A nonlinear model for inextensible rods as a low energy Γ-limit of three-dimensional nonlinear elasticity
Annales de l'I.H.P. Analyse non linéaire, Volume 21 (2004) no. 3, pp. 271-293.
@article{AIHPC_2004__21_3_271_0,
     author = {Mora, Maria Giovanna and M\"uller, Stefan},
     title = {A nonlinear model for inextensible rods as a low energy $\Gamma $-limit of three-dimensional nonlinear elasticity},
     journal = {Annales de l'I.H.P. Analyse non lin\'eaire},
     pages = {271--293},
     publisher = {Elsevier},
     volume = {21},
     number = {3},
     year = {2004},
     doi = {10.1016/j.anihpc.2003.08.001},
     zbl = {1109.74028},
     language = {en},
     url = {http://www.numdam.org/articles/10.1016/j.anihpc.2003.08.001/}
}
TY  - JOUR
AU  - Mora, Maria Giovanna
AU  - Müller, Stefan
TI  - A nonlinear model for inextensible rods as a low energy $\Gamma $-limit of three-dimensional nonlinear elasticity
JO  - Annales de l'I.H.P. Analyse non linéaire
PY  - 2004
SP  - 271
EP  - 293
VL  - 21
IS  - 3
PB  - Elsevier
UR  - http://www.numdam.org/articles/10.1016/j.anihpc.2003.08.001/
DO  - 10.1016/j.anihpc.2003.08.001
LA  - en
ID  - AIHPC_2004__21_3_271_0
ER  - 
%0 Journal Article
%A Mora, Maria Giovanna
%A Müller, Stefan
%T A nonlinear model for inextensible rods as a low energy $\Gamma $-limit of three-dimensional nonlinear elasticity
%J Annales de l'I.H.P. Analyse non linéaire
%D 2004
%P 271-293
%V 21
%N 3
%I Elsevier
%U http://www.numdam.org/articles/10.1016/j.anihpc.2003.08.001/
%R 10.1016/j.anihpc.2003.08.001
%G en
%F AIHPC_2004__21_3_271_0
Mora, Maria Giovanna; Müller, Stefan. A nonlinear model for inextensible rods as a low energy $\Gamma $-limit of three-dimensional nonlinear elasticity. Annales de l'I.H.P. Analyse non linéaire, Volume 21 (2004) no. 3, pp. 271-293. doi : 10.1016/j.anihpc.2003.08.001. http://www.numdam.org/articles/10.1016/j.anihpc.2003.08.001/

[1] Acerbi E, Buttazzo G, Percivale D, A variational definition for the strain energy of an elastic string, J. Elasticity 25 (1991) 137-148. | MR | Zbl

[2] Antman S.S, The Theory of Rods, Handbuch der Physik, vol. VIa, Springer-Verlag, 1972.

[3] Antman S.S, Nonlinear Problems of Elasticity, Springer-Verlag, New York, 1995. | MR | Zbl

[4] Cimetière A, Geymonat G, Le Dret H, Raoult A, Tutek Z, Asymptotic theory and analysis for displacements and stress distribution in nonlinear elastic straight slender rods, J. Elasticity 19 (1988) 111-161. | MR | Zbl

[5] Dal Maso G, An Introduction to Γ-convergence, Birkhäuser, Boston, 1993. | Zbl

[6] Friesecke G, James R.D, Müller S, A theorem on geometric rigidity and the derivation of nonlinear plate theory from three-dimensional elasticity, Comm. Pure Appl. Math. 55 (2002) 1461-1506. | MR | Zbl

[7] Friesecke G, James R.D, Müller S, The Föppl von Kármán plate theory as a low energy Γ-limit of nonlinear elasticity, C. R. Acad. Sci. Paris, Ser. I 335 (2002) 201-206. | Zbl

[8] G. Friesecke, R.D. James, S. Müller, A hierarchy of plate models derived from nonlinear elasticity by Γ-convergence, in preparation. | Zbl

[9] Kirchhoff G, Über das Gleichgewicht und die Bewegungen eines unendlich dünnen Stabes, J. Reine Angew. Math. (Crelle) 56 (1859) 285-313. | Zbl

[10] Mielke A, On Saint-Venant's problem for an elastic strip, Proc. Roy. Soc. Edinburgh Sect. A 110 (1988) 161-181. | MR | Zbl

[11] Mielke A, Saint-Venant's problem and semi-inverse solutions in nonlinear elasticity, Arch. Rational Mech. Anal. 102 (1988) 205-229. | MR | Zbl

[12] M.G. Mora, S. Müller, Derivation of the nonlinear bending-torsion theory for inextensible rods by Γ-convergence, Calc. Var., in press. | Zbl

[13] Murat F, Sili A, Comportement asymptotique des solutions du système de l'élasticité linéarisée anisotrope hétérogène dans des cylindres minces, C. R. Acad. Sci. Paris, Sér. I Math. 328 (1999) 179-184. | MR | Zbl

[14] Murat F, Sili A, Effets non locaux dans le passage 3d-1d en élasticité linéarisée anisotrope hétérogène, C. R. Acad. Sci. Paris, Sér. I Math. 330 (2000) 745-750. | MR | Zbl

[15] Oleinik O.A, Shamaev A.S, Yosifian G.A, Mathematical Problems in Elasticity and Homogenization, North-Holland, 1992. | MR | Zbl

[16] O. Pantz, Le modèle de poutre inextensionnelle comme limite de l'élasticité non-linéaire tridimensionnelle, Preprint, 2002.

[17] Villaggio P, Mathematical Models for Elastic Structures, Cambridge University Press, 1997. | MR | Zbl

Cited by Sources: