A priori bounds versus multiple existence of positive solutions for a nonlinear Schrödinger system
Annales de l'I.H.P. Analyse non linéaire, Volume 27 (2010) no. 3, pp. 953-969.

We study the set of solutions of the nonlinear elliptic system

{-Δu+λ 1 u=μ 1 u 3 +βv 2 uinΩ,-Δv+λ 2 v=μ 2 v 3 +βu 2 vinΩ,u,v>0inΩ,u=v=0onΩ,(P)
in a smooth bounded domain Ω N , N3, with coupling parameter β. This system arises in the study of Bose–Einstein double condensates. We show that the value β=-μ 1 μ 2 is critical for the existence of a priori bounds for solutions of (P). More precisely, we show that for β>-μ 1 μ 2 , solutions of (P) are a priori bounded. In contrast, when λ 1 =λ 2 , μ 1 =μ 2 , (P) admits an unbounded sequence of solutions if β-μ 1 μ 2 .

@article{AIHPC_2010__27_3_953_0,
     author = {Dancer, E.N. and Wei, Juncheng and Weth, Tobias},
     title = {A priori bounds versus multiple existence of positive solutions for a nonlinear {Schr\"odinger} system},
     journal = {Annales de l'I.H.P. Analyse non lin\'eaire},
     pages = {953--969},
     publisher = {Elsevier},
     volume = {27},
     number = {3},
     year = {2010},
     doi = {10.1016/j.anihpc.2010.01.009},
     mrnumber = {2629888},
     zbl = {1191.35121},
     language = {en},
     url = {http://www.numdam.org/articles/10.1016/j.anihpc.2010.01.009/}
}
TY  - JOUR
AU  - Dancer, E.N.
AU  - Wei, Juncheng
AU  - Weth, Tobias
TI  - A priori bounds versus multiple existence of positive solutions for a nonlinear Schrödinger system
JO  - Annales de l'I.H.P. Analyse non linéaire
PY  - 2010
SP  - 953
EP  - 969
VL  - 27
IS  - 3
PB  - Elsevier
UR  - http://www.numdam.org/articles/10.1016/j.anihpc.2010.01.009/
DO  - 10.1016/j.anihpc.2010.01.009
LA  - en
ID  - AIHPC_2010__27_3_953_0
ER  - 
%0 Journal Article
%A Dancer, E.N.
%A Wei, Juncheng
%A Weth, Tobias
%T A priori bounds versus multiple existence of positive solutions for a nonlinear Schrödinger system
%J Annales de l'I.H.P. Analyse non linéaire
%D 2010
%P 953-969
%V 27
%N 3
%I Elsevier
%U http://www.numdam.org/articles/10.1016/j.anihpc.2010.01.009/
%R 10.1016/j.anihpc.2010.01.009
%G en
%F AIHPC_2010__27_3_953_0
Dancer, E.N.; Wei, Juncheng; Weth, Tobias. A priori bounds versus multiple existence of positive solutions for a nonlinear Schrödinger system. Annales de l'I.H.P. Analyse non linéaire, Volume 27 (2010) no. 3, pp. 953-969. doi : 10.1016/j.anihpc.2010.01.009. http://www.numdam.org/articles/10.1016/j.anihpc.2010.01.009/

[1] A. Ambrosetti, E. Colorado, Bound and ground states of coupled nonlinear Schrödinger equations, C. R. Math. Acad. Sci. Paris 342 (2006), 453-458 | MR | Zbl

[2] T. Bartsch, Z.-Q. Wang, J.C. Wei, Bound states for a coupled Schrödinger system, J. Fixed Point Theory Appl. 2 no. 2 (2007), 353-367 | MR | Zbl

[3] H. Berestycki, L.A. Caffarelli, L. Nirenberg, Inequalities for second-order elliptic equations with applications to unbounded domains. I, Duke Math. J. 81 (1996), 467-494 | MR | Zbl

[4] H. Berestycki, I. Capuzzo-Dolcetta, L. Nirenberg, Superlinear indefinite elliptic problems and nonlinear Liouville theorems, Topol. Methods Nonlinear Anal. 4 (1994), 59-78 | MR | Zbl

[5] D.G. De Figueiredo, B. Sirakov, Liouville type theorems, monotonicity results and a priori bounds for positive solutions of elliptic systems, Math. Ann. 333 (2005), 231-260 | MR | Zbl

[6] D.G. De Figueiredo, J.F. Yang, A priori bounds for positive solutions of a non-variational elliptic system, Comm. Partial Differential Equations 26 (2001), 2305-2321 | MR | Zbl

[7] B.D. Esry, C.H. Greene, J.P. Burke, J.L. Bohn, Hartree–Fock theory for double condensates, Phys. Rev. Lett. 78 (1997), 3594-3597

[8] B. Gidas, Symmetry properties and isolated singularities of positive solutions of nonlinear elliptic equations, Nonlinear Partial Differential Equations in Engineering and Applied Science, Proc. Conf., Univ. Rhode Island, Kingston, RI, 1979, Lect. Notes Pure Appl. Math. vol. 54, Dekker, New York (1980), 255-273

[9] B. Gidas, J. Spruck, A priori bounds for positive solutions of nonlinear elliptic equations, Comm. Partial Differential Equations 6 (1981), 883-901 | MR | Zbl

[10] D. Gilbarg, N.S. Trudinger, Elliptic Partial Differential Equations of Second Order, Springer-Verlag, Berlin (2001) | MR | Zbl

[11] S. Gupta, Z. Hadzibabic, M.W. Zwierlein, C.A. Stan, K. Dieckmann, C.H. Schunck, E.G.M. Van Kempen, B.J. Verhaar, W. Ketterle, Radio-frequency spectroscopy of ultracold fermions, Science 300 (2003), 1723-1726

[12] D.S. Hall, R. Matthews, J.R. Ensher, C.E. Wieman, E.A. Cornell, Dynamics of component separation in a binary mixture of Bose–Einstein condensates, Phys. Rev. Lett. 81 (1998), 1539-1542

[13] C.J. Myatt, E.A. Burt, R.W. Ghrist, E.A. Cornell, C.E. Wieman, Production of two overlapping Bose–Einstein condensates by sympathetic cooling, Phys. Rev. Lett. 78 (1997), 586-589

[14] G.G. Laptev, Absence of global positive solutions of systems of semilinear elliptic inequalities in cones, Izv. Ross. Akad. Nauk Ser. Mat. 64 (2000), 107-124 | MR | Zbl

[15] G.G. Laptev, On the nonexistence of solutions of elliptic differential inequalities in conic domains, Mat. Zametki 71 (2002), 855-866 | MR

[16] T.-C. Lin, J.-C. Wei, Ground state of N coupled nonlinear Schrödinger equations in R n , n3, Comm. Math. Phys. 255 (2005), 629-653 | MR | Zbl

[17] T.-C. Lin, J.-C. Wei, Spikes in two coupled nonlinear Schrödinger equations, Ann. Inst. H. Poincaré Anal. Non Linéaire 22 (2005), 403-439 | EuDML | Numdam | MR | Zbl

[18] T.C. Lin, J. Wei, Spikes in two-component systems of nonlinear Schrödinger equations with trapping potentials, J. Differential Equations 229 (2006), 538-569 | MR | Zbl

[19] E. Mitidieri, S. Pohozaev, A priori estimates and the absence of solutions of nonlinear partial differential equations and inequalities, Tr. Mat. Inst. Steklova 234 (2001), 1-384 | MR | Zbl

[20] L.A. Maia, E. Montefusco, B. Pellacci, Positive solutions for a weakly coupled nonlinear Schrödinger system, J. Differential Equations 229 (2006), 743-767 | MR | Zbl

[21] P. Poláčik, P. Quittner, P. Souplet, Singularity and decay estimates in superlinear problems via Liouville-type theorems, Duke Math. J. 139 (2007), 555-579 | MR | Zbl

[22] P. Quittner, Ph. Souplet, A priori estimates and existence for elliptic systems via bootstrap in weighted Lebesgue spaces, Arch. Ration. Mech. Anal. 174 (2004), 49-81 | MR | Zbl

[23] W. Reichel, H. Zou, Non-existence results for semilinear cooperative elliptic systems via moving spheres, J. Differential Equations 161 (2000), 219-243 | MR | Zbl

[24] B. Sirakov, Least energy solitary waves for a system of nonlinear Schrödinger equations, Comm. Math. Phys. 271 (2007), 199-221 | MR | Zbl

[25] M.A.S. Souto, A priori estimates and existence of positive solutions of nonlinear cooperative elliptic systems, Differential Integral Equations 8 (1995), 1245-1258 | MR | Zbl

[26] E. Timmermans, Phase separation of Bose–Einstein condensates, Phys. Rev. Lett. 81 (1998), 5718-5721

[27] M. Struwe, Variational Methods. Applications to Nonlinear Partial Differential Equations and Hamiltonian Systems, Ergeb. Math. Grenzgeb. (3) vol. 34, Springer-Verlag, Berlin (1996) | MR | Zbl

[28] M. Willem, Minimax Theorems, Progr. Nonlinear Differential Equations Appl. vol. 24, Birkhäuser Boston Inc., Boston, MA (1996) | MR | Zbl

[29] J.C. Wei, T. Weth, Nonradial symmetric bound states for a system of coupled Schrödinger equations, Rend. Lincei Mat. Appl. 18 (2007), 279-293 | MR | Zbl

[30] J.C. Wei, T. Weth, Radial solutions and phase separation in a system of two coupled Schrödinger equations, Arch. Ration. Mech. Anal. 190 no. 1 (2008), 83-106 | MR | Zbl

[31] H. Zou, A priori estimates for a semilinear elliptic system without variational structure and their application, Math. Ann. 323 (2002), 713-735 | MR | Zbl

[32] H. Zou, A priori estimates and existence for quasi-linear elliptic equations, Calc. Var. 33 (2008), 417-437 | MR | Zbl

Cited by Sources: