
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