@article{AIHPC_2002__19_5_581_0, author = {Arias, M. and Campos, J. and Cuesta, M. and Gossez, J.-P.}, title = {Asymmetric elliptic problems with indefinite weights}, journal = {Annales de l'I.H.P. Analyse non lin\'eaire}, pages = {581--616}, publisher = {Elsevier}, volume = {19}, number = {5}, year = {2002}, mrnumber = {1922470}, zbl = {1016.35054}, language = {en}, url = {http://www.numdam.org/item/AIHPC_2002__19_5_581_0/} }
TY - JOUR AU - Arias, M. AU - Campos, J. AU - Cuesta, M. AU - Gossez, J.-P. TI - Asymmetric elliptic problems with indefinite weights JO - Annales de l'I.H.P. Analyse non linéaire PY - 2002 SP - 581 EP - 616 VL - 19 IS - 5 PB - Elsevier UR - http://www.numdam.org/item/AIHPC_2002__19_5_581_0/ LA - en ID - AIHPC_2002__19_5_581_0 ER -
%0 Journal Article %A Arias, M. %A Campos, J. %A Cuesta, M. %A Gossez, J.-P. %T Asymmetric elliptic problems with indefinite weights %J Annales de l'I.H.P. Analyse non linéaire %D 2002 %P 581-616 %V 19 %N 5 %I Elsevier %U http://www.numdam.org/item/AIHPC_2002__19_5_581_0/ %G en %F AIHPC_2002__19_5_581_0
Arias, M.; Campos, J.; Cuesta, M.; Gossez, J.-P. Asymmetric elliptic problems with indefinite weights. Annales de l'I.H.P. Analyse non linéaire, Volume 19 (2002) no. 5, pp. 581-616. http://www.numdam.org/item/AIHPC_2002__19_5_581_0/
[1] On a elliptic equation with exponential growth, Rend. Univ. Padova 96 (1996) 143-175. | Numdam | MR | Zbl
, ,[2] M. Alif, J.-P. Gossez, On the Fučik spectrum with indefinite weights, Diff. Int. Equations, to appear. | MR | Zbl
[3] Etude des valeurs propres et de la résonance pour l'opérateur p-laplacien, Thèse de Doctorat, Université Libre de Bruxelles, 1987, See also C. R. Acad. Sci. Paris 305 (1987) 725-728. | Zbl
,[4] Sur un théorème de point critique et application à un problème de non-résonance entre deux valeurs propres du p-laplacien, Ann. Fac. Sc. Toulouse 9 (2000) 5-30. | Numdam | MR | Zbl
, ,[5] Strongly nonlinear elliptic problems near resonance: A variational approach, Com. P. D. E. 15 (1990) 1141-1159. | MR | Zbl
, ,[6] On the second eigenvalue of the p-laplacian, in: , (Eds.), Nonlinear Partial Differential Equation, Pitman Res. Notes in Math., 343, 1996, pp. 1-9. | MR | Zbl
, ,[7] Fučik spectrum of a singular Sturm-Liouville problem, Nonlinear Analysis T. M. A. 27 (1996) 679-697. | MR | Zbl
, ,[8] Exact number of solutions of a one-dimensional Dirichlet problem with jumping nonlinearities, Differential Equations Dynam. Systems 5 (1997) 139-161. | MR | Zbl
, ,[9] Sur certains problèmes elliptiques asymétriques avec poids indéfinis, C. R. Acad. Sci. Paris 332 (2001) 215-218. | MR | Zbl
, , , ,[10] On the antimaximum principle and the Fučik spectrum for the Neumann p-laplacian, Diff. Int. Equations 13 (2000) 217-226. | MR | Zbl
, , ,[11] Remarks on finding critical points, Com. Pure Appl. Math. 44 (1991) 939-963. | MR | Zbl
, ,[12] Existence of solutions for a class of semilinear problems at double resonance, Boll. Soc. Brasil. Mat. 19 (1988) 21-37. | MR | Zbl
, ,[13] Eigenvalue problems for the p-laplacian with indefinite weight, Elec. J. Diff. Equations 2001 (2001) 1-9. | EuDML | MR | Zbl
,[14] M. Cuesta, Minimax theorems on C1 manifolds via Ekeland variational principle, to appear. | MR | Zbl
[15] The beginning of the Fučik spectrum of the p-laplacian, J. Differential Equations 159 (1999) 212-238. | MR | Zbl
, , ,[16] A variational approach to nonresonance with respect to the Fučik spectrum, Nonlinear Analysis T. M. A. 19 (1992) 487-500. | MR | Zbl
, ,[17] Lectures on the Ekeland Variational Principle with Applications and Detours, TATA Institute, Springer-Verlag, 1989. | MR | Zbl
,[18] Strict monotonicity of eigenvalues and unique continuation, Com. P. D. E. 17 (1992) 339-346. | MR | Zbl
, ,[19] On the first curve of the Fučik spectrum of an elliptic operator, Diff. Int. Equations 7 (1994) 1285-1302. | MR | Zbl
, ,[20] Semilinear elliptic equations with the primitive of the nonlinearity interacting with the first eigenvalue, J. Math. Anal. Appl. 156 (1991) 381-394. | MR | Zbl
, ,[21] Semilinear elliptic equations with the primitive of the nonlinearity away from the spectrum, Nonlinear Analysis T. M. A. 17 (1991) 1201-1219. | MR | Zbl
, ,[22] A homotopy deformation along p of a Leray-Schauder degree result and existence for (|u′|p−2u′)′+f(t,u)=0, u(0)=u(T)=0, p>1, J. Differential Equations 80 (1989) 1-13. | Zbl
, , ,[23] Solvabiliy and Bifurcations of Nonlinear Equations, Pitman Research Notes in Mathematics, 264, 1992. | MR | Zbl
,[24] Resonance problems for the p-laplacian, J. Funct. Anal. 169 (1999) 189-200. | MR | Zbl
, ,[25] Uniqueness and positivity of solutions of equations with the p-laplacian, in: , (Eds.), Reaction Diffusion Systems, Lect. Notes P. Appl. Math., 194, M. Dekker, 1998, pp. 141-155. | Zbl
, , , ,[26] On a nonresonance condition for a semilinear elliptic problem, Diff. Int. Equations 4 (1991) 945-951. | MR | Zbl
, ,[27] Asymptotic behaviour of the eignevalues of the p-laplacian, Com. P. D. E. 14 (1989) 1059-1069. | Zbl
,[28] Duality and Perturbation Methods in Critical Point Theory, Cambridge Tracts in Mathematics, 107, Cambridge University Press, 1993. | MR | Zbl
,[29] Antimaximum principle for elliptic problems with weight, Electr. J. Diff. Equations 1999 (1999) 1-15. | EuDML | Zbl
, , ,[30] A note on two notions of unique continuation, Bull. Soc. Math. Belgique 45 (1993) 257-268. | MR | Zbl
, ,[31] Nonresonnance with respect tot the Fučik spectrum for periodic solutions of second order ordinary differential equations, Nonlinear Analysis T. M. A. 14 (1990) 1079-1104. | MR | Zbl
, ,[32] Nichtlineare Integralgleichungen nebst anwendungen, Acta Math. 54 (1930) 117-176. | JFM | MR
,[33] Unique continuation and absence of positive eigenvalues for Schrödinger operators, Ann. Math. 121 (1985) 463-494. | MR | Zbl
, ,[34] On the equation div (|∇u|p−2∇u)+λ|u|p−2u=0, Proc. Amer. Math. Soc. 109 (1990) 157-166, Addendum, Proc. Amer. Math. Soc. 116 (1992) 583-584. | Zbl
,[35] Variational methods and semilinear elliptic equations, Arch. Ration. Mech. Analysis 95 (1986) 269-277. | MR | Zbl
, , ,[36] Sturm-Liouville type problems for the p-laplacian under asymptotic nonresonance conditions, J. Differential Equations 156 (1999) 50-70. | MR | Zbl
, ,[37] The Fučik spectrum of general Sturm-Liouville problems, J. Differential Equations 161 (2000) 87-109. | MR | Zbl
,[38] Some remarks on the number of solutions of some nonlinear elliptic problems, Ann. I. H. P. Analyse Non linéaire 2 (1985) 143-156. | EuDML | Numdam | MR | Zbl
,[39] Quelques résultats sur le Ap-laplacien avec poids indéfini, Thèse de Doctorat, Université Libre de Bruxelles, 1992.
,[40] Nonlinear Functional Analysis and its Applications, Vol. III (Variational Methods and Optimization), Springer-Verlag, 1984. | MR | Zbl
,