Wang, Qian
On the Geometry of Null Cones in Einstein-Vacuum Spacetimes
Annales de l'I.H.P. Analyse non linéaire, Tome 26 (2009) no. 1 , p. 285-328
Zbl 1157.83309 | MR 2483823
doi : 10.1016/j.anihpc.2008.03.002
URL stable : http://www.numdam.org/item?id=AIHPC_2009__26_1_285_0

Bibliographie

[1] Choquet-Bruhat Y., Théorème D'existence Pour Certains Systemes D'équations Aux Dérivées Partielles Nonlinéaires, Acta Math. 88 (1952) 141-225. MR 53338 | Zbl 0049.19201

[2] Christodoulou D., Klainerman S., The Global Nonlinear Stability of the Minkowski Space, Princeton Mathematical Series, vol. 41, Princeton, 1993. MR 1316662 | Zbl 0827.53055

[3] Hawking S. W., Ellis G. F.R., The Large Scale Structure of Space-Time, Cambridge Monographs on Mathematical Physics, 1973. MR 424186 | Zbl 0265.53054

[4] Klainerman S., Francesco N., The Evolution Problem in General Relativity, Birkhäuser, 2003. MR 1946854 | Zbl 1010.83004

[5] Klainerman S., Machedon M., Space-Time Estimates for Null Forms and the Local Existence Theorem, Comm. Pure Appl. Math. 46 (1993) 1221-1268. MR 1231427 | Zbl 0803.35095

[6] S. Klainerman, I. Rodnianski, Unpublished notes, 2003.

[7] Klainerman S., Rodnianski I., Rough Solutions to the Einstein Vacuum Equations, Ann. of Math. 161 (2005) 1143-1193. MR 2180400 | Zbl 1089.83006

[8] Klainerman S., Rodnianski I., The Causal Structure of Microlocalized Rough Einstein Metrics, Ann. of Math. 161 (2005) 1195-1243. MR 2180401 | Zbl 1089.83007

[9] Klainerman S., Rodnianski I., Causal Geometry of Einstein-Vacuum Spacetimes With Finite Curvature Flux, Invent. Math. 159 (3) (2005) 437-529. MR 2125732 | Zbl 1136.58018

[10] Klainerman S., Rodnianski I., Bilinear Estimates on Curved Space-Times, J. Hyperbolic Differential Equations 2 (2005) 279-291. MR 2151111 | Zbl pre02202321

[11] Klainerman S., Rodnianski I., Sharp Trace Theorems for Null Hypersurfaces on Einstein Metrics With Finite Curvature Flux, Geom. Funct. Anal. 16 (1) (2006) 164-229. MR 2221255 | Zbl pre05029445

[12] Klainerman S., Rodnianski I., A Geometric Littlewood-Paley Theory, Geom. Funct. Anal. 16 (1) (2006) 126-163. MR 2221254 | Zbl pre05029441

[13] S. Klainerman, I. Rodnianski, On the radius of injectivity of null hypersurfaces, J. Amer. Math. Soc., to appear. MR 2393426

[14] Klainerman S., Rodnianski I., A Kirchoff-Sobolev Parametrix for the Wave Equation and Applications, J. Hyperbolic Differential Equations 4 (3) (2007) 401-433. MR 2339803 | Zbl 1148.35042

[15] Klainerman S., Rodnianski I., On the Breakdown Criterion in General Relativity, http://arXiv:0801.1709.

[16] Poisson E., The Motion of Point Particles in Curved Spacetimes, www.livingreviews.org/lrr-2004-6. Zbl 1071.83011

[17] Stein E. M., Topics in Harmonic Analysis Related to the Littlewood-Paley Theory, Annals of Mathematics Studies, vol. 63, Princeton University Press, 1970. MR 252961 | Zbl 0193.10502

[18] Stein E. M., Harmonic Analysis: Real-Variable Methods, Orthogonality, and Oscillatory Integrals, With the assistance of Timothy S. Murphy, Princeton Mathematical Series, vol. 43, Princeton University Press, Princeton, NJ, 1993, Monographs in Harmonic Analysis III. MR 1232192 | Zbl 0821.42001

[19] Tao T., Harmonic Analysis in the Phase Plane, Lecture notes 254A, http://www.math.ucla.edu/~tao.

[20] Triebel H., Interpolation Theory, Function Spaces, Differential Operators, second ed., Johann Ambrosius Barth, Heidelberg, 1995. MR 1328645 | Zbl 0830.46028

[21] Wald R. M., General Relativity, University of Chicago Press, 1984. MR 757180 | Zbl 0549.53001

[22] Q. Wang, Causal geometry of Einstein-vacuum spacetimes, Ph.D thesis of Princeton University, 2006. MR 2624235