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ABSTRACT. - For the Standard Map, a well-known family of conservative
diffeomorphisms on the torus, we construct large basic sets which fill in
the torus as the parameter runs to oo. Then we prove that, for a residual set
of large parameters, these basic sets are accumulated by elliptic periodic
islands. We also show that there exists a ko > 0 and a dense set of

parameters in [ko, oo ) for which the standard map exhibits homoclinic

tangencies.

Key words: Unfolding of a homoclinic tangency, thickness of a hyperbolic basic set.

RESUME. - Pour l’application Standard, une famille bien connue des
diffeomorphismes conservatives sur le Tore, on construit des ensembles
hyperboliques qui remplissent le tore lorsque Ie parametre tend vers l’infini.
On demontre alors que pour un ensemble residuel de grands parametres ces
ensembles hyperboliques sont accumules par des lies elliptiques periodiques.
Nous montrons aussi qu’il existe ko > 0 et un ensemble dense des

parametres dans [ko, oo) pour lesquels 1’application Standard présente des
tangences homoclines.

Classification A. M, S. ; 58F, 70K.
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360 P. DUARTE

1. INTRODUCTION

For surface diffeomorphisms the unfolding of a homoclinic tangency is a
fundamental mechanism to understand nonhyperbolic dynamics. Infinitely
many coexisting sinks is one of the surprising phenomena which occur,
for dissipative systems, every time a homoclinic tangency is generically
unfolded. This remarkable fact is due to S. Newhouse: he proved that
arbitrarily close to a surface diffeomorphism with a homoclinic tangency,
there are residual subsets of open sets of diffeomorphisms whose maps
have infinitely many sinks. J. Palis conjectured that the same should hold
for conservative systems with elliptic islands playing the role of sinks. In
the present work we verify this is true in the context of the standard map
family and prove there are "plenty" of elliptic islands for a residual set of
large parameters. We were motivated by Palis’ conjecture and also by the
work in progress of Carleson and Spencer, as well as by an earlier question
of Sinai to Palis about this family. This family of diffeomorphisms on
T~ is given by,

The orbits (xn, xn-1 ) of fk correspond to solutions of the difference

equation 03942xn = 2xn + xn-i = 03BA sin(203C0xn), which is a discrete
version of the pendulum equation = K But only for small
values of k is the dynamics of the standard map an approximation of the
pendulum’s phase flow. In fact while the pendulum is always integrable, for
any K, the standard map is integrable for k = 0, meaning T2 is completely
foliated by invariant KAM curves. However as k grows, all these curves
gradually break up and the orbit behavior becomes increasingly "chaotic".
Simple computer experiments may lead to the conjecture that for large
k, in a measure theoretical sense, most points have nonzero Liapounov
exponents. Nevertheless this question is completely open. There is no

single parameter value k for which it is known that Pesin’s region, of
nonzero Liapounov exponents, has positive Lebesgue measure. Carleson
and Spencer have a work in progress in this direction: they plan to prove
this conjecture for parameter values where no elliptic points exist. They
also conjecture that for a set of parameters with full density at oo (in a
measure sense), there are no elliptic points. Our work does not contradict
this conjecture, but it certainly shows how subtle this subject is. It is

interesting to point out that Sinai’s question to Palis, made several years
ago, concerned the possible abundance of elliptic islands in line with our
present work.
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361ELLIPTIC POINTS OF THE STANDARD MAP

Notice that, since fk is conjugated to f-k via the translation (x, y) H

(x -~- ~ , y + 2 ) , we can restrict our attention to the parameter half line
k ~ [0, -E-oo). The following theorems synthesize our main results. We begin
constructing a family of large basic sets for fk.

THEOREM A. - There is a family of basic sets Ak of fk, such that:
l. Ak is dynamically increasing, meaning for small E > 0, Ak+E contains

the continuation of Ak at parameter k + E.
2. The thickness of Ak grows to ~. For all sufficiently large k,

3. The Hausdorf Dimension of Ak increases up to 2. For large k,

4. Ak is conjugated to a full Bernoulli shift in 2nk symbols, where

5. Ak fills in the Torus, meaning that as k goes to 0o the maximum
distance of any point in T 2 to Ak tends to 0. For large k, T2 = 
where ~~ _ £.
Then for this family of basic sets A~ we prove:

THEOREM B. - There exists ko > 0 and a residual subset R C [ko, oo) such
that for k E R the closure of the f k’s elliptic periodic points contains Ak.

THEOREM C. - There exists ko > 0 such that given any k > ko and
any periodic point the set of parameters k’ > k at which

the invariant manifolds and generically unfold a
quadratic homoclinic tangency is dense in [k, -I-oo). P(k’) denotes the
continuation of the periodic saddle P at parameter k’.

We do not claim to be original in Theorem A which is rather a description
of the basic set family A~ mentioned in theorems Band C. These results
are proved through sections 4 to 6. To finish this introduction we present
.brief ideas of the _proofs . of theorems _A~ to C. ’Given any :periodic function
p : ff~ with period l, cp(x + 1) = + l, l E 7~,

Vol. 11, n° 4-1994.



362 P. DUARTE

defines an invertible area preserving dynamical system on T2, for which
the following hyperbolicity criterion holds: An invariant set A is uniformly
hyperbolic whenever there exists some constant A > 2 such that for all

(x, A, ] > ~. This type of system includes the Standard Map
Family where = 2x + k For this family the critical region
~ ~ c~~ (~) ~  a~, for some fixed A > 2, shrinks to a pair of circles ~~ _ ~ 4 ~

oo. Thus for all large k the maximal invariant set

will be a "big" hyperbolic set. Theorem B follows from theorem C using
a renormalization scheme, showing that arbitrarily close to a tangency
parameter an elliptic point is created through the unfolding of a saddle-
node bifurcation. In order to prove theorem C we use the following version
of Newhouse’s "gap" lemma: any pair of Cantor sets in the circle

S~ = ~ / 7~ , such that the product of their thicknesses is > 1,
must intersect KS n K~‘ ~ ~ . We apply this lemma extending the stable
and unstable manifolds of l~~ to global transversal foliations .~u of T~.
Remark that these foliations will be f -invariant only if restricted to a small
neighborhood of Using that the leaves of are almost horizontal,
when we push by the diffeomorphism f , we get a new foliation

~~‘ _ ( f ~ ~ ,~ ~’2‘ which folds along the circles ~ ~ _ ~ 4 ~, thus making two
circles of tangencies with the almost vertical foliation see Fig (1). The
Cantor sets KU are then the projections of Ak to one of these tangency

Annales de l’Institut Henri Poincaré - Analyse non linéaire



363ELLIPTIC POINTS OF THE STANDARD MAP

circles along the foliations .~’S and For large k, T ( ~S )T ( I~u ) » 1
and so there will be a tangency between leaves of and 
A major difficulty is to give rigorous estimates of the thickness 
and for which we must prove that the linear distortion of the one
dimensional dynamical systems induced by the foliations .~’s and .~u is
bounded uniformly in k. To be able to do this we construct these globally
defined foliations in the following way. We modify the function cp~
near its critical points into a new function having a pole for each zero
of cp~ and such that ~~ (~) ( » 2. The new system ( 1 ) with in place of
cp~ is a singular area preserving diffeomorphism of T2. Although singular,
it is hyperbolic in its maximal invariant domain, which has total measure,
and most importantly it has smooth global invariant foliations.

Section 2 is dedicated to the construction of the foliations .~’s and In
section 3 we estimate the linear distortion of the one dimensional dynamics
induced by these foliations. Section 4 is used to construct the family of
basic sets and prove theorem A. Theorems C and B are then respectively
proved in sections 5 and 6.

2. GLOBAL FOLIATIONS

In this section we study the differentiability of the invariant foliations for
a class of singular hyperbolic diffeomorphisms on the torus T2 ~ ~2 ~~2.

2.1. Singular Hyperbolic Diffeomorphisms

be a smooth function satisfying:
1. ~ is periodic, + 1) = -~- ~ (~ Ell),
2. ~ has a finite number of poles ( all of them with finite order ) in

each fundamental domain,
3. For some A > 2, ] > A.

Define f : D C T2, f (x, y) = (-y + x) mod 7L2. The
domain of f is the complement of a finite union of vertical circles,
one for each pole of D - ~ (x, ~) mod Z~ : 1j; (x) i- oo}, which is
diffeomorphically mapped onto D’ = ~(~, ~) rnod 7~2 : oo~. We
call such f a singular diffeomorphism.
Now, given a pair V2 of consecutive poles of the vertical cylinder

C = {(x, y) mod Z2| v1  x  v2} is mapped onto the horizontal one C’ ==
Vol. 11, n° 4-1994.



364 P. DUARTE

{ (x, y) mod Z2|v1  y  v2} with both ends infinitely twisted in opposite
directions. To understand how f acts on C notice it is the composition
f = T o R of a 90 degree rotation R(x,y) = (-y, x) mod Z2, with

T(x, y) = (x + y) mod Z2, a singular map which rotates each

horizontal circle {y = A similar description is true

about ~f -1 (~, ~) _ (y, -x + mod 7L2, which decomposes as

f-l = T’oR’ where R’(x,y) = (y, -x) mod Z2 is a 90 degree rotation
and ~’’ (x, ~) _ (x, y ~- ~ (~) ) mod 7l2 preserves vertical circles.

The singular diffeomorphism f preserves area since

has determinant 1. Notice that the maximal invariant set

has full measure in T2. We are going to see now that f : Doc> is

uniformly hyperbolic.

PROPOSITION 1. - There are continuous functions as, lf 2 --~ (~ such
that:

Conditions 3 and 4 state that the line fields generated by ( cx S ( x , ~ ) ,1 )
and (1, ~) are fixed under the actions of and f. The existence of
such continuous invariant line fields can be proved applying the Contraction

Annales de l’lnstitut Henri Poincaré - Analyse non linéaire



365ELLIPTIC POINTS OF THE STANDARD MAP

fixed point Theorem to the action of f -1, or f, on the space C°(T2, (-1, l~).
We remark that 3 and 4 are respectively equivalent to

Knowing that as and aU are continuous and bounded a priori by 1, these
expressions give us 1. Symmetry 2 follows from the reversible character
of f. Denote by I : T 2 -~ ~ 2 the linear involution y ) = (y, x ) . Then
reversibility of f simply means that f (I (x, y)) = y) ) .

Defining the continuous line fields:

= line spanned by the vector (as(x, ~) ,1 )

= line spanned by the vector 

we have the following obvious consequence:

COROLLARY 2. - For any (~, 2J) E T2, R~ = 
and this is an invariant hyperbolic splitting for f : D
D~.
Denote by FS and the foliations associated to the continuous line

fields ES and E~ . The two invariant foliations have a finite number of

closed leaves, one for each pole of ~. Since they are symmetric with
respect to the linear involution I(~, ~) - (~, ~) we only describe For

each pole v of since as (v, y) = 0, the vertical singular circle {x = v}
is a leaf of On the other hand given a pair vi  v2 of consecutive poles
of ’ljJ, the vertical cylinder C = {(x, y) mod Z2 |v1  x  v2} is foliated

by open leaves winding around it with their ends accumulating on the two
opposite boundary circles. This is because as (x, y) is nonzero, thus with

.constant. sign, inside C. Notice that

Vol. 1 l, n° 4-1994.
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2.2. Differentiability of Foliations

To study the differentiability of aU and as we introduce the Lie

derivatives along the vector fields ~),1 ) and ( 1, ~) ) :

We are going to prove that:
1. as are C1 functions.
2. are also C1 functions. It follows that is continuously

differentiable along the vector with

is continuously differentiable along the vector field ~/), 1) with

3. 8sau is Holder continuous along the vector field ~),1), 
is Holder continuous along the vector field ( 1, au t~, ~) ) .
Most of the differentiability’ statements above follow in the same way as

in the general theory of invariant foliations for smooth hyperbolic dynamical
systems. See [HP], see also [HPS]. The main point in redoing this theory for
this specific class of singular hyperbolic diffeomorphisms is that we need
to have explicit bounds for the derivatives and Holder constants mentioned
above. These bounds depend on the function but we will show that

indeed they only depend on the following two parameters: A > 2, and
.~ > 0, such that ~ ~ .~ > 0

This bound 1/~ exists because and ~~ are bounded functions, as
follows easily from the fact that 2014~ is a periodic function (without
poles). Also it is straightforward to check that

Annales de l’Institut Henri Poincaré - Analyse non linéaire
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Notice

Finally we will make the following commodious assumption: A > 10.

Although statements 1, 2 and 3 should be true for any A > 2 this

assumption of a stronger hyperbolicity forces a stronger contraction of
the derivatives by the action of f on the space ~-1,1~) which
simplifies the calculations.

PROPOSITION 3. - as, au are of class C~, and for a = a~‘

PROPOSITION 4. - 8uau and are of class C1 and

Propositions (3) and (4) are proved in the spirit of [HPS], using the
Fiber Contraction Theorem to get the existence and continuity of these
derivatives of ~) and y) .
LEMMA l. - (Fiber Contraction Theorem)
Let x be a topological space and To : -~ x a map having one

globally attracting fixed point ao E X. Let y be a complete metric
space and T : x x y --~ x y be a continuous map of the form

_ (To(a), where for all a E x, --~ y is

a Lipschitz contraction with Lipschitz constant 0  ~c  1 uniform in

cx E ~, that is

Then if 03B20 is the unique fixed point of 03B3 ~ T1 (ao, 03B3), (03B10 3 ,Qo) is a

globally attracting fixed point for T.

See [HP], [S] for a proof of this lemma. By symmetry 2 of proposition
(1) we can restrict ourselves to study For instance to prove proposition

Vol. 11, n° 4-1994.
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(3) take X = [-1,1]) acting as the space of "horizontal" line fields
(1, a) with a E X, take Y = ~° ( T2, ~- l, l~ 2 ) as a space containing the
derivatives of ~’1 functions a E X and let T describe the

action of f on the derivatives 8sa, 8ua of the C1 line fields ( 1, a ) with
a E X. Now iterating some E X x y we obtain a sequence

E X x y converging uniformly to the unique attracting
fixed point E X x y given by lemma (1). This proves aU is
of class Cl. Since the proofs are quite standard we leave the calculations
to the reader. We just remark that differentiating (2) with respect to 8s, au,
8s8u and and using the following notation,

we obtain the relations

Annales de l’lnstitut Henri Poincaré - Analyse non linéaire



369ELLIPTIC POINTS OF THE STANDARD MAP

Remark that by items 3 and 4 of proposition (1) we have

Also from (1) it follows that

This last equality is used in the first and third relations above. Now from
these equalities, knowing that all the derivatives involved exist and are
a priori bounded by 1, it is easy to deduce the estimations stated in

propositions (3) and (4).

COROLLARY 5. - is continuously differentiable along the vector field
(1~ ~J~~ and

is continuously differentiable along the vector field (x, y),1) and

The statements of differentiability follow at once from proposition (4)
and next lemma, whose proof is an easy exercise in Differential Geometry.
Once again we will leave the calculations to the reader.

LEMMA 2. - Let M be a manifold, f : D~ a Cl function and X, Y
C1 vector fields on M. If o~X f is of class C1 then f is differentiable
along X and

Vol. 11, n° 4-1994.
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2.3. Holder Continuity

Let us give precise definitions of what we mean by Holder continuity
of a function 6: ~2 -~ R along the foliations and Given constants

0  03B3  1 and C > 0 we say 03B8 is (C, continuous along
respectively if for (x, y) and (x’, y’) in the same leaf of 

respectively we have

Remark that if (x, y) and (x’, y’) belong to the same leaf of resp.
then .

Now given any fixed 0  ~y  1 assume that A is large enough so that
(A + 1)z  (A - 1)3-~ and define

PROPOSITION 6. - ~s03B1u is 4 C q -Holder continuous along Fs, and
is (4 lC )-Hölder continuous along 5’".

Because of the usual symmetry it is enough to study along .~s .
We have

Annales de l’lnstitut Henri Poincaré - Analyse non linéaire
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Clearly F is a C1 function. Then we can rewrite the above relation

Stating matters in this form we see c~s ~’~ is an invariant section
of the trivial fiber bundle T2 x [-1,1] by the fiber preserving map
(~, ~, z) ~ ~ f (~, ~), FfC~,~> ~z)~ - Although the base map f : ~2 -~ T~
is singular we can adapt the usual proof of Holder continuity for the unique
invariant section of F. See [S]. For this we need the following technical
lemma.

LEMMA 3. - The function F satisfies:

. ~ w ~

Proof. - For the proof of item 1 just remark that from (5) and (6), using
the mean value theorem, we have, for any pole ~/o of ø

Item 2 is an easy boring calculation. Item 3 follows because

Proof of proposition (6). - Let (x, y) and (x’, y’) be two points in the
same leaf of We will use the following notation: for n > 0,

Vol. 11, n° 4-1994.
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Let N be the least integer n > 0 such that the interval ~n~ contains a
pole of ’ljJ. Notice that while ~n ~ contains no pole the difference yn
grows exponentially with n because expands the stable leaves. By the
mean value theorem for each n  N there is a point (~n, ~n), in the same
leaf of .~s which contains (xn, Yn) and (~n , ~n ) , such that

Thus writing, for n  N, an = ~~’(~n) - ~n)~ [ we have

Now, abbreviating a = (03BB+1 03BB-1)2, we will prove by induction that for n  N

otherwise it can be easily proved that

Remark that j~o - yo ( _ ~ ~o + because E ~~o , yo~ , and
by item 3 of lemma (3),

Annales de l’lnstitut Henri Poincaré - Analyse non linéaire



373ELLIPTIC POINTS OF THE STANDARD MAP

Other steps follow from item 2 of the same lemma. Now assume 2) holds
for n  ~V - 1. The same argument we used above shows that

Then

proving that 2) also holds for n + 1. From 2) we have

To see this choose a pole By item 1 of lemma (3),

The last inequality is clear if IYN - 1. Otherwise, trivially,

This proves 3). Thus using this inequality together with 1) we get

Vol. 11, n° 4-1994.


