Global weak solutions for 1+2 dimensional wave maps into homogeneous spaces
Annales de l'I.H.P. Analyse non linéaire, Volume 16 (1999) no. 4, pp. 411-422.
@article{AIHPC_1999__16_4_411_0,
     author = {Zhou, Yi},
     title = {Global weak solutions for $1+2$ dimensional wave maps into homogeneous spaces},
     journal = {Annales de l'I.H.P. Analyse non lin\'eaire},
     pages = {411--422},
     publisher = {Gauthier-Villars},
     volume = {16},
     number = {4},
     year = {1999},
     zbl = {0997.58012},
     mrnumber = {1697560},
     language = {en},
     url = {http://www.numdam.org/item/AIHPC_1999__16_4_411_0/}
}
TY  - JOUR
AU  - Zhou, Yi
TI  - Global weak solutions for $1+2$ dimensional wave maps into homogeneous spaces
JO  - Annales de l'I.H.P. Analyse non linéaire
PY  - 1999
DA  - 1999///
SP  - 411
EP  - 422
VL  - 16
IS  - 4
PB  - Gauthier-Villars
UR  - http://www.numdam.org/item/AIHPC_1999__16_4_411_0/
UR  - https://zbmath.org/?q=an%3A0997.58012
UR  - https://www.ams.org/mathscinet-getitem?mr=1697560
LA  - en
ID  - AIHPC_1999__16_4_411_0
ER  - 
%0 Journal Article
%A Zhou, Yi
%T Global weak solutions for $1+2$ dimensional wave maps into homogeneous spaces
%J Annales de l'I.H.P. Analyse non linéaire
%D 1999
%P 411-422
%V 16
%N 4
%I Gauthier-Villars
%G en
%F AIHPC_1999__16_4_411_0
Zhou, Yi. Global weak solutions for $1+2$ dimensional wave maps into homogeneous spaces. Annales de l'I.H.P. Analyse non linéaire, Volume 16 (1999) no. 4, pp. 411-422. http://www.numdam.org/item/AIHPC_1999__16_4_411_0/

[1] D. Christodoulou and A.S. Tahvildar-Zadeh, On the regularity of spherically symmetric wave maps, Comm. Pure Appl. Math., Vol. 46, 1993, pp. 1041-1091. | MR | Zbl

[2] A. Freire, Global weak solutions of the wave map system to compact homogeneous spaces, Preprint. | MR

[3] A. Freire, S. Müller, M. Struwe, Weak convergence of wave maps from (1+2)- dimensional Minkowski space to Riemannian manifold, Invent. Math. (to appear). | MR | Zbl

[4] C.-H. Gu, On the Cauchy problem for harmonic maps defined on two-dimensional Minkowski space, Comm. Pure Appl. Math., Vol. 33, 1980, pp. 727-737. | MR | Zbl

[5] F. Hélein , Regularity of weakly harmonic map from a surface into a manifold with symmetries, Manuscripta Math., Vol. 70, 1991, pp. 203-218. | MR | Zbl

[6] S. Klainerman and M. Machedon, Space-time estimates for null forms and the local existence theorem, Comm. Pure Appl. Math., Vol. 46, 1993, pp. 1221-1268. | MR | Zbl

[7] S. Müller and M. Struwe, Global existence of wave maps in 1+2 dimensions with finite energy data, preprint. | MR

[8] F. Murat, Compacité par compensation, Ann. Scula. Norm. Pisa, Vol. 5, 1978, pp. 489-507. | Numdam | MR | Zbl

[9] R. Schoen and K. Uhlenbeck, Boundary regularity and the Dirichlet problem for harmonic maps, J.Diff.Geom., Vol. 18, 1983, pp. 253-268. | MR | Zbl

[10] J. Shatah, Weak solutions and development of singularity in the SU(2) σ-model, Comm. Pure Appl. Math., Vol. 41, 1988, pp. 459-469. | MR | Zbl

[11] L. Tartar, Compensated compactness and applications to p.d.e. Nonlinear Analysis and Mechanics, Heriot-Watt symposium, R. J. KNOPS, Vol. 4, 1979, pp. 136-212. | MR | Zbl

[12] Y. Zhou, Local existence with minimal regularity for nonlinear wave equations, Amer. J. Math. (to appear). | MR | Zbl

[13] Y. Zhou, Remarks on local regularity for two space dimensional wave maps, J.Partial Differential Equations (to appear). | MR | Zbl

[14] Y. Zhou, Uniqueness of weak solution of 1+1 dimensional wave maps, Math. Z. (to appear). | Zbl

[15] Y. Zhou, An Lp theorem for the compensated compactness, Proceedings of royal society of Edinburgh, Vol. 122 A, 1992, pp. 177-189. | MR | Zbl