Convergence of approximate deconvolution models to the mean Navier–Stokes equations
Annales de l'I.H.P. Analyse non linéaire, Tome 29 (2012) no. 2, pp. 171-198.

We consider a 3D Approximate Deconvolution Model ADM which belongs to the class of Large Eddy Simulation (LES) models. We aim at proving that the solution of the ADM converges towards a dissipative solution of the mean Navier–Stokes equations. The study holds for periodic boundary conditions. The convolution filter we first consider is the Helmholtz filter. We next consider generalized convolution filters for which the convergence property still holds.

DOI : 10.1016/j.anihpc.2011.10.001
Classification : 76D05, 35Q30, 76F65, 76D03
Mots clés : Navier–Stokes equations, Large eddy simulation, Deconvolution models
@article{AIHPC_2012__29_2_171_0,
     author = {Berselli, Luigi C. and Lewandowski, Roger},
     title = {Convergence of approximate deconvolution models to the mean {Navier{\textendash}Stokes} equations},
     journal = {Annales de l'I.H.P. Analyse non lin\'eaire},
     pages = {171--198},
     publisher = {Elsevier},
     volume = {29},
     number = {2},
     year = {2012},
     doi = {10.1016/j.anihpc.2011.10.001},
     mrnumber = {2901193},
     zbl = {1302.76083},
     language = {en},
     url = {http://www.numdam.org/articles/10.1016/j.anihpc.2011.10.001/}
}
TY  - JOUR
AU  - Berselli, Luigi C.
AU  - Lewandowski, Roger
TI  - Convergence of approximate deconvolution models to the mean Navier–Stokes equations
JO  - Annales de l'I.H.P. Analyse non linéaire
PY  - 2012
SP  - 171
EP  - 198
VL  - 29
IS  - 2
PB  - Elsevier
UR  - http://www.numdam.org/articles/10.1016/j.anihpc.2011.10.001/
DO  - 10.1016/j.anihpc.2011.10.001
LA  - en
ID  - AIHPC_2012__29_2_171_0
ER  - 
%0 Journal Article
%A Berselli, Luigi C.
%A Lewandowski, Roger
%T Convergence of approximate deconvolution models to the mean Navier–Stokes equations
%J Annales de l'I.H.P. Analyse non linéaire
%D 2012
%P 171-198
%V 29
%N 2
%I Elsevier
%U http://www.numdam.org/articles/10.1016/j.anihpc.2011.10.001/
%R 10.1016/j.anihpc.2011.10.001
%G en
%F AIHPC_2012__29_2_171_0
Berselli, Luigi C.; Lewandowski, Roger. Convergence of approximate deconvolution models to the mean Navier–Stokes equations. Annales de l'I.H.P. Analyse non linéaire, Tome 29 (2012) no. 2, pp. 171-198. doi : 10.1016/j.anihpc.2011.10.001. http://www.numdam.org/articles/10.1016/j.anihpc.2011.10.001/

[1] N.A. Adams, S. Stolz, Deconvolution methods for subgrid-scale approximation in large eddy simulation, Modern Simulation Strategies for Turbulent Flow, R.T. Edwards (2001)

[2] L.C. Berselli, T. Iliescu, W.J. Layton, Mathematics of Large Eddy Simulation of Turbulent Flows, Scientific Computation, Springer-Verlag, Berlin (2006) | MR | Zbl

[3] M. Bertero, B. Boccacci, Introduction to Inverse Problems in Imaging, IOP Publishing Ltd (1998) | MR | Zbl

[4] A. Bhattacharya, A. Das, D. Moser, A filtered-wall formulation for large-eddy simulation of wall-bounded turbulence, Phys. Fluids 20 (2008), 115104 | Zbl

[5] A. Cheskidov, D.D. Holm, E. Olson, E.S. Titi, On a Leray-α model of turbulence, Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 461 (2005), 629-649 | MR | Zbl

[6] P. Constantin, C. Foias, Navier–Stokes Equations, Chicago Lectures in Mathematics, University of Chicago Press, Chicago, IL (1988) | MR | Zbl

[7] A. Das, D. Moser, Filtering boundary conditions for les and embedded boundary conditions, C. Liu, L. Sakell, T. Beutner (ed.), Proceedings of the Third International Conference on DNS-LES, Greyden Press, Columbus (2001)

[8] C.R. Doering, J.D. Gibbon, Applied Analysis of the Navier–Stokes Equations, Cambridge Texts in Applied Mathematics, Cambridge University Press, Cambridge (1995) | MR | Zbl

[9] A. Dunca, Y. Epshteyn, On the Stolz–Adams deconvolution model for the large-eddy simulation of turbulent flows, SIAM J. Math. Anal. 37 no. 6 (2006), 1890-1902 | MR | Zbl

[10] C. Foias, D.D. Holm, E.S. Titi, The Navier–Stokes-alpha model of fluid turbulence, Physica D 152 (2001), 505-519 | MR | Zbl

[11] B.J. Geurts, Elements of Direct and Large Eddy Simulation, Edwards Publishing, Flourtown, PA (2003)

[12] O.A. Ladyzhenskaya, The Mathematical Theory of Viscous Incompressible Flow, Mathematics and Its Applications vol. 2, Gordon and Breach Science Publishers, New York (1969) | MR | Zbl

[13] W. Layton, R. Lewandowski, A simple and stable scale similarity model for large eddy simulation: energy balance and existence of weak solutions, Appl. Math. Lett. 16 (2003), 1205-1209 | MR | Zbl

[14] W.J. Layton, R. Lewandowski, Analysis of an eddy viscosity model for large eddy simulation of turbulent flows, J. Math. Fluid Mech. 4 no. 4 (2002), 374-399 | MR | Zbl

[15] W.J. Layton, R. Lewandowski, On a well-posed turbulence model, Discrete Contin. Dyn. Syst. Ser. B 6 no. 1 (2006), 111-128 | MR | Zbl

[16] W.J. Layton, R. Lewandowski, Residual stress of approximate deconvolution models of turbulence, J. Turbul. 7 (2006), 1-21 | MR | Zbl

[17] K.L. Lele, Compact finite different schemes with spectral-like resolution, J. Comput. Phys. 103 (1992), 16-42 | MR | Zbl

[18] J. Leray, Sur les mouvements dʼune liquide visqueux emplissant lʼespace, Acta Math. 63 (1934), 193-248 | MR

[19] M. Lesieur, O. Métais, P. Comte, Large-Eddy Simulations of Turbulence, Cambridge University Press, New York (2005) | MR | Zbl

[20] R. Lewandowski, On a continuous deconvolution equation for turbulence models, Lecture Notes of Neças Center for Mathematical Modeling 5 (2009), 62-102 | MR

[21] R. Lewandowski, Approximations to the Navier–Stokes Equations, in preparation, release scheduled end 2012.

[22] J.-L. Lions, Quelques méthodes de résolution des problèmes aux limites non linéaires, Dunod (1969) | MR | Zbl

[23] D. Moser, N. Malaya, H. Chang, P. Zandonade, P. Veluda, A. Bhattacharya, A. Haselbacher, Theoretically based optimal large-eddy simulation, Phys. Fluids 21 (2009), 105104 | Zbl

[24] F. Murat, Compacité par compensation, Ann. Sc. Norm. Super. Pisa Cl. Sci. 4 no. 5 (1978), 489-507 | EuDML | Numdam | MR | Zbl

[25] F. Murat, A survey on compensated compactness, L. Cesari (ed.), Contributions to Modern Calculus of Variations, Pitman Research Notes in Math. vol. 148, Longman, Harlow (1987), 145-183 | MR

[26] U. Piomelli, E. Balaras, Wall-layer models for large-eddy simulations, Annu. Rev. Fluid Mech. 34 (2002), 349-374 | MR | Zbl

[27] P. Sagaut, Large Eddy Simulation for Incompressible Flows — An Introduction, Scientific Computation, Springer-Verlag, Berlin (2001) | MR | Zbl

[28] S. Stolz, N.A. Adams, An approximate deconvolution procedure for large-eddy simulation, Phys. Fluids 11 no. 7 (1999), 1699-1701 | Zbl

[29] S. Stolz, N.A. Adams, L. Kleiser, An approximate deconvolution model for large-eddy simulation with application to incompressible wall-bounded flows, Phys. Fluids 13 no. 4 (2001), 997-1015 | Zbl

[30] L. Tartar, Nonlinear partial differential equations using compactness method, Report 1584, Mathematics Research Center, University of Wisconsin, Madison, 1975.

[31] L. Tartar, H-measures, a new approach for studying homogenisation, oscillations and concentration effects in partial differential equations, Proc. Roy. Soc. Edinburgh Sect. A 115 no. 3–4 (1990), 193-230 | MR | Zbl

[32] L. Tartar, Lecture Notes of the Unione Matematica Italiana, 7, Springer-Verlag/UMI, Berlin/Bologna (2009)

[33] R. Temam, Navier–Stokes Equations: Theory and Numerical Analysis, AMS Chelsea Publishing, Providence, RI (2001) | MR | Zbl

Cité par Sources :