@article{AIHPC_2008__25_5_987_0,
author = {Moser, Roger},
title = {Energy concentration for the {Landau-Lifshitz} equation},
journal = {Annales de l'I.H.P. Analyse non lin\'eaire},
pages = {987--1013},
year = {2008},
publisher = {Elsevier},
volume = {25},
number = {5},
doi = {10.1016/j.anihpc.2007.08.003},
mrnumber = {2457820},
zbl = {1158.35098},
language = {en},
url = {https://www.numdam.org/articles/10.1016/j.anihpc.2007.08.003/}
}
TY - JOUR AU - Moser, Roger TI - Energy concentration for the Landau-Lifshitz equation JO - Annales de l'I.H.P. Analyse non linéaire PY - 2008 SP - 987 EP - 1013 VL - 25 IS - 5 PB - Elsevier UR - https://www.numdam.org/articles/10.1016/j.anihpc.2007.08.003/ DO - 10.1016/j.anihpc.2007.08.003 LA - en ID - AIHPC_2008__25_5_987_0 ER -
%0 Journal Article %A Moser, Roger %T Energy concentration for the Landau-Lifshitz equation %J Annales de l'I.H.P. Analyse non linéaire %D 2008 %P 987-1013 %V 25 %N 5 %I Elsevier %U https://www.numdam.org/articles/10.1016/j.anihpc.2007.08.003/ %R 10.1016/j.anihpc.2007.08.003 %G en %F AIHPC_2008__25_5_987_0
Moser, Roger. Energy concentration for the Landau-Lifshitz equation. Annales de l'I.H.P. Analyse non linéaire, Tome 25 (2008) no. 5, pp. 987-1013. doi: 10.1016/j.anihpc.2007.08.003
[1] , On the first variation of a varifold, Ann. of Math. (2) 95 (1972) 417-491. | Zbl | MR
[2] , , A measure-theoretic approach to higher codimension mean curvature flows, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 25 (1997) 27-49. | Zbl | MR | Numdam
[3] , The Motion of a Surface by its Mean Curvature, Mathematical Notes, vol. 20, Princeton University Press, Princeton, NJ, 1978. | Zbl | MR
[4] , , , , Compensated compactness and Hardy spaces, J. Math. Pures Appl. 72 (1993) 247-286. | Zbl | MR
[5] , , Energy identity for a class of approximate harmonic maps from surfaces, Comm. Anal. Geom. 3 (1995) 543-554. | Zbl | MR
[6] , , A report on harmonic maps, Bull. London Math. Soc. 10 (1978) 1-68. | Zbl | MR
[7] , Geometric Measure Theory, Springer-Verlag, New York, 1969. | Zbl | MR
[8] , Partial regularity for harmonic maps of evolution into spheres, Comm. Partial Differential Equations 19 (1994) 761-790. | Zbl | MR
[9] , Régularité des applications faiblement harmoniques entre une surface et une sphère, C. R. Acad. Sci. Paris Sér. I Math. 311 (1990) 519-524. | Zbl | MR
[10] , Second fundamental form for varifolds and the existence of surfaces minimising curvature, Indiana Univ. Math. J. 35 (1986) 45-71. | Zbl | MR
[11] , Two-Dimensional Geometric Variational Problems, John Wiley & Sons, Chichester, 1991. | Zbl | MR
[12] , , The blow-up locus of heat flows for harmonic maps, Acta Math. Sin. (Engl. Ser.) 16 (2000) 29-62. | Zbl | MR
[13] , Gradient estimates and blow-up analysis for stationary harmonic maps, Ann. of Math. (2) 149 (1999) 785-829. | Zbl | MR
[14] , Mapping problems, fundamental groups and defect measures, Acta Math. Sin. (Engl. Ser.) 15 (1999) 25-52. | Zbl | MR
[15] , Varifold type theory for Sobolev mappings, in: First International Congress of Chinese Mathematicians, Beijing, 1998, Amer. Math. Soc., Providence, 2001, pp. 423-430. | Zbl | MR
[16] , , Energy quantization for harmonic maps, Duke Math. J. 111 (2002) 177-193. | Zbl | MR
[17] , , Energy identity of harmonic map flows from surfaces at finite singular time, Calc. Var. Partial Differential Equations 6 (1998) 369-380. | Zbl | MR
[18] , , Harmonic and quasi-harmonic spheres. III. Rectifiability of the parabolic defect measure and generalized varifold flows, Ann. Inst. H. Poincaré Anal. Non Linéaire 19 (2002) 209-259. | Zbl | MR | Numdam
[19] , Energy concentration for almost harmonic maps and the Willmore functional, Math. Z. 251 (2005) 293-311. | Zbl | MR
[20] , Partial Regularity for Harmonic Maps and Related Problems, World Scientific Publishing Co. Pte. Ltd, Singapore, 2005. | MR
[21] , On singularities of the heat flow for harmonic maps from surfaces into spheres, Comm. Anal. Geom. 3 (1995) 297-315. | Zbl | MR
[22] , , Bubbling of the heat flows for harmonic maps from surfaces, Comm. Pure Appl. Math. 50 (1997) 295-310. | Zbl | MR
[23] , , The existence of minimal immersions of 2-spheres, Ann. of Math. (2) 113 (1981) 1-24. | Zbl | MR
[24] , Lectures on Geometric Measure Theory, Australian National University Centre for Mathematical Analysis, Canberra, 1983. | Zbl | MR
[25] , Harmonic Analysis: Real-Variable Methods, Orthogonality, and Oscillatory Integrals, Princeton University Press, Princeton, NJ, 1993. | Zbl | MR
[26] , On the evolution of harmonic maps in higher dimensions, J. Differential Geom. 28 (1988) 485-502. | Zbl | MR
[27] , Imbedding theorems of Sobolev spaces into Lorentz spaces, Boll. Unione Mat. Ital. Sez. B Artic. Ric. Mat. (8) 1 (1998) 479-500. | Zbl | MR
[28] , Riemannian Geometry, Oxford Science Publications, The Clarendon Press, Oxford University Press, New York, 1993. | Zbl | MR
Cité par Sources :





