@article{AIHPC_2005__22_4_403_0, author = {Lin, Tai-Chia and Wei, Juncheng}, title = {Spikes in two coupled nonlinear {Schr\"odinger} equations}, journal = {Annales de l'I.H.P. Analyse non lin\'eaire}, pages = {403--439}, publisher = {Elsevier}, volume = {22}, number = {4}, year = {2005}, doi = {10.1016/j.anihpc.2004.03.004}, mrnumber = {2145720}, zbl = {1080.35143}, language = {en}, url = {http://www.numdam.org/articles/10.1016/j.anihpc.2004.03.004/} }
TY - JOUR AU - Lin, Tai-Chia AU - Wei, Juncheng TI - Spikes in two coupled nonlinear Schrödinger equations JO - Annales de l'I.H.P. Analyse non linéaire PY - 2005 SP - 403 EP - 439 VL - 22 IS - 4 PB - Elsevier UR - http://www.numdam.org/articles/10.1016/j.anihpc.2004.03.004/ DO - 10.1016/j.anihpc.2004.03.004 LA - en ID - AIHPC_2005__22_4_403_0 ER -
%0 Journal Article %A Lin, Tai-Chia %A Wei, Juncheng %T Spikes in two coupled nonlinear Schrödinger equations %J Annales de l'I.H.P. Analyse non linéaire %D 2005 %P 403-439 %V 22 %N 4 %I Elsevier %U http://www.numdam.org/articles/10.1016/j.anihpc.2004.03.004/ %R 10.1016/j.anihpc.2004.03.004 %G en %F AIHPC_2005__22_4_403_0
Lin, Tai-Chia; Wei, Juncheng. Spikes in two coupled nonlinear Schrödinger equations. Annales de l'I.H.P. Analyse non linéaire, Volume 22 (2005) no. 4, pp. 403-439. doi : 10.1016/j.anihpc.2004.03.004. http://www.numdam.org/articles/10.1016/j.anihpc.2004.03.004/
[1] Equilibria with many nuclei for the Cahn-Hilliard equation, J. Differential Equations 160 (2000) 283-356. | MR | Zbl
, ,[2] Multi-spike stationary solutions of the Cahn-Hilliard equation in higher-dimension and instability, Adv. Differential Equations 4 (1999) 1-69. | MR | Zbl
, , ,[3] Nehari's problem and competing species system, Ann. Inst. H. Poincaré 19 (6) (2002) 871-888. | Numdam | MR | Zbl
, , ,[4] Spike-layered solutions of singularly perturbed elliptic problems in a degenerate setting, Indiana Univ. Math. J. 48 (3) (1999) 883-898. | MR | Zbl
, ,[5] On the role of mean curvature in some singularly perturbed Neumann problems, SIAM J. Math. Anal. 31 (1999) 63-79. | MR | Zbl
, , ,[6] On the role of distance function in some singularly perturbed problems, Comm. Partial Differential Equations 25 (2000) 155-177. | MR | Zbl
, , ,[7] Multiple peak solutions for some singular perturbation problems, Cal. Var. Partial Differential Equations 10 (2000) 119-134. | MR | Zbl
, , ,[8] Dynamics of collapsing and exploding Bose-Einstein condensates, Nature 19 (412) (2001) 295-299.
, , , , , ,[9] On the location of spike s of solutions with two sharp layers for a singularly perturbed semilinear Dirichlet problem, J. Differential Equations 157 (1999) 82-101. | MR | Zbl
, ,[10] Multipeak solutions for a singular perturbed Neumann problem, Pacific J. Math. 189 (1999) 241-262. | MR | Zbl
, ,[11] Existence and non-existence results for semilinear problems in unbounded domains, Proc. Roy. Soc. Edinburgh Sect. A 93 (1982) 1-14. | MR | Zbl
, ,[12] Hartree-Fock theory for double condensates, Phys. Rev. Lett. 78 (1997) 3594-3597.
, , , ,[13] Symmetry of positive solutions of nonlinear elliptic equations in , in: Mathematical Analysis and Applications, Part A, Adv. Math. Suppl. Stud., vol. 7A, Academic Press, New York, 1981, pp. 369-402. | MR | Zbl
, , ,[14] Multiple interior spike solutions for some singular perturbed Neumann problems, J. Differential Equations 158 (1999) 1-27. | MR | Zbl
, ,[15] On multiple mixed interior and boundary peak solutions for some singularly perturbed Neumann problems, Canad. J. Math. 52 (2000) 522-538. | MR | Zbl
, ,[16] Multiple boundary peak solutions for some singularly perturbed Neumann problems, Ann. Inst. H. Poincaré Anal. Non Linéaire 17 (2000) 249-289. | Numdam | MR | Zbl
, , ,[17] Existence of multipeak solutions for a semilinear Neumann problem via nonsmooth critical point theory, Cal. Var. Partial Differential Equations 11 (2000) 143-175. | MR | Zbl
, , ,[18] Radio-frequency spectroscopy of ultracold fermions, Science 300 (2003) 1723-1726.
, , , , , , , , ,[19] Dynamics of component separation in a binary mixture of Bose-Einstein condensates, Phys. Rev. Lett. 81 (1998) 1539-1542.
, , , , ,[20] Uniqueness of positive solutions of in , Arch. Rational Mech. Anal. 105 (1989) 243-266. | MR | Zbl
,[21] On a singularly perturbed equation with Neumann boundary condition, Comm. Partial Differential Equations 23 (1998) 487-545. | MR | Zbl
,[22] The Dirichlet problem for singularly perturbed elliptic equations, Comm. Pure Appl. Math. 51 (1998) 1445-1490. | MR | Zbl
, ,[23] Analysis, American Mathematical Society, 1996. | Zbl
, ,[24] Production of two overlapping Bose-Einstein condensates by sympathetic cooling, Phys. Rev. Lett. 78 (1997) 586-589.
, , , , ,[25] Diffusion, cross-diffusion, and their spike-layer steady states, Notices Amer. Math. Soc. 45 (1998) 9-18. | MR | Zbl
,[26] On the shape of least energy solution to a semilinear Neumann problem, Comm. Pure Appl. Math. 41 (1991) 819-851. | MR | Zbl
, ,[27] Locating the peaks of least energy solutions to a semilinear Neumann problem, Duke Math. J. 70 (1993) 247-281. | MR | Zbl
, ,[28] On the location and profile of spike-Layer solutions to singularly perturbed semilinear Dirichlet problems, Comm. Pure Appl. Math. 48 (1995) 731-768. | MR | Zbl
, ,[29] Phase separation of Bose-Einstein condensates, Phys. Rev. Lett. 81 (1998) 5718-5721.
,[30] Symmetry properties in systems of semilinear elliptic equations, J. Differential Equations 42 (3) (1981) 400-413. | MR | Zbl
,[31] On the construction of single-peaked solutions to a singularly perturbed semilinear Dirichlet problem, J. Differential Equations 129 (1996) 315-333. | MR | Zbl
,[32] On the interior spike layer solutions to a singularly perturbed Neumann problem, Tohoku Math. J. 50 (1998) 159-178. | MR | Zbl
,[33] On the effect of the domain geometry in a singularly perturbed Dirichlet problem, Differential Integral Equations 13 (2000) 15-45. | MR | Zbl
,[34] On the boundary spike layer solutions of singularly perturbed semilinear Neumann problem, J. Differential Equations 134 (1997) 104-133. | MR | Zbl
,[35] Stationary solutions for the Cahn-Hilliard equation, Ann. Inst. H. Poincaré Anal. Non Linéaire 15 (1998) 459-492. | Numdam | MR | Zbl
, ,[36] Multiple boundary spike solutions for a wide class of singular perturbation problems, J. London Math. Soc. 59 (1999) 585-606. | MR | Zbl
, ,Cited by Sources: