Maximum principle for elliptic operators and applications
Annales de l'I.H.P. Analyse non linéaire, Volume 19 (2002) no. 6, pp. 815-870.
@article{AIHPC_2002__19_6_815_0,
     author = {Tahraoui, Rabah},
     title = {Maximum principle for elliptic operators and applications},
     journal = {Annales de l'I.H.P. Analyse non lin\'eaire},
     pages = {815--870},
     publisher = {Elsevier},
     volume = {19},
     number = {6},
     year = {2002},
     mrnumber = {1939087},
     zbl = {1090.35049},
     language = {en},
     url = {http://www.numdam.org/item/AIHPC_2002__19_6_815_0/}
}
TY  - JOUR
AU  - Tahraoui, Rabah
TI  - Maximum principle for elliptic operators and applications
JO  - Annales de l'I.H.P. Analyse non linéaire
PY  - 2002
SP  - 815
EP  - 870
VL  - 19
IS  - 6
PB  - Elsevier
UR  - http://www.numdam.org/item/AIHPC_2002__19_6_815_0/
LA  - en
ID  - AIHPC_2002__19_6_815_0
ER  - 
%0 Journal Article
%A Tahraoui, Rabah
%T Maximum principle for elliptic operators and applications
%J Annales de l'I.H.P. Analyse non linéaire
%D 2002
%P 815-870
%V 19
%N 6
%I Elsevier
%U http://www.numdam.org/item/AIHPC_2002__19_6_815_0/
%G en
%F AIHPC_2002__19_6_815_0
Tahraoui, Rabah. Maximum principle for elliptic operators and applications. Annales de l'I.H.P. Analyse non linéaire, Volume 19 (2002) no. 6, pp. 815-870. http://www.numdam.org/item/AIHPC_2002__19_6_815_0/

[1] Brezis H., Analyse fonctionnelle. Théorie et applications, Masson, 1983. | MR | Zbl

[2] Chong K.M., Rice N.M., Equimeasurable Rearrangements of Functions, Queen's Papers in Pure and Applied Mathematics, 28, Queen's University, Ontario, 1971. | MR | Zbl

[3] Diaz J.I., Kawhol B., On convexity and starshapdness of level sets for some nonlinear elliptic and parabolic problems on convex rings, J. Math. Anal. Appl. 177 (1993) 263-286. | MR | Zbl

[4] L.C. Evans, Partial Differential Equations, Graduate Studies in Mathematics, Vol. 19. | Zbl

[5] Gilbarg D., Trudinger N.S., Elliptic Partial Differential Equations of Second Order, Springer Verlag, 1983. | MR | Zbl

[6] Kawohl B., Rearrangements and Convexity of Level Sets in PDE, Lecture Notes in Math., 1150, Springer, 1985. | MR | Zbl

[7] Lewis J.L., Capacitary functions in convex rings, Arch. Rational Mech. Anal. 66 (1977) 201-224. | MR | Zbl

[8] Mossino J., Inégalités isopérimétriques et applications en physique. Travaux en cours, Hermann, Paris, 1984. | MR | Zbl

[9] Protter M., Weinberger H., Maximum Principles in Differential Equations, Prentice-Hall, 1967. | MR | Zbl

[10] Sperb R., Maximum Principles and Their Applications, Academic Press, 1981. | MR | Zbl

[11] Stampacchia G., Le problème de Dirichlet pour les équations elliptiques du second ordre à coefficients discontinus, Ann. Inst. Fourier 15 (1965) 189-258. | Numdam | MR | Zbl

[12] Tahraoui R., Contrôle optimal dans les équations elliptiques, SIAM J. Control Optim. 3 (1992) 465-521. | MR | Zbl

[13] Tahraoui R., Sur le principe du maximum des opérateurs elliptiques, C. R. Acad. Sci. Paris, Série I 320 (1995) 1453-1458. | MR | Zbl

[14] Tahraoui R., Générateurs infinitésimaux et propriétés géométriques pour certaines équations complètement non linéaires, Revista Matemática Iberoamericana 11 (3) (1995). | MR | Zbl

[15] Tahraoui R., Principe de comparaison pour opérateurs elliptiques, C. R. Acad. Sci. Paris, Série I 322 (1996) 1053-1056. | MR | Zbl

[16] R. Tahraoui, Star-shapedeness of solutions of some semi-linear problems, Work in preparation.

[17] L. Tartar, Estimations fines des coefficients homogénéisés, in: Ennio de Giorgi Colloquium, Vol. 125, Pitman, pp. 168-187. | MR | Zbl

[18] Cohn D.L., Measure Theory, Birkhäuser, Boston, 1980. | MR | Zbl

[19] Flores-Bazán F., Cellina A., Radially symmetric solutions of a class of problems of the calculus of variations without convexity assumptions, Ann. I. H. Poincaré AN 9 (1992) 465-478. | Numdam | MR | Zbl